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Introduction
Design of experiments (DOE) is an important branch of applied 

statistics that deals with planning, conducting of the experiment, 
analyzing and interpreting final results. It combines mathematical 
and statistical tools, which aim at constructing optimal designs to 
be tested. Due to the widely application during recent decades, this 
science is strongly spread in many areas such as optimization, process 
quality control as well as product performance prediction.

The historical notes highlight that some of the most remarkable 
and progressive contributions of statistics in the twentieth century 
have been those in Experimental design. British statistician and 
geneticist Sir R.A. Fisher first laid the foundations in this area, 
between 1918 and 1940, as a result of different applications and 
simulations in agricultural experiments. Most of his early publications 
have emphasized the fact that profound conclusions could be drawn 
efficiently from fluctuations of nuisance variable such as fertilizers, 
temperature and other natural conditions. Similar methods have been 
successfully applied to variety of areas in order to investigate the 
effects of many different factors by changing them at one time instead 
of changing one factor at a time.

Next significant period, also known as “The First Industrial Era”, 
occurred as a result of the application of experimental designs in 
chemical industry. It was elaborated in the 1950s till late nineties by 
the extensive work of G.Box and B.Wilson on the famous Response 
Surface Methodology (RSM) that explores the relationships between 

several explanatory variables and one or more response variables. 
Over the past years there has been a tremendous increase in the 
exploitation similar experimental techniques in optimization processes 
and industry. This is due largely to the increased emphasis on quality 
improvement and the essential role played by statistical methods used 
in DOE.	

“The Second Industrial Era” was conceived in late 1970s after the 
exhaustive work of the Japanese quality consultant Genichi Taguchi. 
His Robust Design method (RDM) was the leading approach in quality 
improvement methods focused on response surfaces associated with 
both mean and variation reduction, and to choose the noise factor 
settings, so that both variability and bias are made simultaneously 
small. 

Experimental design techniques are effective and powerful 
methods that are also becoming popular in the area of computer-aided 
design and engineering using computer simulation models. Some 
basic properties as maximizing the amount of information while 
minimizing the amount of the collected data have had revolutionary 
impact among scientists. This fact allows us to lay the foundations of 
the “Modern Era”, beginning circa 1990, when the design techniques 
have been also becoming popular in different sectors of economy. 

We perform description of two combinatorial structures, namely 
Balanced incomplete block design and Latin square design, and 
demonstrate its application in statistical analysis. Practical methods 
for analyzing data from life testing will be provided for each design. 
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Abstract

Background: Design and analysis of experiments will become much more prevalent 
simultaneously in scientific, academic and applied aspects over the next few years. 
Combinatorial designs are touted as the most important structures in this field taking into 
account their desirable features from statistical perspective.1,2 The applicability of such 
designs is widely spread in areas such as biostatistics, biometry, medicine, information 
technologies and many others. Usually, the most significant and vital objective of the 
experimenter is to maximize the profit and respectively to minimize the expenses and 
moreover the timing under which the experiment take place. This necessity emphasizes the 
importance of the more efficient mathematical and statistical methods in order to improve 
the quality of the analysis.

We review combinatorial structures,3 in particular balanced incomplete block design 
(BIBD)4–6 and Latin squares designs (LSD),7–9 which were first introduced by R.A Fisher 
and et al. in 1925, who developed the basic statistical theory of such designs.

We propose general framework, using the mathematical structures in Experimental design, 
to demonstrate those combinatorial designs which sometimes can be easily constructed by 
dint of computer tools.10 Applications on Biostatistics and Biometry fields are illustrated, 
namely an example dealing with the comparison of pharmacological substances in terms of 
reaction time in a bio-statistical experiment and another one dealing with comparisons of 
clinical effects of a new medical product. Simulations and statistical analysis are presented 
using R Studio and the variety of built packages related to Design of Experiment.11,12

Keywords: balanced incomplete block design, design of experiments, latin square, 
r statistics, biostatistics, biometry

Biometrics & Biostatistics International Journal

Research Article Open Access

https://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.15406/bbij.2018.07.00228&domain=pdf


Some combinatorial structures in experimental design: overview, statistical models and applications 347
Copyright:

©2018 Valcheva et al.

Citation: Valcheva P, Oliveira TA. Some combinatorial structures in experimental design: overview, statistical models and applications. Biom Biostat Int J. 
2018;7(4):346‒351. DOI: 10.15406/bbij.2018.07.00228

We focus on planning experiments efficiently and how to create 
statistical analysis with the aid of R packages for experimental design.

Generating balanced incomplete block 
designs

Block designs arise in experimental design as fundamental units 
for testing too many varieties in an experiment. Such constructions can 
efficiently provide information in cases when treatments are included 
in blocks, because they are expensive or he testing time should be 
minimized. However, sometimes blocks or experiment’s budget may 
not be large enough to allow all desirable treatments to be executed in 
all blocks. The incomplete block designs refer to the condition when 
each block has less than a full complement of treatments. But the most 
intensely studied are the balanced incomplete block designs (BIBDs 
or 2-designs), in which all treatment effects and their differences are 
estimated with the same precision as long as every pair of treatments 
occurs together the same number of times. The statistical analysis of 
such designs is considerably more complicated, although they are 
used in cases having one source of variation.

A Balanced incomplete block design with parameters (v,b,r,k,λ) is 
an ordered pair (V,B), where V is a finite v-element set of treatments 
or varieties, B is a family of k-element subset of V, called blocks such 
that satisfy the following conditions: 

(i) Each block contains exactly k members 

(ii) Every treatment is contained in exactly r blocks (or is replicated 
r times) 

(iii) Every 2-subset of V (pair of treatments) is contained in the 
same block exactly λ times. 

BIBD(v,b,r,k,λ) is an arrangement of b subsets of size k from a set 
of v treatments, such that (i), (ii) and (iii) are satisfied. The parameter 
λ must be an integer. The necessary, but not sufficient conditions for 
the existence of a BIBD are:

( ) ( )   1 1  vr bk v r k b vλ= − = − ≥

If v=b, the BIBD is said to be a symmetric.

There are different packages in R for creating and analyzing 
experimental designs for research purposes. The package “crossdes” 
generate cross-over designs of various types, including Latin squares 
and BIBD. The build-in function “find.BIB” gives rise to design with 
desired parameters, where number of rows corresponds to the blocks 
and columns - the number of elements per block. The R output gives 
the following result: (Figure 1).

 The resulting design can be verified concerning balanced manner 
via “isGYD” function. The conclusion is shown below:

i.	 isGYD (find.BIB(7,7,3))

ii.	 The design is a balanced incomplete block design w.r.t. rows.

There are also other packages in R, which can be used for 
generating block designs. For example “ibd”, “AlgDesign” and “dae”.

The above design, BIBD(7,7,3,3,1), which is symmetric (v=b=7), 
corresponds to the Steiner triple system of order 7(ST S(7)) consists 
of a set V of 7 points, and a collection B of subsets of V called triples, 
such that each block contains exactly 3 points, and any two points lie 

together in exactly one block. This system has cyclic representation: 
let the set V={0,1,...,6} be the integers mod 7 and the triples are the set 
{1,2,4} of quadratic residues mod 7 and its cyclic shifts. The system 
is also known as the projective plane of order 2, or the Fano plane, 
which has the smallest possible number of points and lines - 3 points 
on every line and 3 lines through every point.

>find.BIB(7,7,3)

  [ ,1] [ ,2] [ ,3]

[1, ] 1 2 4

[2, ] 2 3 5

[3, ] 3 4 6

[4, ] 4 5 7

[5, ] 5 6 1

[6, ] 6 7 2

[7, ] 7 1 3

 
Figure 1 Fano plane.

Statistical analysis of numerical example

Balanced incomplete block designs are typically used when 
all comparisons are equally important for the experiment, but the 
researcher is not able to run all possible combinations. In such cases 
the treatments that are used in each block should be selected in 
balanced manner, i.e. any pair occurs together in the same number of 
times as any other pair.6 

Consider a BIBD(v,b,r,k,λ) that satisfies conditions (i), (ii) and (iii).

The statistical model of the design is

where

 ijy  is the  observation in the blockth thi j  

      the i.i.d. random error component with      NID (0, 2σ )

In the following illustrative example, we will use already generated 
design BIBD (7 , 7 , 3 , 3 , 1 ). Suppose an experiment is to be run to 
compare v = 7 compositions of pharmacological substances in terms 

th
j  is the effect of the  j  block β

 is the general mean effect µ

i  is the effect of the  treatment thiτ

ijεijε

ij i j ijy  1, ,  1, ,µ τ β ξ= + + + = … = …i v j b
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of reaction time in the bio statistical experiment. Further, assume that 
only 3 observations can be taken per day, and that the experiment must 
be completed within 7 days. The incidence matrix in Table 1 below 
has a 1 in the (i, j)-cell, if the treatment i is contained in block j and 0 
otherwise, and also the data of above-mentioned example (Table 1).

For this experiment we apply Inter-block analysis of variance, 
where the treatment effects are estimated after eliminating the block 
effects from the normal equations. When blocks are incomplete, there 
are two sources of information about treatment effects, but the bigger 
part comes from the analysis done below. In Table 2, we give variance 
table about such analysis that can be compiled into the intra - block 
analysis of variance table for testing the significance of treatment 
effect given as follows: (Table 2).

The form of the ANOVA used to analyze BIBD data depends on 
the type of analysis. After its application, the researcher retains or 
rejects the hypothesis, often based on a statistical mechanism called 
hypothesis testing. The null hypothesis of our interest is

and the alternative hypothesis is

In Table 3 we present output results, estimated using some basic 
functions in R. For example, the linear model function lm() to conduct 
linear regression analysis and anova() function as a traditional 
statistical approach (Table 3).

Table 1 Incidence matrix for BIBD (7,7,3,3,1)

 Blocks

Treatments 1 2 3 4 5 6 7

1 1(=73) 0 0 0 1(=64) 0 1(=66)

2 1(=71) 1(=68) 0 0 0 1(=65) 0

3 0 1(=67) 1(=72) 0 0 0 1(=72)

4 1(=75) 0 1(=74) 1(=73) 0 0 0

5 0 1(=71) 0 1(=69) 1(=70) 0 0

6 0 0 1(=68) 0 1(=67) 1(=71) 0

7 0 0 0 1(=71) 0 1(=75) 1(=74)

Table 2 Intra-block analysis of variance table for BIBD

Source of variation Sum of squares Degrees of 
freedom Mean square F0

Between Treatments        

(adjusted) SSTr(adj) v-1 MSTr=SSTr(adj)/v-1 MSTreatment/MSE

Between Blocks        

(adjusted) SSBlocks(unadj) b-1    

Intrablock        

Error SSError(substraction) N-a-b+1 MSError  

Total SSTotal=∑∑y2
i j-G

2/N N-1    

Table 3 Analysis of variance table

  Df Sum of squares Mean square F value Pr(>F)

Blocks 6 85.619 14.2698 1.1515 0.4146

Treatments 6 29.524 4.9206 0.3971 0.8617

Residuals 8 99.143 12.3929    

0 1 2 7H :  τ τ τ= =…=

1 jH :  at least one pair of '  is different sτ
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The test for null hypothesis 0H  is based on the rule that if                                                        	
                                        , then 0H  is rejected. At the 5% significance 
level, the p-value for treatments is less than 0.05, which means that 
the null hypothesis is rejected and the difference between group 
considering the blocks is not significant as well (p-value > 0.05).

Regression analysis is a very powerful tool for better understanding 
the relationship between one or more predictor variables and the 
response variable. When we run such model, the variance of the errors 
must be constant and they must have a mean of zero. If this isn’t the 
case, the model may not be valid. To verify these assumptions, we 

should check the model adequacy that includes the verification of 
the independence and normality of the residuals. Below are the plots 
from the analysis we do for the numerical example: The first graph 
illustrates residuals versus fitted values from the standard regression 
model for BIBD. The errors have constant variance, with the residuals 
scattered randomly around 0. If the residuals increase or decrease 
with the fitted values, the errors may not have the constant variance. 
The third Normal Q-Q plot (Quantile - Quantile plot) indicates the 
normality of the residuals  ij ij ije y y= −  . The second picture shows 
residuals in case when variance is more constant. We emphasize 
that the regression model is transformed concerning a logarithmitic 
function (Figure 2).

Figure 2 Checking assumptions about residuals in regression analysis.

Statistical computing for Latin square design
In this section we consider the brief history of Latin square designs 

(LSDs), the basic statistical model and analysis of variance table, 
and finally a numerical example, estimated using R and appropriate 
packages. In 1782, the famous Swiss mathematician Leonhard Euler 
first introduced Latin squares in his famous entertaining Thirty-six 
Officers problem: Given 6 distinct regiments each consisting of 6 
distinct ranks, is it possible to arrange a(6*6) grid such that each row 
and each column of the grid contains exactly one representative from 
each regiment and exactly one representative of each rank? After so 
many years, this problem is still unsolved and is conjectured that there 
was no such arrangement. But on the other hand, it is believed that 
the question marks the beginning of the progressive investigation of 
Latin squares.10,12

A Latin square of order n is an n x n array consisting of n distinct 
symbols from a set N of cardinality n, such that each symbol appears 
exactly once in each row and exactly once in each column. Such 
efficient designs are primarily used in Experimental design, in 
particular in agricultural, biological and medical experiments. The 
use of LSD seems to be highly effective for controlling two source 
of external variation. The principle can be further extended to 
control more than two sources of variation. The design is also useful 
for investigating simultaneously effects a single treatment and two 
possible blocking variables, each with the same number of levels.

The statistical model for a Latin square is

where:

yijk  is the observation in the ith  row and kth  column for the jth  
treatment

 μ is the overall mean 

αi  is the ith  row effect 

τj  is the jth  treatment effect 

kβ  is the kth  column effect 

ijε  is the random error component

Consider an experiment conducted to investigate the clinical 
effect of a new medical product. Four volunteers were given varying 
doses from the medicine and each of them received four different 
treatments with the corresponding priority levels - L=”Low”, M= 
”Medium”, H=”High”, C=”Critical”. The table below shows the order 
of the treatments and the clinical result (change in heart rate) for each 
volunteer and treatment. The analysis of experiment includes diverse 
types of tests. Before running an experiment, a researcher must design 
a global plan, including the tests he wishes to use in the data analysis 
procedure after the test (Table 4&5).

In some circumstances, the preliminary analysis indicates that 
there may be some interesting results that cannot be analyzed through 
the preplanned trials.

Before proceeding with ANOVA analysis of LSD, we perform 
Box—and—Whisker d diagram, which is a standardized way of 
displaying the distribution of data based on the five number summary: 
minimum, first quartile, median, third quartile and maximum (Figure 
3).

TR 1 ,v 1,bk b v 1F F α− − − − +>

ijk j k ijky  , , 1, ,µ α τ β ξ= + + + + = …i i j k p
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Table 4 Analysis of variance table for the Latin square design

Source of variation Sum of squares Degrees of freedom Mean square F0

Treatments SSTreatments p-1 MSTreatments F0=MSTreatment/MSE

Rows SSRows p-1 MSRows

Columns SSColumns p-1 MSColumns  

Error SSE (p-2)(p-1) MSE  

Total SSTotal p2-1    

Table 5 Data for the clinical effect

  Position 1 Position 2 Position 3 Position 4

Volunteer 1 H=26.7 C=19.7 M=29 L=29.8

Volunteer 2 L=23.1 M=21.7 C=24.9 H=29

Volunteer 3 M=29.3 L=20.1 H=29 C=27.3

Volunteer 4 C=25.1 H=17.4 L=28.7 M=35.1

Figure 3 Box plots for Latin square design.

Note that the differences considering the volunteer is low, it is 
medium considering the treatments and high considering the positions. 
Now let confirm these graphic observations with the analysis of 
variance table. ANOVA is a set of statistical methods used mainly to 
compare the means of two or more samples. ANOVA can be treated as 
a special case of general linear regression where predictor variables 
are factors. Each value that can be taken by a factor is reflected to as 
a level. The build-in function in R aov() both examine a dependent 
variable and determine the variability of this variable in response to 
various factors. The results for the numerical example are listed in the 
table below.

Significance of F - test for null hypothesis: 

a)	 The difference between group considering the volunteer is 
not significant (p-value>0.1).

b)	 The difference between group considering the positions is 
quite significant.

c)	 Among the treatments, there is no evidence of significant 
differences, at the significance levels of 1% and 5% (Table 6).

Table 6 Analysis of variance table for the clinical data

  Df Sum of 
squares

Mean 
square F value Pr(>F)

Volunteer 3 9.427 3.142 0.8821 0.501548

Positions 3 245.912 81.971 23.0106 0,001084**

Treatments 3 45.277 15.092 4.2367 0,062818.

Residuals 6 21.374 3.562    

Note: *** significant at 0.1%,** at 1%, * at 5%, . at 10%

Considerations and remarks

This paper explores the application of BIBDs and LSDs in statistical 
design of experiments. We revise the simplest combinatorial designs, 
as was previously stated, in order to summarize the basic idea of their 
usage. On the whole, the main reason to choose these designs is the 
opportunity to do a comparison between structures with one and two 
source of variation. Block designs provides error control measures 
for elimination in only one direction - block variations, whereas the 
improved design, Latin square can eliminate treatments effects using 
two source of variations, namely row and column.

0 : 0 : 0τ τ= ≠i a iH  vs H
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As an extension of this work, we plan to consider particular cases 
of these combinatorial designs applying to other statistical models, 
exploring and improving the computational features in R.
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