
CHAPTER 6

Some discrete distributions

6.1. Examples: Bernoulli, binomial, Poisson, geometric distributions

Bernoulli distribution

A random variable X such that P(X = 1) = p and P(X = 0) = 1 − p is said to
be a Bernoulli random variable with parameter p. Note EX = p and EX2 = p, so
VarX = p− p2 = p(1− p).

We denote such a random variable by X ∼ Bern (p).

Binomial distribution

A random variable X has a binomial distribution with parameters n and p if P(X =
k) =

(
n
k

)
pk(1− p)n−k.

We denote such a random variable by X ∼ Binom (n, p).

The number of successes in n Bernoulli trials is a binomial random variable. After some
cumbersome calculations one can derive EX = np. An easier way is to realize that if X
is binomial, then X = Y1 + · · · + Yn, where the Yi are independent Bernoulli variables, so
EX = EY1 + · · ·+ EYn = np.

We have not de�ned yet what it means for random variables to be independent, but here we
mean that the events such as (Yi = 1) are independent.

Proposition 6.1

Suppose X := Y1 + · · ·+Yn, where {Yi}ni=1 are independent Bernoulli random variables
with parameter p, then

EX = np,VarX = np(1− p).

Proof. First we use the de�nition of expectation to see that

EX =
n∑

i=0

i

(
n

i

)
pi(1− p)n−i =

n∑

i=1

i

(
n

i

)
pi(1− p)n−i.

Then
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EX =
n∑

i=1

i
n!

i!(n− i)!p
i(1− p)n−i

= np

n∑

i=1

(n− 1)!

(i− 1)!((n− 1)− (i− 1))!
pi−1(1− p)(n−1)−(i−1)

= np

n−1∑

i=0

(n− 1)!

i!((n− 1)− i)!p
i(1− p)(n−1)−i

= np
n−1∑

i=0

(
n− 1

i

)
pi(1− p)(n−1)−i = np,

where we used the Binomial Theorem (Theorem 1.1).

To get the variance of X, we �rst observe that

EX2 =
n∑

i=1

EY 2
i +

∑

i 6=j
EYiYj.

Now

EYiYj = 1 · P(YiYj = 1) + 0 · P(YiYj = 0)

= P(Yi = 1, Yj = 1) = P(Yi = 1)P(Yj = 1) = p2

using independence of random variables {Yi}ni=1. Expanding (Y1 + · · ·+ Yn)2 yields n2 terms,
of which n are of the form Y 2

k . So we have n
2 − n terms of the form YiYj with i 6= j. Hence

VarX = EX2 − (EX)2 = np+ (n2 − n)p2 − (np)2 = np(1− p).
�

Later we will see that the variance of the sum of independent random variables is the sum
of the variances, so we could quickly get VarX = np(1− p). Alternatively, one can compute
E(X2)− EX = E(X(X − 1)) using binomial coe�cients and derive the variance of X from
that.

Poisson distribution

A random variable X has the Poisson distribution with parameter λ if

P(X = i) = e−λ
λi

i!
.

We denote such a random variable by X ∼ Pois(λ). Note that

∞∑

i=0

λi/i! = eλ,

so the probabilities add up to one.
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Proposition 6.2

Suppose X is a Poisson random variable with parameter λ, then

EX = λ,

VarX = λ.

Proof. We start with the expectation

EX =
∞∑

i=0

ie−λ
λi

i!
= e−λλ

∞∑

i=1

λi−1

(i− 1)!
= λ.

Similarly one can show that

E(X2)− EX = EX(X − 1) =
∞∑

i=0

i(i− 1)e−λ
λi

i!

= λ2e−λ
∞∑

i=2

λi−2

(i− 2)!

= λ2,

so EX2 = E(X2 −X) + EX = λ2 + λ, and hence VarX = λ. �

Example 6.1. Suppose on average there are 5 homicides per month in a given city. What
is the probability there will be at most 1 in a certain month?

Solution: If X is the number of homicides, we are given that EX = 5. Since the expectation
for a Poisson is λ, then λ = 5. Therefore P(X = 0) + P(X = 1) = e−5 + 5e−5.

Example 6.2. Suppose on average there is one large earthquake per year in California.
What's the probability that next year there will be exactly 2 large earthquakes?

Solution: λ = EX = 1, so P(X = 2) = e−1(1
2
).

We have the following proposition connecting binomial and Poisson distributions.

Proposition 6.3 (Binomial approximation of Poisson distribution)

If Xn is a binomial random variable with parameters n and pn and npn → λ, then
P(Xn = i)→ P(Y = i), where Y is Poisson with parameter λ.
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6.1 (Approximation of Poisson by binomials)

Note that by setting
pn := λ/n for n > λ

we can approximate the Poisson distribution with parameter λ by binomial distribu-
tions with parameters n and pn.

This proposition shows that the Poisson distribution models binomials when the probability
of a success is small. The number of misprints on a page, the number of automobile accidents,
the number of people entering a store, etc. can all be modeled by a Poisson distribution.

Proof. For simplicity, let us suppose that λ = npn for n > λ. In the general case we
can use λn = npn −−−→

n→∞
λ. We write

P(Xn = i) =
n!

i!(n− i)!p
i
n(1− pn)n−i

=
n(n− 1) · · · (n− i+ 1)

i!

(
λ

n

)i(
1− λ

n

)n−i

=
n(n− 1) · · · (n− i+ 1)

ni
λi

i!

(1− λ/n)n

(1− λ/n)i
.

Observe that the following three limits exist

n(n− 1) · · · (n− i+ 1)

ni
−−−→
n→∞

1,

(1− λ/n)i −−−→
n→∞

1,

(1− λ/n)n −−−→
n→∞

e−λ,

which completes the proof. �

In Section 2.2.3 we considered discrete uniform distributions with P(X = k) = 1
n
for

k = 1, 2, . . . , n. This is the distribution of the number showing on a die (with n = 6), for
example.

Geometric distribution

A random variable X has the geometric distribution with parameter p, 0 < p < 1, if

P(X = i) = (1− p)i−1p for i = 1, 2, . . . .

Using a geometric series sum formula we see that

∞∑

i=1

P(X = i) =
∞∑

i=1

(1− p)i−1p =
1

1− (1− p)p = 1.

In Bernoulli trials, if we let X be the �rst time we have a success, then X will be a geometric
random variable. For example, if we toss a coin over and over and X is the �rst time we
get a heads, then X will have a geometric distribution. To see this, to have the �rst success
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occur on the kth trial, we have to have k − 1 failures in the �rst k − 1 trials and then a
success. The probability of that is (1− p)k−1p.

Proposition 6.4

If X is a geometric random variable with parameter p, 0 < p < 1, then

EX =
1

p
,

VarX =
1− p
p2

,

FX (k) = P (X 6 k) = 1− (1− p)k .

Proof. We will use

1

(1− r)2
=
∞∑

n=0

nrn−1

which we can show by di�erentiating the formula for geometric series 1/(1− r) =
∑∞

n=0 r
n.

Then

EX =
∞∑

i=1

i · P(X = i) =
∞∑

i=1

i · (1− p)i−1p =
1

(1− (1− p))2 · p =
1

p
.

Then the variance

VarX = E (X − EX)2 = E
(
X − 1

p

)2

=
∞∑

i=1

(
i− 1

p

)2

· P(X = i)

To �nd the variance we will use another sum. First

r

(1− r)2
=
∞∑

n=0

nrn,

which we can di�erentiate to see that

1 + r

(1− r)3
=
∞∑

n=1

n2rn−1.

Then

EX2 =
∞∑

i=1

i2 · P(X = i) =
∞∑

i=1

i2 · (1− p)i−1p =
(1 + (1− p))
(1− (1− p))3 · p =

2− p
p2

.

Thus

VarX = EX2 − (EX)2 =
2− p
p2
−
(

1

p

)2

=
1− p
p2

.
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The cumulative distribution function (CDF) can be found by using the geometric series sum
formula

1− FX (k) = P (X > k) =
∞∑

i=k+1

P(X = i) =
∞∑

i=k+1

(1− p)i−1p =
(1− p)k

1− (1− p)p = (1− p)k .

�

Negative binomial distribution

A random variable X has negative binomial distribution with parameters r and p if

P(X = n) =

(
n− 1

r − 1

)
pr(1− p)n−r, n = r, r + 1, . . . .

A negative binomial represents the number of trials until r successes. To get the above
formula, to have the rth success in the nth trial, we must exactly have r− 1 successes in the
�rst n− 1 trials and then a success in the nth trial.

Hypergeometric distribution

A random variable X has hypergeometric distribution with parameters m, n and N if

P(X = i) =

(
m
i

)(
N −m
n− i

)

(
N
n

) .

This comes up in sampling without replacement: if there are N balls, of which m are one
color and the other N−m are another, and we choose n balls at random without replacement,
then X represents the probability of having i balls of the �rst color.

Another model where the hypergeometric distribution comes up is the probability of a success
changes on each draw, since each draw decreases the population, in other words, when we
consider sampling without replacement from a �nite population). Then N is the population
size, m is the number of success states in the population, n is the number of draws, that is,
quantity drawn in each trial, i is the number of observed successes.
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6.2. Further examples and applications

6.2.1. Bernoulli and binomial random variables.

Example 6.3. A company prices its hurricane insurance using the following assumptions:

(i) In any calendar year, there can be at most one hurricane.
(ii) In any calendar year, the probability of a hurricane is 0.05.
(iii) The numbers of hurricanes in di�erent calendar years are mutually independent.

Using the company's assumptions, �nd the probability that there are fewer than 3 hurricanes
in a 20-year period.

Solution: denote by X the number of hurricanes in a 20-year period. From the assumptions
we see that X ∼ Binom (20, 0.05), therefore

P (X < 3) = P (X 6 2)

=

(
20

0

)
(0.05)0 (0.95)20 +

(
20

1

)
(0.05)1 (0.95)19 +

(
20

2

)
(0.05)2 (0.95)18

= 0.9245.

Example 6.4. Phan has a 0.6 probability of making a free throw. Suppose each free throw
is independent of the other. If he attempts 10 free throws, what is the probability that he
makes at least 2 of them?

Solution: If X ∼ Binom (10, 0.6), then

P (X > 2) = 1− P (X = 0)− P (X = 1)

= 1−
(

10

0

)
(0.6)0 (0.4)10 −

(
10

1

)
(0.6)1 (0.4)9

= 0.998.

6.2.2. The Poisson distribution. Recall that a Poisson distribution models well events
that have a low probability and the number of trials is high. For example, the probability of
a misprint is small and the number of words in a page is usually a relatively large number
compared to the number of misprints.

(1) The number of misprints on a random page of a book.
(2) The number of people in community that survive to age 100.
(3) The number of telephone numbers that are dialed in an average day.
(4) The number of customers entering post o�ce on an average day.

Example 6.5. Levi receives an average of two texts every 3 minutes. If we assume that
the number of texts is Poisson distributed, what is the probability that he receives �ve or
more texts in a 9-minute period?

© Copyright 2017 Phanuel Mariano, Patricia Alonso Ruiz, Copyright 2020 Masha Gordina.
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Solution: Let X be the number of texts in a 9−minute period. Then λ = 3 · 2 = 6 and

P (X > 5) = 1− P (X 6 4)

= 1−
4∑

n=0

6ne−6

n!

= 1− 0.285 = 0.715.

Example 6.6. Let X1, ..., Xk be independent Poisson random variables, each with expec-
tation λ. What is the distribution of the random variable Y := X1 + ...+Xk?

Solution: The distribution of Y is Poisson with the expectation λ = kλ. To show this, we
use Proposition 6.3 and (6.1) to choose n = mk Bernoulli random variables with parameter
pn = kλ1/n = λ1/m = λ/n to approximation the Poisson random variables. If we sum
them all together, the limit as n → ∞ gives us a Poisson distribution with expectation
lim
n→∞

npn = λ. However, we can re-arrange the same n = mk Bernoulli random variables

in k groups, each group having m Bernoulli random variables. Then the limit gives us the
distribution of X1 + ... + Xk. This argument can be made rigorous, but this is beyond the
scope of this course. Note that we do not show that the we have convergence in distribution.

Example 6.7. Let X1, . . . , Xk be independent Poisson random variables, each with ex-
pectation λ1, . . . , λk, respectively. What is the distribution of the random variable Y =
X1 + ...+Xk?

Solution: The distribution of Y is Poisson with expectation λ = λ1 + ... + λk. To show
this, we again use Proposition 6.3 and (6.1) with parameter pn = λ/n. If n is large, we can
separate these n Bernoulli random variables in k groups, each having ni ≈ λin/λ Bernoulli
random variables. The result follows if lim

n→∞
ni/n = λi for each i = 1, ..., k.

This entire set-up, which is quite common, involves what is called independent identically
distributed Bernoulli random variables (i.i.d. Bernoulli r.v.).

Example 6.8. Can we use binomial approximation to �nd the mean and the variance of
a Poisson random variable?

Solution: Yes, and this is really simple. Recall again from Proposition 6.3 and (6.1) that we
can approximate Poisson Y with parameter λ by a binomial random variable Binom (n, pn),
where pn = λ/n. Each such a binomial random variable is a sum on n independent Bernoulli
random variables with parameter pn. Therefore

EY = lim
n→∞

npn = lim
n→∞

n
λ

n
= λ,

Var(Y ) = lim
n→∞

npn(1− pn) = lim
n→∞

n
λ

n

(
1− λ

n

)
= λ.
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6.2.3. Table of distributions. The following table summarizes the discrete distribu-
tions we have seen in this chapter. Here N stands for the set of positive integers, and
N0 = N ∪ {0} is the set of nonnegative integers.

Name Notation Parameters PMF (k ∈ N0) E[X] Var(X)

Bernoulli Bern(p) p ∈ [0, 1]
(

1
k

)
pk(1− p)1−k p p(1− p)

Binomial Binom(n, p) n ∈ N
p ∈ [0, 1]

(
n
k

)
pk(1− p)n−k np np(1− p)

Poisson Pois(λ) λ > 0 e−λ λ
k

k!
λ λ

Geometric Geo(p) p ∈ (0, 1)

{
(1− p)k−1p, for k > 1,

0, else.
1
p

1−p
p2

Negative
binomial

NBin(r, p) r ∈ N
p ∈ (0, 1)

{(
k−1
r−1

)
pr(1− p)k−r, if k ≥ r,

0, else.
r
p

r(1−p)
p2

Hyper-
geometric

Hyp(N,m, n) N ∈ N0

n,m ∈ N0

(mk)(N−mn−k )
(Nn)

nm
N

nm(N−n)
N(N−1)

(1−m
N

)
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6.3. Exercises

Exercise 6.1. A UConn student claims that she can distinguish Dairy Bar ice cream from
Friendly's ice cream. As a test, she is given ten samples of ice cream (each sample is either
from the Dairy Bar or Friendly's) and asked to identify each one. She is right eight times.
What is the probability that she would be right exactly eight times if she guessed randomly
for each sample?

Exercise 6.2. A Pharmaceutical company conducted a study on a new drug that is sup-
posed to treat patients su�ering from a certain disease. The study concluded that the drug
did not help 25% of those who participated in the study. What is the probability that of 6
randomly selected patients, 4 will recover?

Exercise 6.3. 20% of all students are left-handed. A class of size 20 meets in a room with
18 right-handed desks and 5 left-handed desks. What is the probability that every student
will have a suitable desk?

Exercise 6.4. A ball is drawn from an urn containing 4 blue and 5 red balls. After the
ball is drawn, it is replaced and another ball is drawn. Suppose this process is done 7 times.

(a) What is the probability that exactly 2 red balls were drawn in the 7 draws?
(b) What is the probability that at least 3 blue balls were drawn in the 7 draws?

Exercise 6.5. The expected number of typos on a page of the new Harry Potter book is
0.2. What is the probability that the next page you read contains

(a) 0 typos?
(b) 2 or more typos?
(c) Explain what assumptions you used.

Exercise 6.6. The monthly average number of car crashes in Storrs, CT is 3.5. What is
the probability that there will be

(a) at least 2 accidents in the next month?
(b) at most 1 accident in the next month?
(c) Explain what assumptions you used.

Exercise 6.7. Suppose that, some time in a distant future, the average number of bur-
glaries in New York City in a week is 2.2. Approximate the probability that there will
be

(a) no burglaries in the next week;
(b) at least 2 burglaries in the next week.

Exercise 6.8. The number of accidents per working week in a particular shipyard is Poisson
distributed with mean 0.5. Find the probability that:

(a) In a particular week there will be at least 2 accidents.
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(b) In a particular two week period there will be exactly 5 accidents.
(c) In a particular month (i.e. 4 week period) there will be exactly 2 accidents.

Exercise 6.9. Jennifer is baking cookies. She mixes 400 raisins and 600 chocolate chips
into her cookie dough and ends up with 500 cookies.

(a) Find the probability that a randomly picked cookie will have three raisins in it.
(b) Find the probability that a randomly picked cookie will have at least one chocolate chip

in it.
(c) Find the probability that a randomly picked cookie will have no more than two bits in

it (a bit is either a raisin or a chocolate chip).

Exercise 6.10. A roulette wheel has 38 numbers on it: the numbers 0 through 36 and a
00. Suppose that Lauren always bets that the outcome will be a number between 1 and 18
(including 1 and 18).

(a) What is the probability that Lauren will lose her �rst 6 bets.
(b) What is the probability that Lauren will �rst win on her sixth bet?

Exercise 6.11. In the US, albinism occurs in about one in 17,000 births. Estimate the
probabilities no albino person, of at least one, or more than one albino at a football game with
5,000 attendants. Use the Poisson approximation to the binomial to estimate the probability.

Exercise 6.12. An egg carton contains 20 eggs, of which 3 have a double yolk. To make a
pancake, 5 eggs from the carton are picked at random. What is the probability that at least
2 of them have a double yolk?

Exercise 6.13. Around 30,000 couples married this year in CT. Approximate the proba-
bility that at least in one of these couples

(a) both partners have birthday on January 1st.
(b) both partners celebrate birthday in the same month.

Exercise 6.14. A telecommunications company has discovered that users are three times
as likely to make two-minute calls as to make four-minute calls. The length of a typical call
(in minutes) has a Poisson distribution. Find the expected length (in minutes) of a typical
call.
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6.4. Selected solutions

Solution to Exercise 6.1: This should be modeled using a binomial random variable
X, since there is a sequence of trials with the same probability of success in each one. If
she guesses randomly for each sample, the probability that she will be right each time is 1

2
.

Therefore,

P (X = 8) =

(
10

8

)(
1

2

)8(
1

2

)2

=
45

210
.

Solution to Exercise 6.2:
(

6
4

)
(0.75)4 (0.25)2

Solution to Exercise 6.3: For each student to have the kind of desk he or she prefers, there
must be no more than 18 right-handed students and no more than 5 left-handed students, so
the number of left-handed students must be between 2 and 5 (inclusive). This means that
we want the probability that there will be 2, 3, 4, or 5 left-handed students. We use the
binomial distribution and get

5∑

i=2

(
20

i

)(
1

5

)i(
4

5

)20−i
.

Solution to Exercise 6.4(A):
(

7

2

)(
5

9

)2(
4

9

)5

Solution to Exercise 6.4(B):

P (X > 3) = 1− P (X 6 2)

= 1−
(

7

0

)(
4

9

)0(
5

9

)7

−
(

7

1

)(
4

9

)1(
5

9

)6

−
(

7

2

)(
4

9

)2(
5

9

)5

Solution to Exercise 6.5(A): e−0.2

Solution to Exercise 6.5(B): 1− e−0.2 − 0.2e−0.2 = 1− 1.2e−0.2.

Solution to Exercise 6.5(C): Since each word has a small probability of being a typo, the
number of typos should be approximately Poisson distributed.

Solution to Exercise 6.6(A): 1− e−3.5 − 3.5e−3.5 = 1− 4.5e−3.5

Solution to Exercise 6.6(B): 4.5e−3.5

Solution to Exercise 6.6(C): Since each accident has a small probability it seems reason-
able to suppose that the number of car accidents is approximately Poisson distributed.

Solution to Exercise 6.7(A): e−2.2

Solution to Exercise 6.7(B): 1− e−2.2 − 2.2e−2.2 = 1− 3.2e−2.2.
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Solution to Exercise 6.8(A): We have

P (X > 2) = 1− P (X 6 1) = 1− e−0.5 (0.5)0

0!
− e−0.5 (0.5)1

1!
.

Solution to Exercise 6.8(B): In two weeks the average number of accidents will be λ =

0.5 + 0.5 = 1. Then P (X = 5) = e−1 15

5!
.

Solution to Exercise 6.8(C): In a 4 week period the average number of accidents will be

λ = 4 · (0.5) = 2. Then P (X = 2) = e−2 22

2!
.

Solution to Exercise 6.9(A): This calls for a Poisson random variable R. The average
number of raisins per cookie is 0.8, so we take this as our λ . We are asking for P(R = 3),

which is e−0.8 (0.8)3

3!
≈ 0.0383.

Solution to Exercise 6.9(B): This calls for a Poisson random variable C. The average
number of chocolate chips per cookie is 1.2, so we take this as our λ. We are asking for

P (C > 1), which is 1− P (C = 0) = 1− e−1.2 (1.2)0

0!
≈ 0.6988.

Solution to Exercise 6.9(C): This calls for a Poisson random variable B. The average
number of bits per cookie is 0.8 + 1.2 = 2, so we take this as our λ. We are asking for
P (B 6 2), which is P (B = 0) + P (B = 1) + P (B = 2) = e−2 20

0!
+ e−2 21

1!
+ e−2 22

2!
≈ .6767.

Solution to Exercise 6.10(A):
(
1− 18

38

)6

Solution to Exercise 6.10(B):
(
1− 18

38

)5 18
38

Solution to Exercise 6.11 Let X denote the number of albinos at the game. We have that
X ∼ Binom(5000, p) with p = 1/17000 ≈ 0.00029. The binomial distribution gives us

P(X = 0) =
(

16999
17000

)5000 ≈ 0.745 P(X > 1) = 1− P(X = 0) = 1−
(

16999
17000

)5000 ≈ 0.255

P(X > 1) = P(X > 1)− P(X = 1) =

= 1−
(

16999
17000

)5000 −




5000

1



(

16999
17000

)4999 ( 1
17000

)1 ≈ 0.035633

Approximating the distribution of X by a Poisson with parameter λ = 5000
17000

= 5
17

gives

P(Y = 0) = exp
(
− 5

17

)
≈ 0.745 P(Y > 1) = 1− P(Y = 0) = 1− exp

(
− 5

17

)
≈ 0.255

P(Y > 1) = P(Y > 1)− P(Y = 1) = 1− exp
(
− 5

17

)
− exp

(
− 5

17

)
5
17
≈ 0.035638

Solution to Exercise 6.12: Let X be the random variable that denotes the number of
eggs with double yolk in the set of chosen 5. Then X ∼ Hyp(20, 3, 5) and we have that

P(X > 2) = P(X = 2) + P(X = 3) =

(
3
2

)
·
(

17
3

)
(

20
5

) +

(
3
3

)
·
(

17
2

)
(

20
5

) .

Solution to Exercise 6.13: We will use Poisson approximation.
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(a) The probability that both partners have birthday on January 1st is p = 1
3652

. If X
denotes the number of married couples where this is the case, we can approximate the
distribution of X by a Poisson with parameter λ = 30, 000 · 365−2 ≈ 0.2251. Hence,
P(X > 1) = 1− P(X = 0) = 1− e−0.2251.

(b) In this case, the probability of both partners celebrating birthday in the same month
is 1/12 and therefore we approximate the distribution by a Poisson with parameter
λ = 30, 000/12 = 2500. Thus, P(X > 1) = 1− P(X = 0) = 1− e−2500.

Solution to Exercise 6.14: Let X denote the duration (in minutes) of a call. By assump-
tion, X ∼ Pois(λ) for some parameter λ > 0, so that the expected duration of a call is
E[X] = λ. In addition, we know that P(X = 2) = 3P(X = 4), which means

e−λ
λ2

2!
= 3e−λ

λ4

4!
.

From here we deduce that λ2 = 4 and hence E[X] = λ = 2.


