Some High Lift Aerodynamics

Part 1 Mechanical High Lift Systems

W.H. Mason Configuration Aerodynamics Class

Why High Lift is Important

- Wings sized for efficient cruise are too small to takeoff and land in "reasonable" distances.
- From Boeing:
 - "A 0.10 increase in lift coefficient at constant angle of attack is equivalent to reducing the approach attitude by one degree. For a given aft body-to-ground clearance angle, the landing gear may be shortened for a savings of airplane empty weight of 1400 lb.
 - "A 1.5% increase in maximum lift coefficient is equivalent to a 6600 lb increase in payload at a fixed approach speed"
 - "A 1% increase in take-off L/D is equivalent to a 2800 lb increase in payload or a 150 nm increase in range."
- For fighters:
 - Devices move continuously for minimum drag during maneuvering.
- Powered Lift concepts hold out the hope for STOL operation

<u>CLARAN VARIATION WITH MACH</u> <u>É REYNOLDS NUMBER</u>

NACA 64-210 AIRFOIL (SMOOTH CONDITION)

CLMAX with Reynolds number and Mach number

From a presentation by Dick Kita To the new members of the Grumman aerodynamics section

McCroskey's Study of NACA 0012 Data Reynolds number effects

W.J. McCroskey, "A Critical Assessment of Wind Tunnel Results for the NACA 0012 Airfoil" NASA TM-100019, October, 1987

McCroskey's Study of NACA 0012 Data Mach number effects

W.J. McCroskey, "A Critical Assessment of Wind Tunnel Results for the NACA 0012 Airfoil" NASA TM-100019, October, 1987

XFOIL Predictions - Mach Effects

α

Part 1: Mainly Dick Kita's Charts

MECHANICAL HIGH LIFT SYSTEMS

TRAILING EDGE DEVICES

Ęş

BASIC AIRFOIL PLAIN FLAP бş SPLIT FLAP δ_{f} SLOTTED FLAP ۍ ک FOWLER FLAP

Some **Trailing Edge Devices**

Split Flap

Fleet Aircraft Ltd. Of Canada PT-26 Cornell (Fairchild PT-26) At the Pima Air Museum, out side Tucson, AZ

TRAILING EDGE DEVICES CONT'D.

More Trailing Edge Devices

LEADING EDGE DEVICES

INCREASED L.E. RADIUS

CENTER HINGED NOSE FLAP

SURFACE HINGED NOSE FLAP

KRVEGER FLAP

SLOTTED KRUEGER

SLAT

Leading Edge Devices

The Handley Page Fixed Slot

For slow airplanes, a fixed slot is often used. It's always in this position. This is a picture of a Grumman S-2A Tracker at the Pima Air Museum, out side Tucson, AZ

Passive slats" for military fighter/attack aircraft

They deployed automatically, using the aerodynamic suction – eventually abandoned in favor of hydraulics. In use they hung up – one side deploying, one not!

North American Aviation F-100, at the US Air Force Museum, Dayton, OH

F-4 Maneuver Slat

Fixed position slat seen in the San Diego Aerospace Museum in Balboa Park.

Picture from the Pima Air Museum

F-14 High Lift System

(remember Irv Waaland?)

TYPICAL VARIATION OF FLAPS CL VS. OC .

NOTE: NO L.E. DEVICE

Trailing Edge Flap Effects

EFFECT OF FLAP EXTENSION ON CLa

 \sim

 $\mathcal{S}_{\mathcal{F}}$

DWN.

VP

S_{REF.} CLOGERT. = CLOCCLEAN (SREF. + DSEXT. /SREF.) WITH ENTENSION c, $\Delta C_{L_{f}}$

Flap Extension Effect

Jenkinson/Simpkins Estimates

From Civil Jet Aircraft Design, by Lloyd Jenkinson, Paul Simpkin and Darren Rhodes

	Sh C _{Ln}	evell' _{nax} Cha	s art	It, CLMAX	2.8 2.6						DC-7C DC-10, slats extended DC-6 DC-4
Rich <i>Fund</i> 2nd	ard S. dament Ed., Pr	Shevell, tals of Flight, entice-Hall, 1	988	Airplane maximum lift coefficie	2.4 2.2 2.0					DC-3S	DC-8 DC-9-30, slats retracted
	SWF Sw	Type of flap	Flap chord (% chord)	Λ _{C/4}	1.8						
DC-3S DC-4 DC-6 DC-7C DC-8 DC-9-30 DC-10-10	0.575 0.560 0.589 0.630 0.587 0.590 0.542	Split Single slotted Double slotted Double slotted Double slotted Double slotted	0.174 0.257 0.266 0.266 0.288 0.360 0.320	$\sim 10^{\circ}$ 0° 0° 30.5° 25° 35° 35° 31	1.6 1.4					DC-10, sia	its retracted
						0 1	0	²⁰ Flap	30 deflect	40 tion, de	⁵⁰ egrees

Airplane CLmax

3.0

DC-9-30, Slats extended

Clark Y High Lift "Build Up"

Chart from Perkins and Hage, page 80.

Designation	Diagram	C _{Lmax}	$lpha$ at C_{Lmax} (degrees)	L/D at C_{Lmax}	C _{mac}	Reference NACA
Basic airfoil Clark Y	\frown	1.29	15	7.5	085	TN 459
.30 <i>c</i> Plain flap deflected 45°		1.95	12	4.0	-	TR 427
.30 <i>c</i> Slotted flap deflected 45°		1.98	12	4.0	-	TR 427
.30c Split flap deflected 45°	\sim	2.16	14	4.3	250	TN 422
.30c hinged at .80c Split flap (Zap) deflected 45 ⁹	\sim	2.26	13	4.43	300	TN 422
.30c hinged at .90c Split flap (Zap) deflected 45°		2.32	12.5	4.45	-,385	TN 422
.30 <i>c</i> Fowler flap deflected 40°		2.82	13	4.55	660	TR 534
.40 <i>c</i> Fowler flap deflected 40°		3.09	14	4.1	860	TR 534
Fixed slot		1.77	24	5.35	-	TR 427
Handley Page automatic slot	1	1.84	28	4,1	-	TN 459
Fixed slot and .30c plain flap deflected 45°	10	2.18	19	3.7	-	TR 427
Fixed slot and .30c slotted flap deflected 45°	*	2.26	18	3.77	-	TR 427
Handley Page slot and .40c Fowler flap deflected 40°	1	3,36	16	3.7	740	TN 459

Boeing Transports

Henr

G. W. BRUNE AND J. H. MCMASTERS

414

						ECA
Туре	B-47/B-52	367-80/ KC-135	707-320/ E-3A	727	747/E-4A	767
First flight	1947/1952	1954	1962	1963	1969	1981
Planform	T	49	1	R	1	1J
Typical airfoil	Single-slotted fowler flap	Double- slotted flap	Double slotted flap and Krueger leading edge	Slat and triple-slotted flap	Variable camber Krueger and triple-slotted flap	Slat and single-slotted flap
C _L max	1.8	1.78	2.2	2.79	2.45	2.45

Fig. 1 Trends in Boeing transport high-lift system development.

From *Applied Computational Aerodynamics*, AIAA Progress in Aeronautics Series, edited by Preston Henne

TYPICAL VARIATION OF FLAP PITCHING MOMENT CL VS. Cm

Critical Parameters for High Lift System Development – Gap and Overlap

Effect of Gap and Overlap

Bill Wentz, "Development of a Fowler Flap System for a High Performance General Aviation Airfoil," NASA CR-2443, Dec. 1974 (pdf file available)

This is for a GAW(1) airfoil

Note that the maximum lift is very sensitive to the highlift element placement, thus emphasizing the importance of accurately maintaining the correct rigging in operation and maintenance.

A-380 Trailing Edge Flap System

A photo taken during the March 2007 tour of US airports, unknown photographer

Andy Parker's XFOIL results: Lift

alpha

Note: Andy Parker did this as a freshman

Andy Parker's XFOIL Results: Drag

Andy Parker's XFOIL results: pitching moment

XFOIL - comparison with data: David Lurie

Physics of High Lift: AMO Smith's Classic Paper

- He "wrote the book" with his Wright Brothers Lecture
 - It is assumed that every configuration aerodynamicist has read this paper.
- He showed how to get the boundary layer to carry the maximum "load" (lift)
- Example: Liebeck's Maximum Lift Single Element Airfoil
- The five effects for multielement airfoils
 - The Slat effect
 - The Circulation effect
 - The Dumping effect
 - The Off-the-surface pressure recovery effect
 - The Fresh boundary layer effect
- Etc. (mainly meaning blowing and or sucking)

How to most effectively apply load to the BL

The "best" pressure distribution for recovery

Stratford: The pressure distribution that puts the *bl* everywhere on the verge of separation

Liebeck's High Lift Single Element Airfoil

- Knowing the shape of the pressure distribution required:
 - Identify the maximum lift upper surface target distribution pressure distribution
 - Use an inverse method to find the airfoil

Made to seem way easier than it really was! Scans from A.M.O. Smith's paper. Note the the axis is the airfoil arc length

Liebeck's Hi-Lift Airfoil: it works!

3.19a. Laminar rooftop airfoil, geometry and pressure distributio

From R.T. Jones, Wing Theory

Liebeck's Hi-Lift Airfoil: Including Drag

Now consider multielement airfoils

1. The Slat Effect

Contrary to old wives tales, the slat is in effect a point vortex that reduces the speed on the main element, thus reducing the chance of separation: the slat "protects" the leading edge.

Figure from AMO Smith's paper

2. The Circulation Effect

The downstream element causes the trailing edge of the upstream element to be in a high velocity region inclined to the mean line. To achieve the Kutta condition, the circulation has to be increased

Figure from AMO Smith's paper

3. The Dumping Effect

The TE of the forward element is in a region of velocity appreciably higher than the freestream. Thus, the BL can come off the fwd. element at a higher velocity. You don't have to recover to Cp = +0.2 for attached flow, relieving the pressure rise on the BL, and alleviating sep' n problems. The suction lift can be increased in proportion to the TE velocity squared for the same margin against separation.

High velocity at the trailing edge, and more lift

Figure from AMO Smith's paper

4. The Off-the-Surface Pressure Recovery Effect

From S.E. Rogers, "Progress in High-Lift Aerodynamic Calculation," AIAA Paper 93-0194, Jan. 1993

The BL leaves the TE faster than the freestream, and becomes a wake. The recovery back to freestream velocity can be more efficient away from contact with the wall. Wakes withstand more adverse pressure gradient than BLs.

Note: for well designed high lift systems the local BLs and wakes remain separate.

5. The Fresh Boundary Layer Effect

Simply put: because thin boundary layers can sustain greater pressure gradients than thick boundary layers, three thin boundary layers are better than one thick boundary layer.

Fixes: Vortex Generators

Photos taken at the Pima Air Museum, out side Tucson, AZ

A-4 Skyhawk

AV-8A Harrier

Fixes: the F-111 Eyelid Flap

It is very hard to get photos of the eyelid flap deployed. These are scans from a British magazine no longer published, the *World Air Power Journal*

Last, but not least: The Gurney Flap

Invented to add downforce in racing, named after Dan Gurney, but eventually done by Bob Liebeck

Called a Wickerbill in NASCAR

Pictures taken outside Shelor's QuickLane, Fall 2008

Liebeck's Description of the Gurney Flap

Fig. 28 Indianapolis race car.

From, Robert H. Liebeck, "Design of Subsonic Airfoils for High Lift," *Journal of Aircraft*, Sept. 1978, pp. 547-561.

See also, Michael Cavanaugh, Paul Robertson and W.H. Mason, "Wind Tunnel Test of Gurney Flaps and T-Strips on an NACA 23012 Wing," AIAA Paper 2007-4175, June 2007.

To Conclude

- These are the high points of mechanical high-lift systems
- It is difficult to get more than a C_{Lmax} of 3 or a little more for practical aircraft
- There are many, many NACA/NASA Reports

Note: the most recent major survey is by C.P. van Dam, "The aerodynamic design of multi-element high-lift systems for transport airplanes," in *Progress in Aerospace Sciences*, Vol. 38, 2002. -electronic version available through the library See also: P. K. C. Rudolph, "High-Lift Systems on Commercial Airliners," NASA CR 4746. September 1996. And the *Journal of Aircraft*, July-August 2015: Special Section: Second High-Lift Predicton Workshop