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In Fall 2018 I taught Basic Number Theory at IIT Bombay. The students
in my class had some background in group theory and complex analysis, and
more importantly were extremely enthusiastic. In view of this we decided
to go beyond the prescribed syllabus and try to understand more advanced
topics. The main references we used were

• A concise introduction to the theory of numbers, by Alan Baker

• A course in arithmetic, by J.-P. Serre

• https://web.math.pmf.unizg.hr/nastava/studnatj/Dirichlet theorem.pdf

• http://www.math.mcgill.ca/darmon/courses/11-12/nt/notes/lecture3.pdf

There were several lectures by students; on the transcendence of e and π,
Dirichlet Theorem on infinitely many primes in an arithmetic progression
and the meromorphic continuation and functional equation of the Zeta func-
tion. The students also volunteered to write down notes for the material we
covered and the first six chapters are a result of their efforts. These notes
contain most of the material that we covered. The topics that we covered
and are not present are the transcendence of e and π. The authors of the
various chapters are

• Chapters 2 and 3 - Shubhansu Katiyar

• Chapter 4 - Amit Sawant

• Chapter 5 - Edwin Saji Uthuppan

• Chapter 6 - Neel Singh

A topic that I wanted to lecture on in the course, but could not, because
of lack of expertise and time, is Hardy’s Theorem, that the critical line
contains infinitely many zeros of the Riemann Zeta function. In Summer
2019, Vatsal Jha, an undergraduate math student at IIT Dhanbad, visited
me and we decided to go through the notes of Richard Chapling on Hardy’s
Theorem. Chapling’s notes are available here

• http://people.ds.cam.ac.uk/rc476/complexanalysis/hardy’stheorem.pdf

The last chapter in these notes expands on Chapling’s notes and gives more
details.

I really enjoyed interacting with all the above students and I thank Amit,
Edwin, Neel, Shubansu and Vatsal for the interest and enthusiasm that they
showed.
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The main result in section §7.1 was explained to me by R. Balasubrama-
nian and I thank him for this. I also thank R. Raghunathan for some useful
discussions.

If you find any errors or have any comments, please write to me at
ronnie@math.iitb.ac.in

Ronnie Sebastian
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Chapter 1

Finite Abelian Groups

In this chapter we will collect some results on finite abelian groups. Some of
these will be used in Chapter 5. Of course, many of the results below hold in
greater generality, but we will limit ourselves to what we need. Throughout
this chapter G will denote a finite abelian group. Let

C× := C \ {0}

and let
S1 := {z ∈ C | |z| = 1}.

1.1 Characters of finite abelian groups

Definition 1.1.1. A character of a finite abelian group G is a group homo-
morphism χ : G→ S1.

Remark 1.1.2. We could have defined characters as homomorphisms χ :
G → C×. Since G is a finite group, it easily follows that the image of χ
lands in S1.

Definition 1.1.3. The group of characters of G is denoted Ĝ.

Proposition 1.1.4. If G is a finite group then Ĝ is a finite group.

Proof. Let the cardinality of G be n. Let χ be a character of G.

1 = |χ(e)| = |χ(gn)| = |χ(g)n| = |χ(g)|n

It follows that the image of χ lands in the nth roots of unity, which is a set
of size n. Since the set of maps from a finite set to a finite set is finite, it
follows that Ĝ is finite.
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Consider the following multiplication on characters. Define

(χ1χ2)(g) := χ1(g)χ2(g)

One checks easily that this binary operation makes Ĝ into a finite abelian
group. The identity element in this group is the character 1G which sends
g 7→ 1 for every g ∈ G.

Proposition 1.1.5. Let Gi be finite abelian groups and let χi be characters
of Gi. Then

(χ1, χ2) : G1 ×G2 → S1

given by (g1, g2) 7→ χ1(g1)χ2(g2) defines a character of the group G1 ×G2.

Proof. Left to the reader.

Proposition 1.1.6. Let H ⊂ G be a subgroup of G. Any character of H
can be extended to a character of G.

Proof. Let χ be a character of H. Let x ∈ G\H. Let K denote the subgroup
of G generated by H and x. We will show that χ can be extended to K,
and it follows inductively that χ can be extended to G.

Let a denote the smallest positive integer such that xa ∈ H. Consider
the following map, which is a group homomorphism since we are dealing
with abelian groups.

φ : H × 〈x〉 → G (h, xi) 7→ hxi

We first claim that the kernel of this map is generated by (xa, x−a). Let us
assume that (h, xi) 7→ e. This means that x−i = h and so x−i ∈ H. We
also have xa ∈ H. If a - i then let 0 < d = gcd(a, i) < a. Since there are
integers x, y such that ax+ iy = d, it follows that xd ∈ H, contradicting the
minimality of a. Thus, i = la and so (h, xi) = (x−la, xla) which proves the
claim.

The image of φ is clearly K. We will define a group homomorphism

ψ : H × 〈x〉 → C×

which is χ on H, and check that it vanishes on Ker φ. Then clearly ψ
descends to a homomorphism of K. Let dx be the order of the element x
in G. Then the cardinality of the group 〈x〉 is dx. Since xdx = e ∈ H, it
is easily checked as above that a|dx. The order of xa is dx/a. This is an
element of H. Thus,

χ(xa) = e
2πil
dx/a
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Check that χ2(x) := e
2πil
dx defines a character of the cyclic group 〈x〉. Using

Proposition 1.1.5 define a character ψ of H × 〈x〉 by letting it to be χ
on H and χ2 on 〈x〉. It is easily checked that ψ vanishes on (xa, x−a).
Thus, it descends to a character on K. This completes the proof of the
proposition.

1.2 Some exactness properties

Definition 1.2.1. Suppose f : A → B is a homomorphism of abelian
groups. Then there is a natural map f̂ : B̂ → Â, given by χ 7→ χ ◦ f .

Proposition 1.2.2. The map f̂ defined above is a homomorphism of abelian
groups.

Proof. Left to the reader.

Definition 1.2.3. Let Ai, i ∈ Z, be abelian groups. Let fi : Ai → Ai+1 be
homomorphisms of abelian groups. Consider the diagram

. . . Ai
fi−→ Ai+1

fi+1−→ Ai+2
fi+2−→ . . .

1. It is called a complex if fi+1 ◦ fi = 0, for all i.

2. A complex is called exact if fi(Ai) = Ker fi+1 for all i.

3. An exact complex of the form

0→ A
f−→ B

g−→ C → 0

is called a short exact sequence.

Proposition 1.2.4. Suppose we are given a complex

(1.2.5) . . . Ai
fi−→ Ai+1

fi+1−→ Ai+2
fi+2−→ . . .

This gives rise to the complex

(1.2.6) . . . Âi
f̂i←− Âi+1

f̂i+1←− Âi+2
f̂i+2←− . . .

Proof. We only need to check that f̂i ◦ f̂i+1 = 0 for all i. This is an easy
check which is left to the reader.
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Proposition 1.2.7. Let

0→ A
f−→ B

g−→ C → 0

be a short exact sequence. Then the complex

0→ Ĉ
ĝ−→ B̂

f̂−→ Â→ 0

is exact.

Proof. We need to check exactness at Ĉ, B̂, Â.

1. Exactness at Ĉ. From the definition of exactness, we need to show
that Ker ĝ = {1C}. Let χ be a character of C such that ĝ(χ) = 1B.
By the definition of ĝ, this means that χ◦g = 1B. Since g is surjective,
it follows that χ = 1C .

2. Exactness at B̂. We need to show that if χ is a character of B such
that f̂(χ) = 1A then there is a character ψ of C such that χ = ĝ(ψ).
Since f̂(χ) = χ ◦ f it follows that χ(f(A)) = 1. Thus, χ factors
through χ̄ : B/f(A) → S1. As the sequence 0 → A → B → C → 0 is
short exact, it follows that g induces an isomorphism ḡ : B/f(A)→ C.
Letting ψ := χ̄ ◦ ḡ−1 it is easily seen that χ = ψ ◦ g = ĝ(ψ).

3. Exactness at Â. We need to show that given a character χ of A, there
is a character ψ of B such that χ = ψ ◦ f . By the exactness of the
sequence we may view of f as identifying A as a subgroup of B. Now
using Proposition 1.1.6, we see that the character χ may be extended
to a character ψ of B. It follows that χ = f̂(ψ).

1.3 Sums of characters

Proposition 1.3.1. Let n = #(G) and let χ ∈ Ĝ. Then

∑
x∈G

χ(x) =

{
n if χ = 1G

0 if χ 6= 1G

Proof. If χ = 1G then χ(x) = 1 ∀ x ∈ G and the first part follows. To prove
the second part, choose y ∈ G such that χ(y) 6= 1. We have

χ(y)
∑
x∈G

χ(x) =
∑
x∈G

χ(xy) =
∑
x∈G

χ(x)
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Hence
(χ(y)− 1)

∑
x∈G

χ(x) = 0

Since χ(y) 6= 1 this implies
∑

x∈G χx = 0.

Corollary 1.3.2. Let x ∈ G. Then

∑
χ∈Ĝ

χ(x) =

{
|Ĝ| if x = 1

0 if x 6= 1

Proof. If x = 1 then the first part follows. There is a natural map G→ ˆ̂
G.

This is given by a 7→ Φa. Let χ ∈ Ĝ, then

Φa(χ) := χ(a).

For x ∈ G, there is a character χ0 of G such that χ0(x) 6= 1. This is clear
because we can first take a nontrivial character on the cyclic subgroup 〈x〉
and then extend it to G. Thus,∑

χ∈Ĝ

χ(x) =
∑
χ∈Ĝ

Φx(χ)

=
∑
χ∈Ĝ

Φx(χχ0)

= Φx(χ0)
∑
χ∈Ĝ

Φx(χ)

This shows that

(Φx(χ0)− 1)
∑
χ∈Ĝ

Φx(χ) = (χ0(x)− 1)
∑
χ∈Ĝ

Φx(χ) = 0

Since χ0(x) 6= 1 we see that
∑

χ∈Ĝ χ(x) = 0.
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Chapter 2

Quadratic Residues

In this chapter we shall study the solutions of the equation x2 ≡ a (mod p),
where p is a prime. The main result that we want to prove here is the law
of quadratic reciprocity, which states the following.

Theorem (Theorem 2.3.1). Let p and q be odd primes. Then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

2.1 Legendre Symbol and Euler’s Criterion

Definition 2.1.1. Let a ∈ (Z/pZ)∗.

1. Define

(
a

p

)
= 1 if x2 ≡ a (mod p) has a solution. In this case we say

that a is a quadratic residue mod p.

2. Otherwise, define

(
a

p

)
= −1. In this case we say that a is a quadratic

non-residue mod p.

The following proposition follows from the definition.

Proposition 2.1.2. Consider the map ψ : (Z/pZ)∗ → (Z/pZ)∗ defined by

ψ(x) = x2. Then

(
a

p

)
= 1 if and only if a is in the image of ψ.

Proposition 2.1.3. Let f(x) ∈ Z/pZ[x] be a polynomial of degree d. Then
f(x) has at most d distinct roots in Z/pZ.

13
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Proof. Note that Z/pZ is a field. Let a ∈ Z/pZ be a root of f(x). Since
f(x) is a polynomial, for any b ∈ Z/pZ, writing x = x−b+b and expanding,
we get that

f(x) = (x− b)gb(x) + f(b)

Here gb(x) is a polynomial which depends on b. Taking b = a we get that
f(x) = (x− a)ga(x). The proof follows by induction on the degree of poly-
nomial f(x).

Proposition 2.1.4. If p is an odd prime, then(
a

p

)
≡ a

p−1
2 (mod p)

Proof. Let us first suppose that
(
a
p

)
= 1. Then, by definition, there is an x

such that x2 ≡ a (mod p). Raising both sides to an exponent of p−1
2 , we

get xp−1 ≡ a
p−1
2 (mod p). However, by Fermat’s Theorem we know that

xp−1 ≡ 1mod p. Thus,

a
p−1
2 ≡ 1 ≡

(
a

p

)
(mod p).

Next let us assume that
(
a
p

)
= −1. We need to show a

p−1
2 ≡ −1 (mod p).

Consider the polynomial f(x) = x
p−1
2 − 1. The elements of the set

S = {12, 22, · · · (p− 1

2
)2}

are distinct roots of this polynomial. These are roots of this polynomial
follows from Fermat’s theorem. These are distinct as

a2 ≡ b2 (mod p) =⇒ a ≡ b (mod p) or a ≡ −b (mod p)

which is not true for any a, b ∈ {1, 2, · · · p−12 } with a 6= b. By proposi-
tion 2.1.3, the elements of S are exactly all the roots of f(x) in Z/pZ, as
|S| = deg(f) = p−1

2 . In particular, if a /∈ S then a is not a root of f . Since

a is a quadratic non-residue (mod p), a /∈ S and hence f(a) = a
p−1
2 − 1 6= 0.

By Fermat’s theorem, (a
p−1
2 )2 ≡ 1 (mod p). Thus,

(a
p−1
2 − 1)(a

p−1
2 + 1) ≡ 0 mod p
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Since a
p−1
2 − 1 6= 0, we get a

p−1
2 + 1 ≡ 0 mod p. Thus,

a
p−1
2 ≡ −1 ≡

(
a

p

)
(mod p).

Corollary 2.1.5. Legendre Symbol is multiplicative, that is,(
a

p

)(
b

p

)
=

(
ab

p

)
holds for all integers a, b not divisible by p.

2.2 Gauss’ Lemma

Let p be an odd prime and let r = p−1
2 . Represent residue classes in Z/pZ

by integers in the interval [−r, r]. Fix a ∈ (Z/pZ)∗ and for

j ∈ T := {1, 2, · · · r}

define xj to be the unique residue class in [−r, r] which is congruent to
aj mod p.

Theorem 2.2.1. (Gauss’ Lemma) Let l be the number of xj < 0. Then(
a

p

)
= (−1)l

Proof. We claim that the absolute values |xj | are distinct and take all in-
teger values in the set [1, r]. For if |xj | = |xk|, then aj = ±ak, that is,
a(j ± k) ≡ 0 (mod p). This shows that j ± k ≡ 0 (mod p) as p - a. Now this
is not possible unless j = k, since j, k ∈ {1, 2, · · · p−12 }.

Now ∏
j∈T

aj ≡ a
p−1
2

∏
j∈T

j (mod p)

and ∏
j∈T

aj ≡
∏
j∈T

xj ≡ (−1)l
∏
j∈T
|xj | ≡ (−1)l

∏
j∈T

j (mod p)

This shows that (
a

p

)
= a

p−1
2 = (−1)l.
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As an application of the lemma, let us compute
(
2
p

)
when p is an odd

prime.

Corollary 2.2.2. Let p be an odd prime. Then(
2

p

)
= (−1)l = (−1)

p2−1
8 .

Proof. Look at the set j ∈ {1, 2, · · · p−12 } and compute 2j (mod p). Recall
that we need to find a representative xj of 2j mod p in the set [−r, r]. Note
that xj < 0 if and only if 2j > p−1

2 , that is, j > dp−14 e. So

l =
p− 1

2
− dp− 1

4
e

Check that when p ≡ ±1 (mod 8), l ≡ 0 ≡ p2−1
8 (mod 2) and if p ≡ ±3

(mod 8), l ≡ 1 ≡ p2−1
8 (mod 2). In either case, l ≡ p2−1

8 (mod 2) and hence,(
2

p

)
= (−1)l = (−1)

p2−1
8 .

2.3 Quadratic Reciprocity

In this section we will prove the quadratic reciprocity theorem.

Theorem 2.3.1 (Quadratic reciprocity). Let p and q be odd primes. Then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2

Proof. By Gauss’ Lemma,
(p
q

)
= (−1)l, where

l := #
{

1 ≤ x ≤ q − 1

2

∣∣∣ ∃y ∈ Z − q − 1

2
≤ px− qy < 0

}
Observe the following two.

1. If px− qy < 0 and x > 0 then y > 0.

2. If px− qy ≥ − q−1
2 and x ≤ q−1

2 then y ≤ ( q−12q )(p+ 1) < p+1
2 .
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Thus,

0 < y <
p+ 1

2
.

Using this we have the following equalities.

l :=#
{

1 ≤ x ≤ q − 1

2

∣∣∣ ∃y ∈ Z − q − 1

2
≤ px− qy < 0

}
=#

{
0 < x <

q + 1

2

∣∣∣ ∃y ∈ Z − q − 1

2
≤ px− qy < 0

}
=#

{
0 < x <

q + 1

2

∣∣∣ ∃y ∈ Z − q

2
< px− qy < 0

}
The last equality is because px− qy is an integer. Of the above three sets,
the third set is exactly those points (x, y) ∈ Z× Z such that

1. 0 < x < q+1
2

2. 0 < y < p+1
2

3. − q
2 < px− qy < 0

This is exactly the set of points in Region 1 with integer coordinates.
Similarly,

(q
p

)
= (−1)m, where m is the cardinality of the set of points in

Region 2 with integer coordinates.

Figure 2.1: The rectangle OABC is divided into 4 regions by the lines px−
qy = − q

2 , px− qy = 0, and qy − px = −p
2

Observe that the transformation x = q+1
2 − x

′, y = p+1
2 − y

′ gives a one-
one correspondence between Region 3 and Region 4. Further, it takes points
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with integer coordinates to point with integer coordinates. Hence, number
of points in Region 3 with integer coordinates, is the same as the number of
points in Region 4 with integer coordinates.

The total number of points with integer coordinates strictly inside the
rectangle OACB is (p−12 )( q−12 ). Let ti denote the number of points with
integer coordinates in Region i. Then

(
p− 1

2
)(
q − 1

2
) = t1 + t2 + t3 + t4

Since t3 = t4, it follows that modulo 2,

(
p− 1

2
)(
q − 1

2
) = t1 + t2 mod 2

Since t1 = l and t2 = m this proves that(
p

q

)(
q

p

)
= (−1)l+m = (−1)

p−1
2

q−1
2

The law of quadratic reciprocity is useful in the calculation of Legendre
symbols. For example, we have:(

15

71

)
=

(
3

71

)(
5

71

)
= −

(
71

3

)(
71

5

)
= −

(
2

3

)(
1

5

)
= 1



Chapter 3

Quadratic Forms

One may ask what integers can be written as a sum of squares of two integers.
Let f(x, y) = x2 + y2, then this question is same as asking when f(x, y) = n
has integer solutions. This naturally leads us to binary quadratic forms,
which are a generalization of the function x2+y2. We will put an equivalence
relation on the set of binary quadratic forms of discriminant d < 0 and prove
that in each equivalence class there is a unique reduced binary quadratic
form. The number of reduced binary quadratic forms of discriminant d < 0
is finite and is denoted by h(d). This number, amazingly, coincides with the
class number of Q(

√
d) (the definition of class number is beyond the scope of

this course). After this we will address the question of which integers can be
represented by a given binary quadratic form. Finally, we prove Lagrange’s
Four Square Theorem, which states that

Theorem (Theorem 3.4.1). Every integer n ≥ 0 is a sum of four squares.

3.1 Binary Quadratic Forms

Definition 3.1.1. A binary quadratic form is a function f : Z2 → Z of the
form f(x, y) = ax2 + bxy+ cy2, where a, b, c ∈ Z. By the discriminant of f ,
we mean the number Disc(f) = b2 − 4ac, usually denoted by d.

Note that

4af(x, y) = 4a2x2 + 4abxy + 4acy2

= (2ax+ by)2 − dy2

Thus, if d < 0, then f(x, y) takes only positive values or only negative values
according to whether a is positive or negative.

19
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Lemma 3.1.2. If d > 0, then f(x, y) takes both positive and negative values.

Proof. First choose y � 0. Now consider the integer by. By adding to by an
appropriate multiple of 2a, we can translate this integer into the set [−a, a].
That is, there is a unique integer x such that |2ax− by| ≤ a. It is then clear
that 4af(x, y) = (2ax+ by)2 − dy2 < 0.

Definition 3.1.3. Let f and g be binary quadratic forms. We say they are
equivalent, written f ∼ g if there exists a linear isomorphism U : Z2 → Z2

such that det(U) = 1 and g = f ◦ U , i.e.,

U =

[
p q
r s

]
∈M2(Z) where ps− qr = 1

In the above, M2(Z) denotes 2× 2 matrices with integer coefficients.

Remark 3.1.4. Equivalence of binary quadratic forms (∼) is an equivalence
relation. More precisely, this means the following three conditions are sat-
isfied.

1. For every f we have f ∼ f .

2. For any f, g if f ∼ g then g ∼ f .

3. For any f, g, h if f ∼ g and g ∼ h, then f ∼ h.

Let us now make the following observation. Let f(x, y) = ax2+bxy+cy2.
Define a symmetric matrix

Af :=

[
a b/2
b/2 c

]
Let

v :=

(
x
y

)
Then

(3.1.5) f(x, y) = vtAfv.

Conversely, if A is a symmetric 2× 2 matrix such that

f(x, y) = vtAv

then we easily check that
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1. A11 = f(1, 0) = a

2. A22 = f(0, 1) = c

3. A11 +A12 +A21 +A22 = A11 + 2A12 +A22 = f(1, 1) = a+ b+ c

This forces that A12 = b/2. Thus, the symmetric matrix Af is the unique
one which satisfies equation (3.1.5). Let us also note that

(3.1.6) Disc(f) = −4det(Af ).

Now let us assume that f ∼ g. Then there is U ∈ M2(Z) such that
g = f ◦ U . This shows that

g(x, y) = vtU tAfUv.

By the uniqueness of the matrix Ag, we get that

Ag = U tAfU

This shows that

Disc(g) = −4det(Ag)

= −4det(U tAfU)

= −4det(Af )

= Disc(f)

Thus, we have proved the following proposition.

Proposition 3.1.7. If f ∼ g then Disc(f) = Disc(g).

3.2 Reduction of Quadratic Forms

If f and g are equivalent binary quadratic forms, then we have seen that
Disc(f) = Disc(g). Fix an integer d < 0. Since d < 0, a quadratic form with
discriminant d will take only positive values (if a > 0) or negative values (if
a < 0). Consider the set B of all binary quadratic forms with discriminant
d and such that a > 0. Notice that if f ∼ g then the set of values they
take is the same, thus, both of them take either positive or negative. The
equivalence relation ∼ breaks the set B into equivalence classes. We want
to write down a unique representative in each equivalence class.

Throughout this section d is a fixed integer such that d < 0.
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Definition 3.2.1. A binary quadratic form f(x, y) = ax2 + bxy+ cy2, with
discriminant d and a > 0 is called reduced if

−a < b ≤ a < c or 0 ≤ b ≤ a = c

Remark 3.2.2. Since d < 0, the case a = 0 cannot happen.

Remark 3.2.3. If c ≤ 0, then as a > 0 we get d = b2 − 4ac ≥ 0, a contradic-
tion. Thus, we have c > 0.

Consider the following three matrices.

U :=

[
0 1
−1 0

]
V :=

[
1 1
0 1

]
One checks easily that for any k ∈ Z we have

V k =

[
1 k
0 1

]
Note that

(3.2.4) f ◦ U
(
x
y

)
= cx2 − bxy + ay2.

That is, applying U interchanges a and c while reversing the sign of b. Also
note

(3.2.5)
f ◦ V k

(
x
y

)
= a(x+ ky)2 + b(x+ ky)y + cy2

= ax2 + (b+ 2ak)xy + (ak2 + bk + c)y2

That is, applying V k allows to increase or decrease the value of b without
changing the value of a.

Theorem 3.2.6. Let f(x, y) = ax2+bxy+cy2 be a binary quadratic form of
discriminant d and a > 0. Then f is equivalent to a reduced binary quadratic
form.

Proof. We will prove the theorem by induction on a. The base case for the
induction is a = 1. There is a unique k ∈ Z such that b+ 2k ∈ {0, 1}. Thus,

f ◦ V k = x2 + b′xy + c′y2

Now by Remark 3.2.3 it follows that c′ > 0 since f ◦ V k has discriminant d
and a > 0. Thus, it is clear that exactly one of the following two will

−1 < b′ ≤ 1 < c′ or 0 ≤ b ≤ 1 = c′.
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This proves that f ◦ V k is reduced and the base case for induction is done.

Let f(x, y) = ax2 + bxy + cy2 be a binary quadratic form with discrimi-
nant d and a > 0. Let us assume that the theorem has been proved for all
binary quadratic forms g(x, y) = a′x2 + b′xy + c′y2 whose discriminant is d
and 0 < a′ < a. We will now prove the theorem holds for f(x, y).

1. If a > c, then let f ′ = f ◦ U .

f ′(x, y) = cx2 − bxy + ay2

Then f ∼ f ′. Since c < a, by induction hypothesis, f ′ ∼ g and g is
reduced. By transitivity, f ∼ g and we are done.

2. Assume a ≤ c. We can find a unique k ∈ Z such that b+2ak ∈ (−a, a].
Let f ′ = f ◦ V k, by equation (3.2.5)

f ′(x, y) = ax2 + (b+ 2ak)xy + c′y2

for some c′ ∈ Z. Again by Remark 3.2.3 c′ > 0. We now have

−a < b′ ≤ a.

(a) If a < c′ then we have

−a < b′ ≤ a < c′

and so f ′ is reduced. Thus, f is equivalent to a reduced binary
quadratic form.

(b) If a = c′ and b′ ≥ 0, then f ′ is reduced since 0 ≤ b′ ≤ a = c′ and
so f is equivalent to a reduced binary quadratic form.

(c) If a = c′ and b′ < 0, then

f ′ ◦ U(x, y) = c′x2 − b′xy + ay2

and
0 ≤ −b′ ≤ a = c′

Thus f ′ ◦U is reduced and so f is equivalent to a reduced binary
quadratic form.

(d) If a > c′, then by induction f ′ ◦ U(x, y) = c′x2 − b′xy + ay2 is
equivalent to a reduced binary quadratic form. Thus, f is also
equivalent to a reduced binary quadratic form.
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This completes the proof of the theorem.

Proposition 3.2.7. Let d < 0. There are only finitely many reduced
quadratic forms with discriminant d and a > 0.

Proof. Since f is reduced, |b| ≤ a ≤ c. Thus, b2 ≤ ac. Now

d = b2 − 4ac ≤ ac− 4ac = −3ac.

That is, 3ac ≤ −d. Thus, a and c are bounded. Since |b| ≤ a, b is also
bounded. Hence, there can be only finitely many reduced binary quadratic
forms with discriminant d and a > 0.

Definition 3.2.8. Let S ⊂ Z2 \(0, 0) be the set S := {(x, y)| gcd(x, y) = 1}.

We emphasize that (±1, 0) and (0,±1) ∈ S.

We claim that S is invariant under SL2(Z) (2×2 matrices with determinant

1). In other words, for any U ∈ SL2(Z), we have U(S) = S. Let

(
x
y

)
∈ S

and let U

(
x
y

)
=

(
x′

y′

)
. Then

(
x
y

)
= U−1

(
x′

y′

)
As U−1 ∈ SL2(Z), x and y are linear combinations of x′ and y′ with integer
coefficients. Thus, gcd(x′, y′) divides both x and y. Since gcd(x, y) = 1, we

get gcd(x′, y′) = 1 and

(
x′

y′

)
∈ S. We have thus proved that U(S) ⊂ S.

On the other hand,

(
x
y

)
= U

(
U−1

(
x
y

))
and U−1

(
x
y

)
∈ S since U−1 ∈

SL2(Z). Hence, S ⊂ U(S). Combining, we get S = U(S) as desired.

Proposition 3.2.9. Let f and g be two quadratic forms such that f ∼ g.
Then cardinality of (f |S)−1(x) is same as that of (g|S)−1(x) ∀x ∈ Z.

Proof. U leaves S invariant. Hence, g|S = f |S ◦ U . The claim then follows
from the fact that U is invertible.

Theorem 3.2.10. Two reduced quadratic forms are not equivalent to each
other.
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Proof. The key idea of the proof is to recover the coefficients of the reduced
binary quadratic form from the values it takes on the set S.

Let f be a reduced quadratic form. Suppose,

(
x
y

)
∈ S and x 6= 0, y 6= 0.

Denote the set of such vectors by So. Let f(x, y) = ax2 + bxy + cy2. Then,

|f(x, y)| = |ax2 + bxy + cy2| ≥ |ax2 + cy2| − |b||xy|
(if |x| ≥ |y|) ≥ ax2 − |b||x|2 + cy2 = (a− |b|)x2 + cy2

(since a ≥ |b| and x 6= 0, y 6= 0) ≥ a− |b|+ c

Same result holds if |x| ≤ |y| as c ≥ |b|. Thus, if

(3.2.11)

(
x
y

)
∈ So then |f(x, y)| ≥ a− |b|+ c.

f(±1, 0) = a(3.2.12)

f(0,±1) = c(3.2.13)

Note that

S = So t
(
±1
0

)
t
(

0
±1

)
and since f is reduced we have

a ≤ c ≤ a− |b|+ c.

It is important to note that all these values are attained. In particular, the
value a− |b|+ c is attained by f at one of (1, 1) or (1,−1).

Let α < β < γ denote the three smallest values that f takes on the set
S. Next we will consider several cases. Note that

f(±1, 0) ≤ f(0,±1) ≤ f(So)

1. #(f |S)−1(α) > 4. This can happen only if an element of So maps to
α. This forces α = a = c = a− |b|+ c, that is, α = a = |b| = c.

2. #(f |S)−1(α) = 4. This can happen only if f(0,±1) = α and f(So) >
α. This forces that α = a = c < a− |b|+ c = β. Thus, α = a = c and
|b| = 2α− β.
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3. #(f |S)−1(α) = 2. This can happen only if f(0,±1) = c > a. This
forces that α = a < c = β.

(i) If #(f |S)−1(β) > 2 then c = a − |b| + c. Thus, α = a = |b| and
β = c.

(ii) If #(f |S)−1(β) = 2 then c < a− |b|+ c. Thus, α = a, β = c and
γ = a− |b|+ c. Thus, |b| = α+ β − γ.

The above shows that from (α, β, γ,#(f |S)−1(α),#(f |S)−1(β)) we can re-
cover a, |b|, c.

Let f(x, y) = ax2 + bxy+ cy2 and g(x, y) = a′x2 + b′xy+ c′y2 be reduced
binary quadratic forms such that f ∼ g. By Proposition 3.2.9 and since the
values taken by f and g on S are the same, it follows that

(α, β, γ,#(f |S)−1(α),#(f |S)−1(β)) = (α′, β′, γ′,#(g|S)−1(α′),#(g|S)−1(β′))

It follows then that

a = a′, |b| = |b′|, c = c′

If b 6= b′, then b′ = −b and we get f(x, y) = ax2 + bxy + cy2, g(x, y) =
ax2 − bxy + cy2. If a = c, then b ≥ 0 (f is reduced) and −b ≥ 0 (g is
reduced). So we get b = 0, a contradiction. If a < c, then b = a is not
possible as b = a implies −b = −a, which is absurd since g is reduced.

Hence, |b| < a < c. Let g = f ◦U where U =

[
p q
r s

]
with ps− qr = 1. Then

a = g

(
1
0

)
= f

(
p
r

)
. The vector

(
p
r

)
∈ S and since a < c < a− |b|+ c, the

only choice for

(
p
r

)
is

(
±1
0

)
. Similarly, g

(
0
1

)
= f

(
q
s

)
and the only choice

for

(
q
s

)
is

(
0
±1

)
. Now, det(U) = 1 implies U =

[
1 0
0 1

]
or

[
−1 0
0 −1

]
.

In either case, g = f ◦ U = f . Hence, b = b′, a contradiction. This proves
f = g, as desired.

The number of reduced quadratic forms of discriminant d with a > 0 is
denoted by h(d). Clearly, h(d) = 0 if d 6≡ 0 or 1 (mod 4). For example,
b2− 4ac = −4 and |b| ≤ a ≤ c implies a = c = 1, b = 0, that is, there is only
one reduced quadratic form with discriminant -4. Hence, h(−4) = 1.
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3.3 Representations by Binary Quadratic Forms

We say a number n is properly represented by f if there exists

(
x
y

)
∈ S

(see Definition 3.2.8) f(x, y) = n. Note that if n is representable by f and
f ′ ∼ f , then n is also representable by f ′ as f and f ′ take the same values
on S.

Proposition 3.3.1. n is properly representable by a quadratic form of dis-
criminant d if and only if the quadratic congruence x2 ≡ d (mod 4n) has a
solution.

Proof. Assume x2 ≡ d (mod 4n) has a solution, say b. Then b2 − d = 4nc
for some c ∈ Z. Let f(x, y) = nx2 + bxy + cy2. Then, Disc(f) = d and
f(1, 0) = n. Hence, n is properly representable by f .

Conversely, suppose n is properly representable, then there exists

(
p
r

)
such

that gcd(p, r) = 1 and f(p, r) = n for some f with Disc(f) = d. Since
gcd(p, r) = 1, there exist s, q ∈ Z, such that ps − qr = 1. Let f ′ = f ◦ U ,
where

U :=

[
p q
r s

]
∈ SL2(Z)

Now f ′
(

1
0

)
= f

(
p
r

)
= n. Thus, f ′(x, y) = nx2 + bxy + cy2 for some

b, c ∈ Z. Since f ′ ∼ f , Disc(f ′) = Disc(f) = d.

Disc(f ′) = b2 − 4nc = d

Hence x2 ≡ d (mod 4n) has a solution, namely b.

Proposition 3.3.2. Suppose n = x2 + y2 and let p ≡ 3 (mod 4) be a prime
which divides n. Then an even power of p appears in prime factorization of
n.

Proof. We go modulo p. If p does not divide y, then (xy−1)2 ≡ −1 (mod p).

Raising both sides to the power p−1
2 , (xy−1)p−1 ≡ (−1)

p−1
2 ≡ −1 (mod p)

as p ≡ 3 (mod 4). By Fermat’s Theorem, 1 ≡ −1 (mod p), a contradiction.
Hence, p|y and similarly, p|x.

Let x = px′, y = py′. Then, p2|n and x′2 + y′2 = n
p2

. By induction on
n, an even power of p appears in the prime factorization of n

p2
and hence, in
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n since n = p2
(
n
p2

)
.

Base case for induction is when p - n. Here the result is trivial as the
power of p that appears in the prime factorization of n is zero, which is
even. The proof is complete by induction.

Proposition 3.3.3. Let p be a prime such that p ≡ 1 (mod 4). Then there
exist x, y ∈ Z such that x2 + y2 = p.

Proof. Note that Disc(x2 + y2) = −4 and we checked that h(−4) = 1,
that is, there is only one reduced quadratic form of discriminant −4. So it is
enough to show that there exists some binary quadratic form of discriminant
−4 such that p is representable by f . Then it will follow that the unique
reduced binary quadratic form in the equivalence class of f also takes the
value p. But this reduced quadratic form is forced to be x2 + y2.

By Proposition 3.3.1, n is properly representable by such a binary quadratic
form iff x2 ≡ −4 (mod 4p) has a solution. As p ≡ 1 (mod 4),

(−1
p

)
= 1.

Hence, there exists α ∈ Z, such that α2 ≡ −1 (mod p). Clearly, 2α is a
solution of the quadratic congruence x2 ≡ −4 (mod 4p). Hence, proved.

Proposition 3.3.4. Let n be such that if p ≡ 3 (mod 4) is a prime dividing
n, then the highest power of p which divides n is even. Then x2 + y2 = n
has a solution.

Proof. We can write n = m× l2 such that m is square-free. By assumption,
if p divides m, then p ≡ 1 (mod 4) or p = 2. It is enough to show that m
is a sum of squares as x2 + y2 = m implies (lx)2 + (ly)2 = n. Consider the
identity,

(x2 + y2)(x′2 + y′2) = (xx′ − yy′)2 + (xy′ + yx′)2

This implies that if a and b are sum of squares, then so is ab. We are done
as by Proposition 3.3.3, any prime p of the form p ≡ 1 (mod 4) is the sum
of two squares and 2 = 12 + 12.

3.4 Lagrange’s Four Square Theorem

Theorem 3.4.1 (Lagrange’s Four Squares Theorem). Every n ≥ 0 is a sum
of four squares.
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Proof. Note that

(x2 + y2 + z2 + w2)(x′2 + y′2 + z′2 + w′2) = (xx′ + yy′ + zz′ + ww′)2+

(xy′ − yx′ + wz′ − zw′)2 + (xz′ − zx′ + yw′ − wy′)2

+ (xw′ − wx′ + zy′ − yz′)2 .

In view of this identity, it is enough to show that every prime is a sum of
four squares. Observe that 2 = 12 + 12 + 02 + 02.

Let p be an odd prime. Let T := {z | 0 ≤ z ≤ p−1
2 }. Define

T1 := {z2 (mod p) | z ∈ T} T2 := {−1− z2 (mod p) | z ∈ T} .

Observe that #T1 = #T2 = p+1
2 since z21 ≡ z22 (mod p) or −1−z21 ≡ −1−z22

(mod p) implies z1 ≡ z2 (mod p) or z1 ≡ −z2 (mod p) which forces z1 = z2
as z1, z2 ∈ T . Hence, there exists x, y ∈ T such that x2 ≡ −1− y2 (mod p),
that is, x2 + y2 + 1 = l1p for some l1 ∈ Z. Note that

l1p = x2 + y2 + 1 <
p2

2
+
p2

2
+ 1 < p2 .

This implies 0 < l < p. Let l be the smallest positive integer such that
lp = x2 + y2 + z2 + w2 for some x, y, z, w ∈ Z. We just proved that l < p.
We will show that l = 1. If possible let l > 1.

Claim: l is odd.
If l is even, then either 0, 2 or 4 of x, y, z, w are odd. Without loss of
generality, we may assume that x± y and z ± w are even. Then

l

2
p =

(x+ y)2

4
+

(x− y)2

4
+

(z + w)2

4
+

(z − w)2

4
=
x2 + y2 + z2 + w2

2
.

contradicting the minimality of l. This proves the claim.

The integers s′ such that 0 ≤ |s′| ≤ l−1
2 form a full set of residues mod-

ulo l. Let x′ be such that x ≡ x′ (mod l) and 0 ≤ |x′| ≤ l−1
2 . Define y′, z′

and w′ in a similar way. Then

x′2 + y′2 + z′2 + w′2 ≡ x2 + y2 + z2 + w2 ≡ 0 (mod l),

that is, x′2 + y′2 + z′2 + w′2 = kl for some k ∈ Z. Clearly that k > 0. Note
that

kl <
l2

4
+
l2

4
+
l2

4
+
l2

4
= l2 ,
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that is, k < l. Then

(3.4.2)

(kl)(lp) = (x2 + y2 + z2 + w2)(x′2 + y′2 + z′2 + w′2)

= (xx′ + yy′ + zz′ + ww′)2 + (xy′ − yx′ + wz′ − zw′)2

+ (xz′ − zx′ + yw′ − wy′)2 + (xw′ − wx′ + zy′ − yz′)2

Consider xx′ + yy′ + zz′ + ww′. Going modulo l,

xx′ + yy′ + zz′ + ww′ ≡ x2 + y2 + z2 + w2 ≡ 0 mod l

Hence, l divides (xx′ + yy′ + zz′ + ww′). Similarly check that l divides
(xy′− yx′+wz′− zw′), (xz′− zx′+ yw′−wy′) and (xw′−wx′+ zy′− yz′).
Let

(xx′ + yy′ + zz′ + ww′) =α1l,

(xy′ − yx′ + wz′ − zw′) =α2l,

(xz′ − zx′ + yw′ − wy′) =α3l,

(xw′ − wx′ + zy′ − yz′) =α4l

Then 3.4.2 becomes

(3.4.3) kpl2 = (α1l)
2 + (α2l)

2 + (α3l)
2 + (α4l)

2

which implies kp = α2
1 +α2

2 +α2
3 +α2

4. This contradicts the minimality of l.
Hence, l = 1, completing the proof.
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Continued Fractions

4.1 Dirichlet’s Theorem on approximations

Proposition 4.1.1. Let θ ∈ R and let q be a positive integer. Then ∃p ∈ Z
such that

∣∣x− p
q

∣∣ ≤ 1
q

Proof. We can write

R =
⋃
k∈Z

[
k

q
,
k + 1

q

]
.

Since x is in one of these intervals, the proposition is clear.

Theorem 4.1.2 (Dirichlet). Let Q > 1 be an integer. Given any θ ∈ R, we
can find p, q ∈ Z such that 0 < q < Q and∣∣∣θ − p

q

∣∣∣ ≤ 1

qQ

Proof. Consider the intervals
[
0, 1

Q

]
,
[
1
Q ,

2
Q

]
. . .
[
Q−1
Q , 1

]
. These are Q in-

tervals of equal width. Let {α} denote the fractional part of α. Consider
the set

S = {0, {θ}, {2θ} . . . {(Q− 1)θ}, 1}

S has Q+ 1 elements, so by the pigeon-hole principle, at least two of these
belong to the same interval. Clearly 0 and 1 cannot be in the same interval.
We know that {iθ} = iθ − p, for some p ∈ Z, and so

|(i1θ − p1)− (i2θ − p2)| ≤
1

Q
i1 6= i2.

31
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Letting q = |i1 − i2|, it is clear that 0 < q < Q and that∣∣∣θ − p

q

∣∣∣ ≤ 1

qQ

This completes the proof of the theorem.

Proposition 4.1.3. If θ ∈ Q then there exist only finitely many pairs p, q ∈
Z with q > 0 such that

(4.1.4)
∣∣∣θ − p

q

∣∣∣ ≤ 1

q2

Proof. Let θ = a
b with b > 0. If there exist p, q ∈ Z with q > 0 such that∣∣∣a

b
− p

q

∣∣∣ ≤ 1

q2

then (since 1 ≤ |aq − bp| as all of them are integers)

1

bq
≤ |aq − bp|

bq
≤ 1

q2

Thus, q ≤ b and so there are only finitely many choices for q. For a fixed
q, it is clear that only finitely many p satisfy equation (4.1.4). Thus, the
number of pairs for which the condition holds is finite.

Proposition 4.1.5. Let θ ∈ R \ Q, then there are infinitely many pairs
p, q ∈ Z with q > 0 such that equation (4.1.4) holds.

Proof. Fix any Q1 > 1 and find, using Theorem 4.1.2, p1
q1
, 0 < q1 < Q1 such

that ∣∣∣θ − p1
q1

∣∣∣ ≤ 1

q1Q1
<

1

q21

Since θ is irrational, θ − p1
q1
6= 0. Thus, ∃Q2 > 0 such that

0 <
1

Q2
<
∣∣∣θ − p1

q1

∣∣∣ < 1

q21

Applying Theorem 4.1.2 to Q2, we get p2
q2

such that∣∣∣θ − p2
q2

∣∣∣ ≤ 1

q2Q2
≤ 1

q22
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We also have ∣∣∣θ − p2
q2

∣∣∣ ≤ 1

q2Q2
≤ 1

Q2
<
∣∣∣θ − p1

q1

∣∣∣
Since the inequality is strict, we get p2

q2
6= p1

q1
. Proceeding in this manner, we

get a sequence of distinct rational numbers pn
qn

which satisfy the condition

(4.1.6)
∣∣∣θ − p

q

∣∣∣ < 1

q2

4.2 Continued fractions

Let θ be an irrational number. We saw that there is an infinite sequence of
rational numbers p

q which satisfy equation (4.1.6). Now we will explain a
construction which produces such a sequence of rationals for a given θ.

Continued fraction expansion of θ: Let θ = θ0 ∈ R. Define the contin-
ued fraction expansion of θ as follows.

• Define a0 ∈ Z to be the unique integer which satisfies 0 ≤ θ0 − a0 < 1

• if θ0 − a0 = 0 then the continued fraction expansion of θ is [a0].

• if 0 < θ0 − a0 < 1, define θ1 = 1
θ0−a0 . Thus, θ1 > 1.

• For i ≥ 1 and θi−1 − ai−1 6= 0

– Define ai ∈ Z≥1 to be the unique integer which satisfies 0 ≤
θi − ai < 1

– if θi − ai = 0 then the continued fraction expansion of θ is
[a0, a1, . . . , ai].

– if 0 < θi − ai < 1, define θi+1 = 1
θi−ai .

Here are two examples.

1. Consider θ = 15
8 .

15

8
= 1 +

7

8

= 1 +
1

1 + 1
7
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Thus θ = 1.875 = [1, 1, 7] = 1 + 1
1+ 1

7

2. For θ =
√

2. Note that

√
2 + 1 = 2 +

1√
2 + 1

Thus, we get
√

2 = 1 +
√

2− 1

= 1 +
1√

2 + 1

= 1 +
1

2 + 1√
2+1

= 1 +
1

2 + 1
2+ 1√

2+1

Thus, we get
√

2 = [1, 2, 2, 2, . . .].

Proposition 4.2.1. If the algorithm for obtaining the continued fraction
expansion for θ stops in finitely many steps, then θ ∈ Q.

Proof. Clearly we have

θ = θ0 = a0 +
1

θ1

= a0 +
1

a1 + 1
θ2

= · · ·

As this process stops in finitely many steps, we get that θ is rational.

Proposition 4.2.2. If θ ∈ Q, then the continued fraction expansion of θ is
finite.

Proof. Let θ = p
q . The proof is by induction on q. If q = 1, the pro-

cess stops at a0. Assume q > 1, then a0 is such that 0 < p
q − a0 < 1.

Thus, 0 < p − qa0 < q. As θ1 = 1
p
q
−a0 = q

p−a0q , by induction hypothesis,

the continued fraction expression for θ1 is finite. Hence the same holds for θ.

We have used the following, which is clear. If the continued fraction ex-
pansion of θ1 is [b0, b1, . . . ], then the continued fraction expansion of θ is
[a0, b0, b1, . . . ].
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Definition 4.2.3 (Convergents). Let θ = [a0, a1, . . .] ∈ R \ Q. For n ≥ 0,
set pn

qn
= [a0, a1, . . . an]. The pn

qn
are called the convergents to θ.

Remark 4.2.4. We may think of the ai’s as variables and define the pi and
qi as polynomials. For example, let us see what this means for n = 0, 1, 2.

1. p0 = a0 and q1 = 1.

2.
p1
q1

= a0 +
1

a1
=
a0a1 + 1

a1

Thus,
p1 = a0a1 + 1 q1 = a1.

3.
p2
q2

= a0 +
1

a1 + 1
a2

=
a0a1a2 + a0 + a2

a1a2 + 1

Thus,
p2 = a0a1a2 + a0 + a2 q1 = a1a2 + 1

Proposition 4.2.5. There are the following recursive relation for pn and
qn

pn = anpn−1 + pn−2 qn = anqn−1 + qn−2.

Proof. The proof is by induction on n. Following the previous remark, we
will think of the ai’s as variables and prove the recursive relations as equality
of polynomials.

Base case: n = 2, to show p2 = a2p1 + p0 and q2 = a2q1 + q0. This
follows from Remark 4.2.4.

For k > 1 define
fk−1
gk−1

= [a1, a2, . . . ak]

We emphasize that fk−1 and gk−1 are to be viewed as polynomials in ai. We
apply the induction hypothesis to the case n− 1

fn−1
gn−1

= [a1, a2, . . . an]

to get

(4.2.6) fn−1 = anfn−2 + fn−3 gn−1 = angn−2 + gn−3
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Then

pn
qn

= [a0, a1, . . . , an]

= [a0, [a1, . . . , an]]

= [a0,
fn−1
gn−1

]

= a0 +
gn−1
fn−1

=
a0fn−1 + gn−1

fn−1

Therefore,

pn = a0fn−1 + gn−1 qn = fn−1

Similarly we have

pn−1 = a0fn−2 + gn−2 qn−1 = fn−2

pn−2 = a0fn−3 + gn−3 qn−2 = fn−3

By induction hypothesis (equation (4.2.6))

fn−1 = anfn−2 + fn−3(4.2.7)

gn−1 = angn−2 + gn−3(4.2.8)

It follows from the above equations that

qn = fn−1 = anfn−2 + fn−3

= anqn−1 + qn−2

pn = a0fn−1 + gn−1

= a0(anfn−2 + fn−3) + angn−2 + gn−3

= anpn−1 + pn−2

Thus, we have proved the recurrence.

Now that the recurrence relation is proved, it also holds when we sub-
stitute integer values for the ai. It is important to note that for i > 0 all
ai > 0. From now on we will return to the situation of continued fractions,
and pn, qn are integers.

Proposition 4.2.9. gcd(pn, qn) = 1.
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Proof. Since

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2

∴ pnqn−1 − qnpn−1 = pn−2qn−1 − qn−2pn−1

Thus, we have

|pnqn−1 − qnpn−1| = |pn−1qn−2 − qn−1pn−2| = · · · = |p1q0 − q1p0|

|p1q0 − q1p0| = |(a0a1 + 1)− a1a0| = 1

∴ |pnqn−1 − qnpn−1| = 1

Hence, we can find integers r, s ∈ Z such that, rpn + sqn = 1. Thus,
gcd(pn, qn) = 1.

Corollary 4.2.10. pn
qn

is a Cauchy sequence.

Proof. We have |pnqn+1 − qnpn+1| = 1. Thus,∣∣∣pn
qn
− pn+1

qn+1

∣∣∣ =
1

qnqn+1

Since q0 = 1, q1 = a1 ≥ 1, and qn = anqn−1 + qn−2, where an ≥ 1, we see
that qi is a strictly increasing sequence for i ≥ 1. Thus, pn

qn
is a Cauchy

sequence.

Corollary 4.2.11. pn
qn
→ θ.

Proof. Notice that, if 0 < γ < β, then

[α, β] = α+
1

β
< α+

1

γ
= [α, γ]

Now

[an, an+1, an+2] = an +
1

an+1 + 1
an+2

> an.

Using this for α = an−1, β = [an, an+1, an+2], and γ = an

[an−1, an, an+1, an+2] < [an−1, an]

In the same manner

[an−2, an−1, an, an+1, an+2] > [an−2, an−1, an] . . .
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If n is even, n = 2k

[a0, a1, . . . a2k+2] > [a0, a1, . . . a2k]

This shows that
p2k+2

q2k+2
>
p2k
q2k

.

That is the sequence p2k
q2k

is an increasing sequence.

If n is odd, n = 2k + 1

[a1, a2, . . . a2k+1] > [a1, a2, . . . a2k−1]

[a0, a1, . . . a2k+1] < [a0, a1, . . . a2k−1]

Thus,
p2k+1

q2k+1
<
p2k−1
q2k−1

.

That is, the sequence
p2k+1

q2k+1
is a decreasing sequence.

Consider θ = [a0, a1, . . . an, θn+1]

[an, θn+1] = an +
1

θn+1
> an

=⇒ [an−1, an, θn+1] < [an−1, an]

=⇒ [an−3, an−2, an−1, an, θn+1] < [an−2, an−1, an, θn+1] and so on

Thus, [a0, a1, . . . an, θn+1] < [a0, a1, . . . an] implies θ < pn
qn

for odd n. Simi-

larly, θ > pn
qn

for even n. The sequence p2k
q2k

is an increasing sequence bounded

above by θ, the sequence
p2k−1

q2k−1
is a decreasing sequence bounded below by

θ, and both sequences are sub-sequences of pnqn , so they converge to the same

limit. Hence, pn
qn
→ θ.

Corollary 4.2.12.
∣∣∣θ − pn

qn

∣∣∣ < 1
q2n

.

Proof. We know, from the proof of the previous theorem, that pn
qn
< θ < pn+1

qn+1

or pn+1

qn+1
< θ < pn

qn
, depending on the parity of n.∣∣∣θ − pn
qn

∣∣∣ < ∣∣∣pn+1

qn+1
− pn
qn

∣∣∣
=

1

qnqn+1
(|pn+1qn − pnqn+1| = 1)

<
1

q2n
(qn+1 > qn for n ≥ 2)
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Corollary 4.2.13. For any n, either
∣∣∣θ − pn

qn

∣∣∣ ≤ 1
2q2n

or
∣∣∣θ − pn+1

qn+1

∣∣∣ ≤ 1
2q2n+1

.

Proof. Assume that
∣∣∣θ − pi

qi

∣∣∣ > 1
2q2i

for i = n, n+ 1. Since θ lies between pn
qn

and pn+1

qn+1
we get

∣∣∣pn+1

qn+1
− pn
qn

∣∣∣ > 1

2

(
1

q2n
+

1

q2n+1

)
≥ 1

2
· 2

qnqn+1

Thus, ∣∣∣pn+1

qn+1
− pn
qn

∣∣∣ > 1

qnqn+1

which is a contradiction.

Corollary 4.2.14. Given θ ∈ R\Q, there is an infinite sequence of rationals
pn
qn

such that,
∣∣∣θ − pn

qn

∣∣∣ < 1
2q2n

.

Next we prove a very surprising result.

Theorem 4.2.15. If
∣∣∣θ − p

q

∣∣∣ < 1
2q2

then p
q = pn

qn
for some n.

Proof. First, we show that |qnθ− pn| > |qn+1θ− pn+1|. Recall by definition
of θn+1 we have θ = [a0, a1 . . . an, θn+1]. Because of Proposition 4.2.5 we
have

pn+1 = θn+1pn + pn−1

qn+1 = θn+1qn + qn−1

Thus,

θ =
pn+1

qn+1
=
θn+1pn + pn−1
θn+1qn + qn−1

=
θn+1pn + pn−1
θn+1qn + qn−1

θθn+1qn + θqn−1 = θn+1pn − pn−1
=⇒ |θqn−1 − pn−1| = θn+1|θqn − pn|

Since θn+1 > 1, we have |θqn−1 − pn−1| > |θqn − pn|.
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Now let 0 < q < qn+1. For any p ∈ Z we will show that |qθ − p| ≥
|qnθ − pn|. Since pnqn+1 + pn+1qn = ±1, we can solve the system[

pn pn+1

qn qn+1

] [
u
v

]
=

[
p
q

]
for u, v ∈ Z. Take the equation qnu+ qn+1v = q. If u = 0, then qn+1v = q,
which contradicts our assumption that q < qn+1. Thus, u 6= 0. If v = 0,
then p = upn, q = uqn. Thus, |qθ − p| = |u||qnθ − pn| ≥ |qnθ − pn| and we
are done. If v 6= 0, then u and v have opposite signs, or else we will get
q > qn+1. Thus,

|qθ − p| = |(qnu+ qn+1v)θ − (pnu+ pn+1v)|
= |u(qnθ − pn) + v(qn+1θ − pn+1)|

We already know (see the proof of Corollary 4.2.11) that qnθ − pn and
qn+1θ − pn+1 have opposite signs. Thus, u(qnθ − pn) and v(qn+1θ − pn+1)
have the same sign. Thus,

|qθ − p| ≥ |u(qnθ − pn)| ≥ |qnθ − pn|.

Now we come to proving our theorem. Let n be such that qn ≤ q < qn+1.∣∣∣p
q
− pn
qn

∣∣∣ ≤ ∣∣∣p
q
− θ
∣∣∣+
∣∣∣θ − pn

qn

∣∣∣
=
|p− qθ|

q
+
|pn − qnθ|

qn

≤ |p− qθ|
(1

q
+

1

qn

)
<

1

2q

(1

q
+

1

qn

)
<

1

2q
· 2

qn
(Since q > qn)

Thus, we arrive at the result,

1

qqn
· |pqn − pnq| <

1

qqn

which implies that |pqn − pnq| < 1. Since |pqn − pnq| is an integer, it has to
be zero which implies p

q = pn
qn

.

Proposition 4.2.16. Given any θ, there is an infinite sequence of rationals

such that
∣∣∣θ − p

q

∣∣∣ < 1√
5q2

.
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Proof. We will show that, for any n > 2, there is an i ∈ {n, n + 1, n + 2}
such that ∣∣∣θ − pi

qi

∣∣∣ < 1√
5q2i

where pi
qi

are the convergents in the continued fraction expansion of θ.

Assume
∣∣∣θ − pi

qi

∣∣∣ > 1√
5q2i

for all i ∈ {n, n+ 1, n+ 2}. Recall that

|pn+1qn − pnqn+1| = 1.

We have

1

qnqn+1
=
∣∣∣pn
qn
− pn+1

qn+1

∣∣∣ =
∣∣∣pn
qn
− θ
∣∣∣+
∣∣∣θ − pn+1

qn+1

∣∣∣
>

1√
5

(
1

q2n
+

1

q2n+1

)
This shows that √

5 >

(
qn+1

qn
+

qn
qn+1

)
.

Let λ = qn+1

qn
. Thus,

√
5 > λ + 1

λ . Similarly, for ν = qn+2

qn+1
,
√

5 > ν + 1
ν .

Simplifying the equation,

λ2 −
√

5λ+ 1 < 0 =⇒
√

5− 1

2
< λ <

√
5 + 1

2

ν2 −
√

5ν + 1 < 0 =⇒
√

5− 1

2
< ν <

√
5 + 1

2

We know that qn+2 = an+2qn+1 + qn. Dividing by qn+1 we get

ν = an+2 +
1

λ
≥ 1 +

1

λ

λ <

√
5 + 1

2
=⇒ 1

λ
>

√
5− 1

2

∴ ν > 1 +
1

λ
=

√
5 + 1

2

which is a contradiction.

Corollary 4.2.17. For c =
√

5, there are infinitely many rationals for any

θ such that
∣∣∣θ − p

q

∣∣∣ < 1
cq2

.
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Proposition 4.2.18. c =
√

5 is the best possible bound.

Proof. We show that there is at least one θ ∈ R for which there is no better

bound. Consider θ =
√
5+1
2 , then

θ = 1 +
1

1 + 1
1+···

θ = [1, 1, 1 . . .] = [1, θ] = [1, 1, θ] = . . .

One checks easily that for this θ, the convergents satisfy

(4.2.19) qn = pn−1

Assume there is a c >
√

5 such that there are infinitely many rationals p
q for

which ∣∣∣θ − p

q

∣∣∣ < 1

cq2
.

Since c > 2, it follows from Theorem 4.2.15 that these rationals are forced
to be the convergents. From Proposition 4.2.5 it follows that

θ =
pn+1

qn+1
=
θn+1pn + pn−1
θn+1qn + qn−1

.

This shows ∣∣∣θ − pn
qn

∣∣∣ =
∣∣∣θpn + pn−1
θqn + qn−1

− pn
qn

∣∣∣ =
1

qn(θqn + qn−1)

Thus,
1

cq2n
>
∣∣∣θ − pn

qn

∣∣∣ =
1

qn(θqn + qn−1)

Now using equation (4.2.19) we get

c < θ +
qn−1
qn

< θ +
qn−1
pn−1

.

Taking limit n→∞ we get

c ≤ θ +
1

θ
=

√
5 + 1

2
+

√
5− 1

2
=
√

5

which is a contradiction.
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4.3 Quadratic irrationals

Let θ be irrational. Then we will say that the continued fraction expansion
of θ is periodic, if there are integers l ≥ 0,m > 0 such that if θ = [a0, a1, . . .]
then ai = ai+m for all i ≥ l. We will denote this by

θ = [a0, a1, . . . , al−1, al, al+1, . . . , al+m−1]

Theorem 4.3.1. For any θ ∈ R \Q, the continued fraction expansion of θ
is periodic if and only if θ satisfies a quadratic polynomial ∈ Q[x]

Proof. Let θ ∈ R \Q be such that

θ = [a0, a1 . . . al−1, al, al+1 . . . al+m−1]

for some l ≥ 0,m > 0. We will show that θ satisfies a quadratic polynomial
over Q. Let

φ = [al, al+1 . . . al+m−1] = [al, al+1 . . . al+m−1, φ]

If pm
qm

denotes the convergents of φ, then by Proposition 4.2.5 we have

φ =
pm
qm

=
φpm−1 + pm−2
φqm−1 + qm−2

It is clear that φ satisfies the polynomial

X2qm−1 +X(qm−2 − pm−1)− pm−2 = 0.

Clearly, the subset of R consisting of elements of the type a + bφ, where
a, b ∈ Q, forms a Q vector space, call it F ⊂ R. Since φ satisfies a polynomial
of degree 2 with coefficients in Q, it is easily checked that the product of
two elements of F is in F .

We will now show that if a+bφ ∈ F and a+bφ 6= 0 then the real number
1

a+bφ ∈ F . Let α := a+bφ. Since α ∈ F F is a vector space over Q of rank 2,

we see that 1, α, α2 cannot be linearly independent over Q. Thus, α satisfies
an equation of the type

lα2 +mα+ n = 0.

If l = 0, then α ∈ Q and so clearly 1
α ∈ Q ⊂ F . So let us assume that l 6= 0.

If n = 0, then we get α(lα + m) = 0. Since α 6= 0 this shows again that
α ∈ Q. Thus, assume that l 6= 0, n 6= 0. In this case we get

1

α
=
lα+m

−n
∈ F
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which proves our assertion.

Recall that we wanted to prove that θ satisfies a quadratic polynomial
with coefficients in Q. Since

θ = [a0, a1, . . . , al−1, φ]

it is clear from Proposition 4.2.5 that

θ =
a+ bφ

c+ dφ
= (a+ bφ)

1

c+ dφ
∈ F

As θ ∈ F , we see that 1, θ, θ2 cannot be linearly independent, and so it
follows that θ satisfies a quadratic polynomial with coefficients in Q.

Next we show that if θ is quadratic over Q, then the continued fraction
expansion of θ is periodic. Assume θ satisfies ax2 + bx + c = 0. Consider
the quadratic form

f(X) = Xᵀ
[
a b/2
b/2 c

]
X = XᵀAfX

Define fn = f ◦Un, where Un =

[
pn pn−1
qn qn−1

]
. Here pn

qn
are the convergents to

θ. Recall pnqn−1− qnpn−1 = ±1 = det(Un). It is clear that the discriminant
of f (see 3.1.1 and 3.1.6) is equal to the discriminant of fn. Write

fn

(
x
y

)
= αnx

2 + βnxy + γny
2

Then

β2n − 4αnγn = b2 − 4ac.

Since ax2+bx+c has a real solution which is not rational, we have b2−4ac >
0. Writing θ = [a0, a1, . . . an, θn+1], we get

θ =
pnθn+1 + pn−1
qnθn+1 + qn−1

.
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fn

(
θn+1

1

)
= f ◦

[
pn pn−1
qn qn−1

] [
θn+1

1

]
= f

(
pnθn+1 + pn−1
qnθn+1 + qn−1

)
= f

(
pnθn+1+pn−1

qnθn+1+qn−1

1

)
(qnθn+1 + qn−1)

2

= f

(
θ
1

)
(qnθn+1 + qn−1)

2

= (aθ2 + bθ + c)(qnθn+1 + qn−1)
2

= 0

Note that

αn = fn

(
1
0

)
= f

(
pn
qn

)
= q2nf

(pn
qn

1

)
αn
q2n

= f

(pn
qn

1

)
= f

(pn
qn

1

)
− f

(
θ
1

)
(Since f(θ) = 0)

= a

(
p2n
q2n
− θ2

)
+ b

(
pn
qn
− θ
)

From which we get∣∣∣∣αnq2n
∣∣∣∣ ≤ |a|∣∣∣∣pnqn − θ

∣∣∣∣∣∣∣∣pnqn + θ

∣∣∣∣+ |b|
∣∣∣∣pnqn − θ

∣∣∣∣
≤ |a|
q2n

∣∣∣pn
qn

+ θ
∣∣∣+
|b|
q2n

Corollary 4.2.12

This implies that

|αn| ≤ |a|
∣∣∣∣pnqn + θ

∣∣∣∣+ |b|.

Thus, αn are bounded. Similarly,

γn = fn

(
0
1

)
= f

(
pn−1
qn−1

)
= αn−1

Thus, γn is also bounded.

β2n = disc(fn) + 4αnγn =⇒ |βn|2 ≤ disc(fn) + 4|αn||γn|
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which implies that βn are bounded. Thus, there are only finitely many
possibilities for fn. Let us call this set g1, g2, . . . , gl. Each θn is a root of gi
for some i. This shows that θn = θn+l for some n and l ≥ 1.

Now let us look at the continued fraction expansion of θ. It looks like

θ = [a0, a1, . . . , an−1, θn]

= [a0, a1, . . . , an−1, an, θn+1]

= [a0, a1, . . . , an−1, an, . . . , an+l−1, θn+l]

= [a0, a1, . . . , an−1, an, . . . , an+l−1, θn]

= [a0, a1, . . . , an−1, an, . . . , an+l−1, an, θn+1]

= [a0, a1, . . . , an−1, an, . . . , an+l−1]

This proves that the continued fraction expansion of θ is periodic. This
completes the proof of the theorem.

Corollary 4.3.2. Let θ be a quadratic irrational. Then there is a constant
c > 0 (depending on θ) such that for all rational we have∣∣∣∣θ − p

q

∣∣∣∣ > 1

cq2

Proof. Since θ is irrational, it is not an integer. Thus, there is an l > 0 such
that

|θ − p| > 1

l

Thus, we can say that if q = 1, then∣∣∣∣θ − p

q

∣∣∣∣ > 1

lq2
.

So let us assume that q > 1. By Theorem 4.2.15, we know that if∣∣∣∣θ − p

q

∣∣∣∣ < 1

3q2

then p
q = pn

qn
for some convergent. Since q > 1, we have n > 0, or else,

q = qn = q0 = 1. By Proposition 4.2.5 we know

θ =
θn+1pn + pn−1
θn+1qn + qn−1

One checks easily that ∣∣∣∣θ − pn
qn

∣∣∣∣ =
1

qn(θn+1qn + qn−1)
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Since the continued fraction expansion of θ is periodic, we see that there is
an M such that θn+1 < M for all n. Thus,

θn+1qn + qn−1 < Mqn + qn−1

which implies that∣∣∣∣θ − pn
qn

∣∣∣∣ =
1

qn(θn+1qn + qn−1)
>

1

qn(Mqn + qn−1)
≥ 1

q2n(M + 1)

Thus, we have proved that if q > 1 and
∣∣∣θ − p

q

∣∣∣ < 1
3q2

then∣∣∣∣θ − p

q

∣∣∣∣ > 1

q2(M + 1)
.

Thus, if q > 1 then either ∣∣∣∣θ − p

q

∣∣∣∣ ≥ 1

3q2
>

1

4q2

or ∣∣∣∣θ − p

q

∣∣∣∣ > 1

q2(M + 1)
.

Taking c = max{4, l,M + 1} we get that for all rationals∣∣∣∣θ − p

q

∣∣∣∣ > 1

cq2

This proves the corollary.

4.4 Liouville’s Theorem

In this section we generalize Corollary 4.3.2.

Theorem 4.4.1 (Liouville’s Theorem). Let α ∈ R\Q and let α be algebraic
satisfying a polynomial of degree n. Then there exists a constant c > 0

dependent on α (c = c(α)) such that
∣∣∣α− p

q

∣∣∣ > 1
cqn ∀p, q ∈ Z, q 6= 0.

Proof. We have already proved the theorem in the case n = 2 (see Corollary
4.3.2. We know that for algebraic α, there is a polynomial P (x) ∈ Q[x]
which is irreducible, of degree n and P (α) = 0, and this is the polynomial
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of least degree. Clearing denominators we get P (x) ∈ Z[x] of degree n such
that P (α) = 0. By the Mean Value Theorem, we have,∣∣∣∣P (α)− P

(
p

q

)∣∣∣∣ =

∣∣∣∣α− p

q

∣∣∣∣ · ∣∣P ′(ξ)∣∣
for some ξ lying between α and p

q . Since P (x) is irreducible over Q, we have

P
(
p
q

)
6= 0. Thus, ∣∣∣∣P (pq

)∣∣∣∣ =

∣∣∣∣α− p

q

∣∣∣∣ · ∣∣P ′(ξ)∣∣
Since

P

(
p

q

)
= an

pn

qn
+ an−1

pn−1q

qn
+ an−2

pn−2q2

qn
· · ·+ a0

we get ∣∣∣∣P (pq
)∣∣∣∣ ≥ 1

qn∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

qnP ′(ξ)

If
∣∣∣α− p

q

∣∣∣ ≥ 1, then
∣∣∣α− p

q

∣∣∣ > 1
2qn . So assume

∣∣∣α − p
q

∣∣∣ < 1. Since ξ lies

between α and p
q we get |ξ| < |α|+ 1.

∣∣P ′(ξ)∣∣ ≤ n∑
i=0

∣∣iaiξi−1∣∣ ≤ n∑
i=0

i|ai|(|α|+ 1)i−1

Define

M :=
n∑
i=0

i|ai|(|α|+ 1)i−1

Then we have just seen that ∣∣P ′(ξ)∣∣ ≤M
Choose c = max(M + 1, 2) to satisfy the condition

∣∣∣α − p
q

∣∣∣ ≥ 1
cqn . This

proves the theorem.

Corollary 4.4.2. Let α be such that there is an infinite sequence of dis-

tinct rationals pn/qn satisfying
∣∣∣α − pn

qn

∣∣∣ < c
qωnn

and ωn → ∞. Then α is

transcendental.
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Proof. For any c > 0, there are only finitely many numbers with q = 1 and∣∣∣α− p
q

∣∣∣ < c. Thus, we can discard those pn
qn

for which qn = 1, there are only

finitely many such. From now on we assume qn ≥ 2. If α were algebraic
with degree m, we can find a bound c(α) such that

1

c(α)qmn
<
∣∣∣α− pn

qn

∣∣∣ < c

qωnn
∀n

Thus, qωn−mn < c.c(α). But as ωn → ∞, qωn−mn → ∞. We reach a contra-
diction, and hence α is not algebraic.
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Chapter 5

Dirichlet’s Theorem

The main aim of this chapter is to prove Dirichlet’s Theorem which states
that there are infinitely many primes in an arithmetic progression.

We will assume the Dominated Convergence Theorem and Cauchy’s inte-
gral formula as black boxes. In the first section we will prove (the extremely
useful) Theorem 5.1.5 on convergence of sequences of holomorphic functions.
In the second section we discuss Dirichlet series. There are two important
and interesting results in this section. The first says if a Dirichlet series
converges at z = z0, then it converges and defines a holomorphic function
in the right half place Re(z) > Re(z0). The second says that if a Dirichlet
series f converges at z = z0 and if there is a holomorphic function g in a
small neighborhood around z0, which agrees with f at points where they
both converge, then there is ε > 0 such the Dirichlet series f converges
on Re(z) > Re(z0) − ε. This is a crucial input in the proof of Dirichlet’s
Theorem. The rest of the chapter is devoted to the proof of Dirichlet’s The-
orem. The idea of the proof involves some notation and has been explained
in Remark 5.7.5.

5.1 Preliminaries

Theorem 5.1.1 (Dominated Convergence Theorem). Let X be a “measure
space”. Let fn be a sequence of functions on X. Suppose fn → f . Suppose
there is a function g such that |fn| ≤ g and

∫
X g(x)dµ <∞. Then

limn

∫
X
fn(x)dµ =

∫
X

limnfn(x)dµ =

∫
X
f(x)dµ .

We shall use the above theorem without proof.

51
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Corollary 5.1.2. Assume that X is metric space with a measure such that
the volume is finite. Let fn be a sequence of continuous functions such that
fn → f uniformly. Then f is continuous and

limn

∫
X
fn(x)dµ =

∫
X
f(x)dµ .

Proof. First we shall show that f(x) is continuous. Let xk ∈ X be a sequence
converging to x0. We have

f(xk)− f(x0) = (f(xk)− fn(xk))− (f(x0)− fn(x0))− (fn(x0)− fn(xk)) .

Now from the uniform convergence of fn → f , there is n0, such that for all
n ≥ n0

|fn(x)− f(x)| < ε/3 ∀x ∈ X .

In particular it holds for all xk and x0. Since fn is continuous, we have

|(fn(x)− fn(xk))| < ε/3 ∀k > k0 .

Therefore we have

|f(xk)− f(x0)| = |(f(xk)− fn(xk))− (f(x0)− fn(x0))− (fn(x0)− fn(xk))|
≤ |(f(xk)− fn(xk))|+ |(f(x0)− fn(x0))|+ |(fn(x0)− fn(xk))|
< ε/3 + ε/3 + ε/3

= ε ∀k > k0 .

This proves that f is continuous.

We have

|fn(x)− f(x)| < 1 ∀x ∈ X and n > N0 .

because of uniform convergence of fn. Since X is compact and f is contin-
uous, |f | attains a maximum on X. Let this maximum be M . Then

|fn(x)| − |f(x)| ≤ |fn(x)− f(x)| < 1

⇒ |fn(x)| < M + 1 .

Now apply DCT(5.1.1) on fn with the bounding function g(x) ≡M +1.
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Lemma 5.1.3. Let f be a continuous function on a domain U ⊂ C. Let
z0 ∈ U and let r > 0 such that {z | |z−z0| ≤ r} ⊂ U . Consider the following
function on the open set B(z0, r) := {z | |z − z0| < r},

g(z) :=

∫
|w−z0|=r

f(w)

w − z
dw .

This function is holomorphic and its derivative is given by

g′(z) :=

∫
|w−z0|=r

f(w)

(w − z)2
dw .

Proof. Let z ∈ B(z0, r). There is r′ > 0 such that B(z, r′) ⊂ B(z0, r).

z0
z

Let hn ∈ C be a sequence converging to zero. Ignoring the first few terms,
we may assume that |hn| < r′. Therefore, whatever follows is well defined.
Now we have

g(z + hn)− g(z)

hn
=

1

hn

(∫
|w−z0|=r

f(w)

w − (z + hn)
dw −

∫
|w−z0|=r

f(w)

w − z
dw

)

=

∫
|w−z0|=r

f(w)

(w − z − hn)(w − z)
dw .

We have

|w − z| = |w − z0 + z0 − z|
≥ |w − z0| − |z0 − z|
= r − |z0 − z| > 0 .

We have

|w − z − hn| ≥ |w − z| − |hn|
≥ r − |z0 − z| − r′ .
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If r′ is chosen sufficiently small, then the above quantity is positive. Thus,
there is a constant m > 0, which is independent of n, such that

|w − z − hn|, |w − z| > m.

Since f is continuous and |w − z0| = r is compact, we have

|f(x)| ≤M, ∀x ∈ |w − z0| = r,

which implies, ∣∣∣∣ f(w)

(w − z − hn)(w − z)

∣∣∣∣ < M

m2
.

Now using DCT for the sequence of functions

αn(w) =
f(w)

(w − z − hn)(w − z)
∀ n > N0 .

We get

g′(z) = lim
n

g(z + hn)− g(z)

hn

= lim
n

∫
|w−z0|=r

f(w)

(w − z − hn)(w − z)
dw

=

∫
|w−z0|=r

lim
n

f(w)

(w − z − hn)(w − z)
dw

=

∫
|w−z0|=r

f(w)

(w − z)2
dw .

This completes the proof of the Lemma.

Theorem 5.1.4 (Cauchy’s integral formula). Let U ⊂ C be an open subset.
Let f : U → C be a function which is holomorphic on U . Let z0 ∈ U and let
r > 0 such that B(z0, r) := {|z − z0| ≤ r} ⊂ U . Then for every z such that
|z − z0| < r, we have

f(z) =
1

2πi

∫
|w−z0|=r

f(w)

w − z
dw .

We shall use the above theorem without proof.

Theorem 5.1.5. Let fn be a sequence of holomorphic functions on U ⊂ C.
Assume that fn → f uniformly on every compact subset C ⊂ U . Then f
is holomorphic and the derivatives f ′n converge uniformly on all compact
subsets to the derivative f ′.
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Proof. Fix a point z0 ∈ U . There is R > 0 such that {z | |z− z0| ≤ R} ⊂ U
as U is open. Let 0 < r < R. We will show that f is holomorphic in
B(z0, r) := {z | |z − z0| < r}, thereby making it holomorphic at z0.

Choose an r1 such that r < r1 < R. Using Cauchy’s integral formula,
we have, for z ∈ B(z0, r),

fn(z) =
1

2πi

∫
|w−z0|=r1

fn(w)

w − z
dw .

Now

f(z) = lim
n
fn(z)

= lim
n

1

2πi

∫
|w−z0|=r1

fn(w)

w − z
dw .

To take the limit inside, we have to show that fn(w)
w−z converges to f(w)

w−z uni-
formly on the compact set X = {w ∈ C | |w − z0| = r1}. To this end, we
have to find an N ∈ N, such that∣∣∣∣fn(w)

w − z
− f(w)

w − z

∣∣∣∣ < ε ∀ n > N ∀w ∈ X .

We know that fn → f uniformly on every compact subset of U , in particular
on X . Therefore there exists N0 ∈ N such that for all w ∈ X

|fn(w)− f(w)| < (r1 − r)ε ∀ n > N0 .

It is easily seen that

|w − z| ≥ r1 − r > 0

and therefore
1

|w − z|
≤ 1

r1 − r
.

Multiplying this with the above equation gives∣∣∣∣fn(w)

w − z
− f(w)

w − z

∣∣∣∣ < ε ∀ n > N ∀w ∈ X .

Now, using 5.1.2, we get

f(z) =
1

2πi

∫
|w−z0|=r1

lim
n

fn(w)

w − z
dw .
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Therefore we have

f(z) =
1

2πi

∫
|w−z0|=r1

f(w)

w − z
dw .

Since fn → f uniformly on compact sets, the function f is continuous on
{z | |z − z0| ≤ R}. Now apply 5.1.3 taking U = B(z0, R). Therefore, we
have that the RHS is holomorphic. Hence f(z) is holomorphic on B(z0, r).

We shall now prove the second part of the theorem. By 5.1.3, we have
(for the same point z0 and the same points and regions considered earlier)

f ′n(z) =
1

2πi

∫
|w−z0|=r1

fn(w)

(w − z)2
dw

and

f ′(z) =
1

2πi

∫
|w−z0|=r1

f(w)

(w − z)2
dw

for |z − z0| ≤ r. For z ∈ |z − z0| ≤ r we have that

1

|w − z|2
≤ 1

(r1 − r)2
.

Also for a suitable N ,

|fn(w)− f(w)| < (r1 − r)2ε ∀ n > N .

Hence, ∣∣∣∣ fn(w)

(w − z)2
− f(w)

(w − z)2

∣∣∣∣ < ε ∀ n > N,

for |w − z0| = r1 and |z − z0| ≤ r. Therefore,∣∣f ′n(z)− f ′(z)
∣∣ =

∣∣∣∣∣
∫
|w−z0|=r1

fn(w)− f(w)

(w − z)2
dw

∣∣∣∣∣
≤
∫
|w−z0|=r1

|fn(w)− f(w)|
(|w − z|)2

dw

≤ 2πr1ε,

for all |z − z0| ≤ r and therefore f ′n(z)→ f(z) uniformly on this set.
We have proved that for every z0 ∈ U , there is an r > 0 such that

{z | |z − z0| ≤ r} ⊂ U , and on this subset the functions f ′n → f ′ uniformly.
Consider any compact subset K ⊂ U . Apply the preceding discussion

for each z ∈ K. Then there are finitely many zi ∈ K such that the closures

B(zi, ri) := {z | |z − zi| ≤ ri}
cover K and on each of these f ′n → f ′ uniformly. It easily follows that
f ′n → f ′ uniformly on K.
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5.2 Dirichlet Series

Let λn be an increasing sequence of real numbers tending to +∞. For the
sake of simplicity we suppose that the λn ≥ 0 . The reader will quickly
realize that this is not necessary for the questions we are going to consider.

The Dirichlet series with exponents λn is a series of the form∑
n≥1

ane
−λnz (an ∈ C, z ∈ C) .

Lemma 5.2.1. Abel’s Lemma Let an and bn be two sequences. Put

Am,p =

p∑
n=m

an and Sm,m′ =
m′∑
n=m

anbn .

The we have

Sm,m′ =

m′−1∑
n=m

Am,n(bn − bn+1) +Am,m′bm′ .

Proof. We can see that

an = Am,n −Am,n−1 .

This will work for n = m as well if we consider Am,m−1 = 0. Substituting
this in the expression for Sm,m′ ,

Sm,m′ =
m′∑
n=m

(Am,n −Am,n−1)bn =

m′∑
n=m

Am,nbn −
m′∑
n=m

Am,n−1bn

=

m′∑
n=m

Am,nbn −
m′−1∑
k=m−1

Am,kbk+1 =
m′∑
n=m

Am,nbn −
m′−1∑
n=m−1

Am,nbn+1

=

m′−1∑
n=m

Am,n(bn − bn+1) +Am,m′bm′ −Am,m−1bm

=
m′−1∑
n=m

Am,n(bn − bn+1) +Am,m′bm′ ∵ Am,m−1 = 0 .
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Lemma 5.2.2. Let α, β be two real numbers with 0 < α ≤ β. Let z = x+ iy
with x, y ∈ R and x > 0. Then

|e−αz − e−βz| ≤
∣∣∣ z
x

∣∣∣ (e−αx − e−βx) .

Proof. First observe that if α = β then equality holds. So we shall assume
α < β. We observe that

e−αz − e−βz = z

∫ β

α
e−tzdt .

Hence,

|e−αz − e−βz| =
∣∣∣∣z ∫ β

α
e−tzdt

∣∣∣∣
≤ |z|

∫ β

α
|e−tz|dt

= |z|
∫ β

α
e−txdt

=
∣∣∣ z
x

∣∣∣ (e−αx − e−βx) .

Definition 5.2.3. Let fn be a sequence of functions and A ⊂ C. Suppose
for every ε > 0 there exist an N (which depends on ε) such that

|fn(x)− fm(x)| < ε ∀ x ∈ A and n,m > N .

Then such a sequence is called Uniformly Cauchy on A.

Lemma 5.2.4. A sequence is uniformly Cauchy on A iff it is uniformly
convergent on A.

Proof. First assume the sequence of functions fn is uniformly convergent to
f on A. Then we have

|fn(x)− f(x)| < ε

2
∀x ∈ A and n > N .

Therefore, we have for n,m > N ,

|fn(x)− fm(x)| ≤ |fn(x)− f(x)|+ |f(x)− fm(x)|

=
ε

2
+
ε

2
= ε ∀x ∈ A and n,m > N .
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This proves that fn’s are uniformly Cauchy on A.

Now let us assume that fn is uniformly Cauchy on A. Choose an x ∈ A.
The sequence of complex numbers fn(x) is convergent as it is Cauchy. Let
fn(x) → y. Define a function f such that f(x) = y. As the sequence is
uniformly Cauchy, there exists N0 such that |fn(x) − fm(x)| < ε

2 ∀ x ∈
A and n,m > N0. Choose an x ∈ A. Then

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)|

<
ε

2
+ |fm(x)− f(x)| .

Since fm(x) is pointwise convergent to f(x), keeping n fixed and letting
m→∞ we have

|fn(xi)− f(xi)| ≤ ε .

This proves that fn → f uniformly on A.

Proposition 5.2.5. If the series f(z) =
∑

n≥1 ane
−λnz converges for z = 0,

it converges uniformly in every domain of the form

{z | x := Re(z) > 0,
∣∣∣ z
x

∣∣∣ ≤ k <∞} .

Re(z)

Im(z)

Proof. We have that f(0) =
∑

n≥1 an converges and we have to show that

f(z) converges uniformly for Re(z) > 0 and
∣∣ z
x

∣∣ ≤ k. Let z = x+ iy, where

x > 0 and y ∈ R. Let Bm,m′ =
∑m′

n=m an and Sm,m′ =
∑m′

n=m ane
−λnz.

From Abel’s lemma(5.2.1), we obtain

Sm,m′ =

m′−1∑
n=m

Bm,n(e−λnz − e−λn+1z) +Bm,m′e
−λm′z .
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Now we have

|Sm,m′ | ≤
m′−1∑
n=m

|Bm,n(e−λnz − e−λn+1z)|+ |Bm,m′e−λm′z|

≤
m′−1∑
n=m

|Bm,n|
∣∣∣ z
x

∣∣∣ (e−λnx − e−λn+1x) + |Bm,m′ |e−λm′x

(from 5.2.2, along with λn ≤ λn+1 and x > 0)

<
m′−1∑
n=m

|Bm,n|
∣∣∣ z
x

∣∣∣ (e−λnx − e−λn+1x) + |Bm,m′ |

(because e−λm′x < 1 as λm′x > 0).

We shall consider the region
∣∣ z
x

∣∣ ≤ k. Since
∑

n≥1 an is convergent, there
exists N such that |Bm,m′ | < ε

k+1 ∀ m,m
′ > N . Therefore we have,

|Sm,m′ | <
ε

k + 1

(
m′−1∑
n=m

(e−λnx − e−λn+1x)k + 1

)
=

ε

k + 1

(
(e−λmx − e−λm′x)k + 1

)
.

As m < m′ and λn is an increasing sequence, we have that 0 ≤ e−λmx −
e−λm′x ≤ 1. Therefore, for m,m′ > N ,

|Sm,m′ | <
ε

k + 1
(k + 1) = ε .

Thus, we have shown that the Sm(z) =
∑m

n=1 ane
−λnz is uniformly Cauchy

on Re(z) > 0,
∣∣ z
x

∣∣ ≤ k. Thus it is uniformly convergent on this set by Lemma
5.2.4.

Translating the above by z0, the following corollary is clear.

Corollary 5.2.6. If the series f(z) =
∑

n≥1 ane
−λnz converges for z = z0,

it converges uniformly in every domain of the form

{z | Re(z − z0) > 0,

∣∣∣∣ z − z0
Re(z − z0)

∣∣∣∣ ≤ k <∞} .
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Theorem 5.2.7. If f(z) =
∑

n≥1 ane
−λnz converges for z = z0, it converges

for Re(z) > Re(z0) and the function thus defined is holomorphic.

Proof. Let C ⊂ {z | Re(z − z0) > 0} be a compact subset. Then clearly
there is a k > 0 such that C is contained in the set

{z | Re(z − z0) > 0,

∣∣∣∣ z − z0
Re(z − z0)

∣∣∣∣ ≤ k <∞} .
Since the series converges uniformly on this set, it converges uniformly on
C. Now apply Theorem 5.1.5.

Corollary 5.2.8. The set of points of convergence of the series f(z) =∑
n≥1 ane

−λnz contains a maximal open half plane, where we also consider
∅ and C as open half planes.

Theorem 5.2.9. Let f(z) =
∑

n≥1 ane
−λnz be a Dirichlet series with an real

and non-negative. Suppose that f converges for Re(z) > ρ with ρ ∈ R and
that the function f can be extended analytically to a function holomorphic
in a neighborhood of the point z = ρ. Then ∃ε > 0 such that f converges for
Re(z) > ρ− ε and is holomorphic in this domain.

Re(z)

Im(z)

(1,0)(−ε,0)

Proof. We shall consider g(z) = f(z + ρ) =
∑

n≥1 bne
−λnz where bn =

ane
−λnρ. Therefore we have that g(z) converges for Re(z) > 0 and it extends

analytically to a holomorphic fucntion in the neighborhood of z = 0. Hence
∃ε > 0 such that the Taylor series of g around 1 converges in the disc

{z | |z − 1| ≤ 1 + ε} .

We apply 5.1.5 to the holomorphic functions gm(z) =
∑m

n=1 bne
−λnz in the

region Re(z) > 0. We see that the pth derivative of g is given by the following
expression in Re(z) > 0

g(p)(z) =
∑
n≥1

bn(−λn)pe−λnz .
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From which we have

g(p)(1) = (−1)p
∑
n≥1

λpnbne
−λn .

The Taylor series of g around 1 is given by

g(z) =
∞∑
p=0

1

p!
(z − 1)pg(p)(1) .

This takes the following value at z = −ε (which is within the region of
convergence of the Taylor series).

g(−ε) =
∞∑
p=0

1

p!
(1 + ε)p(−1)pg(p)(1) .

But (−1)pg(p)(1) =
∑

n λ
p
nbne

−λn is a convergent series with positive terms.
Hence the double sum below makes sense, converges and is equal to g(−ε)
and so is any rearrangement because of absolute convergence.

g(−ε) =
∑
p,n

bn
1

p!
(1 + ε)pλpne

−λn .

Rearranging terms one obtains,

g(−ε) =
∑
n

bne
−λn

∞∑
p=0

1

p!
(1 + ε)pλpn

=
∑
n

bne
−λneλn(1+ε)

=
∑
n

bne
λnε .

This shows that the Dirichlet series
∑

n bne
−λnz converges for z = −ε and

thus also for Re(z) > −ε from 5.2.5. Thus,
∑

n ane
−λnz converges on

Re(z) > ρ− ε. Finally apply 5.2.7.

We are particularly interested in the case λn = log n. In this case the
corresponding series becomes

f(s) =

∞∑
n=1

an
ns
.
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Proposition 5.2.10. If the an are bounded, then the Dirichlet series f(s) =∑
n≥1

an
ns converges absolutely for Re(s) > 1 and is holomorphic in this re-

gion.

Proof. Let |an| < M . Therefore,

∞∑
n=1

∣∣∣an
ns

∣∣∣ < M

∞∑
n=1

∣∣∣∣ 1

ns

∣∣∣∣
=
∞∑
n=1

1

nRe(s)
.

The RHS is convergent for Re(s) > 1. Therefore the series is absolutely
convergent for Re(s) > 1 and is holomorphic in this region using 5.2.7.

Proposition 5.2.11. If the partial sums Am,p =
∑p

m an are bounded, then
the Dirichlet series f(s) =

∑
n≥1

an
ns converges (not necessarily absolute) and

is holomorphic in the region Re(s) > 0.

Proof. Let |Am,p| ≤ M . Let Sm,m′ =
∑m′

n=m
an
ns . Now by applying Abel’s

lemma(5.2.1) we get,

|Sm,m′ | =

∣∣∣∣∣
m′−1∑
n=m

Am,n

(
1

ns
− 1

(n+ 1)s

)
+Am,m′

1

(m′)s

∣∣∣∣∣
≤

m′−1∑
n=m

∣∣∣∣Am,n( 1

ns
− 1

(n+ 1)s

)∣∣∣∣+

∣∣∣∣Am,m′ 1

(m′)s

∣∣∣∣
≤M

m′−1∑
n=m

∣∣∣∣( 1

ns
− 1

(n+ 1)s

)∣∣∣∣+

∣∣∣∣ 1

(m′)s

∣∣∣∣ .
What we did above is valid for all s. We shall evaluate the RHS for s = r > 0.

M
m′−1∑
n=m

∣∣∣∣( 1

nr
− 1

(n+ 1)r

)∣∣∣∣+

∣∣∣∣ 1

(m′)r

∣∣∣∣ = M
1

mr
,

because for r > 0, 1
nr −

1
(n+1)r > 0.

Denote by Sm(r) =
∑m

n=1
an
nr . The above shows that this is a Cauchy

sequence and so it converges. It follows from 5.2.7 that the Dirichlet series
converges on Re(s) > r and is holomorphic. Since this happens for every
r > 0, the same conclusion follows in the region Re(s) > 0.
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5.3 Riemann Zeta Function

Theorem 5.3.1. The Riemann Zeta function is

ζ(s) =

∞∑
n=1

1

ns
.

ζ(s) is holomorphic in Re(s) > 1 and has a meromorphic extension to
Re(s) > 0, which is holomorphic everywhere except a simple pole at s = 1.

Proof. By Proposition 5.2.10 this function is holomorphic in the region
Re(z) > 1. Let

(5.3.2) F (s) :=
∑
n≥1

(−1)n+1

ns
.

Then F (s) is a Dirichlet series which converges in the region Re(s) > 0 by
Proposition 5.2.11. We have

ζ(s) + F (s) =
∑
n≥1

2

(2n)s
=

1

2s−1

∑
n≥1

1

ns
=

1

2s−1
ζ(s) .

Thus, we get

(5.3.3) ζ(s) =
−F (s)(

1− 1

2s−1

) =
−2s−1F (s)

2s−1 − 1
.

The only possible poles of the RHS in the region Re(s) > 0 occur when
2s−1 = 1. Set ω = e2πi/3 and consider the functions

F1(s) =
∑
n≥1

ωn

ns
,

F2(s) =
∑
n≥1

ω2n

ns
.

Then Fi(s) is a Dirichlet series which converges in the region Re(s) > 0 by
Proposition 5.2.11. We have

ζ(s) + F1(s) + F2(s) =
∑
n≥1

3

(3n)s
=

1

3s−1

∑
n≥1

1

ns
=

1

3s−1
ζ(s) .
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Thus, we get

(5.3.4) ζ(s) =
−F1(s)− F2(s)(

1− 1

3s−1

) =
−3s−1(F1(s) + F2(s))

3s−1 − 1
.

The only possible poles of the RHS in the region Re(s) > 0 occur when
3s−1 = 1. Combining this with the above, we see that if s is such that
Re(s) > 0 and is a pole for ζ(s), then

2s−1 = 3s−1 = 1 .

Taking log we get
(s− 1) log 2 = (s− 1) log 3

which is possible only if s = 1. At s = 1 the series F (s) converges (since it
is holomorphic at s = 1) to a positive quantity since

F (1) =
(

1− 1

2

)
+
(1

3
− 1

4

)
+ · · · .

Thus, at s = 1 the Zeta function has a simple pole because 2s−1 − 1 has a
simple zero at s = 1.

5.4 Euler product

The Riemann Zeta function has an Euler product

ζ(s) =
∞∑
n=1

1

ns
=

∏
p is prime

1

1− 1
ps
.

Formally, as an algebraic series, it is clear that

ζ(s) =

∞∑
n=1

1

ns

=
∏

p is prime

(
1 +

1

ps
+

1

p2s
+

1

p3s
+ · · ·

)
=

∏
p is prime

1

1− p−s
.

Consider the series of functions for N ≥ 2,

fN (s) =
∏
p≤N

1

1− p−s
.
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It is easily checked that on any right half plane Re(s) ≥ m > 1 the functions
fN (s)→ ζ(s) uniformly. Thus, we have an equality of holomorphic functions
on Re(s) > 1,

ζ(s) =
∏

p is prime

1

1− p−s
.

where the RHS is the limit of the functions fN (s). This is referred to as the
Euler product of the Zeta function.

5.5 Dirichlet Characters

We will look at characters of the finite abelian group (Z/mZ)× whose order
is φ(m). All that was discussed in 1.1 applies to these characters. These
characters are functions from (Z/mZ)× to S1 ⊂ C. For our purposes, we
have to extend the definition of these functions to Z. This will be achieved
as described below. Let

χ : (Z/mZ)× → S1

be a character. Then define χ̃ : Z→ C× as

χ̃(x) =

{
χ(amodm) if gcd(a,m) = 1

0 otherwise

We shall refer to such characters χ̃ that are extended to all of Z as Dirichlet
characters, where the original group (Z/mZ)× is clear from context or is
specified. The set of functions obtained from characters of (Z/mZ)× will be

denoted, by abuse of notation, ̂(Z/mZ)×.
The Dirichlet character which is the extension of the trivial character of

(Z/mZ)× will be denoted by 1. We emphasize that on an integer a which
is coprime to m, this character takes the value 1, and on an integer which
is not coprime to m this character takes the value 0.

Proposition 5.5.1. Let χ be a Dirichlet character on (Z/mZ)×. Let A be
a set of m integers such that modulo m it becomes the set {0, 1, . . .m− 1}.
Then ∑

x∈A
χ(x) =

{
φ(m) if χ = 1

0 if χ 6= 1

Proof. ∑
x∈A

χ(x) =
∑

x∈A and gcd(x,m)=1

χ(x) =
∑

x∈(Z/mZ)×
χ(x)
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which gives the desired result from 1.3.1. The first equality follows beacuse
χ(x) = 0 for x not coprime to m.

Proposition 5.5.2. Let x ∈ (Z/mZ)×. Then

∑
χ∈ ̂(Z/mZ)×

χ(x) =

{
φ(m) if x ≡ 1 (mod m)

0 otherwise

Proof. There are three mutually exclusive cases for x:

• x ≡ 1 (mod m). (This implies that gcd(x,m) = 1)

• x 6≡ 1 (mod m) and gcd(x,m) = 1.

• x 6≡ 1 (mod m) and gcd(x,m) 6= 1.

In the first case, we have the first part of 1.3.2. In the second case, we
have the second part of 1.3.2. In the third case, we have by definition

χ(x) = 0 ∀ χ ∈ ̂(Z/mZ)×.

5.6 Dirichlet L-series

In this section and the following sections whenever we refer to a Dirichlet
character, it will be one that is extended from a character of (Z/NZ)×.

Definition 5.6.1. Let χ be a Dirichlet character. Then the Dirichlet L-
series corresponding to χ is

L(χ, s) =

∞∑
n=1

χ(n)

ns
.

In the same way that ζ(s) has an Euler product, see 5.4, it follows that
L(χ, s) also has an Euler product.

L(χ, s) =
∏

p is prime

1

1− χ(p)p−s

=
∏
p-N

1

1− χ(p)p−s
, since χ(p) = 0 if p|N .

Proposition 5.6.2. L(χ, s) is absolutely convergent and holomorphic on
Re(s) > 1.
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Proof. |χ(n)| = 1. Therefore the coefficients in L(χ, s) =
∑∞

n=1
χ(n)
ns are

bounded. Hence from 5.2.10 we have that L(χ, s) is convergent on Re(s) >
1.

Proposition 5.6.3. For χ 6= 1, L(χ, s) is convergent and holomorphic on
Re(s) > 0.

Proof. The partial sums of coefficients are Am,p =
∑p

n=m χ(n). Every N
consecutive integers form a set of the form A as described in 5.5.1. Therefore
in considering Am,p, we only have to consider cases where p−m < N , since
from 5.5.1 Am′,p′ = 0 if p′−m′ = kN with k ∈ Z. Therefore, for p−m < N

|Am,p| ≤
p∑

n=m

|χ(n)| ≤ N .

Hence from 5.2.11 we have shown the statement of the theorem.

Proposition 5.6.4. For χ = 1, one has

L(1, s) = F (s)ζ(s)with F (s) =
∏
p|N

(
1− p−s

)
.

In particular, L(1, s) is holomorphic on {Re(s) > 0}\{1} and it has a simple
pole at s = 1.

Proof.

L(1, s) =

∞∑
n=1

χ(n)

ns

=
∏
p-N

1(
1− 1

ps

)
=
∏
p|N

(
1− p−s

) ∏
all p

1

(1− p−s)

= F (s)ζ(s) .

The meromorphicity with simple pole at s = 1 is clear from 5.3.1 and the
fact that

∏
p|N (1− p−s) is not zero on Re(s) > 0. This is because ps 6= 1

on this set.
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5.7 Dirichlet’s Theorem on primes in arithmetic
progression

Theorem 5.7.1. Let a,N ∈ Z>0 be such that gcd(a,N) = 1. Then there
are infinitely many prime numbers p such that p ≡ a modN

We need some notation before we can explain the strategy of proof.

Definition 5.7.2. Define

l1(χ, s) :=
∑
p

χ(p)

ps
.

The above definition is motivated by the following observation. Fix a class
a ∈ (Z/NZ)×.

∑
χ

χ−1(a)l1(χ, s) =
∑
χ

∑
p

χ−1(a)χ(p)

ps

=
∑
p

∑
χ

χ−1(a)χ(p)

ps

=
∑
p

∑
χ

χ(b)χ(p)

ps
ba ≡ 1 modN

=
∑
p

1

ps

∑
χ

χ(bp)

=
∑

bp≡1 modN

φ(N)

ps
, ∵ 5.5.2 .

Thus, we conclude,

(5.7.3)
∑

p≡a modN

1

ps
=

1

φ(N)

∑
χ

χ−1(a)l1(χ, s) .

where φ is the Euler totient function.

Proposition 5.7.4. l1(χ, s) is a Dirichlet series that is absolutely conver-
gent and holomorphic on Re(s) > 1.

Proof. From its definition we can see that since |χ(n)| = 1 (and hence
bounded), we can use 5.2.10 and the theorem follows.



70 CHAPTER 5. DIRICHLET’S THEOREM

Remark 5.7.5. The strategy of proof will be to show that
∑

p≡a modN
1
p is a

diverging sum. For this it suffices to show that the Dirichlet series (p > 0)∑
p≡a modN

1

ps
,

which is absolutely convergent and holomorphic on the right half plane
Re(s) > 1, see Proposition 5.2.10, diverges as s → 1. This Dirichlet se-
ries is exactly the LHS of (5.7.3). To show that it diverges as s → 1, it
suffices to show that in the RHS, when χ 6= 1, each l1(χ, s) is holomorphic
in a neighborhood of s = 1 (in particular, it converges at s = 1) and when
χ = 1, the series l1(1, s) diverges as s → 1. The problem of showing that
when χ 6= 1, each l1(χ, s) is holomorphic at s = 1, will be reduced to show-
ing that when χ 6= 1, each L(χ, s) is nonzero at s = 1. The other part of
showing that when χ = 1, the series l1(1, s) diverges, follows without much
difficulty, and is proved in Corollary 5.7.12.

Definition 5.7.6. Define

l(χ, s) :=
∑
p

∑
n≥1

χ(pn)/n

pns
.

Proposition 5.7.7. l(χ, s) is a Dirichlet series of the form
∑

m≥1
am
ms

am =

{
χ(pn)/n if m = pn for some prime p and n ∈ N
0 otherwise

It is absolutely convergent and holomorphic on Re(s) > 1.

Proof. It is clear that am is bounded and now use 5.2.10 to see absolute
convergence and holomorphy.

Proposition 5.7.8. In the right half plane Re(s) > 1, we have

el(χ,s) = L(χ, s) .

Proof. Consider the following formal algebraic calculations. Since χ is mul-
tiplicative, as an algebraic equality of series, we have

L(χ, s) =
∑
n≥1

χ(n)

ns
=
∏
p

1

1− χ(p)
ps

.
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Taking log on both sides we get

logL(χ, s) = −
∑
p

log

(
1− χ(p)

ps

)

=
∑
p

∞∑
n=1

(
χ(p)
ps

)n
n

=
∑
p

∑
n≥1

χ(pn)/n

pns
= l(χ, s) .

Now let s0 ∈ Re(s) > 1. Then the series l(χ, s0) is absolutely convergent.
In view of this, the value el(χ,s0) can be obtained after any rearrangement.
After formally rearranging the series, we see that this is exactly L(χ, s0).
Thus, both functions agree on Re(s) > 1.

Definition 5.7.9. Define

R(χ, s) := l(χ, s)− l1(χ, s) =
∑
p

∑
n≥2

χ(pn)/n

pns
.

Proposition 5.7.10. R(χ, s) is a Dirichlet series that is absolutely conver-
gent and holomorphic in the region Re(s) > 1/2.

Proof. Let Re(s) = x > 1/2.

∑
p

∑
n≥2

∣∣∣∣χ(pn)/n

pns

∣∣∣∣ ≤∑
n≥2

∑
p

1

npnx

≤
∑
p

∑
n≥2

1

pnx
=
∑
p

1

px(px − 1)

=
1

2x(2x − 1)
+

1

3x(3x − 1)
+
∑
p≥5

2

p2x

≤ 1

2x(2x − 1)
+

1

3x(3x − 1)
+
∑
n≥5

2

n2x
.

The last sum is convergent when x > 1/2. Now apply 5.2.7.

Corollary 5.7.11. l1(χ, s) diverges at s = 1 iff l(χ, s) diverges at s = 1.

Corollary 5.7.12. l1(1, s) diverges at s = 1.
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Proof. Let s > 1 be real. If we let s→ 1 then it is clear that l(1, s) diverges,
since

∑
p
1
p diverges. Now apply the previous corollary.

Next we want to show that if χ 6= 1, then l(χ, s) converges at s = 1. In view
of the above corollary, it follows that l1(χ, s) converges at s = 1. We will
reduce this to a question about L(χ, s) as follows.

Proposition 5.7.13. If χ 6= 1 and L(χ, s) 6= 0, then l(χ, s) converges at
s = 1.

Proof. We have the following commutative diagram by Proposition 5.7.8.

(5.7.14) C

es

��
{Re(s) > 1}

L(χ,s)
//

l(χ,s)

66llllllll
C∗

We already know, from Proposition 5.6.3, that for χ 6= 1 the Dirichlet series
L(χ, s) is convergent on Re(s) > 0. Let us assume that L(χ, 1) = c0 6= 0.
Then there is a small open subset B(1, ε) around 1 such that L(χ, s) 6= 0 for
s ∈ B(1, ε). Let V be a small open set around c0 which is evenly covered for
the covering map s 7→ es. We may choose ε small enough so that the image
of B(1, ε) lands in V . Now we can extend l(χ, s) to the open subset B(1, ε).

Im(z)
l(χ, s)

C

C×

l(χ, s)

L(χ, s)

es

This shows that l(χ, s) is defined and holomorphic in a small neighborhood
around s = 1, which proves the Proposition.

Definition 5.7.15. The Dedekind Zeta function is defined as

ζN (s) =
∏
χ

L(χ, s) .



5.7. DIRICHLET’S THEOREMON PRIMES IN ARITHMETIC PROGRESSION73

Proposition 5.7.16. We have

ζN (s) =
∏
p-N

1(
1− 1

pf(p)s

)g(p) ,
where f(p) is the order of p in (Z/NZ)× and g(p) = φ(N)

f(p) .

Proof. We require p - N for f(p) to make sense. Let µf(p) be the group

f(p)th roots of unity. Then we have the polynomial identity∏
w∈µf(p)

(1− wx) = 1− xf(p) .

For a prime p - N consider the cyclic subgroup 〈p〉 ⊂ (Z/NZ)×. Let us
denote this subgroup by Hp. Then

ζN (s) =
∏

χ∈ ̂(Z/NZ)×

L(χ, s)

=
∏

χ∈ ̂(Z/NZ)×

∏
p-N

1

1− χ(p)p−s
=
∏
p-N

∏
χ∈ ̂(Z/NZ)×

1

1− χ(p)p−s

=
∏
p-N

∏
χ∈ ̂(Z/NZ)×

1

1− (χ|Hp)(p)p−s
.

For a character χ of (Z/NZ)× its restriction to Hp is completely determined
by its value on p, since Hp is the cyclic subgroup generated by p. Consider
the short exact sequence

0→ Hp → (Z/NZ)× → Qp → 0 .

From Proposition 1.2.7 it follows that the dual sequence

0→ Q̂p → ̂(Z/NZ)× → Ĥp → 0

is exact. For every ψ ∈ Ĥp there are exactly
∣∣∣Q̂p∣∣∣ many characters χ ∈

̂(Z/NZ)× whose restriction to Hp is equal to ψ. Thus,

∏
p-N

∏
χ∈ ̂(Z/NZ)×

1

1− (χ|Hp)(p)p−s
=
∏
p-N

∏
ψ∈Ĥp

( 1

1− ψ(p)p−s

)|Q̂p|
.
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Now note that Hp is a cyclic group of order f(p). Thus, it is easily seen that∏
ψ∈Ĥp

( 1

1− ψ(p)p−s

)
=

1

1− p−f(p)s
.

Also it is clear that
∣∣∣Q̂p∣∣∣ = g(p). Putting these together we get that

ζN (s) =
∏

χ∈ ̂(Z/NZ)×

L(χ, s)

=
∏
p-N

∏
χ∈ ̂(Z/NZ)×

1

1− (χ|Hp)(p)p−s

=
∏
p-N

∏
ψ∈Ĥp

( 1

1− ψ(p)p−s

)|Q̂p|
=
∏
p-N

( 1

1− p−f(p)s
)g(p)

.

This completes the proof.

Corollary 5.7.17. The Dedekind Zeta function ζN is a Dirichlet series
with non-negative integral coefficients, converging absolutely in the half-plane
Re(s) > 1.

Proof. It is clear that a product of two Dirichlet series is again a Dirichlet
series. ζN is a product of fintiely many functions which have Dirichlet series
representations on Re(s) > 1. We also know that each of the Dirichlet series
is absolutely convergent on Re(s) > 1 (by 5.6.2) and hence the product
series will also be absolutely convergent on Re(s) > 1.

We know from 5.7.16 that

ζN (s) =
∏
p-N

1(
1− 1

pf(p)s

)g(p) .
We can expand the factor in the Euler product as

1(
1− 1

pf(p)s

)g(p) =

(
1 +

1

pf(p)s
+

1

p2f(p)s + . . .

)g(p)
.

We can expand out the RHS and it will only contain positive terms. When
we multiply these factors over p, we clearly obtain a Dirichlet series with
non-negative terms.
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Proposition 5.7.18. If χ 6= 1 then L(χ, 1) 6= 0.

Proof. Let us assume that there is χ 6= 1 for which L(χ, 1) = 0. Note that
L(1, s) is holomorphic on {Re(s) > 0} \ {1} and has a simple pole at s = 1,
see 5.6.4. We also know, from Proposition 5.6.3 that when χ 6= 1 the series
L(χ, s) is holomorphic on Re(s) > 0. Thus, it is clear that ζN (s), which
is a holomorphic function on Re(s) > 1 can be extended to a meromorphic
function on Re(s) > 0 which has at worst a simple pole at s = 1.

If L(χ, 1) = 0 for some χ 6= 1, then this zero will cancel the simple
pole of L(1, s) and we get the function ζN (s) is holomorphic in the region
Re(s) > 0. By Theorem 5.2.9 the Dirichlet series defining ζN (s) converges
in a right half plane Re(s) > 1 − ρ for some ρ > 0. We claim that this
Dirichlet series converges in the region Re(s) > 0. If not, let

0 < ε = inf{t ∈ (0, 1) | The Dirichlet series converges in Re(s) > t} .

Since ζN (s) is holomorphic in the region Re(s) > 0, it is holomorphic in a
neighborhood of ε, and so it follows from Theorem 5.2.9 that this series will
converge in Re(s) > ε − δ for some δ > 0, which is a contradiction. This
proves the claim.

Let s > 0. From the definition

ζN (s) =
∏
p-N

1(
1− 1

pf(p)s

)g(p) .
We can expand the factor in the Euler product as

1(
1− 1

pf(p)s

)g(p) =

(
1 +

1

pf(p)s
+

1

p2f(p)s + . . .

)g(p)
.

Now by ignoring cross terms as we raise the factor to g(p), we obtain (as all
the terms in the factor are positive)

1(
1− 1

pf(p)s

)g(p) ≥ (1 +
1

pg(p)f(p)s
+

1

p2g(p)f(p)s + . . .

)

=

(
1 +

1

pφ(N)s
+

1

p2φ(N)s + . . .

)
.

Multiplying this over all p - N , we obtain∏
p-N

1(
1− 1

pf(p)s

)g(p) ≥ ∑
gcd(n,N)=1

1

nφ(N)s
.



76 CHAPTER 5. DIRICHLET’S THEOREM

Evaluating at s = 1/φ(N), we obtain

ζN

( 1

φ(N)

)
≥

∑
gcd(n,N)=1

1

n
.

But ∑
gcd(n,N)=1

1

n
≥
∞∑
k=1

1

Nk + 1

and the RHS diverges. Therefore we obtain that ζN (s) has a pole at s =
1/φ(N) which is clearly a contradiction.

Theorem 5.7.19.
∑

p≡a modN
1
p is infinite.

Proof. Recall equation (5.7.3) that∑
p≡a modN

1

ps
=

1

φ(N)

∑
χ

χ−1(a)l1(χ, s) .

By Corollary 5.7.12 we know that l1(1, s) diverges as s→ 1. From Proposi-
tion 5.7.18 and Proposition 5.7.13 it follows that for χ 6= 1 the series l(χ, s)
converges at s = 1. Now it follows from Corollary 5.7.11 that for χ 6= 1 the
series l1(χ, s) converges at s = 1. Taking limit in equation (5.7.3) as s→ 1
from the right, we see that the LHS tends to infinity at s = 1. This proves
the theorem.



Chapter 6

The Zeta function

In this chapter we prove two important and interesting results. It is easy to
see that the Gamma function has a meromorphic continuation to the entire
plane. Our first important result is that the Gamma function has no zeros
on the complex plane. The idea of the proof is the following. First show
that the function sin(πz)Γ(z)Γ(1−z) is periodic with period 1. Therefore, it
descends as a function on the cylinder C/Z. Now show that along the ends
of the cylinder this function has a limit, thereby, showing that this defines
a holomorphic function on the Riemann sphere, and so is a constant. The
first two sections are a discussion of the Gamma function.

Our second important result, which is a lot harder to prove than the first
one, is that the Zeta function satisfies a certain functional equation. This
functional equation enables us to meromorphically extend the Zeta function
to the entire complex plane. The functional equation involves the Gamma
function and that is why the Gamma function also appears in this chapter.
The key step in the proof is to write an integral representation for the Zeta
function in terms of the Jacobi Theta function and then use the functional
equation for the Jacobi Theta function.

6.1 Gamma function

Definition 6.1.1 (Gamma Function).

Γ(z) =

∫ ∞
0

tz−1e−t dt for z ∈ C and Re(z) > 2

Proposition 6.1.2. The Gamma function is holomorphic in the region
Re(z) > 2.

77



78 CHAPTER 6. THE ZETA FUNCTION

Proof. To show differentiability we need to prove the following limit exists
and is finite for all z such that Re(z) > 2

lim
h→0

Γ(z + h)− Γ(z)

h

Now

lim
h→0

Γ(z + h)− Γ(z)

h
= lim

h→0

∫ ∞
0

e−ttz−1
(
th − 1

h

)
dt

We will use 5.1.1 to prove that the limit and the integral commute in this
case and then the limit can be taken inside and evaluated. Consider some
sequence hn of complex numbers such that hn → 0 as n→∞ and let

fn(t) = e−ttz−1
(
thn − 1

hn

)
Re(z) > 2 and t ∈ (0,∞)(6.1.3)

|fn(t)| = e−ttx−1
∣∣∣∣ thn − 1

hn

∣∣∣∣ z = x+ iy

We have∣∣∣∣ thn − 1

hn

∣∣∣∣ =

∣∣∣∣ehn log t − 1

hn

∣∣∣∣ =

∣∣∣∣∣1 + hn log t
1! + (hn log t)2

2! + · · · − 1

hn

∣∣∣∣∣
≤ |log t|

( 1

1!
+

∣∣∣∣hn log t

2!

∣∣∣∣+

∣∣∣∣(hn log t)2

3!

∣∣∣∣+ · · ·
)

≤ |log t|
( 1

1!
+

∣∣∣∣hn log t

1!

∣∣∣∣+

∣∣∣∣(hn log t)2

2!

∣∣∣∣+ · · ·
)

= | log t|e|hn log t|

Since hn → 0 we get |hn| < 1/2 for n > N0. Thus,

(6.1.4)
thn − 1

hn
≤ | log(t)|e

| log t|
2 ∀n > N0

Define the function g : (0,∞)→ R as,

g(t) = e−ttx−1| log t|e
| log t|

2

Clearly

|fn(t)| ≤ g(t) ∀n > N0
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Now∫ ∞
0

g(t) dt =

∫ 1

0
e−ttx−1| log t|e

| log t|
2 dt+

∫ ∞
1

e−ttx−1| log t|e
| log t|

2 dt

= −
∫ 1

0
e−ttx−3/2 log t dt+

∫ ∞
1

e−ttx−1/2 log t dt

Note that Re(z) = x > 2. The first integral is finite because the integrand
is bounded in (0, 1]. For the second integral, since log t < et/2, we get

e−ttx−1/2 log t < e−t/2tx−1/2

and so ∫ ∞
1

e−ttx−1/2 log t dt <

∫ ∞
1

e−t/2tx−1/2 dt <∞

Hence, ∫ ∞
0

g(t) dt <∞

Then using 5.1.1

lim
n→∞

∫ ∞
0

e−ttz−1
(
thn − 1

hn

)
dt =

∫ ∞
0

e−ttz−1 lim
n→∞

thn − 1

hn

Since this is true for any such sequence hn,

∴ Γ′(z) = lim
h→0

∫ ∞
0

e−ttz−1
(
th − 1

h

)
dt

=

∫ ∞
0

e−ttz−1 lim
h→0

th − 1

h

=

∫ ∞
0

e−ttz−1 log t

which is finite for Re(z) > 2. This proves the proposition.

Proposition 6.1.5. Gamma function satisfies the following functional equa-
tion

Γ(z + 1) = zΓ(z)
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Proof.

Γ(z + 1) =

∫ ∞
0

e−ttz dt

(using integration by parts)

= −tze−t
∣∣∞
0

+

∫ ∞
0

ztz−1e−t dt

= zΓ(z)

Theorem 6.1.6. Gamma function extends to a meromorphic function on
the complex plane, which is holomorphic except with simple poles at

0,−1,−2,−3, · · ·

Proof. For an integer n ≥ 0 define a function Γn(z) in the region Re(z) > −n
by

Γn(z) :=
Γ(z + n+ 2)

z(z + 1) · · · (z + n+ 1)

From the functional equation 6.1.5 it is clear that for Re(z) > 2

Γn(z) = Γ(z).

Further, Γn(z) is holomorphic at all points in its domain except for z in

{0,−1,−2, ...,−n+ 1},

where it has simple poles. Hence, Γn(z) meromorphically extends Γ(z) to
the right half plane Re(z) > −n. Taking limit n→∞ we get a meromorphic
function which is defined on the entire plane, it extends the Gamma function,
and is holomorphic everywhere except on the set {0,−1,−2, . . .} where it
has simple poles.

6.2 Nonvanishing of Γ(z)

In this section we will show that the Gamma function has no zeros.

Lemma 6.2.1. Let y0 > 0. Then there is M (which depends on y0) such
that the following holds. Let z = x + iy with |y| > y0 > 0 and x ∈ [0, 1].
Then |Γ(z)| < M .



6.2. NONVANISHING OF Γ(Z) 81

Proof. Using the functional equation 6.1.5

Γ(z) =
Γ(z + 3)

z(z + 1)(z + 2)

Since Re(z) = x ≥ 0, we get Re(z+ 3) = x+ 3 ≥ 3, and so we may compute
Γ(z + 3) using its integral representation.

|Γ(z + 3)| ≤
∫ ∞
0
|e−ttz+3| dt =

∫ ∞
0

e−ttx+3 dt = Γ(x+ 3)

Since x + 3 ∈ [3, 4] and the Gamma function is continuous, it follows that
the above is bounded by M ′. Next we have∣∣∣∣ 1

z(z + 1)(z + 2)

∣∣∣∣ < 1

|y|3
<

1

y30

Thus

|Γ(z)| =
∣∣∣∣ Γ(z + 3)

z(z + 1)(z + 2)

∣∣∣∣ < M ′

y30
= M

This proves the lemma.

Proposition 6.2.2. Define G(z) := sin(πz)Γ(z)Γ(1 − z). Then G(z) is a
periodic function with period 1 and it is holomorphic everywhere.

Proof. It is clear that Γ(z)Γ(1 − z) has simple poles at integers. Since
sin(πz) has simple zeros at the integers, it follows that the function G(z)
has no poles.

G(z + 1) = sin(π(z + 1))Γ(z + 1)Γ(−z)

= (− sin(πz))

(
Γ(z)

z

)
(−zΓ(1− z))

= sin(πz)Γ(z)Γ(1− z)
= G(z)

This proves the proposition.

Since G : C → C has period 1, it descends to a function G̃ on C×, that is,
there is a commutative diagram

C G //

e2πiz   B
BB

BB
BB

C

C×
G̃

>>|||||||
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How to define G̃ is clear. For any s ∈ C× let z be any element of C such
that e2πiz = s. Define

G̃(s) = G(z).

This is well defined since if z′ is another element such that e2πiz
′

= s, then
z − z′ ∈ Z and G is periodic with period 1. The map z 7→ exp(z) = e2πiz is
a holomorphic covering map. Given an point s ∈ C×, and z ∈ C such that
exp(z) = s, there are small neighborhoods V ⊂ C× around s and U ⊂ C
around z such that

1. The inverse image of V breaks into a disjoint union

exp−1(V ) =
⊔
n∈Z

U + n =
⊔
n∈Z
{x+ n | x ∈ U}

2. For each n ∈ Z, exp : U + n → V is a bijection whose inverse is
holomorphic

Because of the above, it follows that the local properties of G descend to G̃,
in particular, G̃ is a holomorphic function.

Theorem 6.2.3 (Liouville’s theorem). Let f : C → C be a bounded holo-
morphic function. Then f is constant.

We will use this theorem to show that G(z) is a constant function.

Theorem 6.2.4. G(z) is a constant function.

Proof. First we will prove that G̃(t) can be extended to a holomorphic func-
tion on C. Under the map z 7→ e2πiz, the strip 0 ≤ Re(z) ≤ 1 maps
surjectively onto C×. Thus, for t ∈ C×, we may choose z in this strip such
that t = e2πiz.

tG̃(t) = e2πizG(z) = e2πizΓ(z)Γ(1− z) sinπz

If z = x+ iy then

|tG̃(t)| = e−2πy|Γ(z)Γ(1− z) sinπz|

= e−2πy|Γ(z)Γ(1− z)|
∣∣∣∣eiπz − e−iπz2i

∣∣∣∣
≤ e−2πy

(
|eiπz|+ |e−iπz|

2

)
|Γ(z)Γ(1− z)|

≤
(
|e−3πy|+ |e−πy|

2

)
|Γ(z)Γ(1− z)|
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If |t| is small, then y � 0. Then by Lemma 6.2.1 |Γ(z)Γ(1− z)| is bounded
and the exponential terms tend to 0 as y →∞. Therefore we have

tG̃(t)→ 0 as t→ 0

Since tG̃(t) is holomorphic for t ∈ C∗, this shows that it has a removable
singularity at t = 0. Thus, defining tG̃(t) = 0 at t = 0 makes it holomorphic
everywhere. We will write the analytic series of tG̃(t) at t = 0.

tG̃(t) = a0 + a1t+ a2t
2 + . . .

Since a0 = 0 we have

tG̃(t) = a1t+ a2t
2 + a3t

3 + . . .

which implies
G̃(t) = a1 + a2t+ a3t

2 + . . .

Thus, G̃(t) is holomorphic on C.
Next we will prove G̃(t) is bounded as |t| → ∞. First define a function

H : C∗ → C∗ by

H(z) = G̃(
1

z
)

Since G̃(z) and 1
z are holomorphic on C∗, H(z) is holomorphic on C∗. For

t = 1
s = e2πiz consider

|sH(s)| =

∣∣∣∣∣G̃(1/s)

1/s

∣∣∣∣∣ =

∣∣∣∣∣G̃(t)

t

∣∣∣∣∣ =
∣∣e−2πizG(z)

∣∣
= e2πy|Γ(z)Γ(1− z) sinπz|

= e2πy
∣∣∣∣eiπz − e−iπz2i

∣∣∣∣ |Γ(z)Γ(1− z)|

≤ e2πy
(
|eiπz|+ |e−iπz|

2

)
|Γ(z)Γ(1− z)|

≤
(
|eπy|+ |e3πy|

2

)
|Γ(z)Γ(1− z)|

As before, for any s, we may choose z = x + iy such that 0 ≤ x ≤ 1 and
1/s = e2πiz. Now |s| → 0 iff |t| → ∞ iff y → −∞. Clearly |sH(s)| → 0
since the gamma function part is bounded. Now using the same reasoning
as before we have

H(s) = b1 + b2s+ b3s
2 + . . .
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which implies H(s) is bounded as s→ 0 which proves that G̃(t) is bounded
as |t| → ∞.

Thus, G̃(t) is a holomorphic function on all of C which is bounded for
|t| � 0. Therefore, by Liouville’s theorem G̃(t) is constant. This in turn
implies G(z) is constant, that is,

Γ(z)Γ(1− z) sinπz = C

Evaluating at z = 1
2 , we get C = π.

Theorem 6.2.5. The function Γ(z) has no zeros.

Proof. If Γ(z0) = 0, then since

Γ(z)Γ(1− z) sinπz = π

it follows that Γ(1 − z) sin(πz) has a pole at z0. Since sin(πz) is entire, it
has no poles. Thus, Γ(1−z) has a pole at z0. But we know that the poles of
Γ(1−z) are exactly at the positive integers. This forces that z0 ∈ {1, 2, 3 . . .},
which is a contradiction since Γ(n) = n! for n ∈ Z>0.

6.3 Fourier Series

The main result in this section is that if we take a “nice” periodic function
on R, then its Fourier series converges to itself pointwise .

Definition 6.3.1 (Fourier series). Let f : R → C be a periodic function
with period 1. We define the nth Fourier coefficient of f as

(6.3.2) an :=

∫ 1

0
f(x)e−2πinx dx .

Then the Fourier series of f is a function S(f) : R→ C defined as

S(f)(x) :=

∞∑
n=−∞

ane
2πinx .

We will use the following theorem without proof.

Theorem 6.3.3. Let f : R → C be a periodic function with period 1.
Assume that f |[0,1] ∈ L2([0, 1]). Then the Fourier series S(f) is defined
almost everywhere, S(f)|[0,1] ∈ L2([0, 1]) and f |[0,1] = S(f)|[0,1] in L2([0, 1])
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Theorem 6.3.4. If f : R→ C is periodic with period 1 and f (2) is contin-
uous then f(x) = S(f)(x) pointwise.

Proof. If we can show that S(f) is continuous, then since both are periodic
of period 1 and are equal in L2([0, 1]) it will follow that f = S(f). Note
that

d(f(x)e−2πinx) = f ′(x)e−2πinx dx− 2πinf(x)e−2πinx dx .

Since f(x) has period 1, integrating both sides from 0 to 1 we get

1

2πin

∫ 1

0
f ′(x)e−2πinx dx =

∫ 1

0
f(x)e−2πinx dx .

Again integrating by parts we get

− 1

4π2n2

∫ 1

0
f (2)(x)e−2πinx dx =

∫ 1

0
f(x)e−2πinx dx .

If f (2) is continuous then f (2)(x) is bounded by some M > 0 and∣∣∣∣∫ 1

0
f (2)(x)e−2πinx dx

∣∣∣∣ ≤ ∫ 1

0

∣∣∣f (2)(x)e−2πinx
∣∣∣ dx ≤M .

Therefore

∞∑
n=−∞

|an| =
∞∑

n=−∞

∣∣∣∣∫ 1

0
f(x)e−2πinx dx

∣∣∣∣
=

∞∑
n=−∞

1

4π2n2

∣∣∣∣∫ 1

0
f (2)(x)e−2πinx dx

∣∣∣∣ ≤ ∞∑
n=−∞

M

4π2n2
<∞ .

For fixed x ∈ [0, 1] and h ∈ R define functions gh : Z→ C by

(6.3.5) gh(n) := ane
−2πin(x+h) .

For every h we have

∫
Z
|gh(n)| =

∫
Z
|an| =

∞∑
n=−∞

|an| <∞ .



86 CHAPTER 6. THE ZETA FUNCTION

Thus, can apply 5.1.1 and exchange the integral and the limit. We get

lim
h→0

∞∑
n=−∞

ane
−2πin(x+h) = lim

h→0

∫
Z
gh(n)

=

∫
Z

lim
h→0

gh(n)

=
∞∑
−∞

lim
h→0

ane
−2πin(x+h)

=

∞∑
−∞

ane
−2πin(x) .

Thus, we have proved that limh→0 S(f)(x + h) = S(f)(x) and so S(f) is
continuous.

6.4 Jacobi’s Theta function

Lemma 6.4.1. For any z ∈ C∫
R
e−π(u+z)

2
du = 1 .

Proof. If z = x+ iy, then substituting u′ = u+ x then we get∫
R
e−π(u+z)

2
du =

∫
R
e−π(u

′+iy)2 du′ .

Thus, we need to evaluate
∫
R e
−π(u+iy)2 du. Consider the integral of g(u) =

e−π(u+iy)
2

over rectangular contour Ca shown in the figure.

−a a

a− iy−a− iy

Since g(u) is a holomorphic function of u,
∫
Ca
e−π(u+iy)

2
du = 0. We break

this integral into a sum of integrals over the following paths.

1. Let P1 be the path from −a to a.
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2. Let P2 be the path from a to a− iy.

3. Let P3 be the path from a− iy to −a− iy.

4. Let P4 be the path from −a− iy to −a.

Let us first look at the second integral. The path here is given by γ(t) =
a− it, where t varies from 0 to y. Thus, using the definition of path integral∣∣∣∣∫

P2

e−π(u+iy)
2
du

∣∣∣∣ =

∣∣∣∣∫ y

0
e−π(a−it+iy)

2
dt

∣∣∣∣
≤ e−πa2

∫ y

0
eπ(y−t)

2
dt .

The integral in the RHS is bounded. Therefore, taking limit a→∞ we get

lim
a→∞

∫
P2

e−π(u+iy)
2
du = 0 .

Similarly we can show the fourth integral also tends to 0 as a→∞. So we
find that

0 = lim
a→∞

∫
Ca

e−π(u+iy)
2
du = lim

a→∞

∫
P1

e−π(u+iy)
2
du+ lim

a→∞

∫
P3

e−π(u+iy)
2
du .

In P1 the path γ(t) is given by γ(t) = t, where where t varies from −a to a.
By definition

lim
a→∞

∫
P1

e−π(u+iy)
2
du = lim

a→∞

∫ a

−a
e−π(t+iy)

2
dt .

In P3 the path γ(t) is given by γ(t) = t − iy, where t varies from a to −a.
By definition

lim
a→∞

∫
P3

e−π(u+iy)
2
du = lim

a→∞

∫ −a
a

e−πt
2
dt .

Thus, since the sum of the two integrals is 0, it follows that∫
R
e−π(t+iy)

2
dt =

∫
R
e−πt

2
dt = 1 .
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Definition 6.4.2 (Jacobi’s theta function). Define for Re(z) > 0

(6.4.3) θ(z) := 1 + 2
∑
m≥1

e−πm
2z .

Proposition 6.4.4. θ(z) is holomorphic in the region Re(z) > 0.

Proof. If x = Re(z) > δ > 0 then

∞∑
k

∣∣∣e−πm2z
∣∣∣ ≤ ∞∑

m=k

e−πm
2x <

∞∑
m=k

e−πmx

<
∞∑
m=k

e−πmδ =
e−πkδ

1− e−πδ
.

By choosing k large we can make this as small as we like. Thus, the functions

fk(z) :=

k∑
m=1

e−πm
2z

converge uniformly in every right half plane Re(z) > δ > 0. By Theorem
5.1.5 it follows that θ(z) is holomorphic in the region Re(z) > 0.

Definition 6.4.5. For t ∈ R, t > 0 define

ft(z) := e−πz
2t,

Ft(z) :=
∑
n∈Z

ft(z + n) .

Remark 6.4.6. Ft(0) = θ(t)

Proposition 6.4.7. The function Ft(z) is holomorphic on C.

Proof. We have

Ft(z) =
∑
n∈Z

e−π(z+n)
2t

= e−πz
2t +

∞∑
n=1

e−π(z+n)
2t +

∞∑
n=1

e−π(z−n)
2t .
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The first term is holomorphic on C. We will show that the two series
are holomorphic at any arbitrary point z = z0. Consider the first series∑∞

n=1 e
−π(z+n)2t. Define

fk(z) :=
k∑

m=1

e−π(z+n)
2t .

Let x = Re(z) > δ > −∞. Choose k � 0 so that δ + k > 1. Then

x+ n > δ + n > 1, (x+ n)2 > (δ + n)2 > δ + n > 1

for all n ≥ k. Using this we get

∞∑
n=k

∣∣∣e−π(z+n)2t∣∣∣ =

∞∑
n=k

e−πt((x+n)
2−y2)(6.4.8)

= eπy
2t
∞∑
n=k

e−πt(x+n)
2

< eπy
2t
∞∑
n=k

e−πt(δ+n) =
eπy

2te−πt(δ+k)

1− e−πt
.

By choosing k large we can make this as small as we like. Thus, the functions

fk(z) =
k∑

n=1

e−π(z+n)
2t

converge uniformly in every right half plane Re(z) > δ. By Theorem 5.1.5
it follows that

∑∞
n=1 e

−π(z+n)2t is holomorphic on C. Similarly, we can show
that the second series is also holomorphic on all of C. This completes the
proof.

Theorem 6.4.9 (Functional equation). For Re(z) > 0

θ(z) =
θ(1/z)√

z
.

Proof. Consider the function Ft(x) (see Definition 6.4.5) with domain re-
stricted to the real line. Note that it is periodic with period 1. Since Ft(z)
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is holomorphic, F
(2)
t (x) is continuous, which implies its fourier series con-

verges to itself pointwise.

θ(t) = Ft(0) = S(Ft)(0) =
∑
n∈Z

(∫ 1

0
Ft(s)e

−2πins ds)

)

=
∑
n∈Z

(∫ 1

0

∑
m∈Z

ft(s+m)e−2πins ds)

)

=
∑
n∈Z

∫ 1

0
lim
l→∞

∑
|m|<l

ft(s+m)e−2πins ds)

 .

On the interval s ∈ [0, 1] consider the functions

hl(s) =
∑
m≥l

ft(s+m)e−2πins +
∑
m≤−l

ft(s+m)e−2πins .

That hl(s) converges uniformly as l→∞ has already been proved in Propo-
sition 6.4.7. In fact, the uniform convergence of the first series follows from
equation (6.4.8) since |ft(s+m)| =

∣∣ft(s+m)e2πins
∣∣. The uniform conver-

gence of the second series may be deduced in the same way. Thus, we may
apply Corollary 5.1.2. Taking the limit outside we get

θ(t) =
∑
n∈Z

lim
l→∞

∫ 1

0

∑
|m|<l

ft(s+m)e−2πins ds)

=
∑
n∈Z

∑
m∈Z

∫ 1

0
ft(s+m)e−2πins ds)

=
∑
n∈Z

∑
m∈Z

∫ 1+m

m
ft(u)e−i2πin(u−m) du

=
∑
n∈Z

∫ ∞
−∞

ft(u)e−2πinu du =
∑
n∈Z

∫
R
e−πu

2t−2πinu du .

Substituting u
√
t = s we get

θ(t) =
∑
n∈Z

1√
t

∫
R
e
−πs2−i2πn s√

t ds =
∑
n∈Z

1√
t

∫
R
e
−π(s+i n√

t
)2−π n

2

t ds

=
∑
n∈Z

e−π
n2

t

√
t

∫
R
e
−π(s+i n√

t
)2
ds .
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From the lemma 6.4.1, we know the integral evaluates to 1. So we get

θ(t) =
∑
n∈Z

e−π
n2

t

√
t

=
θ(1/t)√

t
.

Note that both functions are holomorphic on Re(z) > 0 and they agree on
the positive real line. Thus, they agree everywhere, that is,

θ(z) =
θ(1/z)√

z
.

This completes the proof of the Theorem.

6.5 Functional equation

Definition 6.5.1. For Re(s) > 0 define

ξ(s) :=
s(s− 1)

2
π−

s
2 Γ(

s

2
)ζ(s) .

This defines a holomorphic function in the region Re(s) > 0. This is because
(s − 1)ζ(s) is holomorphic in the region Re(s) > 0, see Theorem 5.3.1,
and all the other factors are holomorphic in the region Re(s) > 0. Define
ω : R>0 → R>0 by

ω(u) := (θ(u)− 1)/2 =
∑
n≥1

e−πn
2u .

We will need the following lemma in the proof of the functional equation.

Lemma 6.5.2. The integral

f(s) :=

∫ ∞
1

ω(u)us du

converges for all s ∈ C and defines a function which is holomorphic every-
where.

Proof. Let us first prove that the integral converges. Let s = x+ iy. Then

|f(s)| ≤
∫ ∞
1

∑
n≥1

e−πn
2uux du
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Now note that uxe−πn
2u ≤ uxe−πnu. Taking sum over n we get∑

n≥1
e−πn

2uux ≤
∑
n≥1

e−πnuux =
ux

eπu − 1

< uxe−πu/2 (since u ≥ 1) .

Integrating we get

|f(s)| <
∫ ∞
1

uxe−πu/2 du <∞ .

Now we prove that f(s) is holomorphic.∣∣∣∣f(s+ h)− f(s)

h

∣∣∣∣ ≤ ∫ ∞
1

ω(u)ux
∣∣∣∣uh − 1

h

∣∣∣∣ du .
Recall the estimate proved in equation (6.1.4), if |h| < 1/2 then∣∣∣∣uh − 1

h

∣∣∣∣ ≤ log(u)u1/2 < u3/2 (since u ≥ 1) .

Thus,

ω(u)ux
∣∣∣∣uh − 1

h

∣∣∣∣ ≤ ω(u)ux+3/2 .

But since ∫ ∞
1

ω(u)ux+3/2 du = f(x+ 3/2) <∞,

we can apply 5.1.1 to see that the limit

lim
h→0

f(s+ h)− f(s)

h

exists. This proves that f(s) is holomorphic everywhere.

Theorem 6.5.3 (Functional equation). For 0 < Re(s) < 1,

ξ(1− s) = ξ(s) .

Proof. The strategy is to write ξ(s) in terms of the Jacobi Theta function
and then use the functional equation 6.4.9. We claim that for Re(s) > 4

π
−s
2 Γ(

s

2
)ζ(s) =

∫ ∞
0

ω(u)u
s
2
−1 du .(6.5.4)
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By definition, for Re(s) > 4

Γ(
s

2
) =

∫ ∞
0

e−tt
s
2
−1 dt .

Substituting t = πn2u

Γ(
s

2
) =

∫ ∞
0

e−πn
2uπ

s
2nsu

s
2
−1 du

π
−s
2

Γ( s2)

ns
=

∫ ∞
0

e−πn
2uu

s
2
−1 du .

Summing over n from 1 to infinity, we get

π
−s
2 Γ(

s

2
)ζ(s) =

∞∑
n=1

∫ ∞
0

e−πn
2uu

s
2
−1 du(6.5.5)

= lim
k→∞

∫ ∞
0

k∑
n=1

e−πn
2uu

s
2
−1 du .

We will use 5.1.1 to take the limit inside. Let s = x+ iy and define

hk(u, s) =
k∑

n=1

e−πn
2uu

s
2
−1 .

Next we find a suitable bound for hk(u, s).

|hk(u, s)| ≤
k∑

n=1

∣∣∣e−πn2uu
s
2
−1
∣∣∣

=
k∑

n=1

e−πn
2uu

x
2
−1 =

u
x
2
−1

eπu − 1
.

Since x > 4 we have limu→0
u
x
2−1

eπu−1 = 0. Using this it is easily checked that∫ ∞
0

u
x
2
−1

eπu − 1
du <∞ .

Applying 5.1.1 to (6.5.5), we get

π
−s
2 Γ(

s

2
)ζ(s) =

∫ ∞
0

∞∑
n=1

e−πn
2uu

s
2
−1 du =

∫ ∞
0

ω(u)u
s
2
−1 du .
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This proves the claim in (6.5.4).
We break the above integral into 2 parts, from 0 to 1 and from 1 to ∞.

In the first part make the substitution u = 1
v to get

π
−s
2 Γ(

s

2
)ζ(s) =

∫ ∞
1

ω(
1

v
)v−

s
2
−1 dv +

∫ ∞
1

ω(v)v
s
2
−1 dv .

We know that

ω(
1

v
) =

1

2
(θ(

1

v
)− 1) =

1

2
(
√
vθ(v)− 1)

=
1

2
(
√
v(2ω(v) + 1)− 1)

=
√
vω(v) +

√
v

2
− 1

2
.

Therefore

π
−s
2 Γ(

s

2
)ζ(s) =

∫ ∞
1

(
√
vω(v) +

√
v

2
− 1

2
)v−

s
2
−1 dv +

∫ ∞
1

ω(v)v
s
2
−1 dv

=

∫ ∞
1

1

2
(v−

s+1
2 − v−

s
2
−1) dv +

∫ ∞
1

ω(v)(v−
s+1
2 + v

s
2
−1) dv

=
1

s(s− 1)
+

∫ ∞
1

ω(v)(v−
s+1
2 + v

s
2
−1) dv .

So finally we have

ξ(s) =
s(s− 1)

2
π
−s
2 Γ(

s

2
)ζ(s)(6.5.6)

=
1

2
+
s(s− 1)

2

∫ ∞
1

ω(v)(v−
s+1
2 + v

s
2
−1) dv .

Let

I(s) =

∫ ∞
1

ω(v)(v−
s+1
2 + v

s
2
−1) dv,

then we have proved that

ξ(s) =
1

2
+
s(s− 1)

2
I(s) .

Assume for a moment that I(s) is analytic on C. Putting 1 − s in place of
s and observing that I(s) = I(1− s) gives the required functional equation.
Thus, it only remains to prove that I(s) is holomorphic on C. But this is
clear from Lemma 6.5.2.
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Corollary 6.5.7. The function ξ(s) extends to a holomorphic function on
all of C.

Proof. It is clear from Theorem 6.1.6 and Theorem 5.3.1 that ξ(s) is holo-
morphic in Re(s) > 0. Thus, the function ξ(1 − s) is holomorphic in the
region Re(s) < 1. Since ξ(s) = ξ(1 − s) in the region 0 < Re(s) < 1, it
follows that ξ(s) extends to give a holomorphic function on C.

Corollary 6.5.8. The function ζ(s) extends to a meromorphic function on
C which is holomorphic everywhere except s = 1. At s = 1 it has a simple
pole. It has simple zeros for s ∈ {−2,−4,−6, . . .}.

Proof. We have

ζ(s) =
2πs/2ξ(s)

(s− 1)

1

sΓ(s/2)
.

Clearly the numerator is holomorphic on C. Since the Gamma function has
no zeros, it follows that 1/Γ(s/2) is holomorphic on all of C. At s = 0, the
denominator sΓ(s/2) is nonzero. Thus, ζ(s) has only one pole, which is at
s = 1.

The function 1/sΓ(s/2) has simple zeros at the negative even integers.
From this the assertion on the zeros of ζ(s) is clear.

6.6 Non-vanishing of ζ(s) for s ∈ (0, 1)

In this section we prove that ζ(s) does not vanish in the interval (0, 1).
We already saw in Theorem 5.3.1 that the Zeta function has meromorphic
extension to the region Re(s) > 0 which is holomorphic everywhere except
for a simple pole at s = 1. Recall

(6.6.1) F (s) :=
∑
n≥1

(−1)n+1

ns
.

Then F (s) is a Dirichlet series which converges in the region Re(s) > 0 (see
Proposition 5.2.11).

Proposition 6.6.2. ζ(s) does not vanish in the interval (0,∞).

Proof. Note

F (s) =
(

1− 1

2s

)
+
( 1

3s
− 1

4s

)
+ · · · .

If s > 0, then F (s) being a sum of positive quantities is positive and con-
verges to a finite real number since F (s) is holomorphic. The function
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2s−1− 1 has no poles when s > 0. Now equation (5.3.3) shows that the zeta
function does not vanish on the interval (0,∞).

Recall the function ξ(s), which was defined as

ξ(s) = s(s− 1)π−s/2Γ
(s

2

)
ζ(s).

We proved that ξ extends to the entire plane and satisfies the functional
equation

(6.6.3) ξ(s) = ξ(1− s).

Since ζ(s) has been extended to the region Re(s) > 0 we may use the above
to define ζ(s) in the region Re(s) < 1 by

(6.6.4) ζ(s) =
π(s−1)/2Γ

(1− s
2

)
ζ(1− s)

π−s/2Γ
(s

2

) Re(s) < 1 .

Proposition 6.6.5. For s ∈ R, ζ(s) = 0 iff s ∈ {. . . ,−6,−4,−2} (the
negative even integers). At these points the zeros are simple zeros.

Proof. Equation (6.6.3) is equivalent to

(6.6.6) π−s/2Γ
(s

2

)
ζ(s) = π(s−1)/2Γ

(1− s
2

)
ζ(1− s) .

Recall that the Gamma function is holomorphic except simple poles at
{. . . ,−3,−2,−1, 0}. Putting s = 0 into equation (6.6.4) shows that the
zeta function is holomorphic at s = 0 and ζ(0) 6= 0.

Next let us assume that s0 ∈ {. . . ,−6,−4,−2}. Then 1− s0 > 1 and so
the RHS of equation (6.6.6) is holomorphic and non-vanishing. In the LHS,
however, the gamma factor has a simple pole. Thus, the Zeta function has
to have a simple zero at s0.

Finally suppose that s0 /∈ {. . . ,−6,−4,−2} and ζ(s0) = 0. By Proposi-
tion 6.6.2, and since ζ(0) 6= 0, we get s0 < 0. It follows that 1− s0 > 1 and
so the RHS of equation (6.6.6) does not vanish. Since the gamma factor in
the LHS does not have a pole, ζ(s0) 6= 0, which is a contradiction. Thus,
ζ(s0) 6= 0.

We record the conclusion of the above propositions in the following corol-
lary.

Corollary 6.6.7. For s ∈ R, ζ(s) has simple zeros at s ∈ {. . . ,−6,−4,−2},
a simple pole at s = 1, and at all other points it is holomorphic and non-
vanishing.



Chapter 7

Zeros of the Zeta function

In this chapter we will prove Hardy’s Theorem, which states that the Zeta
function has infinitely many zeros on the critical line.

We sketch the main steps in the proof for the benefit of the reader.
Step 1. The starting point is the following equality which Hardy and Little-
wood, in their long paper with a long title, “Contributions to the Theory of
the Riemann Zeta Function and the Theory of the Distribution of Primes.”,
attribute to Cahen and Mellin, see equation (I.II) on page 2 of their article.
For Re(y) > 0,

1

2πi

∫ k+i∞

k−i∞
Γ(u)y−udu = e−y.

This identity is first proved when y ∈ R>0, which is easy. Then using
Stirling’s approximation, it is proved that for y ∈ {Re(y) > 0} the LHS is a
holomorphic function. The identity follows.
Step 2. Using this (and the familiar trick) we get

1 + 2

∞∑
n=1

e−n
2y = 1 +

1

iπ

∫ 2+i∞

2−i∞
Γ(u)y−uζ(2u)du.

After this we shift the line of integration to Re(u) = 1/4 to get

1 + 2

∞∑
n=1

e−n
2y = 1 +

√
π

y
+

1

iπ

∫ 1/4+i∞

1/4−i∞
Γ(u)y−uζ(2u)du.

To shift the line of integration to Re(u) = 1/4, we will need an estimate on
the Zeta function. The main result of section §7.1, which we will use to shift
the line of integration, is Corollary 7.1.8.

97
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Step 3. From this we derive the equation

eia/2θ(e2ia) = cos
a

2
+

1

π

∫ ∞
0

Ξ(
t

2
) cosh at dt,

where θ is Jacobi’s Theta function and the function

Ξ(t) := π−(
1
4
+it)Γ(

1

4
+ it)ζ(

1

2
+ 2it).

The above function has the same set of zeros as that of the Zeta function.
There is one more ingredient we need, all derivatives of the LHS vanish when
a→ π/4.
Step 4. Now we assume that Ξ(t) has only finitely many zeros and obtain
a contradiction.

7.1 An integral representation for ζ(s)

For a ≥ 0 and Re(s) > 1 consider the function

ζ1(s, a) =

∞∑
n=1

1

(n+ a)s
.

Consider functions

(7.1.1) fk(s, a) =
k∑

n=1

1

(n+ a)s
.

If l > k, then

|fl(s, a)− fk(s, a)| ≤
l∑

k+1

1

(n+ a)x
s = x+ iy(7.1.2)

<
∞∑
k+1

1

(n+ a)x
≤
∞∑
k+1

1

nx
.

The above shows that this is a sequence of functions which is uniformly
Cauchy in the set Re(s) ≥ δ > 1 (the bound is also independent of a).
From Theorem 5.1.5 it follows that the limit of fk(s, a), which is ζ1(s, a), is
holomorphic in the region Re(s) > 1.

Proposition 7.1.3. Let X be a measure space with finite measure, for ex-
ample, a compact measure space. Let U ⊂ C be an open set. Suppose we
are given a sequence of measurable functions fk(s, x) on U × X with the
following properties
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1. For x ∈ X the function s 7→ fk(s, x) is holomorphic in s.

2. Given any compact subset K ⊂ U and ε > 0, there is an integer
N(K, ε) such that for all k, l ≥ N(K, ε) we have |fk(s, x)− fl(s, x)| <
ε, for all s ∈ K and x ∈ X.

3. The functions

gk(s) :=

∫
X
fk(s, x)dx

are holomorphic on U .

Then gk are uniformly Cauchy on compact sets in U and so they converge
to a holomorphic function on U .

Proof. The proof is straightforward. Fix K ⊂ U and let s ∈ K. If k, l ≥
N(K, ε) then

|gk(s)− gl(s)| ≤
∫
X
|fk(s, x)− fl(s, x)| < εVol(K) .

Corollary 7.1.4. The function

s 7→
∫ 1

0

∫ u

0
ζ1(s, a+ v)dvdu

is holomorphic on Re(s) > 1.

Proof. Let X := {(u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ u}. Define

fk(s, u, v) :=
k∑

n=1

1

(n+ v)s
.

It is a simple application of Theorem 5.1.1 to check that gk(s) =
∫
X fk(s, x)dx

is holomorphic on C. Let U = {Re(s) > 1}. Use (7.1.2) and Proposition
7.1.3 to conclude the proof of the corollary.

Theorem 7.1.5. For a ≥ 0 and Re(s) > 1 we have

ζ1(s, a) =
(1 + a)−s+1

s− 1
+ s

∫ 1

0

(∫ u

0
ζ1(s+ 1, a+ v)dv

)
du .
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Proof. For a ≥ 0 and Re(s) > 1 consider the function

∫ ∞
1

du

(u+ a)s
=

(1 + a)−s+1

s− 1
.

We have

ζ1(s, a) =
∞∑
n=1

1

(n+ a)s
−
∫ ∞
1

du

(u+ a)s
+

∫ ∞
1

du

(u+ a)s

=

∞∑
n=1

1

(n+ a)s
−
∞∑
n=1

∫ n+1

n

du

(u+ a)s
+

(1 + a)−s+1

s− 1

=
∞∑
n=1

∫ 1

0

(
1

(n+ a)s
− 1

(u+ n+ a)s

)
du+

(1 + a)−s+1

s− 1

=

∞∑
n=1

∫ 1

0

∫ u

0

s

(v + n+ a)s+1
dvdu+

(1 + a)−s+1

s− 1
.

Next we want to interchange the sum and the integral. Let Re(s) ≥ δ > 0

and let fk,s(u, v) :=
∑k

n=1

s

(v + n+ a)s+1
. Then

|fk,s(u, v)| ≤
∞∑
n=1

|s|
(v + n+ a)x+1

s = x+ iy

≤
∞∑
n=1

|s|
nx+1

≤
∞∑
n=1

|s|
nδ+1

.

Let X be the measure space {(u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ u}. On this
measure space, whose measure is finite, we have functions fk,s which are
bounded above by a constant. Thus, applying Theorem 5.1.1 we get

lim
k

∫
X
fk,s =

∫
X

lim
k
fk,s =

∫
X

∞∑
n=1

s

(v + n+ a)s+1
dvdu .
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This shows

ζ1(s, a) =

∞∑
n=1

∫ 1

0

∫ u

0

s

(v + n+ a)s+1
dvdu+

(1 + a)−s+1

s− 1

=

∫ 1

0

∫ u

0

∞∑
n=1

s

(v + n+ a)s+1
dvdu+

(1 + a)−s+1

s− 1

=
(1 + a)−s+1

s− 1
+

∫ 1

0
s
(∫ u

0
ζ1(s+ 1, a+ v)dv

)
du .

This completes the proof of the theorem.

If we put a = 0 we get the following corollary.

Corollary 7.1.6. For Re(s) > 0

ζ(s)− 1

s− 1
= s

∫ 1

0

(∫ u

0
ζ1(s+ 1, v)dv

)
du .

Proof. From the preceding theorem, the corollary holds for Re(s) > 1. Now
note, using Corollary 7.1.4, the RHS makes sense for Re(s) > 0 and is
holomorphic in this region.

We will use this corollary to get an estimate for the Zeta function.

ζ1(s+ 1, v) =
∞∑
n=1

1

(n+ v)s+1
.

Thus, if Re(s) > 1/5, then we get

(7.1.7) |ζ1(s+ 1, v)| ≤
∞∑
n=1

1

(n+ v)x+1
≤
∞∑
n=1

1

n6/5
.

Corollary 7.1.8. If Re(s) > 1/5, then there is a c > 0 such that

(7.1.9) |ζ(s)| ≤ 1

|s− 1|
+ c|s| .

7.2 Cahen-Mellin integral for y ∈ R>0

In this section we will prove that for y, k ∈ R>0 we have

1

2πi

∫ k+i∞

k−i∞
Γ(u)y−udu = e−y.

For σ ∈ R we will denote by [σ] the greatest integer ≤ σ.
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Lemma 7.2.1. If u = σ + it where σ := Re(u) and t := Im(u). Assume
that σ /∈ Z≤0. Then

|Γ(u)| ≤ |Γ(σ)| .

Proof. We divide the proof into two cases.

First consider the case σ > 0.

|Γ(u)| =
∣∣∣∣∫ ∞

0
xu−1e−xdx

∣∣∣∣
≤
∫ ∞
0

∣∣xu−1e−xdx∣∣
=

∫ ∞
0

xσ−1e−xdx

= Γ(σ) = |Γ(σ)| .

Next consider the case σ ≤ 0 and σ /∈ Z.

|Γ(u)| =

∣∣∣∣∣ Γ(u− [σ])∏j=−[σ]−1
j=0 (u+ j)

∣∣∣∣∣ .
Using the previous case we get.

|Γ(u)| ≤ |Γ(σ − [σ])|∏j=−[σ]−1
j=0 |(u+ j)|

≤ |Γ(σ − [σ])|∏j=−[σ]−1
j=0 |(σ + j)|

= |Γ(σ)| .

This completes the proof of the Lemma.

Lemma 7.2.2. Let k ∈ R>0. The integral∫ k+i∞

k−i∞
Γ(u)y−udu

converges for y ∈ R>0.

Proof. ∫ k+i∞

k−i∞

∣∣Γ(u)y−udu
∣∣ =

∫ ∞
−∞

∣∣∣∣Γ(k + 2 + it)y−k−it

(k + it)(k + 1 + it)

∣∣∣∣dt .
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Using Lemma 7.2.1.∫ k+i∞

k−i∞

∣∣Γ(u)y−udu
∣∣ ≤ Γ(k + 2)y−k

∫ ∞
−∞

dt

k2 + t2

=
π

k
Γ(k + 2)y−k .

Now consider the contour given below.

−n− 1/2

−iR

iR

k

I1

I2

I3

I4

Fix a y ∈ R>0. We will integrate the meromorphic function Γ(u)y−u on the
above contour. The poles of this function in the shaded region are exactly
at the points {0,−1, . . . ,−n}. By the Residue Theorem we have
(7.2.3)∫
I1

Γ(u)y−u +

∫
I2

Γ(u)y−u +

∫
I3

Γ(u)y−u +

∫
I4

Γ(u)y−u = 2πi

n∑
j=0

(−1)jyj

j!
.

Next we will estimate the integrals on I2, I3 and I4. We begin by estimating
the integral on I3.

Lemma 7.2.4. For n ∈ Z>0 we have

|Γ(−n− 1/2)| ≤ 2
√
π

n!
.

Proof. Using the functional equation for the Gamma function we get

|Γ(−n− 1/2)| =

∣∣∣∣∣ Γ(1/2)∏n
j=0(j + 1/2)

∣∣∣∣∣(7.2.5)

≤ 2
√
π

n!
.
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This proves the Lemma.

Lemma 7.2.6. Let y ∈ R>0. Then∣∣∣∣∫
I3

Γ(u)y−udu

∣∣∣∣ ≤ 2π3/2yn+1/2

(n− 1)!
.

Proof. ∣∣∣∣∫
I3

Γ(u)y−udu

∣∣∣∣ ≤ ∫ −n−1/2+iR
−n−1/2−iR

∣∣Γ(u)y−u
∣∣du

≤
∫ ∞
−∞

∣∣∣Γ(−n− 1/2 + it)yn+1/2−it
∣∣∣dt

=

∫ ∞
−∞

∣∣∣∣∣ Γ(−n+ 3/2 + it)yn+1/2−it

(−n− 1/2 + it)(−n+ 1/2 + it)

∣∣∣∣∣ dt
≤
∣∣∣∣Γ(−n+ 3/2)yn+1/2

∫ ∞
−∞

1

(n− 1/2)2 + t2
dt

∣∣∣∣
=

∣∣∣∣∣Γ(−n+ 3/2)yn+1/2π

(n− 1/2)

∣∣∣∣∣
= |Γ(−n+ 1/2)|yn+1/2π .

Now applying Lemma 7.2.4 we see that

|Γ(−n+ 1/2)| ≤ 2
√
π

(n− 1)!
.

Using this we get∣∣∣∣∫
I3

Γ(u)y−udu

∣∣∣∣ ≤ |πΓ(−n+ 1/2)|yn+1/2

≤ 2π3/2yn+1/2

(n− 1)!
.

This completes the proof of the Lemma.

Next we estimate the integral on I4.

Lemma 7.2.7. For y ∈ R>0 there exist constants M (independent of R,n, y)
and M ′ (which depends only on y) such that∣∣∣∣∫

I4

Γ(u)y−udu

∣∣∣∣ ≤ M

R

∣∣∣∣∣1− (R/y)−n−1/2

logR− log y

∣∣∣∣∣+
2M

′

R
.
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Proof. We break the integral on I4 into two parts.

∫
I4

Γ(u)y−udu =

∫ k−iR

−n−1/2−iR
Γ(u)y−udu

=

∫ 0

−n−1/2
Γ(σ − iR)y−σdσ +

∫ k

0
Γ(σ − iR)y−σdσ .

Let us estimate the above two integrals. First we will be showing that

∣∣∣∣∣
∫ 0

−n−1/2
Γ(σ − iR)y−σdσ

∣∣∣∣∣ ≤ M

R

∣∣∣∣∣1− (R/y)−n−1/2

logR− log y

∣∣∣∣∣ .
Recall that for σ ∈ R we denote by [σ] the greatest integer ≤ σ.

∣∣∣∣∣
∫ 0

−n−1/2
Γ(σ − iR)y−σdσ

∣∣∣∣∣ =

∣∣∣∣∣
∫ 0

−n−1/2

Γ(σ − [σ] + 1− iR)∏j=−[σ]
j=0 (σ − iR+ j)

y−σdσ

∣∣∣∣∣
≤
∫ 0

−n−1/2

∣∣∣∣∣ Γ(σ − [σ] + 1− iR)∏j=−[σ]
j=0 (σ − iR+ j)

y−σ

∣∣∣∣∣dσ
≤
∫ 0

−n−1/2

Γ(σ − [σ] + 1)∣∣∣∏j=−[σ]
j=0 (σ − iR+ j)

∣∣∣y−σdσ
≤
∫ 0

−n−1/2

Γ(σ − [σ] + 1)

R−σ−1
y−σdσ

≤ M

R

∣∣∣∣∣1− (R/y)−n−1/2

logR− log y

∣∣∣∣∣ .
In the above

M := sup
t∈[1,2]

Γ(t).

Next we show that the integral

∣∣∣∣∫ 2

0
Γ(σ − iR)y−σdσ

∣∣∣∣ ≤ 2M
′

R
.
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∣∣∣∣∫ k

0
Γ(σ − iR)y−σdσ

∣∣∣∣ =

∣∣∣∣∫ k

0

Γ(σ + 1− iR)

(σ + iR)
y−σdu

∣∣∣∣
≤
∫ k

0

∣∣∣∣Γ(σ + 1− iR)

σ + iR
y−σ

∣∣∣∣dσ
≤
∫ k

0

|Γ(σ + 1− iR)|
R

y−σdσ

≤
∫ k

0

Γ(σ + 1)

R
y−σdσ

≤ 2M
′

R
.

In the above

M ′ := sup
t∈[0,k]

Γ(t+ 1)y−t.

Having obtained the estimates for both the integrals we can now say∣∣∣∣∫
I4

Γ(u)y−udu

∣∣∣∣ =

∣∣∣∣∣
∫ 0

−n−1/2
Γ(σ − iR)y−σdσ +

∫ k

0
Γ(σ − iR)y−σdσ

∣∣∣∣∣
≤

∣∣∣∣∣
∫ 0

−n−1/2
Γ(σ − iR)y−σdσ

∣∣∣∣∣+

∣∣∣∣∫ k

0
Γ(σ − iR)y−σdσ

∣∣∣∣
≤ M

R

∣∣∣∣∣1− (R/y)−n−1/2

logR− log y

∣∣∣∣∣+
2M

′

R
.

This completes the proof of the Lemma.

Lemma 7.2.8. For y ∈ R>0 there exist constants M and M
′

defined as in
the preceding lemma such that the following inequality holds∣∣∣∣∫

I2

Γ(u)y−udu

∣∣∣∣ ≤ M

R

∣∣∣∣∣1− (R/y)−n−1/2

logR− log y

∣∣∣∣∣+
2M

′

R
.

Proof. Same as previous lemma.

Theorem 7.2.9. Let y, k ∈ R>0. Then

1

2πi

∫ k+i∞

k−i∞
Γ(u)y−udu = e−y.
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Proof. Fix y ∈ R>0 and n ∈ Z>0. In view of the above Lemmas we see that
the limits

lim
R→∞

∫
I2

Γ(u)y−udu = lim
R→∞

∫
I4

Γ(u)y−udu = 0

and ∣∣∣∣ lim
R→∞

∫
I3

Γ(u)y−udu

∣∣∣∣ ≤ 2π3/2yn+1/2

(n− 1)!
.

Now first taking limit R → ∞ and then taking limit n → ∞ in equation
(7.2.3) we get

1

2πi

∫ k+i∞

k−i∞
Γ(u)y−udu = e−y.

7.3 Logarithm and Stirling’s approximation

Define log : {Re(s) > 0} → C as follows. By log(s) we will mean the unique
complex number such that

1. elog(s) = s

2. −π/2 < Im(log(s)) < π/2.

Here Im denotes the imaginary part of a complex number.

Using the lifting theorem for covering spaces, for any continuous function
f : {Re(s) > 0} → C∗, there is a lift Gf which makes the following diagram
commute

(7.3.1) C

es

��
{Re(s) > 0}

f
//

Gf

99rrrrrr
C∗

The lift is not unique. However, if Hf is another lift, then Gf (s)−Hf (s) =
2πil for some l ∈ Z. For example, if we take f to be the inclusion, then
one choice for G is the function log defined above. We can define log in a
slightly bigger region, which we will need.
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Re(z)

Im(z)

Theorem 7.3.2 (Stirling’s approximation). For Re(s) > 0

Γ(s) = exp

{
s log(s/e)− 1

2
log(s/2π) + log

(
1 +O

(1

s

))}
.

Corollary 7.3.3. There is a constant C0 such that for Re(s) > 0

|Γ(s)| ≤
∣∣∣∣exp

{
s log(s/e)− 1

2
log(s/2π)

}∣∣∣∣∣∣∣∣1 +
C0

|s|

∣∣∣∣
7.4 Cahen-Mellin integral for y ∈ {Re(s) > 0}
In this section we will use Stirling’s approximation to show that the integral∫ k+i∞

k−i∞
Γ(u)y−udu

converges for k ∈ R>0 and y ∈ {Re(s) > 0} and in fact defines a holomorphic
function in this region.

Lemma 7.4.1 (Estimate on |Γ(u)|). Fix k ∈ R>0 and let u = k + it. Then
for |t| > 2k we have

|Γ(u)| ≤ exp

{
−|t|π

2
+O(log |t|)

}
.

Proof. Since Γ(u) = Γ(u), it suffice to consider the case when t > 0. Let
u = k + it and assume that t > 2k. Then

(u− 1

2
) log(u) = (k − 1

2
+ it) log(k + it)

= (k − 1

2
+ it)

[
log(it) + log

(
1 +

k

it

)]
= (k − 1

2
+ it)

[ iπ
2

+ log t+ log

(
1 +

k

it

)]
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Letting α := log(1 + k/it) we get

= − tπ
2

+ (k − 1

2
)(log t+ Re(α))− tIm(α) + i(∗) .

Then

u log(u/e)− 1

2
log(u/2π) = (u− 1

2
) log(u)− u+

1

2
log(2π)

= − tπ
2

+ (k − 1

2
)(log t+ Re(α))− tIm(α)+

− k +
1

2
log(2π) + i(∗) .

Since |t| > 2k, then using the series expansion of log(1 + z) we conclude
that

|α| = |log(1 + k/it)| ≤ 2k

t
.

If a, b are real numbers, then we have a+ b ≤ a+ |b|. In view of this we get
that

Re
{
u log(u/e)−1

2
log(u/2π)

}
≤ − tπ

2
+

∣∣∣∣k − 1

2

∣∣∣∣(|log t|+ 2k

t
) + k +

1

2
log(2π) .

Using Corollary 7.3.3 we get that

|Γ(u)| ≤ exp

{
− tπ

2
+

∣∣∣∣k − 1

2

∣∣∣∣(|log t|+ 2k

t
) + k

} ∣∣∣∣1 +
C0

|u|

∣∣∣∣√2π(7.4.2)

From this the lemma follows.

Lemma 7.4.3. Let y = reiθ with −π/2 < θ < π/2 and k ∈ R>0. Then the
integral ∫ k+i∞

k
Γ(u)y−udu

converges.

Proof. By Lemma 7.4.1, after choosing T � 0, we have∫ k+i∞

k+iT

∣∣Γ(u)y−udu
∣∣ ≤ ∫ ∞

T
C ′ exp {(−π/2 + θ)t+O(log t)} dt .

Since −π/2 + θ < 0, after choosing T � 0, we may assume that

(−π/2 + θ)t+O(log t) ≤ (−π/2 + θ)t/2
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for t ≥ T . Then we get∫ k+i∞

k+iT

∣∣Γ(u)y−udu
∣∣ ≤ ∫ ∞

T
C ′ exp {(−π/2 + θ)t/2} dt .

This proves that the above integral converges. The integral over [0, T ] is
finite since we are integrating a continuous function over a compact set.
Putting these integrals together proves the Lemma.

Lemma 7.4.4. Let y = reiθ with −π/2 < θ < π/2 and k ∈ R>0. Then the
integral ∫ k

k−i∞
Γ(u)y−udu

converges.

Proof. By Lemma 7.4.1, after choosing T � 0, we have∫ k+iT

k−i∞

∣∣Γ(u)y−udu
∣∣ ≤ ∫ T

−∞
C ′ exp {(π/2 + θ)t+O(log |t|)} dt .

Since 0 < π/2 + θ, after choosing T � 0, we may assume that

(π/2 + θ)t+O(log |t|) ≤ (π/2 + θ)t/2

for t ≤ T . Then we get∫ k+iT

k−i∞

∣∣Γ(u)y−udu
∣∣ ≤ ∫ T

−∞
C ′ exp {(π/2 + θ)t/2} dt .

This integral is finite.

The integral over [T, 0] is finite since we are integrating a continuous function
over a compact set. Putting these integrals together proves the Lemma.

Corollary 7.4.5. Let Re(y) > 0 and k ∈ R>0. Then the integral∫ k+i∞

k−i∞
Γ(u)y−udu

converges.

Theorem 7.4.6. The function

y 7→
∫ k+i∞

k−i∞
Γ(u)y−udu,

which is defined for Re(y) > 0, is holomorphic.
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Proof. It suffices to show that the two integrals∫ k+i∞

k
Γ(u)y−udu and

∫ k

k−i∞
Γ(u)y−udu

define holomorphic functions in the variable y. Let yn → y be a sequence
and consider ∣∣∣∣y−u − y−uny − yn

∣∣∣∣ =

∣∣∣∣∣y−uy
(

1− (yn/y)−u

1− yn/y

)∣∣∣∣∣
=

∣∣∣∣∣y−uy
(

1− e−u log(yn/y)

1− yn/y

)∣∣∣∣∣ .
Using the same step as in (6.1.3) we get

≤
∣∣∣∣y−uy

∣∣∣∣∣∣∣∣u log(yn/y)

1− yn/y

∣∣∣∣e|u log(yn/y)| .
Note that

lim
n→∞

∣∣∣∣ log(yn/y)

1− yn/y

∣∣∣∣ = 1

and so for n� 0 this quantity is bounded. Thus, we get∣∣∣∣Γ(u)
y−u − y−un
y − yn

∣∣∣∣ ≤ C∣∣∣∣Γ(u)
y−uu

y
e|u log(yn/y)|

∣∣∣∣(7.4.7)

= C ′
∣∣∣Γ(u+ 1)y−ue|u log(yn/y)|

∣∣∣ .
Let y = reiθ where −π/2 < θ < π/2. By Lemma 7.4.1, for t� 0 we have∣∣Γ(u+ 1)y−u

∣∣ ≤ C ′′ exp {(−π/2 + θ)t+O(log t)} .

We can find T � 0 such that

(−π/2 + θ)t+O(log t) ≤ (−π/2 + θ)t/2

for t ≥ T . Let δ > 0 be such that −π/2 + θ + δ < 0. Then by choosing
n � 0 and t � 0 we may assume that |u log(yn/y)| < tδ/2. Putting these
together we get, for n� 0,∣∣∣Γ(u+ 1)y−ue|u log(yn/y)|

∣∣∣ ≤ C ′′′ exp{(−π/2 + θ + δ)t/2}.



112 CHAPTER 7. ZEROS OF THE ZETA FUNCTION

This proves that for n� 0∣∣∣∣Γ(u)
y−u − y−un
y − yn

∣∣∣∣ ≤ C ′′′ exp{(−π/2 + θ + δ)t/2}.

As the function on the right is integrable, we see that the limit

lim
n→∞

∫ k+i∞

k

∣∣∣∣Γ(u)
y−u − y−un
y − yn

du

∣∣∣∣
exists. This shows that ∫ k+i∞

k
Γ(u)y−udu

is a holomorphic function in y. The second integral is treated in the same
way and this case is left to the reader.

Corollary 7.4.8. Let Re(y) > 0 and k ∈ R>0. Then

1

2πi

∫ k+i∞

k−i∞
Γ(u)y−udu = e−y.

Proof. Follows from Theorem 7.2.9 and Theorem 7.4.6.

This completes Step 1 in the introduction.

7.5 Hardy’s Theorem

Proposition 7.5.1. Let Re(y) > 0 and k > 1/2. Then

1 + 2

∞∑
n=1

e−n
2y = 1 +

1

iπ

∫ k+i∞

k−i∞
Γ(u)y−uζ(2u)du .

Proof. Using
1

2πi

∫ k+i∞

k−i∞
Γ(u)y−udu = e−y

we can say that for a finite N ∈ N the following holds

1

2πi

∫ k+i∞

k−i∞
Γ(u)y−u

N∑
n=1

1

n2u
du =

1

2πi

N∑
n=1

∫ k+i∞

k−i∞
Γ(u)

y−u

n2u
du

=

N∑
n=1

e−n
2y .
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Now having shown the equivalence for a finite N we need to prove this for
N →∞ or in other words

1

2πi
lim
N→∞

∫ k+i∞

k−i∞
Γ(u)y−u

N∑
n=1

1

n2u
du =

1

2πi

∫ k+i∞

k−i∞
Γ(u)y−u lim

N→∞

N∑
n=1

1

n2u
du .

To justify this exchange of the lim and integral we will be showing that the
sequence of functions {fN} defined as

fN (u) := Γ(u)y−u
N∑
n=1

1

n2u

is bounded above by an integrable function. If Re(u) = k > 1/2 + δ then it
is clear that

|fN (u)| ≤
∣∣Γ(u)y−u

∣∣ ∞∑
n=1

1

n1+2δ
= C(δ)

∣∣Γ(u)y−u
∣∣ .

We have already seen that the integral
∫ k+i∞
k−i∞ |Γ(u)y−u|du < ∞. Now ap-

plying Theorem 5.1.1 it follows that we can exchange the integral and the
sum. This proves the Proposition.

Corollary 7.5.2. Taking k = 2 in the above Proposition we get

1 + 2

∞∑
n=1

e−n
2y = 1 +

1

iπ

∫ 2+i∞

2−i∞
Γ(u)y−uζ(2u)du.

Next we want to shift the line of integration to k = 1/4. Note that the
proof of the above Proposition will not work since we cannot use the series
for the Riemann Zeta function.

For a fixed y such that Re(y) > 0, we will be taking the integral of
Γ(u)y−uζ(2u) along the following contour. The function Γ(u)y−uζ(2u) has
a simple pole at u = 1/2 and is holomorphic elsewhere in this contour.
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(2,−R)
(1/4,−R)

(1/4, R)
(2, R)

I1

I2

I3

I4

Therefore, by the Residue Theorem

1

2πi

(∫
I1

Γ(u)y−uζ(2u) du+

∫
I2

Γ(u)y−uζ(2u) du+(7.5.3) ∫
I3

Γ(u)y−uζ(2u) du+

∫
I4

Γ(u)y−uζ(2u) du
)

=
1

2

√
π

y
.

1. The integral over I1 converges as R→∞; this follows from the proof
of Proposition 7.5.1.

2. Now consider the integral of the function Γ(u)y−uζ(2u) taken along
the path I3. On this path u = 1/4 + it. By Corollary 7.1.8

|ζ(1/2 + 2it)| ≤ 1

|−1/2 + 2it|
+ c|1/2 + 2it| = exp{O(log |t|)} .

Proceeding as in Lemmas 7.4.3 and 7.4.4 we see that the integral con-
verges on I3.

3. Next we estimate the integral on I2. Let y = reiθ where −π/2 <
θ < π/2, let σ ∈ [1/4, 2] and let R � 0. By Theorem 7.3.2, equation
(7.4.2) and Corollary 7.1.8 we see that there is a constant C such that

∣∣Γ(σ + iR)y−σ−iRζ(2σ + 2iR)
∣∣ ≤ CeR(−π/2+θ)R3

( 1

R
+ 2cR

)
.

(7.5.4)

From the above inequality it is clear that

lim
R→∞

∫
I2

Γ(u)y−uζ(2u) du→ 0.
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4. The same estimate for the integral over I4 is proved in the same way.

Thus, taking limit R→∞ in equation (7.5.3) and using Corollary 7.5.2 we
get

(7.5.5) 1 + 2
∞∑
n=1

e−n
2y = 1 +

√
π

y
+

1

iπ

∫ 1/4+i∞

1/4−i∞
Γ(u)y−uζ(2u)du.

This completes Step 2 in the introduction.

We have the functional equation, see Theorem 6.5.3,

Ξ(t) := π−(
1
4
+it)Γ(

1

4
+ it)ζ(

1

2
+ 2it)

fe
= π−(

1
4
−it)Γ(

1

4
− it)ζ(

1

2
− 2it)(7.5.6)

= Ξ(−t).

Next we substitute y = πe2ia, where |a| < π/4. Using the above functional
equation, the integral in the RHS of (7.5.5) becomes∫ 1/4+i∞

1/4−i∞
Γ(u)y−uζ(2u)du = 2ie−ia/2

∫ ∞
0

Ξ(t) cosh 2at dt

= ie−ia/2
∫ ∞
0

Ξ(
t

2
) cosh at dt .

Substituting the above into equation (7.5.5), we get

(7.5.7) eia/2θ(e2ia) = cos
a

2
+

1

π

∫ ∞
0

Ξ(
t

2
) cosh at dt,

where θ is Jacobi’s Theta function, recall Definition 6.4.3.

Lemma 7.5.8. Let am := π(2m+ 1)2/4 and k ∈ Z≥0 . Then the sequence
of functions

fn(δ) =
n∑

m=0

akme
−am/δ

converges uniformly in the region

{δ = reiα | 0 < r < 1, −π/4 < α < 0}.

Proof. We see that

(7.5.9) Re(−am/δ) =
−am cosα

r
≤ −am

2r
.
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Choose n� 0 so that

k log am ≤
am
4
<
am
4r

∀m ≥ n.

It follows that∣∣∣akme−am/δ∣∣∣ < e−am/4r < e−πm/4r ∀m ≥ n,

and so we get

(7.5.10)
∑
m≥n

∣∣∣akme−am/δ∣∣∣ ≤ e−πn/4r

1− e−π/4r
<

e−πn/4r

1− e−π/4
<

e−πn/4

1− e−π/4
.

We see that by choosing n � 0 we can make this as small as we want to.
This shows that the fn → f uniformly in the given region.

Lemma 7.5.11. Let |a| < π/4. For all integers k ≥ 0 we have

lim
a→π/4

θ(k)(e2ia) = 0.

Proof. Let δ := e2ia − i. We have that as a → π/4, the argument of δ
satisfies −π/4 < Arg(δ) < 0, see the following diagram.

e2ia
i

Because of this, to prove the Lemma, it suffice to show that as δ → 0 in the
region −π/4 < Arg(δ) < 0, the limit

lim
δ→0

θ(k)(i+ δ) = 0,

for every k ≥ 0. Using the definition of θ we get

θ(e2ia) = θ(i+ δ) = 1 + 2
∑
m≥1

e−πm
2(i+δ)

= 1 + 2
∑
m≥1

(−1)me−πm
2δ .
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This shows that

θ(i+ δ) + θ(δ) =
(

1 + 2
∑
m≥1

(−1)me−πm
2δ
)

+
(

1 + 2
∑
m≥1

e−πm
2δ
)

= 2θ(4δ) .

Now using the functional equation, Theorem 6.4.9, for the Jacobi theta
function we get

θ(i+ δ) = δ−1/2
(
θ(

1

4δ
)− θ(1

δ
)
)

= δ−1/2
∑
m≥0

e−π(2m+1)2/4δ .(7.5.12)

If we can differentiate under the summation, then it is clear that for every
k ≥ 0 we have

θ(k)(i+ δ) = ±δ∗
∑
m≥0

e−am/δ ± δ∗
∑
m≥0

ame
−am/δ + . . .+±δ∗

∑
m≥0

akme
−am/δ,

where ∗ ∈ Z<0 + 1/2 (obviously different occurrences can take different
values). That we can differentiate under the summation follows from Lemma
7.5.8 and Theorem 5.1.5. To prove the Lemma it suffices to show that

lim
δ→0

δ∗
∑
m≥0

akme
−am/δ = 0.

This follows from equations (7.5.9) and (7.5.10), since by choosing n � 0
which works for all j ∈ {0, 1, . . . , k}, (recall δ = reiα and ∗ ∈ Z<0 + 1/2)∣∣∣∣∣∣δ∗

∑
m≥0

ajme
−am/δ

∣∣∣∣∣∣ ≤
∣∣∣∣∣δ∗

n∑
m=0

ajme
−am/δ

∣∣∣∣∣+

∣∣∣∣∣∣δ∗
∑
m≥n

ajme
−am/δ

∣∣∣∣∣∣
≤
(
r∗

n∑
m=0

ajme
−am/2r

)
+
r∗e−πn/4r

1− e−π/4
.

From this the assertion follows by taking limit r → 0.

This completes Step 3 in the introduction.

Now we return to equation (7.5.7). It is easily checked, using Lemma 7.4.1
and Corollary 7.1.8, by proceeding as in the proof of Theorem 7.4.6, that
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the integral in the RHS of (7.5.7) can be differentiated with respect to a
under the integral sign. Differentiating both sides of equation (7.5.7) 2n
times with respect to a, taking limit a→ π/4 and using Lemma 7.5.11, we
see that

(7.5.13) 0 =
(−1)n

22n
cos

π

8
+ lim
a→π/4

1

π

∫ ∞
0

t2nΞ(
t

2
) cosh at dt,

Theorem 7.5.14 (Hardy’s Theorem). The function ζ(1/2+it) vanishes for
infinitely many values of t ∈ R.

Proof. Observe from the definition (7.5.6) of the function Ξ(t) that

1. Ξ(t) = Ξ(−t) = Ξ(t),

2. The nonvanishing of the Gamma function, see Theorem 6.2.5, shows
that the zeros of Ξ(t) vanishes iff ζ(1/2 + 2it) vanishes.

It suffices to show that Ξ(t) vanishes for infinitely many values of t ∈ R. Let
us assume that Ξ(t) has only finitely many zeros. Then there is T > 0 such
that Ξ(t) 6= 0 for all t ≥ T .

Assume that Ξ(t) > 0 for t ≥ T . Let m be the least value taken by
Ξ(t/2) cosh at in the compact set (t, a) ∈ [2T, 2T + 1] × [π/8, π/4]. Since
cosh at does not vanish, it follows that m > 0. We get∫ ∞

T
t2nΞ(

t

2
) cosh at dt ≥

∫ 2T+1

2T
t2nΞ(

t

2
) cosh at dt,(7.5.15)

≥ m
∫ 2T+1

2T
t2ndt > m(2T )2n.

Since cosh t is an increasing function for t ≥ 0 we get cosh at ≤ coshπt/4,
say for π/8 ≤ a ≤ π/4. Let K denote the maximum of the function
|Ξ(t/2) coshπt/4| in the compact set t ∈ [0, T ]. We get∣∣∣∣∫ T

0
t2nΞ(

t

2
) cosh at dt

∣∣∣∣ ≤ ∫ T

0
t2n
∣∣∣∣Ξ(

t

2
)

∣∣∣∣|cosh at| dt(7.5.16)

≤
∫ T

0
t2n
∣∣∣∣Ξ(

t

2
)

∣∣∣∣|coshπt/4| dt

≤ K
∫ T

0
t2ndt =

KT 2n+1

2n+ 1
.

Let

A := lim
a→π/4

∫ T

0
t2nΞ(

t

2
) cosh at dt , B := lim

a→π/4

∫ ∞
T

t2nΞ(
t

2
) cosh at dt.
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From (7.5.15) and (7.5.16) we see that

|A| ≤ KT 2n+1

2n+ 1
, B ≥ m(2T )2n.

Choose n even and very large so that

(7.5.17)
KT

2n+ 1
< 22nm.

We write equation (7.5.13) as

A+B =
(−1)n+1π

22n
cos

π

8
< 0.

But this is a contradiction to (7.5.17) since

0 < −KT
2n+1

2n+ 1
+m(2T )2n ≤ A+B < 0.

If Ξ(t) < 0 for t ≥ T then write (7.5.13) as

(−1)n

22n
cos

π

8
= lim

a→π/4

1

π

∫ ∞
0

t2n
(
− Ξ(

t

2
)
)

cosh at dt,

Let m be the least value taken by −Ξ(t/2) cosh at in the compact set (t, a) ∈
[2T, 2T + 1] × [π/8, π/4]. Defining A and B as above, with Ξ replaced by
−Ξ, we get the same relations

|A| ≤ KT 2n+1

2n+ 1
, B ≥ m(2T )2n.

Choose n odd and very large so that

KT

2n+ 1
< 22nm.

We write equation (7.5.13) as

A+B =
(−1)nπ

22n
cos

π

8
< 0.

But this is a contradiction to (7.5.17) since

0 < −KT
2n+1

2n+ 1
+m(2T )2n ≤ A+B < 0.

This completes the proof of Hardy’s theorem.
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