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CONGRATULATIONS!

Bob, it’s been a long time we have worked together, but I remember this
time with delight. I remember your eyes shining when we discovered eE

picture for randomized robustness...
Remain as young and vital as ever!
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Historical remarks

First random search methods for optimization
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2 main problems

1. Generation of points in a set X ∈ Rn. It can be nonconvex and
non-connected. Applications: generate stabilizing controllers and calculate
performance specifications, generate perturbations and check robustness.
2. Convex optimization

min cTx

s.t. x ∈ X

X is a convex bounded closed set in Rn with nonempty interior.
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”Ideal” Monte Carlo

x1, x2, . . . xN independent uniformly distributed points in X

Cutting plane method for optimization

1. Set X1 = X

2. Generate uniform
x1, x2, . . . xN ∈ Xk

3. Find fk = min cTxi

4. Set Xk+1 = Xk

⋂
{x :

cTx ≤ fk}
go to Step 2.
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Convergence estimates

f∗ = max
x∈X

cTx, f∗ = min
x∈X

cTx, h = f∗ − f∗

Theorem

After k iterations of the algorithm

E [fk]− f∗ ≤ qk, q =
h

n
B

(
N + 1,

1
n

)
,

where B(a, b) is Euler beta-function.

Dabbene, Scherbakov, Polyak, 47th CDC, 2008
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Radon theorem and center of gravity method

Case of a special interest: N = 1, k = 1
Theorem

Let x1 be a random point uniformly distributed in X. Then

E
[
cTx1

]
− f∗ ≤ h

(
1− 1

n+ 1

)
.

E [x1] = g (center of gravity of X), ⇒ cT g − f∗ ≤ h
(

1− 1
n+ 1

)
[Radon theorem (1916)]

center of gravity method

xk = gk, Xk+1 = Xk

⋂
{x : cTx ≤ cT gk}
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Implementable random algorithms: MCMC

How to implement Monte Carlo method?

X is a simple set (box, ball, simplex etc.)

Rejection method

Markov-Chain Monte Carlo schemes (random walks in X)

P.Diaconis ”The Markov chain Monte Carlo revolution”, Bull. of the
AMS, 2009, Vol. 46. No 2. pp. 179–205.
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Boundary oracle

Given x0 ∈ X, d — vector specifying the direction in Rn

Boundary oracle
L = {t ∈ R : x0 + td ∈ X}

For convex sets L = (t, t),
where t = inf{t : x0 + td ∈ X}, t = sup{t : x0 + td ∈ X}

Complete boundary oracle

L = {t ∈ R : x0 + td ∈ X} + inner normals to X at the boundary points

B.T. Polyak (ICS, Moscow) Randomized methods June 2009 10 / 41



Boundary oracle

Given x0 ∈ X, d — vector specifying the direction in Rn

Boundary oracle
L = {t ∈ R : x0 + td ∈ X}

For convex sets L = (t, t),
where t = inf{t : x0 + td ∈ X}, t = sup{t : x0 + td ∈ X}

Complete boundary oracle

L = {t ∈ R : x0 + td ∈ X} + inner normals to X at the boundary points

B.T. Polyak (ICS, Moscow) Randomized methods June 2009 10 / 41



Boundary oracle is available for numerous sets

LMI set

X =

{
x ∈ Rn : A0 +

n∑
i=1

xiAi ≤ 0

}
LMI constrained set of symmetric matrices P

X =
{
P : AP + PAT + C ≤ 0, P ≥ 0

}
Quadratic matrix inequalities set

X =
{
P : AP + PAT + PBBTP + C ≤ 0, P ≥ 0

}
Linear algebraic inequalities set

X =
{
x ∈ Rn : cTi x ≤ ai, i = 1, . . . ,m

}
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Hit-and-Run

1. i = 0, x0 ∈ X
2. Choose random direction
d uniformly distributed on
the unit sphere

3. xi+1 = xi + t1d,
t1 is uniformly distributed
on L = (t, t)

4. L is updated with respect
to xi+1, go to Step 2.

Theorem (Turchin (1971), Smith (1984))

Let X be bounded open or coincides with the closure of interior points of
X. Then for any measurable set A ⊂ X probability Pi(A) = P (xi ∈ A|x0)

can be estimated as |Pi(A)− P (A)| ≤ qi, where P (A) =
Vol(A)
Vol(X)

and

q < 1 does not depend on x0.
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Shake-and-Bake: an alternative way for generating points

Points are asymptotically uniformly distributed in the boundary of X.
Complete boundary oracle is exploited.

LMI set

X =

{
x ∈ Rn : A0 +

n∑
i=1

xiAi ≤ 0

}
ni = −(Aie, e), where e is the eigenvector corresponding to

zero eigenvalue of the matrix A0 +
n∑

i=1

x0
iAi.

LMI constrained set of symmetric matrices P

X =
{
P : AP + PAT + C ≤ 0

}
N = −(eeTA+AT eeT ), where e is the eigenvector corresponding to

zero eigenvalue of the matrix AP0 + P0A
T + C.
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Shake-and-Bake: the algorithm

1. i = 0, x0 ∈ ∂X, n0 is the
normal.

2. Choose random direction si,

si =
√

1− ξ
2

n−1n0 + r,
ξ uniform random in (0, 1),
r is random unit uniform
direction (n0, r) = 0.

3. xi+1 = xi + ts,
t is given by the boundary oracle
for the direction s.

4. L is updated with respect to
xi+1, go to Step 2.
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Shake-and-Bake for nonconvex sets
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Numerical simulation

Standard SDP of the form

min cTx

s.t. A0 +
n∑

i=1

xiAi ≤ 0

Ai, i = 0, 1, . . . n — symmetric real matrices m×m; c = [0, . . . , 0, 1]
We applied modified HR where min xi was replaced with averaged Xi

+ various heuristic acceleration methods (scaling, projecting, accelerating
step)
Open problem: number of HR points in every step.

B.T. Polyak (ICS, Moscow) Randomized methods June 2009 16 / 41



Disadvantages of HR

Jams in a corner.

Jams for long or thin bodies.

(Lovasz, Vempala. Hit-and-Run from a corner, 2007) Number of iterations
to achieve accuracy ε

N > 1010n
2R2

r2
ln
M

ε

How to accelerate?

Smith (1998)

d – uniformly on a sphere → another distribution H
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Barrier functions in convex optimization

Yu. Nesterov, A. Nemirovski, S. Boyd
Convex function F (x) is a barrier for a convex set X, if F (x) is defined on
interior of X and F (x)→∞ for x→ ∂X.
Self-concordant barriers, Newton method
Interior-point methods are highly effective for convex optimization!
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Modified Hit-and-Run by use of barriers

F (x) – self-concordant barrier for X

F (x0 + y) = F (x0) + (∇F (x0), y) +
1
2

(∇2F (x0)y, y)︸ ︷︷ ︸
F̃ (y)

+o(y2),

F̃ (x) – quadratic approximation of F (x) at x0.

Dikin’s ellipsoid

E = {y : (∇2F (x0)(y − x0), y − x0) ≤ 1} ⊂ X
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Modified Hit-and-Run by use of barriers contd

Random direction

d = (∇2F )−1/2ξ, ξ − uniformly on a sphere

Next point

x = x0 + λd, λ ∈ [λ, λ] as in Hit-and-Run
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Modified Hit-and-Run by use of barriers: example

Q = {x ∈ R2 : 0 ≤ xi ≤ ai}, a = [10−4, 1] “strip”
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1000 points in R2

Magenta — Hit-and-Run

Blue — Modified Hit-and-Run
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Barrier MC: Phase 1

F (x) – self-concordant barrier for X

F (x0 + y) = F (x0) + (∇F (x0), y) +
1
2

(∇2F (x0)y, y)︸ ︷︷ ︸
F̃ (y)

+o(y2),

E = {y : F̃ (y) ≤ 0}, or E = {y : (∇2F (x0)(y − x∗), y − x∗)) ≤ δ},
x∗ = −(∇2F (x0))−1∇F (x0), δ = ((∇2F (x0))−1∇F (x0),∇F (x0))

Random direction

d = x∗ +
(
∇2F

δ

)−1/2

ξ,

ξ — uniformly on a sphere

Next point
x = x0 + λd, λ ∈ [λ, λ] as in
Hit-and-Run
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Advantages

Departs corners.

Well walks in long and thin sets.

Conjecture xk asymptotically distributed with density ρ(x) > 0 on X.

Phase 2.

Ellipsoid is defined by matrix Hi =
(
∇2F

δ

)−1/2

.

After N iterations let H =
1
N

∑
Hi and generate random direction

d = Hξ, ξ − uniformly on unit sphere
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Barrier MC can be applied for

Polyhedral sets in Rn

X = {x ∈ Rn : (ai, x) ≤ bi, i = 1, . . . ,m}.

F (x) = −
m∑

i=1

ln(bi − (ai, x)), ∇F (x0) =
∑ ai

1− (ai, x0)
,

∇2F (x0) =
∑ aiaiT

(1− (ai, x0))2
LMI in standard format

X = {x ∈ R` : A(x) = A0 +
∑̀
i=1

xiAi � 0, Ai ∈ Sn×n}.

F (x) = −ln det(A(x))
LMI with matrix variables

Q = {X � 0, trCX ≤ 1, X,C ∈ Sn×n}.

F (X) = −ln detX − ln(1− trCX)
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Example: ”diamond”

X = {x ∈ Rn : xi ≥ 0, (a, x) ≤ 1}, a = [1, . . . , 1, 104],

F (x) = −
∑

lnxi − ln(1− (a, x))
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Comparison with pure MC

X = {x ∈ Rn : xi ≥ 0, (a, x) ≤ 1}, a = [1, . . . , 1, 104]

fi = (a, xi), 0 ≤ f ≤ 1, x ∈ Q

If xi are uniform on X, then cdf

Φ(t) =

t∫
0

p(f)df ∼ tn

n = 3 N = 2000
n = 10 N = 10 000
n = 20 N = 10 000
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Empirical density (N = 50 000, R2 )
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Example: ”stick” and ”sheet” R2

Q = {x ∈ Rn : 0 ≤ xi ≤ ai}

a = [10−4, . . . , 10−4, 1]
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Example: ”stick” and ”sheet” R20

Q = {x ∈ Rn : 0 ≤ xi ≤ ai}

a = [10−4, . . . , 10−4, 1]
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Example: ”stick” and ”sheet” R20 Phase 2

Q = {x ∈ Rn : 0 ≤ xi ≤ ai}

a = [10−4, . . . , 10−4, 1]
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Standard LMI

X = {x ∈ R` : A(x) = A0 +
∑̀
i=1

xiAi � 0, Ai ∈ Sn×n}

F (x) = −ln det(A(x))

∇F (x0)i = −trAiA(x0)−1,

∇2F (x0)ij = trA(x0)−1AiA(x0)−1Aj

A0, A1, A2 — random matrices
4× 4, A0 � 0
1000 points

−10 −8 −6 −4 −2 0 2
−5

−4

−3

−2

−1

0

1

x
1

x 2

B.T. Polyak (ICS, Moscow) Randomized methods June 2009 31 / 41



LMI with matrix variables

Q = {X � 0, trCX ≤ 1, X,C ∈ Sn×n}.
F (X) = −ln detX − ln(1− trCX), ε = 1− trCX0

Ellipsoid E = {Y : F̃ (y) ≤ 0} is

〈X0 +
X0CX0

ε
, Y 〉+ 1

2
〈Y +

X0CY CX0

ε2 , Y 〉 ≤ 0

Center of ellipsoid Y ∗– solution of Lyapunov equation

AXBT −X +G = 0

where A = −X0C

ε2 ,B = CX0, G = −
(
X0CX0

ε
−X0

)
Choice of direction for ellipsoid 〈AXA+BXB,X〉 ≤ δ
Z - uniform on ||Z||F = 1, λ uniform on [−α, α],
α : α2〈AZA+BZB,Z〉 = δ, then λZ ∈ E.
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X : 2× 2, C = I

Q =
{[

p11 p12

p12 p22

]
� 0, p11 + p22 ≤ 1

}
⇔


p11 > 0, p22 > 0
p11 · p22 ≥ p2

12

p11 + p22 ≤ 1


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Comparison with pure MC

Theorem If xi are uniform i.i.d. on X ⊂ Rn, f = (c, x),
f∗ = min

X
(c, x), h = max

X
(c, x)− f∗ then

E[min fi]− f∗
h

≤
B
(
N + 1, 1

n

)
n

, i = 1, . . . , N

n N C E[min fi] 1− E[max fi] 2
B(N+1, 2

n(n+1))
n(n+1)

2 1000 I 0.013 0.0004 0.0893

2 2000 diag(1,100) 0.018 0.0002 0.0709

5 5000 I 0.042 0.0001 0.5473

5 5000 diag(1,. . . ,1,100) 0.0124 0.0001 0.5473
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Comparison with pure MC

Φ(t) =

t∫
0

p(f)df ∼ tm, m =
n(n+ 1)

2
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Applications to control

Sets with available boundary oracle

Stability set for polynomials

K = {k ∈ Rn : p(s, k) = p0(s) +
n∑

i=1

kipi(s) is stable}

Stability set for matrices

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n

K = {K ∈ Rm×l : A+BKC is stable}
Robust stability set for polynomials

K = {k : P0(s, q) +
n∑

i=1

kiPi(s, q) is stable ∀q ∈ Q}, Q ⊂ Rm

Quadratic stability set

ẋ = Ax

K = {P > 0 : AP + PAT ≤ 0}
B.T. Polyak (ICS, Moscow) Randomized methods June 2009 36 / 41



Stability set for polynomials

K = {k ∈ Rn : p(s, k) = p0(s) +
n∑

i=1

kipi(s) is stable}

k0 ∈ K i.e. p(s, k0) is stable,
d = s/||s||, s = randn(n,1) — random direction

Boundary oracle: L = {t ∈ R : k0 + td ∈ K},
i.e. {t ∈ R : p(s, k0) + t

∑
dipi(s) is stable}.

D-decomposition problem for real scalar parameter t!

Gryazina E. N., Polyak B. T. Stability regions in the parameter space:

D-decomposition revisited //Automatica. 2006. Vol. 42, No. 1, P. 13–26.
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Example: Generating points in the disconnected set

K = {k ∈ Rn : p(s, k) = p0(s) +
n∑

i=1

kipi(s) is stable},

p(s, k) = 2.2s3 + 1.9s2 + 1.9s+ 2.2 + k1(s3 + s2 − s− 1) + k2(s3 − 3s2 + 3s− 1)
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Stability set for matrices

ẋ = Ax+Bu, y = Cx, u = Ky

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n; K = {K ∈ Rm×l : A+BKC is stable}

K0 ∈ K, i.e. A+BK0C is stable
D = Y/||Y ||, Y = randn(m, l) — random direction in the matrix space K

A+B(K0 + tD)C = F + tG, where F = A+BK0C, G = BDC

Boundary oracle: L = {t ∈ R : F + tG is stable}
Total description of L is hard:
f(t) = maxRe eig(F + tG)

numerical solution of the equation f(t) = 0, t > 0 (MatLab command fsolve)
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Quadratic stability

ẋ = Ax+Bu, u = Kx

K = {K : ∃P > 0, AT
c P + PAc ≤ 0}, Ac = A+BK

K is convex and bounded.

Q = P−1 > 0, QAT +AQ+BY + Y TBT < 0, Y = KQ.

k0 ∈ K, Q0 = P−1
0 , Y0 = K0Q0 — starting points

Q = Q0 + tJ , Y = Y0 + tG, where J and G are random directions in the matrix
space.

initial inequality ⇐⇒ F + tR < 0
Boundary oracle: L = (−t, t),
where t = minλi, t = minµi;

λi — real positive eigenvalues for the pair of matrices
F = Q0A

T +AQ0 +BY0 + Y T
0 B

T and −R = JAT +AJ +BG+GTBT ;
µi correspondingly for matrices F,R.
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Conclusions

New versions of MCMC are effective

Randomized approaches for optimization are promising.

Proposed methods are simple in implementation and give an
opportunity to solve large-dimensional problems.
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