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Being to treat of the Doctrine ofSounds, I hold it convenient to premise something in the
general concerning this Theory; which may serve at once to engage your attention, and excuse
my pains, when I shall have recommended them, as bestow’d on asubject not altogether useless
and unfruitful.

Narcissus Marsh, 1683/4,Phil. Trans. Roy. Soc. Lond., 156:472–486.
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Chapter 1

What is sound?

Acoustics is a branch of physics and, as such, anything it tells you about the world has to make sense. If
it tells you something you don’t believe then either it’s wrong or you are. To start, it’s worth looking at
the things you already know about acoustics from your daily life. These are fundamental facts which also
happen to be correct.

The first example we can consider is that of a lecturer droningon at a class. Everyone in the class hears
the lecturer say the same thing at the same pitch: we don’t have one part of the class hearing the lecturer
speak with a squeaky voice while another part hears her speakin a deep bass. Furthermore, everyone hears
the lecturer speak at the same speed with the words in the sameorder. This tells us that

sound travels undistorted

so, no matter where we are, as long as we can hear the speaker, we hear the same words at the same pitch
and at the same rate.

Ponder now the forces of nature: the next time you are caught in a thunderstorm note the relationship
between thunder and lightning. You will notice, if you have not already done so, that there is a delay
between seeing the flash of the lightning and hearing the thunder:

sound travels with some time delay

so that we do not hear sound from a source immediately but haveto wait for it to travel over the space
between it and us.

Finally, bored by the lecture and soaked by the storm, you go to a concert. For my purposes, I assume
that you are a fan of a singer armed with a guitar. If you listento the singer and the guitar, you will be able
to distinguish the singer’s voice from the sound of the guitar:

sound from different sources travels independently

or in other words, the sound coming from the singer does not influence the sound from the guitar—you
simply hear both of them added together.

1.1 Sound in time and space

We need some way to describe sound. The first obvious way to think physically about sound is as a signal
measured at some position, our ears or a microphone, say. If we measure pressure, this signal can be written
p(t). It changes over time and, if we want, we can record it. On the other hand, at any given time, two
people can measure sound at two different positions. We could also say that sound is a function of position
and writep(x). Clearly, sound depends on both time and position, so the correct thing to do is writep(x, t).

If we wanted to, we could leave the matter there. On the other hand, we know that there has to be some
connection between the pressure measured at one point and the pressure measured at another: sound cannot
vary independently in time and in space. What is this connection? From the statements at the start of the

1



2 CHAPTER 1. WHAT IS SOUND?

p(x)

x1

x2

Figure 1.1: Sound pressurep at a fixed time

chapter, we know that the sound heard at one point is the same as the sound heard at another, although they
might not be heard at the same time.

Figure 1.1 shows a snapshot of a wave radiating from some point, found by plotting pressurep(x) at
some fixed timet. If we pick two pointsx1 andx2 and look at the sound at those two pointsp(t) andq(t),
say, we know that the two sounds are different. On the other hand they must be connected: one point cannot
be hearing Mozart while the other hears a pneumatic drill. So, we know that the two sounds are the same
with the possible exception of some time difference:

p(t) = q(t + ∆t),

where∆t is a time difference. If we assume that sound ‘travels’ at some speedc (we will prove this is true
later on), we could say that∆t = R/c whereR is some distance. Then we can write:

p(t) = q(t ± R/c),

so that the time difference between the two signals is related to some distance over which sound has to
travel. In the next section we will show that this kind of solution arises from the standard equations of fluid
dynamics.

1.2 The wave equation

From a physical or mathematical point of view, acoustics canbe viewed as the study of solutions of the wave
equation for a fluid. The linear wave equation, which we will derive presently, is the equation governing the
propagation of small (linear) disturbances in a compressible medium. The wave equation can be applied
to many different systems with different governing equations: here we apply it to fluids governed by the
Navier–Stokes equations.

The equations of continuity and momentum for an inviscid fluid are:

∂ρ

∂t
+ ∇.(ρv) = 0, (1.1a)

ρ
∂v

∂t
+ ∇p + ρv∇v = 0. (1.1b)
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These equations tell us, first, that matter is conserved and,second, that Newton’s laws apply to a fluid as
well as to solid particles. The first thing we do in deriving a wave equation is introduce the assumption
that the fluctuations in the fluid dynamical quantities are small. This means that we write quantities as the
sum of a mean part and a small fluctuation. These fluctuating parts are so small that their products can be
neglected. Decomposing the quantities:

ρ = ρ0 + ρ′(t),

v = v′(t),

p = p0 + p′(t),

where0 indicates a mean value and a prime symbol a fluctuation.
Applying this assumption to the equations of continuity andmomentum and neglecting second order

terms (products of small quantities), we find the linearizedEuler equations:

∂ρ′

∂t
+ ρ0∇.v′ = 0, (1.2a)

ρ0
∂v′

∂t
+ ∇p′ = 0. (1.2b)

To make life easier, we can eliminate the velocityv′ to give us a single equation:

∂

∂t

(

∂ρ′

∂t
+ ρ0∇.v′

)

−∇
(

ρ0
∂v′

∂t
+ ∇p′

)

=
∂2ρ′

∂t2
−∇2p′ = 0. (1.3)

This is almost the wave equation except that it contains bothpressure and density and we would like to deal
with only one quantity at a time. To eliminate the density, weneed a relationship between it and pressure.
This depends on the thermodynamical properties of the fluid,as we will see below. Since we have linearized
everything else, we can linearize the pressure–density relationship as well:

p = p0 +
∂p

∂ρ

∣

∣

∣

∣

ρ=ρ0

(ρ − ρ0) +
1

2

∂2p

∂ρ2

∣

∣

∣

∣

ρ=ρ0

(ρ − ρ0)
2 + . . . ,

p′ = p − p0 ≈ ∂p

∂ρ

∣

∣

∣

∣

ρ=ρ0

(ρ − ρ0) = c2ρ′,

c2 =
∂p

∂ρ

∣

∣

∣

∣

ρ=ρ0

.

The constant is writtenc2 because it is always positive (why?). Substituting this relationship into equa-
tion 1.3, we find a wave equation for the acoustic pressure:

1

c2

∂2p

∂t2
−∇2p = 0 (1.4)

This is the most fundamental equation in acoustics. It describes the properties of a sound field in space
and time and how those properties evolve. It is quite unlike the incompressible flow equations to which
you may be accustomed because it describes very weak processes which happen over large distances. The
most fundamental obvious property of the wave equation is that it is linear. This means that the sum of two
solutions of the wave equation is also itself a solution, which is why we can tell a singer from an instrument.

When we come to solve the wave equation, we will find thatc is the speed of sound, the speed at which
a small disturbance propagates through a fluid. It depends onthe thermodynamical properties of the fluid
and is calculated on the assumption that sound propagation is adiabatic. For an adiabatic process in a gas:

p = kργ ,
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whereγ is the ratio of the specific heats. Then

c2 =
∂p

∂ρ

∣

∣

∣

∣

ρ=ρ0

,

= γkργ−1 =
γp

ρ
,

p = ρRT

so that

c2 = γRT .

The speed of sound in air at STP is 343m/s. The validity of the adiabatic assumption depends on the
frequency of the sound. For low-frequency sound, there is noappreciable heat generation by conduction in
the fluid and the assumption is a good one. For air, ‘low frequency’ means ‘less than 1GHz’.

Note that ifc → ∞, the wave equation becomes∇2p = 0, the equation of incompressible flow. Saying
c → ∞ is the same as saying that density is independent of pressure, i.e. that the flow is incompressible.
Sincec is the speed at which disturbances propagate in a fluid, this is equivalent to the statement that
disturbances propagate instantaneously in an incompressible flow.

1.3 Single frequency waves

If we write p = P exp[−jωt] whereω is the radian frequency, the wave equation becomes theHelmholtz
equation:

∇2P + k2P = 0. (1.5)

Note thatt has disappeared, reducing the order of the equation by one. Thewavenumberk = ω/c.
When we are dealing with waves of constant frequency, the sound field is a sinusoidal pattern which

propagates in space.

1.4 Quantifying sound

Before going any further, you will need to know how to describe a sound or sound field. We characterize
noise by its pitch (frequency) and its ‘volume’ (amplitude). To describe the amplitude of a sound we
usually use the root mean square (rms) pressure:

prms =
(

p2
)1/2

where the bar denotes ‘time average’. This is a useful measure but suffers from the problem that acoustic
pressures of interest vary over a huge range. The threshold of human hearing is atprms = 20µPa while
the threshold of pain and the onset of hearing damage are atprms ≈ 200mPa, a range of seven orders of
magnitude. To keep the numbers manageable, we use a logarithmic scale. On this scale, the ‘difference’ in
sound pressure levelbetween two pressuresp1 andp2 is:

∆SPL = 10 log10

p2
1

p2
2

.

When we want to talk about only one signal, we use a standard reference pressure. Then the sound pressure
level is

SPL= 10 log10

p2

p2
ref

. (1.6)
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Level/dB Example
140 3m from a jet engine
130 Threshold of pain
120 Rock concert
110 Accelerating motorcycle at 5m
80 Vacumn cleaner
60 Two people talking
10 3m from human breathing

Table 1.1: Some sample approximate noise levels

The reference level is the nominal threshold of human hearing 20µPa. The ‘units’ of SPL are decibels,dB.
Table 1.1 shows levels for some typical noises. A good rule ofthumb is that if you have to raise your

voice to speak, the noise level is greater than 80dB, and if you have to shout, the noise level is greater than
85dB and you risk hearing damage.

1.5 Solutions of the wave equation in one dimension: Plane waves

To illustrate some aspects of the solution of the wave equation, we look first at waves in one dimension.
This corresponds to sound propagating in a pipe, for example. If we takex as the coordinate along the pipe,
the wave properties are independent ofy andz and the wave equation becomes:

1

c2

∂2p

∂t2
− ∂2p

∂x2
= 0. (1.7)

You can show quite easily that solutions of the formp = f(x ± ct) satisfy equation 1.7. This means
that disturbances propagate as fixed shapes which shift along thex-axis at speedc. Figure 1.2 is a simple
example, showing both solutionsx ± ct.

x

x = ctx = −ct

Figure 1.2: Wave propagation: right propagating wave withx = ct and left propagating wave withx = −ct.

A pulse starts at a pointx = 0 at timet = 0 so thatx ± ct = 0. At a later time, the wave will have
moved left to a pointx = −ct, still satisfyingx + ct = 0 and right to a pointx = ct, satisfyingx− ct = 0.
In both cases, the value ofp will be the same as at timet = 0. As we might expect, the wave travels to the
left or right at speedc, which is whyc is called the speed of sound.

When waves propagate like this, they are calledplane wavesbecause their properties are constant over
planes of constantx. Waves can be modelled as planar when they propagate at low frequency in pipes or
ducts, such as long pipelines or engine exhaust systems. Plane waves also occur in other situations and are
very useful in analyzing general problems. If a plane wave propagates in a general direction, we can write
it asf(t − x.n) wheren is the direction of propagation or normal to the wave.

1.6 Solutions of the wave equation in three dimensions

Naturally, one-dimensional waves are of little interest torounded personalities such as ourselves and we
must eventually face reality in all of its three dimensions.Solving the wave equation in three dimensions
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is not much more difficult than doing so in one dimension. The most convenient approach is to work in
spherical polar coordinates,§7.2. In this coordinate system:

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 φ

∂2

∂φ2
.

We simplify this by considering the case of sound propagating in free space in a uniform medium. Then,
by symmetry,p′ is independent ofφ andθ, so that:

∇2p =
∂2p

∂r2
+

2

r

∂p

∂r

=
1

r

∂2

∂r2
(rp) (1.8)

and the wave equation now reads

1

c2

∂2

∂t2
(rp) − ∂2

∂r2
(rp) = 0, (1.9)

which is identical in form to equation 1.7. Using the solution of that equation,rp = f(r ± ct), we find

p =
f(t − r/c)

r
. (1.10)

For reasons ofcausality(things cannot happen before they have been caused), we reject the solutionrp =
f(r + ct).

This solution contains three useful pieces of information.The first, as in the one-dimensional case, is
that the sound at timet depends on what happened at timet− r/c, theemission timeor retarded time. The
second, again similarly to the one dimensional case, is thatthe shape of the wavef( · ) does not change.
The big difference between one and three dimensional waves,however, is that the magnitude of the pressure
perturbation (though not its shape) reduces as it propagates.

1.7 Acoustic velocity and intensity

When we derived the wave equation, we chose to eliminate velocity and density and concentrated on pres-
sure as our dependent variable. There are two main reasons for doing this: the first is that pressure is a
scalar and so is conceptually easier to work with than velocity. In practice, given that we could use a ve-
locity potential, this is not a huge advantage. The second, and more important, reason is that pressure is
what we hear and what we measure. Our ears and the microphoneswe use to measure sound are sensitive
to pressure fluctuations, so that is what we choose as our mainquantity.

There are times, however, when we will need to use some other quantity. The fundamental theory of
aerodynamically generated noise is actually based on density fluctuations (which are usually converted to
pressure variations using a linear relationship). A more important relationship is that between pressure
and velocity because the acoustic velocity is often used as aboundary condition in calculations involving
solid bodies. Remember that acoustics is a branch of fluid dynamics and it is a fluid-dynamical boundary
condition that must be satisfied, i.e. usually a velocity.

The linearized momentum equation (1.2b) gives us the relationship we need:

∂v′

∂t
= −∇p′

ρ0
,

in other words, the acoustic velocity is proportional to thepressure gradient. If we write the solution of the
wave equation in terms of a velocity potentialφ = f(t − R/c), the pressure and radial velocity are related
via:

p = −ρ0
∂φ

∂t
, v = ∇φ,

v =
p

ρ0c
+

f(t − R/c)

ρ0R2
. (1.11)
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For a wave of constant frequency, the acoustic velocity amplitudeV is related to the acoustic pressure
by

V = −j
∇P

ρ0ω
. (1.12)

For a plane wave∇ → ∂/∂x andV = P/ρ0c. For largeR, the pressure–velocity relationship for a
spherical wave reduces to this form, as seen in equation 1.11.

A basic characteristic of a source is the rate at which it transfers energy. If we multiply equation 1.2a
by c2ρ′,

c2ρ′
∂ρ′

∂t
+ ρ0c

2ρ′
∂v

∂x
= 0 (1.13)

and note thatρ′∂ρ′/∂t = 1
2 (∂/∂t)ρ′

2 and thatc2ρ′ = p′,

c2

ρ0

1

2

∂

∂t
ρ′

2
+ p′

∂v

∂x
= 0.

Multiplying the momentum equation 1.2b byv gives

ρ0v
∂v

∂t
+ v

∂p′

∂x
= 0,

which can be rearranged:

1

2
ρ0

∂

∂t
v2 + v

∂p′

∂x
= 0. (1.14)

Adding equations 1.13 and 1.14 gives a result for the energy transport in the sound field:

∂

∂t

(

1

2
ρ0v

2 +
1

2

c2

ρ0
ρ′

2
)

+
∂

∂x
(p′v) = 0. (1.15)

In equation 1.15,ρ0v
2/2 is the kinetic energyper unit volume,c2/ρ0ρ

′2/2 is the potential energy
per unit volume andp′v is theacoustic intensityI which is the rate of energy transport across unit area.
Equation 1.15 is a statement of energy conservation for the system and says that the rate of change of energy
in a region is equal to the net rate at which energy is carried into the region.

If insert the relationship between pressure and velocity, equation 1.11, the acoustic intensity is

I =
p2

ρc
+

∂

∂t

(

f2(t − R/c)

2ρR3

)

.

If we averageI over time for a periodic wave, the second term has a mean valueof zero and the resulting
mean intensity is:

Ī =
p2

ρc
. (1.16)

Example: Acoustic displacement

The threshold of human hearing is nominally 0dB. Knowing that this corresponds to a particular pressure
(2×10−5Pa), we can calculate an acoustic velocity and from this an acoustic displacement. If we assume
that we are listening to sound at 1kHz (where the human ear is most sensitive), we can calculate the velocity
amplitude corresponding to this pressure from Equation 1.12:

V =
P

ρc
=

2 × 10−5

1.225 × 343
= 4.76 × 10−8m/s.



8 CHAPTER 1. WHAT IS SOUND?

Since we also know that the amplitude of displacementX is related to the velocity via:

V = ωX,

we can work out the displacement of the eardrum when you hear asound of 1kHz at the threshold of human
hearing:

X =
4.76 × 10−8

2π × 1000
= 0.76 × 10−11m,

or something like the diameter of a hydrogen atom.

1.8 Questions

1. Show thatf(x ± ct) is a solution of the one-dimensional wave equation.

2. The sound from a point sourceq(t) is q(t−R/c)/4πR. If the source is sinusoidal with frequencyω,
write down an expression for the sound from the source.

3. To reduce noise in aircraft, we can use loudspeakers inside the aircraft to generate ‘anti-noise’. If
we assume the noise at head level in business class is generated by a point source of strengthq and
frequencyω at a positionx1, what strength should a source (loudspeaker) at a positionx2 have to
cancel the noise?

4. If a jet engine generates a noise of SPL 140dB at 3m, how far away do you need to move to reach a
safe position?



Chapter 2

Making sound

2.1 Pulsating sphere

x

y

z

V

Figure 2.1: A pulsating spher-
ical surface

The simplest three-dimensional problem we can solve is thatof sound ra-
diated by a pulsating sphere. This sphere could be, for example, a bubble,
a varying heat source or an approximation to a body of varyingvolume.
The sphere has radiusa and oscillates with velocity amplitudeV at fre-
quencyω. From the linearized momentum equation (1.2b), we can find a
relationship between acceleration and pressure gradient:

∇p = −ρ0
∂v

∂t
. (2.1)

Writing the radial velocity of the sphere surface asv = V exp[−jωt],
we can see thatp must also have frequencyω so that we can write it as
p = P exp[−jωt] and:

∇P e−jωt = jωρ0V e−jωt. (2.2)

Sincep is a solution of the wave equation, we know from§1.6 that

p =
f(t − r/c)

r
=

Ae−jω(t−r/c)

r
, (2.3)

whereA is to be found from the boundary condition ata, the sphere surface. Writing out the pressure
gradient:

∇p =
A

r2

[

jωr

c
− 1

]

e−jω(t−r/c), (2.4)

and applying the boundary condition:

A

a2

[

jωa

c
− 1

]

e−jω(t−a/c) = jωρ0V e−jωt, (2.5)

we can fix the constantA:

A =
(ka)(ka − j)ρ0V ca

(ka)2 + 1
e−jka, (2.6)

wherek = ω/c is thewavenumber. The solution for the pressure is then:

p =
ka

r

ka − j

(ka)2 + 1
(ρ0V ca)e−jk(r−a)e−jωt. (2.7)

9
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There are two approximations we can make which simplify thisformula. Whenka ≪ 1 (i.e. when the
sphere is small or it vibrates at low frequency), (2.7) can bewritten:

p ≈ −j
ρ0cka2

r
V ejkre−jωt; (2.8)

whenka ≫ 1 (i.e. when the sphere is large or vibrating at high frequency):

p ≈ ρ0V ca

r
e−jk(r−a)e−jωt. (2.9)

2 4 6 8 10

−0.5

0

0.5

1

r

R
e(

p
)

Figure 2.2: Sound field around a pulsating sphere:
dottedk = 0.1; dashedk = 1; solidk = 10.

The parameterka, a non-dimensional combi-
nation of wavelength and a characteristic dimen-
sion of the body, is an important parameter in char-
acterizing sources and is called thecompactness.
Whenka is small, the source is point-like and can
be treated as a simple source; when it is large, the
acoustic field becomes more complicated, as in fig-
ure 2.2.

2.2 Point sources

When we look at sound production by real systems,
we cannot usually model them with simple shapes
such as spheres. The solution for a sphere is use-
ful, however, because we can use it to work out
the noise radiated by apoint source, an idealized
solution for the sound radiated by an infinitesimal
element of a real system.

We start with equation 2.8, the result for a small
oscillating sphere. We want to write this in terms

of some “source strength”. When the sphere oscillates, it isinjecting momentum into the fluid. A sphere of
radiusa has surface area4πa2 and if it oscillates with velocityV exp[−jωt], the momentum being injected
at the surface of the sphere is:

M = ρ04πa2V e−jωt (2.10)

and the rate of change of momentum is:

∂M

∂t
= −jρ0ω4πa2V e−jωt. (2.11)

Noting thatω = kc, we can compare equation 2.11 to equation 2.8 and find that:

p =
1

4π

∂M

∂t

ejkr

r
, (2.12)

so that sound is generated by fluctuations in momentum. If write this in terms of a source strengthq =
ρ0v(t), this equation can also be written:

p =
∂

∂t

q(t − R/c)

4πR
, (2.13)

which is the result for sound radiated by an infinitesimal point source. In a real problem, we can work out
the sound from a source as a sum of contributions from point sources. This sum becomes an integral if we
look at a smooth distribution of sources over a volumeV :

p(x, t) =
∂

∂t

∫

V

q(y, t − R/c)

4πR
dV. (2.14)
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We can write this in a form which will be useful to us later:

p(x, t) =
∂

∂t

∫

V

G(x, t;y, τ)q(τ) dV, (2.15)

whereG is the Green’s function for the problem. A Green’s function is a fundamental solution, in this case
the response due to a point source “firing” instantaneously.We can write the Green’s function using the
Dirac delta functionδ( · ):

G(x, t;y, τ) =
δ(t − τ + R/c)

4πR
, (2.16)

R = |x − y|.

The delta function is a curious beast which is zero everywhere except at zero, where it jumps to an infinite
value. The area under the delta function, however, is one. Ithas the property that:

∫ ∞

−∞

f(x)δ(x − x0) dx = f(x0),

called the “sifting property”. In the case of equation 2.16,this means thatt − τ + R/c or, τ = t − R/c.
Hereτ , theretarded timeis the time when sound leaves the source andt is the time when it arrives, so that
R/c is the time delay between sound leaving a source and sound arriving at some point, which should be
no surprise by now.

2.3 Loudspeakers

z

ra

v

Figure 2.3: A rigid piston vibrat-
ing in a rigid wall.

Taking a step up in difficulty (and realism), we now look at thesound
radiated by a rigid piston embedded in a wall. This is a basic model
of a loudspeaker and is related to a number of other problems in the
acoustics of sound generation by moving surfaces. Figure 2.3 shows a
rigid circular piston of radiusa which vibrates periodically at frequency
ω and velocity amplitudev so that its velocity isv exp[−jωt]. From
equation 2.15:

pe−jωt = 2
∂

∂t

∫∫

S

q(y, τ)

4πR
dS,

where the factor2 has been included to account for the image source in
the wall and the integration is performed over the surfaceS of the piston.
Given the velocity, the sourceq = ρ0v exp[−jωt] so that the resulting
integral for the radiated sound is:

p(ω) = −j
ωρ0

2π

∫∫

S

ejkR

R
v dS.

To evaluate the integral, we switch to cylindrical coordinates(r, θ, z):

x = r cos θ, y = r sin θ.

We assume that the observer is atθ = 0 and the integral to be evaluated is:

p(ω) = −j
ωρ0v

2π

∫ 2π

0

∫ a

0

ejkR

R
r1 dr1 dθ1,

R = (r2 + r2
1 − 2rr1 cos θ1 + z2)1/2,

where(r1, θ1) indicates a point on the piston surface.
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This integral cannot be evaluated exactly for a general observer position but we can restrict it to the case
where the observer is on the axis of the piston. Thenr = 0 andR = (r2

1 + z2)1/2:

p = −j
ωρ0v

2π

∫ 2π

0

∫ a

0

ejkR

R
r1 dr1 dθ1,

= −jωρ0v

∫ a

0

ejkR

R
r1 dr1,

and making the transformationr1 → R,

p = −jωρ0v

∫ Ra

R0

ejkR dR.

Here,R0 = z is the distance from the observer to the centre of the piston and Ra = (a2 + z2)1/2 is the
distance to the rim of the piston. The solution is then:

p = −ρ0cv(ejkRa − ejkz). (2.17)
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a: ka = 0.1
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b: ka = 1.0
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c: ka = 10.0

Figure 2.4: Acoustic field (ab-
solute value ofp) along the
axis of a vibrating piston. The
dashed line shows the1/z fit.

If we examine the acoustic field defined by equation 2.17 as a function of
frequency, we can see that it changes quite rapidly aska is increased. Fig-
ure 2.4 shows the absolute value of the non-dimensional pressure|p/ρ0cv|
for different values ofka. For comparison, the curve1/R0 = 1/z is
also shown. The results forka = 0.1 and ka = 1 are similar with a
smooth1/R0 decay but theka = 10 curve is quite different, having a
sharp drop before it begins to follow a1/R0 curve. This is a result of in-
terference between sound from different parts of the piston. When a body
is large compared to the wavelength of the sound it generates, interference
between different parts of the body gives rise to a complicated sound pat-
tern, especially in the region near the body. When the body issmall on
a wavelength scale (or, equivalently, vibrates at low frequency), the phase
difference between different parts of the source is not enough to give rise
to much interference and the body radiates like a point source. The ‘size’
of the body at a given frequency is called itscompactnessand is character-
ized by the parameterka wherea is a characteristic dimension, or by the
ratio of characteristic dimension to wavelengtha/λ. A compact source,
one withka ≪ 1, radiates like a point source, while non-compact bodies
must be treated in more detail, as we saw in the case of a spherein §2.1.

Example: Noise from aircraft engines

The formula for sound radiated from an oscillating piston can also be used
as an approximation for low frequency noise from flanged pipes. If we
slightly abuse the formula, we can use it to make a guess at thenoise from
the end of a duct, such as an aircraft engine intake (or a cooling tower or
all sorts of other things). The internal processes in an engine, such as the
rotation of the fan, generate an oscillating velocity at theintake. We can
pretend that this is a piston spanning the face of the intake and calculate
the radiated noise using the formula derived above.

2.4 Combustion noise

Another important application of one-dimensional acoustics is in combustion instability in engines. In order
to model such a problem, we need to look at thethermodynamicsof the system in order to model the effects
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of heat release. When we derived the wave equation in§1.2, we assumed that the system was adiabatic—
no heat was added or removed. Obviously, if we want to look at aproblem involving heat addition, this
assumption is wrong so we have to include some extra information.

From thermodynamics, we know that:

Dρ

Dt
=

1

c2

Dp

Dt
+

∂ρ

∂s

∣

∣

∣

∣

p

Ds

Dt
, (2.18)

which is what we derived in§1.2 but we now include a term which depends ons theentropyof the fluid.
When, as we assumed previously, the flow is isentropic, the second term disappears. When we include heat
release in the problem, however, we cannot ignore the entropy variations.

When we ignore viscosity and heat conduction, the heat inputq per unit volume is given by

q(x, t) = ρT
Ds

Dt
.

For a perfect gas,
∂ρ

∂s

∣

∣

∣

∣

p

= − ρ

cp
= −ρT (γ − 1)

c2
,

wherecp is the specific heat at constant pressure andγ the ratio of the specific heats. We can substitute this
relation into equation 2.18:

Dρ

Dt
=

1

c2

[

Dp

Dt
− (γ − 1)q

]

. (2.19)

If we assume that perturbations are small and that there is nomean heat addition (otherwise the speed of
sound and other thermodynamic properties would change), wecan linearize this equation:

Dρ

Dt
=

1

c2
0

[

∂p′

∂t
− (γ − 1)q

]

, (2.20)

wherec0 is the mean speed of sound. If we now return to equation 1.3,

∂2ρ′

∂t2
−∇2p′ = 0,

we can insert this new relationship betweenp′ andρ′ to find:

1

c2
0

∂2p′

∂t2
−∇2p′ =

γ − 1

c2
0

∂q

∂t
, (2.21)

and we end up with a linear wave equation with a source term on the right hand side which is related to the
heat input per unit volume. If we reduce this to the one-dimensional case,

1

c2
0

∂2p

∂t2
− ∂2p

∂x2
=

γ − 1

c2
0

∂q

∂t
, (2.22)

we can look at some simple problems related to combustion.
If we think of combustion happening in a tube of lengthL open at both ends, the pressure inside the

tube has to be of the form
p(x, t) = P (t) sin

nπx

L

and the wave equation becomes
[

P̈

c2
0

+
n2π2

L2
P

]

sin
nπx

L
=

γ − 1

c2
0

∂q

∂t
.
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If we now assume that the unsteady heat release is related to the unsteady pressure, we can see how it affects
the acoustics.

The first simple assumption is that the heat release is proportional to pressure,

q =
−αc2

0p
′

γ − 1
,

which leads to the equation for pressure amplitude,

P̈

c2
0

+ αṖ +
n2π2

L2
P = 0,

which is the equation for a damped oscillator (think of the spring-mass-dashpot system you saw in me-
chanics). Ifα is positive, the responseP decays with time. If, however,α is negative, the response grows
over time: the combustion is unstable. The case whereα is positive corresponds to heat addition 180◦ out
of phase with the pressure; negativeα means that the heat addition is in phase with the pressure. This is
Rayleigh’s criterion: heat must be added in phase with pressure if energy is to be transferred into the acous-
tic waves. Remember that the heat release is proportional tothe pressure, so if the pressure is unstable, so
is the heat release and your engine blows up.

This is a very simple example which ignores the mechanism of heat addition—the combustion of fuel—
but it illustrates how the combustion depends on the relationship between the acoustics and the heat gener-
ated in the system.

2.5 Questions

1. Write down the solution to the following integrals:
∫∞

−∞
δ(x) dx;

∫∞

−∞
x2δ(x − 3) dx;

∫∞

−∞
cosxδ(x + π) dx.

2. A circular piston of radiusa is started impulsively from rest. An observer at position(r, z) hears the
sound generated by the impulsive motion. Calculate:

a) the time of arrival of the start of the pulse.

b) the time of arrival of the end of the pulse.

c) the duration of the signal heard by the observer.

What is the maximum pulse length generated? What is the minimum pulse length?

3. At low frequencies, the noise radiated from the intake of an aircraft engine can be approximated as
that due to a piston set in the intake. On this approximation,estimate the SPL 20m from an engine
with intake diameter 3m, subject to a velocity fluctuation of frequency 80Hz and amplitude 0.02m/s.

4. In the far field,R ≫ a, R ≫ ka, we can estimate the sound radiated off-axis by a piston, using the
following approximations:

1

R
≈ 1

R0
,

R ≈ R0 − r1 sin φ cos θ1

whereφ = tan−1 r/z andR0 = [r2 + z2]1/2. Given that theBessel functionof zero order is:

J0(x) =
1

2π

∫ 2π

0

e−jx cos θ1 dθ1,
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and that:
∫

xJ0(x) dx = xJ1(x),

whereJ1(x) is the Bessel function of first order, derive an approximate formula for the far field noise
radiated by a piston.





Chapter 3

Modifying sound

3.1 Reflection by a hard wall

The simplest realistic problem of interest involving the effect of a boundary on a sound field is that of the
interaction of the field from a point source with a plane wall,figure 3.1. The problem is, given a source at
a pointx, near a rigid plane, to calculate the resulting overall sound field. If the wall were not present, we
know that the sound field at a frequencyω would have the form:

pie
−jωt =

e−jω(t−R/c)

4πR
,

wherepi is theincidentsound field.

x = 0

x0

x

Figure 3.1: A point
source near a wall

We will drop the factorexp[−jωt] because it is the same for all sound fields
in the problem and write:

pi =
ejkR

4πR
.

Our problem now is to find a second acoustic fieldps (the ‘scattered’ field), such
that the total fieldpt = pi + ps satisfies the wave equation and the boundary
conditions on the wall. By linearity,§1.2, this means thatps must be a valid
solution of the wave equation, since the sum of two solutionsis itself a solution.
Now we need to decide what boundary condition to apply. As in inviscid fluid
dynamics, the boundary condition is that the total velocitynormal to the wall
must be zero. We know that the acoustic velocity is proportional to the pressure
gradient,§1.7, so this boundary condition is equivalent to

∂pt

∂x

∣

∣

∣

∣

x=0

≡ 0,

or, in terms of the incident and scattered fields,

∂ps

∂x

∣

∣

∣

∣

x=0

≡ − ∂pi

∂x

∣

∣

∣

∣

x=0

.

For a source atx0 = (x0, y0, z0),

∂pi

∂x
=

x − x0

4π

ejkR

R3
(jkR − 1) ,

and atx = 0,

∂pi

∂x

∣

∣

∣

∣

x=0

= − x0

4π

ejkR

R3
(jkR − 1) ,

R = [x2
0 + (y − y0)

2 + (z − z0)
2]1/2.

17
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The solution of our problem is an acoustic fieldps with

∂ps

∂x

∣

∣

∣

∣

x=0

=
x0

4π

ejkR

R3
(jkR − 1) .

A source positioned atx− = (−x0, y0, z0) gives just such a field so a valid solution to the problem can be
found using animage source, the reflection of our orginal source in the rigid wall. The total field is then

pt = pi + ps,

pi =
ejkR+

4πR+
,

ps =
ejkR

−

4πR−

,

R± = [(x ∓ x0)
2 + (y − y0)

2 + (z − z0)
2]1/2.

One immediate result of this analysis is that the pressure generated on the wall by a source is twice that
which would be generated if the wall were not present. This has two immediate applications: the first is
that excessive noise in confined spaces (discotheques and clubs, for example) can be extremely damaging
to hearing; the second is where the ‘wall’ is the ground and wewant to know how noise propagates across
a landscape.

You should repeat this calculation for the boundary condition p = 0, the so-called pressure-release
surface which applies to underwater noise problems.

3.2 Reflection by a soft wall

A concept which is very useful and we will need later on is thatof acoustic impedance. This is like the
impedance we see in mechanical systems and is defined as the ratio of acoustic pressure to acoustic velocity:

Z =
P

V
. (3.1)

The acoustic impedance of a material (including gases and liquids) is a property of the material and of
frequency. We usually work in terms ofspecific acoustic impedancewhich is simplyZ/A whereA is the
area of material.

For a hard wall,V = 0 and the impedance is infinite. For a substance which is porous, the effect of
flow into the pores of the material must be taken into account.We can model this by lumping the material
properties together into a single impedance, which means that we do not need to know very much else about
a material. Note that, in general,Z is a function of frequency.

exp jkx

R exp−jkx

θ

Figure 3.2: Reflection from a finite
impedance wall

If we examine reflection of a plane wave from a wall with
some finite impedance, we can look at the problem of acoustic
treatment of rooms. In order to line a room to stop reflections(for
music recording or performances, say), we want to minimize re-
flections or echos so we need to know how much sound is reflected
from a wall for a given impedance. Figure 3.2 shows the incoming
and reflected waves. The pressure and velocity are given by:

P = ejkyy
(

ejkxx + Re−jkxx
)

, (3.2)

V =
ejkyy

ρc

(

ejkxx − Re−jkxx
)

cos θ, (3.3)

where thecos θ is needed to extract the component of velocity
normal to the wall—sound propagating parallel to the wall will
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not be affected by the impedance. The boundary condition on the
wall is thatZ = P/V so we can write:

R =
Z cos θ − ρc

Z cos θ + ρc
. (3.4)

Example: How to bug an embassy

exp jkx

R exp−jkx T exp jkx

θ

Figure 3.3: A slab of material under acoustic excita-
tion

One type of ‘soft’ wall is a slab of material which
vibrates in response to acoustic pressure. Fig-
ure 3.3 shows the arrangement: a slab or sheet
of material is subject to a plane wave. We want
to know the complex amplitudeR of the reflected
wave and the amplitudeT of the wave transmitted
out the other side of the material. For a thin, non-
deforming slab, we can assume that the velocities
on each side of the slab are equal:

vi = vt, (3.5)

and we know from the definition of impedance that:

Pi − Pt = Zslvi = Zslvt. (3.6)

The reflection coefficient on the incoming wave side is (from Equation 3.4):

R =
Zi − Z1

Zi + Z1
, (3.7)

where the local impedanceZ1 = ρc/ cos θ. This means that the velocity on side 1 is:

v1 =
p1

Z1
(1 − R), (3.8)

=
2Pi

2Z1 + Zsl
. (3.9)

Given that the normal velocity is equal on both sides, we can work out the amplitude of the transmitted
wave:

T = Z1V2 =
2ρc/ cos θ

Zsl + 2ρc/ cos θ
. (3.10)

In 1987,Time reported that the Soviet Union might be using lasers to measure the vibrations of the
windows of the US embassy in Moscow as a way of listening to conversations inside1. A modern laser
vibrometer can measure velocities to a resolution of about 0.01µm/s. If a window pane is 5mm thick, what
is the quietest conversation we can listen to?

A simple assumption is that the glass acts as alimp plateand the only resistance to motion is the slab
inertia. Then, for a plate of mass per unit aream moving at a frequencyω

−jωV = Pi − Pt (3.11)

andZsl = −jωm. The transmitted wave then has amplitude:

|T | =

[

1 +

(

ωm

2ρc

)2

cos2 θ

]−1/2

.

1The article is available online at:http://www.bugsweeps.com/info/hitech snooping.html
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From equation 3.8, and assumingθ = 0,

v =
2Pi

2ρc − jωm
.

If we are interested in sound at around 3kHz(roughly in the middle of the range of human speech), given
that the density of glass is about 2500kg/m3, m = 12.5kg/m2 and:

v =
2

1.2 × 340 − j2π × 3000× 12.5
Pi =

1

204 − j1.178 × 105
Pi

and

|v| = |Pi|/1.178× 105.

If we assume we can measure the velocity over a range of 1µm/s,

|Pi| = 1.178 × 105 × 10−6Pa = 75dB.

For comparison, thesoundtransmitted on the other side of the window would beTPi which has mag-
nitude:

|TPi| =

[

1 +

(

ωm

2ρc

)2

cos2 θ

]−1/2

Pi,

= 1.178 × 105 × 10−6/289Pa = 26.2dB.

It might be possible to measure this signal very close to the window, but at a distance of 100m it would be
impossible. A sophisticated laser system, however, could measure the window’s vibrations from a distance
of hundreds of meters. It is interesting to know that the Russian embassy in Washington is on high ground
looking down onto a number of important buildings, including the White House.

3.3 Ducts and silencers

Figure 3.4 shows a simple example of propagation along a ductwhose section changes suddenly. If a
wave of the formexp(jkx) propagates to the right and hits the change in section, thereis a reflected wave
R exp(−jkx) which propagates to the left and a transmitted waveT exp(jkx) which carries on to the right
past the change in section.

x = 0

ejkx

Re−jkx

Tejkx

A1 A2

Figure 3.4: Change in duct section

For low-frequency applications, we can
assume that the only thing that matters is the
change in area going from one section to the
next. If the initial part of the duct has area
A1 and the second part areaA2, the bound-
ary conditions at the change in sectionx = 0
are continuity of pressure and conservation
of mass. The first of these conditions is
simple; the second requires that the volume
flow rate be conserved across the interface,
so thatA1U1 = A2U2 whereU is acoustic
velocity, which we can relate to the acoustic
pressure using equation 1.12. Settingx = 0,
the boundary conditions are then:

1 + R = T, (3.12a)

A1(1 − R) = A2T. (3.12b)
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Solving forR andT , we find that:

R =
A1 − A2

A1 + A2
, (3.13a)

T =
2A1

A1 + A2
. (3.13b)

Note that whenA2 → ∞, R → −1 andT → 0 so that, on this theory, an open-ended duct reflects the
whole signal back from the end and no sound escapes. As might be expected, whenA2 = A1, R = 0 and
T = 1 so the sound travels unaffected.

An application of changes in duct section is the exhaust muffler, such as those seen on the motorcycles
of thoroughly respectable acoustics lecturers on the exhaust pipes of noisy brats. The simplest form of
muffler, Figure 3.5 is simply a section of pipe with a greater cross-sectional area than the rest of the pipe.

x = 0 x = L

ejkx

Re−jkx

Tejkx

A1 A2

L

Figure 3.5: A simple exhaust muffler

A muffler has two functions: to reduce the noise
radiated into the surroundings (which is why vehicles
are obliged to have them) and to increase the engine
power (which is why people fit new ones). The first
function is fulfilled by modifying the pressure field
which reaches the open end of the exhaust, the sec-
ond by imposing a reflected wave which alters slightly
the exhaust characteristics of the engine cylinder.

The muffler shown in figure 3.5 is the simplest de-
vice we can imagine but it will give us an idea of the behaviourof a realistic system. We need boundary
conditions atx = 0 and atx = L. The pressure and continuity conditions atx = 0 are:

1 + R = T2 + R2, (3.14a)

A1(1 − R) = A2(T2 − R2), (3.14b)

and atx = L:

T2e
jkL + R2e

−jkL = T ejkL, A2(T2e
jkL − R2e

−jkL) = A1T ejkL. (3.15a)

Rearranging these equations, we can eliminateT2 andR2 (we are not very interested in what happens inside
the muffler) to findT , the transmitted wave. Combining equations 3.14 yields:

(A2 + A1) − (A1 − A2)R = 2A2T2,

(A2 − A1) + (A2 + A1)R = 2A2R2,

and, writingm = A2/A1:

(m + 1) + (m − 1)R = 2mT2,

(m − 1) + (m + 1)R = 2mR2.

Similarly equations 3.15 can be combined:

2mT2e
jkL = (m + 1)T ejkL,

2mR2e
−jkL = (m − 1)T ejkL.

We can eliminateR2 andT2 to find the transmitted wave:

T =
cos kL − j sin kL

cos kL − j(m + m−1)/2 sinkL
(3.16)

The most interesting thing to know from an environmental point of view is the magnitude of the transmitted
wave:

|T | =

(

1 +
(m − m−1)2

4
sin2 kL

)−1

(3.17)
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Looking at this equation, we can see that the transmitted wave amplitude is minimized for certain values of
kL, if we takem fixed. The net effect is that the muffler acts as a low pass filter.

We can also calculate the reflected wave amplitude:

R =
m + 1

m − 1
(T − 1), (3.18)

showing that quite a strong wave is reflected back into the engine. With the correct timing, which depends
on the length of the exhaust pipe leading up to the muffler, this can increase the engine power slightly.

3.4 The Helmholtz resonator

One of the most important resonant systems is theHelmholtz resonator, the classic example of which is the
wine or beer bottle. It is modelled, figure 3.6, as a volumeV connected to the outside world by a neck of
lengthl and cross-sectional areaS. We can estimate the resonant frequency of the system by considering
the motion of a ‘plug’ of fluid in the neck of the bottle under the action of an external force and an internal
restoring force due to the compressibility of the fluid in thebulb.

S

l ξ

V

Figure 3.6: Helmholtz’ bottle

Assuming that the process is adiabatic, the density and pressure
in the bulb are related by:

p = kργ ;
dp

dρ
= c2,

as in§1.2. If the plug of fluid in the neck of the bottle is displaced
by an amountξ (assumed positive out of the neck), the volume of
fluid inside the bulb changes by an amountSξ. Using subscript0 to
indicate mean values, the resulting change in density is:

ρ

ρ0
=

V

V − Sξ
,

=
1

1 − (S/V )ξ
,

≈ 1 − S

V
ξ,

by the binomial theorem and the corresponding change in pressure
is:

p − p0 = −ρ0
c2S

V
ξ.

The equation of motion for the plug can then be written, noting that its massm = ρ0Sl:

ρ0Slξ̈ + ρ0
c2S

V
ξ = −paS,

wherepa is the externally applied pressure. This is the equation of motion for an oscillator with a resonant
frequency:

ω =

√

c2S

V l
.

Helmholtz resonators can be used whenever you want to reducenoise at some known frequency. One
of the main applications is in acoustic liners used in aircraft engines, which are made up of a large number
of small Helmholtz resonators with dimensions chosen to absorb noise at a specified frequency.
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Sound from a wine bottle

A wine bottle has internal volumeV ≈ 7.5 × 10−4m3 and a neck of lengthl ≈ 0.05m and cross-sectional
areaS ≈ 7.854 × 10−5m2. The resonant frequency is then about 492rad/s, or 78Hz.

3.5 Questions

1. A point source of wavenumberk is placed near a pressure release surface, on which the boundary
condition is that the pressure be zero. Calculate the effectof the boundary on the radiated sound.

2. a) Calculate the wave reflected from the open end of a duct (i.e. a pressure release surface). This
is a simple model for the behaviour of an engine exhaust or an organ pipe.

P = 0

Figure 3.7: Open ended duct

b) Calculate the resonant frequencies of a duct of lengthL which is open at both ends. This is a
simple model of the resonant behaviour of an engine exhaust.Calculate the acoustic velocity at
the end of the duct. Why might this be useful?

3. The density of Perspex is about 1200kg/m3. Estimate the attenuation of a normal wave of frequency
100Hz, transmitted through an aircraft window of thickness 5mm. Perform the same calculation for
an aluminium (density 2700kg/m3) wall of thickness 2mm. Which path reduces the cabin noise
most and what would be the first easy way to reduce the noise inside the aircraft? What happens to
noise at 1kHz?

4. A turbofan engine has a main fan with 20 blades operating at6000rpm. In order to reduce the
radiated noise, it is required to line the inlet of the enginewith a material composed of cells which
act as Helmholtz resonators, figure 3.8. The maximum thicknessw of the liner material is 3mm. For
aerodynamic reasons, the cell opening diameterd is required to be 2mm and the cell internal depth
h is limited to 10mm. Estimate the cell diameterD required for the acoustic liner.

D

d

w

h

Figure 3.8: A cell of an acoustic
liner





Chapter 4

Measuring sound

So far we have talked about sound without thinking about how we measure it. There are two important
devices available to us for sound measurement: microphonesand ears. They work in a similar manner, but
with the important difference that ears are directly connected to a signal-processing system which extracts
extra information about the sound field while microphones usually only give us a simple recording at one
point.

4.1 Microphones

p

V

Figure 4.1: The principle of the
condenser microphone: the defor-
mation of the diaphragm changes
the capacitance of the system which
alters the output voltageV

The simplest device for the measurement of sound is a microphone.
These are mechanical devices which convert the mechanical input of
acoustic pressure fluctuations into an electrical signal. For high qual-
ity measurements, we usually use condenser microphones which are
capacitors with one flexible plate which is exposed to the sound field.
Movement of the plate changes the capacitance of the system and
alters the voltage across the plates, generating an output signal, fig-
ure 4.1. The disadvantage of condenser microphones is that they need
an external power supply, but they are still used where high quality
measurements or recordings are needed. An alternative, which is
more robust and simpler to use is the piezoelectric device which in-
corporates a solid which generates an electric charge in response to
mechanical load.

In either case, the output from the system is a voltage which is
proportional to the acoustic pressure which can then be processed
using standard techniques. This can be done in real time (effects
pedals) or using recorded data (ripping CDs). The main pointto
remember is that the Shannon sampling theorem tells us we have to

record the data at a frequency (number of samples per second)at least twice as high as the highest frequency
in our signal. The human ear can detect frequencies up to about 20kHz so music is digitally recorded at
44.1kHz to give reasonable reproduction.
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4.2 Ears

Figure 4.2: The human ear (from
Gray’s anatomy, via Wikipedia)

The human, or other animal, ear can be viewed as a type of micro-
phone, although it has integrated signal processing and is mechani-
cally a bit more complicated than the microphones we plug into our
measurement systems. Figure 4.2 shows a section through thehuman
ear. Sound coming from outside travels down the ear canal which
terminates at the eardrum (tympanic membrane). The eardrumis
connected to the inner ear by a mechanical linkage of three bones,
the hammer, anvil and stirrup. This connects to thecochlea, a liq-
uid filled organ which allows the ear to detect the amplitude and
frequency of incoming sounds. A nerve takes the signal from the
cochlea and transfers it to the brain where further signal processing
allows us to extract more information about the sound we are hearing.

The cochlea is a tube but, because it tapers and has mechanical
properties which vary along its length, different frequency compo-
nents of the incoming sound propagate at different rates. This means

that the components generate a maximum signal at different positions on the cochlea, decomposing the
sound into elements which the brain can then process.

4.3 Multiple microphones

One thing we have noticed about our ears is that they tell us where sound is coming from. In part, this
is because we can use head movement to tell us something abouthow the perceived sound changes with
direction but it is mainly due to how our brains combine the signals from our two ears. We can do the same
thing with microphones to characterize sound fields: the classic application is the detection of submarines
by an oil-covered sweaty chap listening to headphones in a war movie.

Example: Dipole microphone

f

R
x̂

θ

Figure 4.3: Dipole coordinate sys-
tem

Very often we want to be able to measure sound from a particular
direction, either to characterize a source or to reject noise from par-
ticular directions (in an aircraft microphone system, for example).
The simplest method for doing this is to use two microphones joined
together. We can work this out directly, or we can use the principle
of reciprocity. This says that if we switch the source position and
the microphone position, the microphone measures the same sound
in both cases. You can see that this is so by switchingx andy in
Equation 2.8 and noting that the distance does not change. Ifwe put
two sources together and calculate the noise at some other point, this
is equivalent to the noise measured by two microphones if noise is
generated at the original microphone point. Because the sound field
is made up of contributions from two sources, it is called adipole
system.

The form of the acoustic field for a dipole system can be derived
from first principles. If we start with two sources of equal and op-
posite strength, separated by a small distancea, their positions are
(±a/2, 0, 0). Then the total sound at some point is:

p =
q(t − R+/c)

4πR+
− q(t − R−/c)

4πR−

, (4.1)

R± = [(x ∓ a/2)2 + y2 + z2]1/2.
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We want to calculate the total radiated sound for (very) small values ofa assuming thatf = aq thedipole
momentremains constant. The easiest way to do this is to expandp in a Taylor series:

p ≈ p|a=0 +
dp

da

∣

∣

∣

∣

a=0

a + . . . . (4.2)

Differentiating (4.1):

d

da

q(t − R±/c)

4πR±

= −∂R±

∂a

(

q̇(t − R±/c)

4πR±c
+

q(t − R±/c)

4πR2
±

)

,

∂R±

∂a

∣

∣

∣

∣

a=0

= ∓1

2

x

R
,

R = (x2 + y2 + z2)1/2.

Using these results in (4.1):

p ≈ a
x

R

(

q̇(t − R/c)

4πRc
+

q̇(t − R/c)

4πR2

)

. (4.3)

We can rewrite this by noting thatf = aq andx/R = cos θ:

p =

(

ḟ(t − R/c)

c
+

f(t − R/c)

R

)

cos θ

4πR
. (4.4)

If we look at this as a sound generating system, it tells us that the maximum noise comes atθ = 0
and the minimum (zero) at right angles to the line through thesources, because of cancellation effects. If
we apply reciprocity, however, and assume that thesourceis at x and treat the dipole as a combination
of two microphones, the output signal is one which amplifies sound from theθ = 0 direction and cancels
out noise fromθ = π/2. This allows you to use the system in noisy environments where you want to
ensure that only sound from one direction is accepted in the system. A good example would be the headset
microphones used by pilots: you want to ensure that the soundfrom the pilot is accepted in the system but
the background noise is rejected.

Microphone arrays

If you want to be more particular about your measurements, you can add more microphones to set up a
microphone array. This is a number of microphones whose signals are combined in such a way as to
amplify the sound from a particular position or direction. One of the main applications of such arrays is a
line of microphones towed behind a ship for submarine detection, although they are also used in acoustic
experiments to characterize or locate noise sources.

Source

Rs

θs

Focus

Figure 4.4: Schematic of a linear microphone array

Figure 4.4 shows the oper-
ation of an array. We are in-
terested in sound from a ‘fo-
cus’ point. What we need
to know is how much sound
we will pick up from a source
at some other position. The
sound from the source will
be exp(jkRs)/4πRs. The re-
sponse of the array is approxi-
mately an integral along the line
of microphones with each mi-
crophone’s signal rephased to
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amplify sound coming from the
‘focus’ position:

S =

∫ L/2

−L/2

ejkRs

4πRs
e−jkRf dx. (4.5)

We can approximate the integral by noting that for distant sources1/Rs is approximately constant for all
microphones and, using a Taylor series, we can write:

Rs ≈ Rs|x=0 −
xs

Rs

∣

∣

∣

∣

x=0

x,

Rs − Rf ≈ (Rs − Rf )|x=0 − (cos θs − cos θf )x.

Inserting this into equation 4.5:

S =
L

2

ejk(Rs−Rf )

2πRs

sin k(cos θs − cos θf )L/2

k(cos θs − cos θf )L/2
.
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Figure 4.5: Array responsesin x/x: a: response;b ampli-
tude indB.

The amplitude of the response has the form
of a sin x/x curve. This has a maximum when
cos θs = cos θf ; this is no surprise, it simply
means that we hear the most noise when we
‘look’ straight at the source. The shape of the
curve is shown in Figure 4.5. We can see that
as we move away from the focus position, the
amplitude of the response is smaller: by look-
ing in one direction, we reject noise from other
directions. We can also see from the shape
of the curve that increasingk (proportional to
frequency), the amplitude of the response be-
comes smaller. So the array gives better dis-
crimination at high frequency. We get the same
effect by increasingL, the length of the array.
The performance of the array is characterized
by the parameterkL (so no change there then).



Chapter 5

Moving sources

Yeeeeeeeeehaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaw.

Major T.J. “King” Kong (Slim Pickens) inDoctor Strangelove or: How I learned to stop
worrying and love the bomb.

As you may be aware from the movies and the scream of Major Kongas he plummets to his doom
astride a bomb, the sound heard from a source changes if the source is moving. As Major Kong falls
Russia-wards, he accelerates (Isaac Newton says he has to).This acceleration changes the frequency of his
shout as he falls.

Figure 5.1: A simple model for the Doppler effect,a: stationary source;b: moving source.

Figure 5.1 shows what is happening. Figure 5.1a shows the wavefronts radiating from a stationary
source. They propagate at the speed of sound and along any line from the source, they are equidistant. In
figure 5.1b, the source moves to the right at some velocityV . The wavefronts still travel at the speed of
sound, but each is generated a point successively further tothe right. This causes the wavefronts to bunch
up ahead of the source and stretch out behind it. This obviously leads to a change in the frequency of the
sound at some observer position but also to a change in the amplitude, as more or fewer wavefronts arrive
per unit time.

To quantify the effect of motion on the sound radiated by a source, we use the solution of the wave
equation, equation 1.10, with a moving point source:

q(y, t) = q(t)δ(y − y0(t)).

29



30 CHAPTER 5. MOVING SOURCES

This represents a point source which is aty = y0 at timet. Inserting this into equation 1.10:

p =

∫

τ

∫

V

q(t)
δ(τ − t + R/c)

4πR
dV dτ. (5.1)

This can be solved using the normal relationship for the delta function, but with the change of variables
τ → g whereg(τ) = τ − t + R/c:

∫

δ(g(τ))f(τ) dτ =
f(τ)

|dg/dτ |

∣

∣

∣

∣

g(τ)=0

.

Integrating overτ in equation 5.1
∫

τ

δ(τ − t + R/c)

4πR
dτ =

1

4πR|1 + ∂R/∂τ/c|
where

∂R

∂τ
= −∂y0

∂τ
.
x − y0

R
,

1

c

∂y0

∂τ
= M,

the source (vector) Mach number and

Mr = −M.
x− y0

R
,

the relative Mach number of the source in the direction of theobserver, so that

p =

∫

V

q(τ)

4πR|1 − Mr|
dV.

Becauseq is a point source, we can integrate overV to find:

p =
q(τ)

4πR|1 − Mr|
.

Finally, for a moving source with monopole strengthq and dipole strengthf :

p =
∂

∂t

q(τ)

4πR|1 − Mr|
+ ∇.

f(τ)

4πR|1 − Mr|
. (5.2)

The important thing to note here is that the sound is amplifiedby a factor1/|1 − Mr|, theDoppler
factor. For a supersonic source, it can happen that1 − Mr = 0 and the pressurep is infinite. It is
also important to realize that a source which is steady in itsown reference frame (the loading on a pro-
peller blade, for example) can still radiate noise if it is moving, due to variations in the Doppler factor.

xq

v

Figure 5.2: Source in recti-
linear motion

We now look again at the problem of a monopole source moving ina
straight line, figure 5.2. The position of the source isx = vt. The general
problem is left as an exercise, and here we will only look at the sound radiated
to an observer on the axis of motion. To work out the radiated noise for an
observer ahead of the source, we need the following quantities:

R = c(t − τ) = x − vτ,

τ =
t − x/c

1 − M
,

R =
x − vt

1 − M
,

Mr = M.
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The source-observer Mach numberMr is equal to the source Mach numberM for observer positions ahead
of the source (x > vt) and−M for observer positions behind the source (x < vt). Inserting the various
quantities into equation 5.2:

p =
∂

∂t

1

4π

q(τ)

x − vt
.

To look at the effect of motion on the frequency of the noise, consider a source withq = exp[−jωt].
The sound heard by an observer will be proportional toexp[−jωτ ]. Sinceτ = (t − x/c)/(1 − M), the
sound at the observer will be proportional to

exp[−jω(t − x/c)/(1 − M)]

and the perceived frequency will beω/(1−M). For points behind the source,R = x+vτ and the perceived
frequency isω/(1 + M).

5.1 Questions

1. Repeat the example on page 30 for an observer or microphoneposition which is not on the line
of motion of the source. In writing the result in a compact form, you might find the definition
β2 = 1 − M2 useful.

2. A turboprop aircraft has four-bladed propellers which rotate at 500rpm. A noise measurement is
taken on the ground as the aircraft flies overhead at height 200m. If the measurement microphone
is 400m ahead of the aircraft and the measured frequency of the first harmonic of the noise is 60Hz,
how fast is the aircraft flying?





Chapter 6

Aircraft noise: propellers

The calculation of the noise generated by a general body in arbitrary motion is a hard problem. The sound
radiated by a source undergoing motion as simple as pure rotation is qualitatively different from that of a
source moving in a straight line. This is partly because the calculation of the retarded time and the Doppler
factor is not as simple as in the linear motion case and partlybecause of the difficulty of calculating the
source terms, the force and volume sources of equation 5.2.

6.1 Sound from rotating sources

To keep things as simple as possible without making them unrealistic, we will look at the problem of the
sound radiated by a rotating point source. This is a very simple system but contains most of the behaviour
of real rotors and will spare us the agonies of dealing with superfluous difficulties. The arrangement is
shown in figure 6.1: a point source at radiusa rotates at frequencyΩ. We assume that there is no forward
motion, so this system corresponds to a stationary propeller, or a helicopter rotor in hover.

Ω

a

x

y

z

Figure 6.1: A rotating
source

We will use cylindrical coordinates(r, θ, z) and assume that the observer
is positioned at a point(r, 0, z). Changing the angular position of the observer
will only affect the phase of the sound and not its overall shape. To make
things easier for ourselves, we will work in terms of the retarded time rather
than the observer time.The position of the source at timeτ is:

(a cosΩτ, a sinΩτ, 0).

Differentiating, its velocity is:

(−aΩ sin Ωτ, aΩ cosΩτ, 0).

The source observer distance is (remember the observer doesnot move):

R2 = R2
0 + a2 − 2ar cosΩτ,

whereR0 is the distance of the observer from the centre of rotation,

R0 = [r2 + z2]1/2.

We have the source-observer distance, but to calculate the Doppler factor we need to know the source–
observer Mach numberMr:

Mr = −1

c

∂R

∂τ
,

∂R

∂τ
= a

r

R
Ω sinΩτ,

Mr = − r

R
Mt sin Ωτ.
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HereMt = aΩ/c is the rotational Mach number of the source. The Doppler factor is:

1

|1 − Mr|
=

R

|R + rMt sin θ| ,

whereθ = Ωτ is the position of the source at timeτ . The first obvious thing is to check if and when the
Doppler factor becomes (nominally) infinite:

R = −rMt sin θ.

This can be solved by squaring both sides and remembering that sin2 θ = 1 − cos2 θ:

M2
t r2 cos2 θ − 2ar cos θ + R2

0 + a2 − M2
t r2 = 0.

If we now scale all lengths on the source radiusa, the equation becomes:

M2
t r2 cos2 θ − 2r cos θ + R2

0 + 1 − M2
t r2 = 0, (6.1)

which has two solutions:

cos θ =
1

M2
t r

± 1

M2
t r

[(1 − M2
t )(1 − M2

t r2) − M2
t z2]1/2. (6.2)

If the source is to approach the observer at sonic velocity, the solution forcos θ must be real. This means
that the term inside the square root must not be negative:

(1 − M2
t )(1 − M2

t r2) − M2
t z2 ≥ 0.

Solving with this term set to zero:

z2 = (M2
t − 1)

(

r2 − 1

M2
t

)

, (6.3)

which defines a curve in ther–z plane dividing points where the source approaches at sonic velocity from
points where it does not. Forz2 to be positive (i.e. a valid point in the plane)Mt > 1 andr > 1/Mt.
This means that a source must be travelling supersonically if it is to approach an observer position at
sonic velocity (hardly a surprise) and the observer position must lie outside thesonic radius1/Mt, which
is the radius where the source has, or would have, sonic rotation velocity. Figure 6.2 shows the divid-
ing curves for different values ofMt. The region inside the curve, labelled ‘subsonic’, never experi-
ences the source approaching at sonic velocity, while the points in the outer region, labelled ‘sonic’, do.

Mt = 1.125

Mt = 1.5

Mt = 2

r

z

r = 1

Subsonic

Sonic

Figure 6.2: Points subject to
Doppler radiation from a rotat-
ing source. The dashed lines
indicate the curvez2 = (M2

t −
1)(r2 −1/M2

t ) for different tip
Mach numbers.

We have managed to get this far without ever calculating the noise
heard at some observation point. If we now calculate the quantities we
need to work out the noise:

R = [1 + r2 + z2 − 2r cos θ]1/2,

1 − Mr = 1 + Mt
r

R
sin θ,

Ωt = θ + MtR,

1

4πR|1 − Mr|
=

1

4π|R + rMt sin θ| ,

where lengths are still scaled ona andθ is still the source position at the
retarded timeτ .

To calculate the radiated noise, we simply take different values ofθ,
ranging from0 to 2π and calculate the corresponding values ofR and the
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Mt = 1/2 Mt = 1

Mt = 2

0.5 1 1.5 2 2.5 3 3.5
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0.2

0.4

0.6

0.8

Ωt/π

p

Figure 6.3: Time records for rotating source.

arrival timesΩt. If the values ofθ are evenly spaced, we do not expect the values ofΩt to be evenly spaced,
but they will cover a range of2π.

Figure 6.3 shows1/4πR|1 − Mr| plotted againstΩt/π for three different values ofMt. Note that
in each case,Ωt covers a range of2π. As you might expect, the noise forMt = 0.5 is weaker (though
not much weaker) than that forMt = 1 which is very much weaker than that forMt = 2. This is not
unexpected but there is something strange about the noise record forMt = 2: there are three values of
pressure for some time points.

The reason for this is shown in figure 6.4 which shows the position θ as a function ofΩt. ForMt = 2,
there is a range ofΩt for which there are three values ofτ , meaning that the sound received at each time
has a contribution from three different source positions. This is a feature unique to supersonically rotating
sources and illustrates the manner in which noise from such sources isqualitativelydifferent and is not
just a louder version of subsonic source noise.For higher rotation speeds, there can be five, seven or more
retarded times for a given arrival time.

Mt = 1/2

Mt = 1

Mt = 2

0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

Ωt/π

θ/π

Figure 6.4: Retarded times for rotating source: the vertical dashed line indicates a value oft for which there
are three values ofτ .
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6.2 Questions

1. Given a source rotating at Mach numberMt, at what azimuthal angle does it generate maximum
acoustic pressure at an observer? Account for both supersonic and subsonic source Mach numbers.

2. The figure below shows schematically the layout of the propellers on one wing of a four-engined
turboprop. The propellers are of diameter 3m and their hubs are 2.25m and 6.75m respectively from
the fuselage (assumed to be of constant section). The propellers are advanced high speed designs
rotating at 2300rpm. Calculate the blade tip Mach number andthus the extent of the region on the
fuselage affected by supersonic source radiation.

3. A supersonic transport makes a turn of radius 300km at an altitude of 12000m. If the flight Mach
numberM = 2, calculate the radius of the ‘quiet zone’ below the aircraft. How would this change if
M were reduced to 1.5?

4. Repeat question 3 of§2.5 but with the piston velocity distribution given byv = V exp[j(nθ − ωt)]
(you will probably need to consult a big maths book such as Gradshteyn & Ryzhik). The result tells
you about how sound at a given frequency radiates from a rotating source.



Chapter 7

Aircraft noise: jets

The approach to sound generation by sources in a flow is that ofLighthill who developed the basis of modern
aeroacoustics in the 1950s, as civil jet engines were being developed. The derivation given here follows
Lighthill’s original approach but is closer to that of Powell who developed a theory of sound generation by
vorticity. The idea is to go through the motions of§1.2 but without linearizing the equations. The exact
equations of inviscid fluid motion are:

∂ρ

∂t
+ ∇.(ρv) = 0, (7.1a)

ρ
∂v

∂t
+ ρv∇v + ∇p = 0. (7.1b)

As in §1.2, we differentiate equation 7.1a with respect to time, equation 7.1b with respect to space and
subtract one from the other:

∇2p − ∂2ρ

∂t2
= ∇.

(

∇p +
∂

∂t
(ρv)

)

. (7.2)

To simplify this equation, we can rearrange equations 7.1. Multiplying equation 7.1b byv and adding
it to equation 7.1a:

∂

∂t
(ρv) + ∇.(ρvv) + ∇p = 0.

Inserting this into equation 7.2:

∇2p − 1

c2
0

∂2p

∂t2
= −∇.

(

∂

∂t
(ρv) + ∇.(ρvv) − ∂

∂t
(ρv)

)

,

which includes the usual approximation for the relationship betweenρ andp. The productρvv is to be read
as a tensor (like a matrix, or vector of vectors) which can be written:

T =





ρvxvx ρvyvx ρvzvx

ρvxvy ρvyvy ρvzvy

ρvxvz ρvyvz ρvzvz



 ,

or, more compactly,Tij = ρvivj . The net result is then:

∇2p − 1

c2
0

∂2p

∂t2
= −∇∇(ρvv), (7.3)

which is an approximation to Lighthill’s theory of aerodynamically generated sound.
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7.1 Lighthill’s eighth power law for jet noise

Solving Lighthill’s equation for different sources is morethan we can manage in these notes, but we can
derive a scaling law for jet noise which was one of the first great successes of the theory. The ‘solution’ of
equation 7.3 is

p = −∇∇
∫

V

T(y, t − R/c0)

4πR
dV,

whereT = ρvv. In the far field, we can approximate this integral by differentiating it: when we do
this, we will retain only terms which depend on1/R (everything else decays much more rapidly). Setting
coordinates so that the origin is inside the source region,x − y ≈ x and

p ≈ 1

4π

xx

x3

∫

V

1

c2
0

∂2

∂t2
T(y, t − R/c0) dV.

L V

Figure 7.1: Parameters for jet noise.

There is no general solution for this equation, but we can derive a scaling law for the radiated acoustic
power. Figure 7.1 shows a simple jet flow with the relevant parameters indicated. We take a characteristic
lengthL, characteristic velocityV and a mean densityρ0. Then:

T ∼ ρ0V
2,

∂

∂t
∼ V

L
,

p ∼ 1

4π

1

x

1

c2
0

(

V

L

)2

ρ0V
2L3,

and the pressure scales as:

p ∼ ρ0
V 4

c2
0

L

x
.

From equation 1.16, the intensity scales as

Ī ∼ ρ0
V 8

c5
0

(

L

x

)2

.

The total acoustic powerW is the intensity integrated over a spherical surface of radiusx and

W ∼ ρ0
V 8

c5
0

L2. (7.4)

The total acoustic power thus scales on the eighth power of jet velocity. This is Lighthill’s eighth power
law and was derived before experimental data were availableto confirm it: it is one of the few scientific
predictions to have been a genuine prediction. It is strictly only true for low speed flows, because we have
implicitly assumed the source to be compact. At higher speeds, the characteristic frequency of the source
increases and interference effects become important.
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Figure 7.2: Trends in aircraft design: the Boeing 777 has twoengines providing almost as much thrust as
the four engines of the Boeing 747, a quieter, more fuel-efficient solution.

Example: Modern aircraft

Using Lighthill’s scaling law, we can estimate the difference in noise from a twin-engine and four-engine
aircraft. We know that the thrust from an engine is proportional toρV 2D2. The total thrustF is the same
in both cases, and:

F = 4ρV 2
4 D2

4 = 2ρV 2
2 D2

2,

and the total noiseW is:

W4 = 4V 8
4 D2

4,

W2 = 2V 8
2 D2

2.

We can calculate the ratio of the total noise, by calculatingthe ratio of the jet velocities:

F/4

F/2
=

(

V4

V2

)2(
D4

D2

)2

,

V2 =
√

2
D4

D2
V4,

and, if we assume thatD2 = 2D4,

W2

W4
=

1

2

(√
2

2

)8

(2)
2
,

= 1/8,

which is a noise reduction of 9dB.

7.2 Questions

1. The thrust from a jet of diameterD scales asρV 2D2. For a fixed thrust, find a relationship between
the noise from the jet and its diameter. What relevance do youthink this relationship has for aircraft
design?

2. Given that jet thrust scales asρV 2D2, estimate the noise reduction to be had by converting a four
engined aircraft to use two engines of twice the exhaust diameter.
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Some useful mathematics

Coordinate systems

Cylindrical coordinates:

y

z

x

r

z

θ

x = r cos θ, y = r sin θ;

r = (x2 + y2)1/2, θ = tan−1 y/x.

Spherical coordinates:

y

z

x

r

θ

φ

x = r sin φ cos θ, y = r sin φ sin θ,

z = r cosφ;

r = (x2 + y2 + z2)1/2, θ = tan−1 y/x,

φ = tan−1 z/(x2 + y2)1/2.

Differential operators

In Cartesian coordinates:

∇f =

(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

,

∇.f =
∂fx

∂x
+

∂fy

∂y
+

∂fz

∂z
,

∇2f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
.

In cylindrical coordinates:

∇f =

(

∂f

∂r
,
1

r

∂f

∂θ
,
∂f

∂z

)

,

∇.f =
1

r

∂

∂r
(rfr) +

1

r

∂fθ

∂θ
+

∂fz

∂z
,

∇2f =
1

r

∂

∂r

(

r
∂f

∂r

)

+
1

r2

∂2f

∂θ2
+

∂2f

∂z2
.

In spherical coordinates:

∇f =

(

∂f

∂r
,
1

r

∂f

∂φ
,

1

r sin φ

∂f

∂θ

)

,

∇.f =
1

r2

∂

∂r

(

r2fr

)

+
1

r sinφ

∂

∂φ
(fφ sin φ)

+
1

r sin φ

∂fθ

∂θ
,

∇2f =
1

r2

∂

∂r

(

r2 ∂f

∂r

)

+
1

r2 sin φ

∂

∂φ

(

sin φ
∂f

∂φ

)

+
1

r2 sin2 φ

∂2f

∂θ2
.

Complex variables

We often use complex variable notation to make life
easier. If we write a complex numberz = x + jy
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wherej =
√
−1, then:

z = |z|ejφ,

|z| = (x2 + y2)1/2,

φ = tan−1 y/x.

In dealing with constant frequency waves, we can
use the relation:

e−jωt = cosωt − j sinωt

and if we wish to consider a general wavep of a
fixed frequency, say, this can be written:

p(t) = P e−jωt,

where nowP contains information about the ampli-
tude and the phase.

The Dirac delta

The basic rule for integrating the delta function is:
∫ ∞

−∞

f(x)δ(x − x0) dx = f(x0),

and in the more complicated case where the argu-
ment of the delta function is itself a function:

∫ ∞

−∞

f(x)δ(g(x)) dx =
f(xg=0)

|dg/dxg=0|
.



He has never again encountered the most esteemed Arkady Apollonovich Sempleyarov
in connection with acoustical problems. The latter was quickly transferred to Bryansk and
appointed director of a mushroom-growing center. Nowadays, Moscow residents eat pickled
saffron milk caps and marinated white mushrooms with endless relish and praise, and never
stop rejoicing in the lucky transfer. Since it is all a matterof the past now, we feel free to say
that Arkady Apollonovich never did make any headway with acoustics, and, for all his efforts
to improve the sound, it remained as bad as it was.

The Master and Margarita, Mikhail Bulgakov



1.2 exp jkR/4πR exp[−jωt].

1.4 set20 log10 R2/R1 = 60 and findR2 = 3000m.

2.3 treat the intake as a piston with radiusa = 1.5m, k = 80 × 2π/340 = 1.478/s andv = 0.02m/s.
Then:

p = −ρ0cv(ejkRa − ejkz),

with z = 20m. Insert the numbers:

Ra = 20.056,

p = −1.2 × 340 × 0.02(cos 29.643 + j sin 29.643− cos 29.56 − j sin 29.56)

= 8.16 × (0.080299− j0.019970),

|p| = 0.67519,

SPL= 20 log10

|p|
2 × 10−5

,

= 90.5dB

2.4

pe−jωt = 2
∂

∂t

∫∫

S

q(y, τ)

4πR
dS,

p = −j
ωρ0v

2π

∫ 2π

0

∫ a

0

ejkR

R
r1 dr1 dθ1,

R = (r2 + r2
1 − 2rr1 cos θ1 + z2)1/2,

In the far fieldR ≈ R0 − r1 sin φ cos θ1 and1/R ≈ 1/R0 so that:

p ≈ −j
ωρ0v

2π

ejkR0

R0

∫ a

0

∫ 2π

0

e−jkr1 sin φ cos θ1 dθ1, r1 dr1.

Using the integral definition ofJ0( · ):

p = −jωρ0v
ejkR0

R0

∫ a

0

J0(kr1 sin φ)r1 dr1.

Changing variablesx = kr1 sin φ:

p = −jωρ0v
ejkR0

(k sin φ)2R0

∫ ka sin φ

0

J0(x)xdx.

Integrating:

p = −jωρ0v
ejkR0

ka sinφR0

J1(ka sin φ)

ka sinφ
.

3.1 As in the notes, place at source at the image point in the boundary. The boundary condition is now
thatp = 0 so the sound field is:

p =
ejkR+

4πR+
− ejkR

−

4πR−

.



3.2 The incident and reflected waves areA exp jkx andB exp[−jkx] as before. Applying the boundary
condition atx = 0:

A + B = 0,

B = −A,

p = A(ejkx − e−jkx).

3.3 As already proven:

|T | =

[

1 +

(

ωm

2ρc

)2

cos2 θ

]−1/2

.

For Perspex,m = 6kg/m2. With ω = 2π × 100, |T | = 1/4.727 = −13.5dB. For aluminium,
m = 5.4kg/m2 and|T | = 1/4.27 = −12.6dB. At 1kHz, |T | = 1/46.2 = −33.3dB for Perspex
and|T | = 1/41.59 = −32.4dB.

The noise reduction for each material is about the same: thismeans that increasing the thickness
of one material will not help the noise reduction much. Both materials need to be made thicker (or
insulated) to give good noise reduction. At 1kHz, the noise reduction is large so there is no need to
increase it.

3.4 The basic frequency isω = 2π × 20 × 6000/60 = 12.566 × 103rad/s. Rearrange the formula for
resonant frequency to find:

V =
c2S

ω2l
= 7.666× 10−7m3,

V = hπD2/4,

D = (4V/πh)
1/2

= 10mm.

5.2 Given the source frequency and position, we can work out the relative Mach number. The source
frequency is

f = 4 × 500/60,

= 33.3Hz

with the multiplication by 4 because there are four blades. The angle between the source velocity and
the direction to the microphone istan−1 200/400 = 0.464rad. If the measured frequency isf ′, then

f ′ =
f

1 − Mr
,

Mr = 1 − f

f ′
= M cos θ,

M =
1 − f/f ′

cos θ
,

whereM is the flight Mach number. Inserting the numbers,

M =
1 − 33.3/60

cos 0.464
= 0.498

and the flight velocity isMc = 0.498× 340 = 169m/s.



6.1 In the subsonic case, the highest pressure occurs whenMr is a maximum, i.e. when the source
approaches the observer at its highest velocity. In the supersonic case, the highest pressure occurs if
the source approaches the observer atMr = 1 and otherwise whenMr has a maximum.

6.2 First calculate the tip Mach number:

Mt =
Ωa

c
,

=
2π2300

60

1.5

340
,

= 1.063.

From the notes the region affected by a supersonic source is:

z2 = (M2
t − 1)

(

r2 − 1

M2
t

)

.

The affected region will be that due to the outboard propeller where, scaling on propeller radius,
r = 6.75/1.5 = 4.5 and

z2 = (1.0632 − 1)

(

4.52 − 1

1.0632

)

,

= 2.52.

The affected region is upstream and downstream of the propeller so

z = ±1.59

and we have to rescale to get the full extent so the solution is

z = ±1.59 × 1.5,

= ±2.39m

and the length of the affected region is 4.78m.

7.1 The thrust and noise power are given by:

T = ρV 2D2,

W =
ρ

c5
V 8D2.

For fixed thrust:

V =
1

D

(

T

ρ

)1/2

,

so that the noise is given by:

W =
ρ

c5

1

D8

(

T

ρ

)4

D2,

=
T 4

ρ3c5

1

D6
.

The implication is that large jets are very much quieter thansmall ones which is why modern aircraft
have such high bypass ratios: to reduce the jet exhaust velocity.



7.2 Assume a given total thrustT . On the two-engined aircraft:

T

2
= V 2

2 D2
2,

W2 = 2V 8
2 D2

2,

where the scaling factors (ρ andc) have been ignored. On the four engined aircraft:

T

4
= V 2

4 D2
4,

W4 = 2V 8
4 D2

4,

so the first thing we can write down is:

W2

W4
=

2

4

(

V2

V4

)8(
D2

D4

)2

.

We know the diameter ratio so we now have to find the velocity ratio. We get this from the thrust:

T/4

T/2
=

(

V4

V2

)2(
D4

D2

)2

,

V2 =
√

2
D4

D2
V4.

Inserting this into the expression forW2/W4

W2

W4
=

1

2

(

1√
2

)8

(2)
2
,

= 0.125.

In decibels, this is10 log10(W2/W4) = −9dB.


