Some of my Published Papers on Magic Squares

These papers are posted here with permission from the journals

At the end of these papers, the list of all of my publication on magic squares is given.

Behforooz-Euler Knight Tour Magic Square With US Election Years

Hossein Behforooz
Utica College
Utica, New York 13502
hbehforooz@utica.edu
Permission to appear in www.mathaware.org from Journal of Recreational Mathematics Published in the Journal of Recreational Mathematics vol. 35 (1)20-22, 2006

Year 2007 was the $300^{\text {th }}$ anniversary of Leonard Euler birth year. He was a great mathematician who has contributed excellent results in mathematics, physics and other fields. At the same time, this brilliant man has spent his valuable time on recreational mathematics too. He was the first person to introduce the knight tours on the chess board and the knight tour magic squares. In the literature we can see several open or closed knight tour magic squares from him. In his birth year celebrations, we witnessed many special lectures about his life and his works. Many books and posters came out. But, I am afraid; I didn't see anything on his recreational mathematics studies. I picked up one of his closed knight tour magic square from one of Martin Gardener's book [1, p.191] and Americanized it and I fixed the following knight tour magic square with 64 US election years from 1788 to 2040. It is worth mentioning here two important points about the knight tour magic squares. From day one, people wanted to know the number of possible knight tours and knight tour magic squares. Very recently we have got the final answers to these questions. By using powerful computers, it has been shown that there are $26,534,728,821,064$ distinct closed knight tours and only 140 distinct knight tour magic squares; see [3] and [4]. The second mystery was the incompleteness of these magic squares. By using the integers $1,2,3 \ldots$ 64 we have seen many open complete knight tour magic squares with magic sum 260 for all rows, columns and two diagonals. But there was no complete closed knight tour magic square with magic sum 260 . In the closed case, the sum of the rows and columns are 260 but the diagonal sums are two different numbers 256 and 264. For almost 300 years it was a dream to have a complete closed knight tour magic square with magic sum 260 for all rows, columns and two diagonals. The fact is that this will not happen. The reason is so simple and obvious. On the chess board, the knight piece moves in alternate color cells (from white to black then from black to white or vice versa). So, in any closed knight tour magic square all the black cells, for example, contain odd numbers and all the white cells contain even numbers. Also, all the cells of one diagonal are white and all the cells of the other one are black. That means, one diagonal contains odd integers and the other one contain even integers. With a simple calculation, we find that $1+3+5+\ldots+65=1024$ and $2+4+6+\ldots+64=1056$. When we divide these two totals by 4 we obtain 256 for the odd diagonal and 264 for the even diagonal and the conclusion is that we will not see a complete knight tour magic square, see also [2, p.93]. But the question is why did a great mathematician like Euler not notice this simple argument and why did people for 300 years expect to see a complete knight tour magic square with magic sum 260 for all rows, columns and two diagonals. Definitely, this problem was not similar to the Fermat Last Theorem to wait for 300 years and have a proof with more than hundred pages. This is the beauty of mathematics. Sometimes simple justifications are not visible and are left to next generations.

Page (2)

Remember that at the end of every research in mathematics we open many doors, roads and paths for others to start and continue that study.

References:

1. Gardner, Martin: Mathematical Magic Show, An MAA Spectrum Book, 1989.
2. Pickover, Clifford: The Zen of Magic Squares, Princeton University Press, 2002.
3. http://en.wikipedia.org/wiki/Knight's tour
4. http://home.freeuk.net/ktn

Behforooz-Euler Knight Tour Magic Square with US Election Years and magic sum 15312

Behforooz-Franklin Magic Square with US Election Years

Hossein Behforooz
Utica College
Utica, New York 13502
hbehforooz@utica.edu
Permission to appear in www.mathaware.org from Journal of Recreational Mathematics Published in the Journal of Recreational Mathematics vol. 35 (1)37-38, 2006

Years ago, after becoming a US citizen, I got a gift (a coffee mug) with the pictures of all US presidents with their names and dates of election years around a lovely coffee mug. Immediately I thought what the heck, let's play with these numbers and create a magic square. I used 64 US election years from 1788 to 2040 and created the following 8 by 8 magic square with Benjamin Franklin style. This magic square has all Franklin Square properties. Later, just for curiosity, I colored these cells with Blue for democrats and Red for Republicans and I also put down their party initials (D for Democrats, R for Republicans, F for Federalists and W for Whigs) in each cell to make it more attractive. I noticed that the right hand half of the table is filled out with 14 D's and 18 R's (no blank cells). The left hand half has 14 D's and only 5 R's and few initials from old parties. There are 8 blank cells at the left side for the future use. In the middle of the magic square conversation which belongs to recreational mathematics (just for fun), here comes political interests and debates. I am not a fortune teller and I am not looking at this crystal ball to predict something about the future of US elections. But as we all know, most of the magic squares have symmetric properties, particularly, Benjamin Franklin squares. If our BehforoozFranklin magic square needs to be symmetric, we should witness more R's (republicans) in the future. Who said that there are no applications for magic squares?

$\begin{gathered} 1992 \\ \text { D } \end{gathered}$	$\begin{gathered} 2028 \\ ? \end{gathered}$	$\begin{gathered} 1800 \\ \text { D } \end{gathered}$	$\begin{gathered} 1836 \\ \text { D } \end{gathered}$	$\begin{gathered} 1864 \\ R \end{gathered}$	$\begin{gathered} 1900 \\ \mathbf{R} \\ \hline \end{gathered}$	$\begin{gathered} 1928 \\ R \end{gathered}$	$\begin{gathered} 1964 \\ \text { D } \end{gathered}$
1840	1796	2032	1988	1968	1924	1904	1860
W	F	?	R	R	R	R	R
1996	2024	1804	1832	1868	1896	1932	1960
D	?	D	D	R	R	D	D
1828	1808	2020	2000	1956	1936	1892	1872
D	D	.	R	R	D	D	R
2004	2016	1812	1824	1876	1888	1940	1952
R	?	D	D	R	R	D	R
1820	1816	2012	2008	1948	1944	1884	1880
D	D	D	D	D	D	D	R
1984	2036	1792	1844	1856	1908	1920	1972
R	?	F	D	D	R	R	R
1848	1788	2040	1980	1976	1916	1912	1852
W	F	?	R	D	D	D	D

Behforooz-Franklin magic square with US Election Years and magic sum 15312 D: Democrat R: Republican F: Federalist W: Whig

Behforooz Magic Squares Derived from Magic-Latin-Sudoku Squares

Hossein Behforooz
Mathematics Department
Utica College
Utica, New York, 13502
hbehforooz@utica.edu
Permission to appear in www.mathaware.org from Journal of Recreational Mathematics Published in the Journal of Recreational Mathematics vol. 36 (4)287-293, June 2012 issue.

Dedication: This article is dedicated to the mathematical games and puzzles inventor Martin Gardner (1914-2010), who was a pioneer in recreational mathematics.

Abstract

: The main motivation of this paper goes back to August 2003 when I was in Boulder, Colorado, to present a talk at the Recreational Mathematics Session of MAA Math-Fest Meeting. During one evening, I attended a magic show on Boulder's Main Street and in one part; the magician entertained the audiences with a table of numbers. I tried to learn the secret of that table and after show I asked the magician to teach me the secret of that table and, of course, he didn't tell me anything. I left the show with a 4×4 table written on my palm and tons of thoughts in my mind to discover the secret of that table ASAP. I couldn't sleep that night at all. In this paper, I will present the same show with my own home made magic squares and I am sure that you will enjoy the show. By using 4×4 Magic-Latin-Sudoku (MLS) squares I will produce a set of 4×4 Behforooz Magic Squares. These squares have incredible and amazing properties. These magic squares can be used to construct different type of fourth order magic squares for any given integer as a pre-assigned magic sum. Very similar to the claim that Archimedes made centuries ago " Give me a place to stand and I will move the earth" and here I am asking you to give me your wish number S, and I will present to you so many 4×4 magic squares with magic sum equal to your wish number S. Also, we can easily create curious mirror magic squares, permutation-free magic squares and upside down magic squares from these MLS squares.

Preliminaries

Magic Square: A magic square is a square matrix of numbers with the property that the sums along rows, columns, and main diagonals are all equal to S which is called the "magic sum".

Latin Square: A Latin square is a matrix of numbers or letters or different colors with the property that each number (letter or color) appears once and only once in each row and column. When all entries on each diagonal are distinct then it is called a double diagonal Latin square. Any numerical double diagonal Latin square is a magic square.

Page (2)
Sudoku Square: A Sudoku puzzle square of order n is an $n \times n$ grid such that each of the numbers $1,2, \ldots, n$ appears once and only once in each row, column and section. The most popular Sudoku squares are grids with nine square sections. If all entries on each diagonal are distinct then it is called an extreme Sudoku Square. Every extreme Sudoku square is a magic square and a double diagonal Latin square. In this case, all three squares are in one square. We call these tables Magic-Latin-Sudoku (MLS) squares.

Four by Four Magic-Latin-Sudoku Squares

We start with a simple puzzle. Complete the following Table 1 with numbers 1,2,3 and 4 and make it an extreme Sudoku square.

Table 1
In order to make the Table 1 an extreme Sudoku puzzle square, there are only two possible cases for the second row. It must be $[4,3,2,1]$ or $[3,4,1,2]$. Then, in each case, we have only one option for the third row and the fourth row. So, there are only two solutions to this puzzle which are the following two fourth orders Magic-Latin-Sudoku squares. To visualize the future process, I have used four different fonts or underlines for the entries of different sets $\{1,2,3,4\}$ and you will notice the reason and the secret of this choice later. Notice that each row, column, diagonal and section contains each number from each font or underline only once.

Table 2

Table 3

Obviously, there are $4!=24$ different cases for the first row and in each case, 2 different cases for the second row and all together there are 48 different solutions to our problem. If we consider four other digits rather than $1,2,3,4$ for the entries, like $2,5,7,8$, then there will be another 48 different solutions.

Page (3)

Behforooz Magic Squares

Consider one of the above solutions, say Table 2, and change the color of numbers in four sets of $\{1,2,3,4\}$ in four different colors.

Then change these numbers color after color to $1,2,3, \ldots, 15,16$. The result will be the following Behforooz Magic Square (Table 5) with magic sum $S=34$. Of course, there are many other fourth order Behforooz Magic Squares.

Here Comes the Fun Part of the Magic Show

Suppose I ask you to give me a positive integer and you say "129". Then I immediately write down this magic square with magic sum $S=129$.

$\mathbf{2 4}$	$\mathbf{3 3}$	$\mathbf{4 1}$	$\mathbf{3 1}$
$\mathbf{4 2}$	$\mathbf{3 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$
$\mathbf{2 9}$	$\mathbf{3 9}$	$\mathbf{3 5}$	$\mathbf{2 6}$
$\mathbf{3 4}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{4 0}$

Table 6
In this magic square, the magic sum $S=129$ appears everywhere. For example:
$24+31+34+40=129, \quad 30+25+39+35=129, \quad 24+33+42+30=129, \quad 33+41+30+25=129$, $24+31+42+32=129, \quad 42+32+29+26=129, \quad 33+41+27+28=129, \quad 24+41+29+35=129$, $33+31+39+26=129, \quad 24+42+35+28=129, \quad 33+30+26+40=129, \quad 33+42+26+28=129$.

Page (4)
There are relations between the squares of the entries too:

$$
\begin{aligned}
& 24^{2}+33^{2}+41^{2}+31^{2}+34^{2}+27^{2}+28^{2}+40^{2}=42^{2}+30^{2}+25^{2}+32^{2}+29^{2}+39^{2}+35^{2}+26^{2}=8576 \\
& 24^{2}+42^{2}+29^{2}+34^{2}+33^{2}+30^{2}+39^{2}+27^{2}=41^{2}+25^{2}+35^{2}+28^{2}+31^{2}+32^{2}+26^{2}+40^{2}=8576
\end{aligned}
$$

If you change your number 129 to any other integer S, there exist other magic squares with magic sum equal to your new number S and the entries of these magic squares satisfy in all of the above properties.

The Secret of the Show

The secret of this mathemagic show is so simple. Choose one of those Behforooz magic squares, say Table 5. We know that for any GIVEN positive integer S there are unique integers q and r such that $S-34=4 q+r$, or $S=34+4 q+r$, with $r=0,1,2,3$. In Behforooz magic square (Table 5), by adding q to all 16 cells and r to four cells of $\{13,14,15,16\}$ we will have the following algorithm magic square with magic sum S

$\mathbf{1}+\boldsymbol{q}$	$\mathbf{1 0}+\boldsymbol{q}$	$\mathbf{1 5}+\boldsymbol{q}+\boldsymbol{r}$	$\mathbf{8}+\boldsymbol{q}$
$\mathbf{1 6}+\boldsymbol{q}+\boldsymbol{r}$	$\mathbf{7}+\boldsymbol{q}$	$\mathbf{2}+\boldsymbol{q}$	$\mathbf{9}+\boldsymbol{q}$
$\mathbf{6}+\boldsymbol{q}$	$\mathbf{1 3}+\boldsymbol{q}+\boldsymbol{r}$	$\mathbf{1 2 + q}$	$\mathbf{3}+\boldsymbol{q}$
$\mathbf{1 1 + q}$	$\mathbf{4}+\boldsymbol{q}$	$\mathbf{5}+\boldsymbol{q}$	$\mathbf{1 4 + q + r}$
Table 7			

In our example, we have $129-34=95=4 \times 23+3$. So, in Table 5, by adding 23 to all cells and 3 to four cells with entries $\{13,14,15,16\}$ we have obtained Table 6 . Obviously, we can add 3 to other color cells $\{1,2,3,4\}$ or $\{5,6,7,8\}$ or $\{9,10,11,12\}$ to obtain other answers. That is why the answer is not unique. Even we can use another Behforooz magic square to present another algorithm table similar to Table 7.

Few Comments

As I mentioned it before, this subject is not brand new stuff and we can find similar procedures in the literature, see [1], [5] and [7]. But there is not any mathematical discussion in their presentations. Also, they have not mentioned the above interesting properties. The main secret in our presentation depends on the special partitioning of the entries of the Behforooz magic squares. The form of partitioning of Behforooz magic squares is important and we cannot use another type of fourth order magic squares in our algorithm. For example, we cannot use the famous Hui-Durer magic square in our procedure, because 14 and 15 are in the same row, see Behforooz [2].

Page (5)

Mirror Magic Squares

Now we change some of the entries of Tables 2 and 3 to other numbers and write the following two simple magic squares with same magic sum $S=22$, (Tables 8 and 9). Then by juxtaposing them (joining them side by side together) we obtain two mirror magic squares Tables 10 and 11 with the same magic sum 242 (notice that $242=10 \times 22+22$). We can repeat this process and use three or more simple magic squares and obtain permutation-free magic squares with entries more than two digits. This is a note on the secret of the permutation-free magic squares in [2], [3] and [4].

9	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{6}$
6	3	$\mathbf{4}$	$\mathbf{9}$
2	7	8	5
5	8	7	2

Table 8

$\mathbf{9 4}$	$\mathbf{4 3}$	$\mathbf{3 7}$	$\mathbf{6 8}$
$\mathbf{6 9}$	$\mathbf{3 6}$	$\mathbf{4 2}$	$\mathbf{9 5}$
$\mathbf{2 6}$	$\mathbf{7 9}$	$\mathbf{8 5}$	$\mathbf{5 2}$
$\mathbf{5 3}$	$\mathbf{8 4}$	$\mathbf{7 8}$	$\mathbf{2 7}$

Table 10

$\mathbf{4}$	$\mathbf{3}$	$\mathbf{7}$	$\mathbf{8}$
$\mathbf{9}$	$\mathbf{6}$	$\mathbf{2}$	$\mathbf{5}$
$\mathbf{6}$	$\mathbf{9}$	$\mathbf{5}$	$\mathbf{2}$
$\mathbf{3}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{7}$

Table 9

$\mathbf{4 9}$	$\mathbf{3 4}$	$\mathbf{7 3}$	$\mathbf{8 6}$
$\mathbf{9 6}$	$\mathbf{6 3}$	$\mathbf{2 4}$	$\mathbf{5 9}$
$\mathbf{6 2}$	$\mathbf{9 7}$	$\mathbf{5 8}$	$\mathbf{2 5}$
$\mathbf{3 5}$	$\mathbf{4 8}$	$\mathbf{8 7}$	$\mathbf{7 2}$
Table 11			

Table 11

The entries of these mirror magic squares satisfy the above two groups of properties. Interestingly, the diagonal entries verses non-diagonal entries of these magic squares have their own marvelous properties. For example:
$94+36+85+27+68+42+79+53=43+37+95+52+78+84+26+69$
$94^{2}+36^{2}+85^{2}+27^{2}+68^{2}+42^{2}+79^{2}+53^{2}=43^{2}+37^{2}+95^{2}+52^{2}+78^{2}+84^{2}+26^{2}+69^{2}$
$94^{3}+36^{3}+85^{3}+27^{3}+68^{3}+42^{3}+79^{3}+53^{3}=43^{3}+37^{3}+95^{3}+52^{3}+78^{3}+84^{3}+26^{3}+69^{3}$
What a neat and beautiful stuff. Aren't they NEAT? Remember that this journal is the land of recreational mathematics and we are supposed to have FUN. Play with numbers and Enjoy! We can easily generalize these ideas to higher orders permutation-free magic squares, see Behforooz [6]. Of course there are mathematical reasons for the above three relations. The entries of the Behforooz Magic Squares are Evil and Odious integers and must satisfy in Prouhet Theorem (for more information on this, see [8]).

Page (6)

Upside down Magic Squares

If we use the upside down digits $0,1,6,8$ and 9 in our MLS squares, we can obtain interesting upside down or reversible mirror magic squares. For example, Table 12 is an example of an upside down magic square with magic sum 264.

$\mathbf{9 6}$	$\mathbf{1 1}$	$\mathbf{8 9}$	$\mathbf{6 8}$
$\mathbf{8 8}$	$\mathbf{6 9}$	$\mathbf{9 1}$	$\mathbf{1 6}$
$\mathbf{6 1}$	$\mathbf{8 6}$	$\mathbf{1 8}$	$\mathbf{9 9}$
$\mathbf{1 9}$	$\mathbf{9 8}$	$\mathbf{6 6}$	$\mathbf{8 1}$

Table 12
This mirror and upside down magic square can be obtained by juxtaposing of the following special magic-Latin-Sudoku squares with upside down integers $1,6,8,9$:

$\mathbf{9}$	$\mathbf{1}$	$\mathbf{8}$	$\mathbf{6}$
$\mathbf{8}$	$\mathbf{6}$	$\mathbf{9}$	$\mathbf{1}$
$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1}$	$\mathbf{9}$
$\mathbf{1}$	$\mathbf{9}$	$\mathbf{6}$	$\mathbf{8}$
Table 13			

$\mathbf{6}$	$\mathbf{1}$	$\mathbf{9}$	$\mathbf{8}$
$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1}$	$\mathbf{6}$
$\mathbf{1}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{9}$	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{1}$
Table 14			

References:

[1] Annemann, Theo. The Book without a Name, Max Holden Publications, New York, 1931.
[2] Behforooz, Hossein: Permutation Free Magic Squares, J. of Recreational Mathematics, Vol. 33, No. 2, pp 103-105, 2004-2005.
[3] Behforooz, Hossein: Mystery in a Box, Pioneer a Magazine of Utica College, Spring 2005, pp. 18-20.
[4] Behforooz, Hossein: Mirror Magic Squares from Latin Squares, J. of Mathematical Gazette, Vol. 91, No. 521, July 2007, pp 316-321.
[5] Behforooz, Hossein: On Constructing 4 by 4 Magic Squares with Pre-assigned Magic Sum, J. of Mathematical Spectrum; Vol. 40, No. 3, 2007/2008, pp 127-134.
[6] Behforooz, Hossein: All Three Squares in One Square, Short Talk Sessions at the International Congress of Mathematicians, Daily Newsletter of ICM-2006, Madrid, Spain.
[7] Benjamin, Arthur and Shermer, Michael : Mathemagics, Lowell House Contemporary Books, Los Angeles, 1993.
[8] Bernhard, Chris. Evil Twins Alternate with Odious Twins, Mathematics Magazine, MAA, Vol. 82, No. 1, pp 57-62.

Behforooz-Franklin 32 by 32 Magic Square Hossein Behforooz
Mathematics Department
Utica College, Utica, NY 13502
hbehforooz@utica.edu
Permission to appear in www.mathaware.org from Journal of Recreational Mathematics Published in the Journal of Recreational Mathematics vol. 32 (2)107-110, 2004-2005

For many years, there were only three well known magic squares from Benjamin Franklin. The orders of them were 4 by 4,8 by 8 and 16 by 16 (see, [1] and [2]). In a letter to his friend, Franklin called his famous 16 by 16 magic square "The Most Magically Magical of any Magic Square EVER Made by any Mathematician'". Recently, Paul Pasles has found some other magic squares from Franklin and he screamed "Eureka, Eureka" and published them in [3] (see also, [4], [5] and [6]). For more details on Franklin magic squares and his famous letter, see [1], [2], [3], [4] and [7] and the references therein. In the literature, we witness so many articles about Franklin magic squares. There are even Ph.D. dissertations on this subject (see for example [7]). Also, there are few articles on how to make the Franklin magic squares (see [1], [2], [3], [7] and [8]). Before I came to America, I did not know about these articles and these instructions at all. But I generalized Franklin magic squares and I fixed the following 32 by 32 magic square by using $1,2,3, \ldots \ldots, 32^{\wedge} 2=1024$. The magic sum of this square is $S=32(32 \times 32+1) / 2=16400$. This square has all the properties of the traditional Franklin magic squares mentioned in [1], [3], [4], [6] and [7]. The table is so big and cannot be fitted on one page. It is divided and printed in two halves and the 32 entries of the first row from left to right are: $817, \ldots, 241,272,305, \ldots, 720$ and 753.

References:

1. W. S. Andrews, Magic Squares and cubes, Dover Publications, New York, 1960.
2. C. Pickover, The Zen of Magic Squares, Circles and Stars, Princeton University, 2002.
3. P. C. Pasles, The Lost Squares of Dr. Franklin, American Mathematics Monthly, 108, pp. 489-511, 2001.
4. P. C. Pasles, Franklin's Other 8-square, Journal of Recreational Mathematics, 31, pp. 161-166, 2002.
5. P. C. Pasles, Digging for Squares, MAA Horizon, April 2002.
6. P. C. Pasles, The Secret of Franklin's 8×8 "Magic" Square, Journal of Recreational Mathematics, 23, pp. 175-182, 1991.
7. M. M. Ahmed, How Many Squares Are There, Mr. Franklin? American Mathematics Monthly, 111, pp. 394-410, 2004.
8. J. Moran, The Wonders of Magic Squares, Vintage, New York, 1982.

Page (2)
This is the left hand side of the 32 by 32 Behforooz-Franklin Magic Square

784	817	848	881	912	945	976	1009	16	49	80	113	144	177	208	241
242	207	178	143	114	79	50	15	1010	975	946	911	882	847	818	783
782	819	846	883	910	947	974	1011	14	51	78	115	142	179	206	243
244	205	180	141	116	77	52	13	1012	973	948	909	884	845	820	781
780	821	844	885	908	949	972	1013	12	53	76	117	140	181	204	245
246	203	182	139	118	75	54	11	1014	971	950	907	886	843	822	779
778	823	842	887	906	951	970	1015	10	55	74	119	138	183	202	247
248	201	184	137	120	73	56	9	1016	969	952	905	888	841	824	777
785	816	849	880	913	944	977	1008	17	48	81	112	145	176	209	240
239	210	175	146	111	82	47	18	1007	978	943	914	879	850	815	786
787	814	851	878	915	942	979	1006	19	46	83	110	147	174	211	238
237	212	173	148	109	84	45	20	1005	980	941	916	877	852	813	788
789	812	853	876	917	940	981	1004	21	44	85	108	149	172	213	236
235	214	171	150	107	86	43	22	1003	982	939	918	875	854	811	790
791	810	855	874	919	938	983	1002	23	42	87	106	151	170	215	234
233	216	169	152	105	88	41	24	1001	984	937	920	873	856	809	792
793	808	857	872	921	936	985	1000	25	40	89	104	153	168	217	232
231	218	167	154	103	90	39	26	999	986	935	922	871	858	807	794
795	806	859	870	923	934	987	998	27	38	91	102	155	166	219	230
229	220	165	156	101	92	37	28	997	988	933	924	869	860	805	796
797	804	861	868	925	932	989	996	29	36	93	100	157	164	221	228
227	222	163	158	99	94	35	30	995	990	931	926	867	862	803	798
799	802	863	866	927	930	991	994	31	34	95	98	159	162	223	226
225	224	161	160	97	96	33	32	993	992	929	928	865	864	801	800
776	825	840	889	904	953	968	1017	8	57	72	121	136	185	200	249
250	199	186	135	122	71	58	7	1018	967	954	903	890	839	826	775
774	827	838	891	902	955	966	1019	6	59	70	123	134	187	198	251
252	197	188	133	124	69	60	5	1020	965	956	901	892	837	828	773
772	829	836	893	900	957	964	1021	4	61	68	125	132	189	196	253
254	195	190	131	126	67	62	3	1022	963	958	899	894	835	830	771
770	831	834	895	898	959	962	1023	2	63	66	127	130	191	194	255
256	193	192	129	128	65	64	1	1024	961	960	897	896	833	832	769

Page (3)

This is the right hand side of the 32 by 32 Behforooz-Franklin Magic Square

272	305	336	369	400	433	464	497	528	561	592	625	656	689	720	753
754	719	690	655	626	591	562	527	498	463	434	399	370	335	306	271
270	307	334	371	398	435	462	499	526	563	590	627	654	691	718	755
756	717	692	653	628	589	564	525	500	461	436	397	372	333	308	269
268	309	332	373	396	437	460	501	524	565	588	629	652	693	716	757
758	715	694	651	630	587	566	523	502	459	438	395	374	331	310	267
266	311	330	375	394	439	458	503	522	567	586	631	650	695	714	759
760	713	696	649	632	585	568	521	504	457	440	393	376	329	312	265
273	304	337	368	401	432	465	496	529	560	593	624	657	688	721	752
751	722	687	658	623	594	559	530	495	466	431	402	367	338	303	274
275	302	339	366	403	430	467	494	531	558	595	622	659	686	723	750
749	724	685	660	621	596	557	532	493	468	429	404	365	340	301	276
277	300	341	364	405	428	469	492	533	556	597	620	661	684	725	748
747	726	683	662	619	598	555	534	491	470	427	406	363	342	299	278
279	298	343	362	407	426	471	490	535	554	599	618	663	682	727	746
745	728	681	664	617	600	553	536	489	472	425	408	361	344	297	280
281	296	345	360	409	424	473	488	537	552	601	616	665	680	729	744
743	730	679	666	615	602	551	538	487	474	423	410	359	346	295	282
283	294	347	358	411	422	475	486	539	550	603	614	667	678	731	742
741	732	677	668	613	604	549	540	485	476	421	412	357	348	293	284
285	292	349	356	413	420	477	484	541	548	605	612	669	676	733	740
739	734	675	670	611	606	547	542	483	478	419	414	355	350	291	286
287	290	351	354	415	418	479	482	543	546	607	610	671	674	735	738
737	736	673	672	609	608	545	544	481	480	417	416	353	352	289	288
264	313	328	377	392	441	456	505	520	569	584	633	648	697	712	761
762	711	698	647	634	583	570	519	506	455	442	391	378	327	314	263
262	315	326	379	390	443	454	507	518	571	582	635	646	699	710	763
764	709	700	645	636	581	572	517	508	453	444	389	380	325	316	261
260	317	324	381	388	445	452	509	516	573	580	637	644	701	708	765
766	707	702	643	638	579	574	515	510	451	446	387	382	323	318	256
258	319	322	383	386	447	450	511	514	575	578	639	642	703	706	767
768	705	704	641	640	577	576	513	512	449	448	385	384	321	320	257

Permutation-Free Magic Squares

Hossein Behforooz

Mathematics Department
Utica College, Utica, NY 13502
hbehforooz@utica.edu
Permission to appear in www.mathaware.org from Journal of Recreational Mathematics Published in the Journal of Recreational Mathematics vol. 33 (2)103-106, 2004-2005

Abstract

By using the Durer magic square I have made two interesting 4 by 4 magic squares such that for any permutation of the entries the results are new magic squares with the same magic sum. In this article, first I have a short comment about the history of the Durer magic square with a list of some interesting properties of this square. Finally my permutation-free magic squares will be presented.

A Brief History: There are 880 different 4 by 4 magic squares with entries $1,2, \ldots, 16$. In 1693 Frenicle published a list of all these squares, see [1], [2], and [3]. In the literature, out of 880 magic squares, the following is the most famous one.

$\mathbf{1 6}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1 3}$
$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{8}$
$\mathbf{9}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{1 2}$
4	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1}$

Yang Hui-Durer Magic Square
In Western countries, this is called the Durer magic square, because Albrecht Durer placed this magic square in his famous etching, Melancholia. The two central numbers in the bottom row read 1514 which is the year that Durer made the etching. See for example [2] and [4]. But in Eastern countries like China, India, or Iran, this magic square is called Yang Hui magic square which was made in China by Yang Hui in 1275, see [5]. We can find this magic square in Iranian literature too, see [6]. Like every ordinary magic square, the numbers in each row, column, and two diagonals add up to 34 , which is called the magic sum. But this magic square has so many extraordinary properties. Almost any four numbers in four symmetric cells with respect to the center, add up to 34 . For example:

```
16+13+4+1=34, 10+11+6+7=34, 3+2+15+14=34, 16 + 3+10+5=34, 3+5+12+14=34,
16+6+11+1=34, 3+13+6+12=34, 3+8+14+9=34, 16+3+14+1=34, 5+9+8+12=34.
```

I am sure that these are not new for most of the readers and all of these and some other properties can be found easily in the literature. But the following properties are very rare and are not popular. I have seen these in only two places, [7] and [8].

$$
\begin{aligned}
& 16+3+2+13+5+10+11+8=9+6+7+12+4+15+14+1, \\
& 16^{2}+3^{2}+2^{2}+13^{2}+5^{2}+10^{2}+11^{2}+8^{2}=9^{2}+6^{2}+7^{2}+12^{2}+4^{2}+15^{2}+14^{2}+1^{2}, \\
& 16^{2}+3^{2}+2^{2}+13^{2}+9^{2}+6^{2}+7^{2}+12^{2}=5^{2}+10^{2}+11^{2}+8^{2}+4^{2}+15^{2}+14^{2}+1^{2} .
\end{aligned}
$$

Page (2)
The relations between diagonal entries and non-diagonal entries are more sophisticated. From above properties, it is clear that, the sum of all diagonal numbers is equal to the sum of all nondiagonal numbers. But look at the other two lines on their squares and cubes.

$$
\begin{aligned}
& \mathbf{1 6}+\mathbf{1 0}+\mathbf{7}+\mathbf{1}+\mathbf{1 3}+\mathbf{1 1}+\mathbf{6}+\mathbf{4}=\mathbf{3}+\mathbf{2}+\mathbf{8}+\mathbf{1 2}+\mathbf{1 4}+\mathbf{1 5}+\mathbf{9}+\mathbf{5} \\
& \mathbf{1 6}^{2}+\mathbf{1 0} 0^{2}+\mathbf{7}^{2}+\mathbf{1}^{2}+\mathbf{1 3}^{2}+\mathbf{1 1 ^ { 2 } + \mathbf { 6 } ^ { 2 } + \mathbf { 4 } ^ { 2 } = \mathbf { 3 } ^ { 2 } + \mathbf { 2 } ^ { 2 } + \mathbf { 8 } ^ { 2 } + \mathbf { 1 2 } ^ { 2 } + \mathbf { 1 4 } ^ { 2 } + \mathbf { 1 5 } ^ { 2 } + \mathbf { 9 } ^ { 2 } + \mathbf { 5 } ^ { 2 }} \\
& \mathbf{1 6}^{3}+\mathbf{1 0}^{3}+\mathbf{7}^{3}+\mathbf{1}^{3}+\mathbf{1 3}^{3}+\mathbf{1 1}^{3}+\mathbf{6}^{3}+\mathbf{4}^{3}=\mathbf{3}^{3}+\mathbf{2}^{3}+\mathbf{8}^{3}+\mathbf{1 2}^{3}+\mathbf{1 4}^{3}+\mathbf{1 5}^{3}+\mathbf{9}^{3}+\mathbf{5}^{3}
\end{aligned}
$$

Do you want some more? Check these out too.

$$
\begin{aligned}
& 2+8+9+15=3+5+12+14=34=2 \times 17, \\
& 2^{2}+8^{2}+9^{2}+15^{2}=3^{2}+5^{2}+12^{2}+14^{2}=374=2 \times 11 \times 17, \\
& 2^{3}+8^{3}+9^{3}+15^{3}=3^{3}+5^{3}+\mathbf{1 2}^{3}+14^{3}=4624=2^{4} \times 17^{2}=2^{2}(2+8+9+15)^{2} .
\end{aligned}
$$

Aren't they beautiful? I wonder if the creator of this magic square knew these many properties. I doubt it.

My Permutation-Free Magic Squares The Yang Hui-Durer magic square gave me an idea to create the following magic square with three digit entries with a magic sum of 1998. I am calling this a "Permutation-Free Magic Square" because when we rearrange the digits of all entries in all cells (all in the same manner and the same order) the result will be a new magic square with the same magic sum 1998. So, by considering all permutations of the entries, we obtain six different magic squares all with one magic sum of 1998. In other words, change for example, 831 to 813 or 381 or 318 or 183 or 138 , and do this rearrangement in all other fifteen cells, you will get six different magic squares with magic sum of 1998. Interestingly, all these six magic squares satisfy all of the above mentioned properties except the last two lines. This is just amazing. This time, with no doubt, I am aware of these properties. But still I wonder if there are any other properties that I do not see them and somebody will discover in the future. Who knows!

$\mathbf{8 3 1}$	$\mathbf{3 2 6}$	$\mathbf{2 6 7}$	$\mathbf{5 7 4}$
$\mathbf{5 8 4}$	$\mathbf{2 5 7}$	$\mathbf{3 1 6}$	$\mathbf{8 4 1}$
$\mathbf{1 5 8}$	$\mathbf{6 8 3}$	$\mathbf{7 4 2}$	$\mathbf{4 1 5}$
$\mathbf{4 2 5}$	$\mathbf{7 3 2}$	$\mathbf{6 7 3}$	$\mathbf{1 6 8}$

Permutation-Free Magic Square
Sometimes we prefer to eat a delicious food and enjoy it without knowing about its ingredients or recipe. I prefer not to explain how I fixed this magic square from the Durer magic square. This definitely won't be another Fermat's Last Theorem and interested readers can easily find the secret. Like any magic show, the trick of the work is so simple that if I explain it, I think, we lose the excitement. Every magic show has just a simple poof that the magician knows and the audiences wonder. That is it folks.

Page (3)
The following is another permutation-free magic square with four digit entries and its magic sum is 19998. By considering different permutations, this square produces 24 different magic squares with one common magic sum. My business is not "buy one and get one free" but a real bargain: "buy one and get 23 free". Again here, all of these 24 squares satisfy all of the above properties except the last two lines. Very cool! This is the land of recreational mathematics and we are supposed to have FUN. Enjoy!

$\mathbf{2 2 4 7}$	$\mathbf{3 5 1 4}$	$\mathbf{8 7 6 2}$	$\mathbf{5 4 7 5}$
$\mathbf{5 3 7 6}$	$\mathbf{8 8 6 1}$	$\mathbf{3 6 1 3}$	$\mathbf{2 1 4 8}$
$\mathbf{7 8 5 1}$	$\mathbf{6 3 8 6}$	$\mathbf{1 1 3 8}$	$\mathbf{4 6 2 3}$
$\mathbf{4 5 2 4}$	$\mathbf{1 2 3 7}$	$\mathbf{6 4 8 5}$	$\mathbf{7 7 5 2}$

Permutation -Free Magic Square
Last Thought: You may ask this obvious question that, if there are any other (beside these) permutation-free magic square? The answer is "you bet there are". We can write so many other 4 by 4 magic squares with higher digit entries which have those properties. But I could not make any 3 by 3 or 5 by 5 permutation-free magic squares with those properties.

References:

1. H. E. Dudeney: Amusements in Mathematics, Dover Publications, New York, pp. 119-121, 1970.
2. W. H. Benson and O. Jacoby: New Recreations with Magic Squares, Dover Publications, New York, p. 87 Appendix, 1976.
3. I. Peterson: Mathematical Treks, MAA publications, Washington DC, pp. 137140, 2002.
4. W. S. Andrews: Magic Squares and Cubes, Dover Publications, New York, 1960, p. 147.
5. Yang Hui, Magic Squares in Chinese Mathematics, Encyclopedia of the History of Science, Technology and Medicine in Non-Western Cultures, Kluwer Academic Publishers (Editor, Helaine Selin).
6. Allameh Majlesi: Helyatol Mottaqin (an old Iranian book, around 1600).
7. Hashtroodi, Mohsen: Yekan, The Iranian Mathematical Magazine, Nowrooz Issue, 1965.
8. C. Pickover: The Zen of Magic Squares, Circles and Stars, Princeton University Press, 2002.

Weighted Magic Squares

Hossein Behforooz
Mathematics Department
Utica College
Utica, NY 13502
hbehforooz@utica.edu
Permission to appear in www.mathaware.org from Journal of Recreational Mathematics Published in the Journal of Recreational Mathematics vol. 36 (4)283-286, June 2012 issue.

Dedication: This article is dedicated to the mathematical games and puzzles inventor Martin Gardner (1914 - 2010), who was a pioneer in recreational mathematics.

Abstract

In this paper, for the first time in the history of Magic Squares, you will be introduced the weighted magic squares, obtained by changing the numbers to weights in all cells of the magic squares and we will discuss about the centers of mass (fulcrums or pivot points) of these kinds of weighted magic squares.

New Question

In any magic square, if we hang different weights at the centers of different cells each equal to the number of cell, where would be the center of mass of these types of weighted magic squares? My first guess was that we may have two types of weighted magic squares. First type which I called them "Balanced Weighted Magic Squares" were those weighted magic squares that the centers of mass fall at the center of the magic square and the second type "Imbalanced Weighted Magic Squares" were those which their center of mass are different than the center of magic square.

Center Of Mass of Weighted Magic Squares

In calculus we have learned that for a planar lamina, the coordinates of the center of mass can be obtained by using double integrals. In a similar manner, in a discrete case with n distinct points $P_{i, j}\left(x_{i, j}, y_{i, j}\right) ; i, j=1,2 \ldots n$, with weights, $w_{i, j}$, the coordinates of the center of mass $G(\bar{x}, \bar{y})$ can be obtained by following double summations:

$$
\begin{equation*}
\bar{x}=\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i, j} w_{i, j}}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i, j}}, \quad \bar{y}=\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} y_{i, j} w_{i, j}}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i, j}} . \tag{1}
\end{equation*}
$$

Page (2)
Now, consider a weighted magic square of order n with magic sum S. Suppose that the coordinates of the centers of cells are $P_{i, j}\left(x_{i, j}, y_{i, j}\right) ; i, j=1,3,5, \ldots 2 n-1$, with hanging weights
$w_{i, j} ; i, j=1,3,5 \ldots, 2 n-1$. Since for any natural number $n, 1+3+5+\ldots+(2 n-1)=n^{2}$. Then the above formulas (1) will be the following formulas (like weighted arithmetic means):

$$
\begin{equation*}
\bar{x}=\frac{\sum x w}{\sum w}=\frac{n^{2} S}{n S}=n, \quad \bar{y}=\frac{\sum y w}{\sum w}=\frac{n^{2} S}{n S}=n . \tag{2}
\end{equation*}
$$

Hence $G(\bar{x}, \bar{y})=(n, n)$ and this is the proof of the following theorem.
THEOREM: The center of the mass of every weighted magic square is the center of the magic square and there is no imbalanced weighted magic square.

The following examples illustrate the above results and calculations:
Example 1: Consider the $3 \times 3 \mathrm{Lu}$ Shu weighted magic square with magic sum 15 , Table 1. In Table 2, the first two digits are the coordinates of the centers of the cells and the third digits represent the corresponding weights hanging at those centers.

4	9	2
3	5	7
8	1	6

Table 1

(1,5,4)	$(3,5,9)$	(5,5,2)
-	-	-
$(1,3,3)$	$(3,3,5)$	(5,3,7)
-	-	-
$(1,1,8)$	$(3,1,1)$	$(5,1,6)$
-	-	-

Table 2

By using the above formulas (2) for Table 2, we get:

$$
\begin{aligned}
& A=(1 \times 8+1 \times 3+1 \times 4)+(3 \times 1+3 \times 5+3 \times 9)+(5 \times 6+5 \times 7+5 \times 2)=1 \times 15+3 \times 15+5 \times 15=9 \times 15, \\
& B=(1 \times 8+1 \times 1+1 \times 6)+(3 \times 3+3 \times 5+3 \times 7)+(5 \times 4+5 \times 9+5 \times 2)=1 \times 15+3 \times 15+5 \times 15=9 \times 15, \\
& C=(8+3+4)+(1+5+9)+(6+7+2)=3 \times 15 . \text { Hence } \\
& \qquad \bar{x}=\frac{A}{C}=\frac{\sum x w}{\sum w}=\frac{9 \times 15}{3 \times 15}=3, \quad \bar{y}=\frac{B}{C}=\frac{\sum y w}{\sum w}=\frac{9 \times 15}{3 \times 15}=3 .
\end{aligned}
$$

Therefore the coordinates of the center for mass of $3 \times 3 \mathrm{Lu}$ Shu weighted magic square is $G(\bar{x}$, $\bar{y})=(3,3)$ and this is true for any 3×3 weighted magic square.

Page (3)

Weighted Lo-Shu Hanging Lo-Shu

EXAMPLE 2: In our second example, we consider the 4×4 Behforooz magic square, Table 3, with its coordinates of the centers of cells and weights given in Table 4. Here the numbers A, B, and C are:

1	10	15	8
16	7	2	9
6	13	12	3
11	4	5	14

Table 3

$(\mathbf{1 , 7 , 1)}$	$(3,7,10)$	$(5,7,15)$	$(7,7,8)$
\bullet	\bullet	\bullet	\bullet
$(1,5,16)$ \bullet	$(3,5,7)$ \bullet	$(\mathbf{5 , 5 , 2)}$	$\left(\begin{array}{c}(7,5,9) \\ \bullet\end{array}\right.$
$(1,3,6)$ \bullet	$(3,3,13)$ \bullet	$(5,3,12)$ \bullet	$(7,3,3)$ \bullet
$(1,1,11)$ \bullet	$\mathbf{3 , 1 , 4})$ \bullet	$(5,1,5)$ \bullet	$\mathbf{(7 , 1 , 1 4})$ \bullet

Table 4
$A=(1 \times 11+1 \times 6+1 \times 16+1 \times 1)+(3 \times 4+3 \times 13+3 \times 7+3 \times 10)+$ $+(5 \times 5+5 \times 12+5 \times 2+5 \times 15)+(7 \times 14+7 \times 3+7 \times 9+7 \times 8)=$ $=1 \times 34+3 \times 34+5 \times 34+7 \times 34=16 \times 34$,
$B=(1 \times 11+1 \times 4+1 \times 5+1 \times 14)+(3 \times 6+3 \times 13+3 \times 12+3 \times 3)+$

$$
+(5 \times 16+5 \times 7+5 \times 2+5 \times 9)+(7 \times 1+7 \times 10+7 \times 15+7 \times 8)=
$$

$$
=1 \times 34+3 \times 34+5 \times 34+7 \times 34=16 \times 34
$$

$C=\mathbf{1}+\mathbf{2}+\mathbf{3}+\ldots+\mathbf{1 6}=\mathbf{4} \times \mathbf{3 4}$. Hence

$$
\bar{x}=\frac{A}{C}=\frac{\sum x w}{\sum w}=\frac{16 \times 34}{4 \times 34}=4, \quad \bar{y}=\frac{B}{C}=\frac{\sum y w}{\sum w}=\frac{16 \times 34}{4 \times 34}=4 .
$$

Therefore $\mathrm{G}(\bar{x}, \bar{y})=(4,4)$. In other words, $G(\bar{x}, \bar{y})=(4,4)$ is the center of mass for any 4×4 magic square.

Finally I am planning to invent and build the Magic Square Wind Chime Charms with their bells or pipes hanging at the center of a magic square with weights or lengths of bells or pipes are equal to the numbers of the magic squares cells. I think this will be the first practical and physically applications of the magic squares.

HOSSEIN BEHFOROOZ List of My Publications on Magic Squares

[1] Behforooz, Hossein: Weighted Magic Squares, Journal of Recreational Mathematics, vol. 36 (4), 283-286, 2012.
[2] Behforooz, Hossein: Behforooz Magic Squares Derived from Magic-Latin- Sudoku Squares, Journal of Recreational Mathematics, vol. 36 (4), 287-293, 2012.
[3] Behforooz Hossein: Behforooz-Euler Magic Squares with US Election Years, Journal of Recreational Mathematics, Vol. 35, No. 1 (2009) 20-22.
[4] Behforooz, Hossein: Behforooz-Franklin Magic Square with US Election Years, Journal Of Recreational Mathematics, Vol. 35, No. 1 (2009) 37-38.
[5] Behforooz, Hossein: On Constructing 4 by 4 Magic Squares with Pre-Assigned Magic Sum, Journal of Mathematical Spectrum, Vol. 40, No. 3 (2008) 127-134.
[6] Behforooz, Hossein: Mirror Magic Squares from Latin Squares, Journal of Mathematical Gazette, Vol. 91, No. 521 (July 2007) 316-321.
[7] Behforooz, Hossein: On the Gallery of my own Magic Squares, Abstracts of the Mathematical Association of America (MAA) Seaway Section, Spring Meeting SUNY College at Oneonta, New York, (April 27-28, 2007).
[8] Behforooz, Hossein: All Three Squares in One: Magic Squares, Latin Squares And Sudoku Squares, Abstracts of the International Congress of Mathematicians (ICM-2006), Daily Newsletter, Madrid, Spain, August 2006.
[9] Behforooz, Hossein: Permutation Free Magic Squares, Journal of Recreational Mathematics, Vol. 33, No. 2 (2005) 103-106.
[10] Behforooz, Hossein: Behforooz-Franklin 32 by 32 Magic Square, Journal of Recreational Mathematics, Val. 33, No. 2, (2005) 107-110.
[11] Behforooz, Hossein: Mystery in a Box, Another Discussion on the Magic Squares, Pioneer, A Magazine of Utica College, Spring 2005.
[12] Behforooz, Hossein: There is Magic in Them, A Brief Introduction to Magic Squares. Inside UC Newsletter, May 2005.
[13] Behforooz, Hossein: Give Me any Integer M and I will give You Back a Magic Square

With Magic Sum M. Abstract of the Summer Math Fest Meeting of MAA, Providence, RI, (August 2004). Also presented at the Utica College Faculty Research Day, (Fall 2004).
[14] Behforooz, Hossein: Historical Notes with Interesting Properties of Some Famous Magic Squares, Abstract of the Summer Math Fest Meeting of MAA, University of Colorado at Boulder, (August 2003).
[15] Behforooz, Hossein: An Extension of Benjamin Franklin Magic Squares, Abstract of the International Congress of Mathematicians (ICM-2002), Beijing, China.

