
Sonatype CLM - Repository Manager User Guide i

Sonatype CLM - Repository Manager User
Guide

Sonatype CLM - Repository Manager User Guide ii

Contents

1 Introduction 1

2 Sonatype CLM for Repository Managers 2

3 Nexus Pro and Sonatype CLM Integration 4

3.1 Introduction . 4

3.2 Repository Health Check (RHC) vs. Sonatype CLM . 5

3.3 Connecting Nexus to CLM Server . 6

3.4 Configuring the CLM Server . 7

3.5 Accessing CLM Component Information . 7

3.6 The Component Information Panel (CIP) . 10

3.7 Component Details (CLM) . 13

4 Using CLM for Staging 15

Sonatype CLM - Repository Manager User Guide iii

4.1 Introduction . 15

4.2 Staging Profile Configuration . 16

4.3 Policy Actions . 17

4.4 Release Repository Actions . 18

5 CLM Maven Plugin 19

5.1 Introduction . 19

5.2 Creating a Component Info Archive for Nexus Pro CLM Edition 20

5.3 Skipping CLM Maven Plugin Executions . 21

Sonatype CLM - Repository Manager User Guide iv

List of Figures

2.1 The Central Role of A Repository Manager in Your Infrastructure 3

3.1 CLM configuration tab in Nexus . 6

3.2 Typical Search Results in Nexus Pro . 8

3.3 Nexus Search Showing All Versions . 8

3.4 Accessing the Component Info Tab . 9

3.5 Component Information Panel . 10

3.6 Component Information Panel Example . 11

3.7 CIP Text . 11

3.8 CIP Graph . 12

3.9 View Details Button . 13

3.10 View Details . 14

Sonatype CLM - Repository Manager User Guide v

4.1 Staging Profile with a CLM Application Configured . 16

4.2 Staging and Release Configuration for a Policy in the CLM Server 17

4.3 Staging Repository Activity with a CLM Evaluation Failure and Details 18

Sonatype CLM - Repository Manager User Guide 1

Chapter 1

Introduction

This guide is designed to help you better understand how Sonatype CLM can be integrated with repos-
itory managers, such as Nexus Professional CLM Edition. It covers a brief background on repository
management, as well as an in depth look at configuration and usage of the CLM-specific elements for
repository managers such as Sonatype Nexus Professional CLM Edition.

Sonatype CLM - Repository Manager User Guide 2

Chapter 2

Sonatype CLM for Repository Managers

Repository managers allow you to manage repositories filled with software components required for de-
velopment, deployment, and provisioning. You can publish your own components to these repositories as
well as automatically proxy external repositories like the Central Repository to provide efficient compo-
nent access to your organization. In this role they fulfill a central part for component lifecycle manage-
ment.

A repository manager greatly simplifies the maintenance of your own internal repositories, as well as ac-
cess to external repositories. Using a repository manager is a recommended best practice for development
efforts using Apache Maven or other build systems with declarative and automated transitive dependency
management.

By proxying external repositories as well as providing a deployment target for internal components, a
repository manager becomes the central and authoritative storage platform for all components. You can
completely control access to, and deployment of, every component in your organization from a single
location. It allows you to manage, which components get into your products from external sources as
well as examine and keep track of components produced by your build systems. In terms of the incoming
components, a repository manager allows you to secure the connection to an external repository and
ensure that your component usage is not publicly exposed.

Just as Source Code Management (SCM) tools are designed to manage source code, repository managers
have been designed to manage and track external dependencies and components generated by your build.
They are an essential part of any enterprise or open-source software development effort, enabling greater
collaboration between developers and wider distribution of all components. You benefit from increased
build performance due to local component availability and reduced bandwidth needs by avoiding repeated

Sonatype CLM - Repository Manager User Guide 3

downloads to your setup.

Figure 2.1: The Central Role of A Repository Manager in Your Infrastructure

Note
The book Repository Management with Nexus provides an extensive introduction to repository man-
agement, its advantages and stages of adoptions for further reference. If this is your first introduction to
repository management, there is a wealth of information, that expands beyond what we have provided
here.

http://www.sonatype.com/books/nexus-book/reference/repoman.html
http://www.sonatype.com/books/nexus-book/reference/repoman.html

Sonatype CLM - Repository Manager User Guide 4

Chapter 3

Nexus Pro and Sonatype CLM Integra-
tion

3.1 Introduction

Nexus comes in two forms, the popular Nexus Open Source , as well as industry-leading Nexus Profes-
sional. In addition, users of Nexus Professional can add the Nexus CLM License to expand functionality
to include use of Sonatype CLM as part of Nexus Professional staging capabilities. This allows you to en-
joy a robust repository manager coupled with the advanced policy and risk management features provided
by Sonatype CLM.

In this section we’ll discuss all the capabilities provided by the integration of Nexus Professional and
Sonatype CLM. When necessary, we will indicate if a feature is exclusive to a Nexus Professional CLM
Edition.

Note
If you are unsure of which Nexus License you have, please contact our Support Team at sup-
port@sonatype.com.

mailto:support@sonatype.com
mailto:support@sonatype.com

Sonatype CLM - Repository Manager User Guide 5

3.2 Repository Health Check (RHC) vs. Sonatype CLM

It’s likely, even as a user of Nexus Open Source, that you have seen some of the capabilities of Repository
Health Check. For those that haven’t, Repository Health Check (RHC) is a tool included within Nexus
providing users with a quick glance at component properties in a repository. The results include a top level
view of security vulnerabilities and license characteristics. Users of Nexus Professional are provided with
security and license information as well as age and popularity data when searching for components. All
this information is available in Nexus for manual searches and interaction with Nexus. There is however
no automation available and no direct relationship to your software exists besides the fact that it’s build
accesses Nexus.

Sonatype CLM allows you to identify applications within your business. These applications can then be
evaluated throughout the software development life cycle. This includes during development in your IDE,
at build time in your CI server, and during the release phases in your repository manager.

With each evaluation of an application, components will be identified, and in the cases where components
can be matched to those in the Central Repository, information similar to that in RHC will be provided.
An additional aspect of this evaluation is the ability to establish policy. Policy is simply a set of rules that
allows you to validate the components used in your application based on the aspects available in CLM.
When a component is found to break one of these rules, a violation occurs, and these results are provided
through a number of reports, all available in the Sonatype CLM Server.

Taking a step back, looking at both RHC and Sonatype CLM at a high level, RHC is a static and limited
view of specific data. This can help improve your component usage, but offers limited mitigation of
risk. In contrast, the features of Sonatype CLM provide a robust set of features allowing you greatly
expanded control over what components are used in your applications and take advantage of automation
tools throughout the different phases of your software development lifecycle.

Note
Nexus Open Source and Nexus Professional both provide access to RHC, though the capabilities are
expanded for Nexus Professional users. For more information on RHC and Nexus in general, please
refer to the free book Repository Management with Nexus.

http://links.sonatype.com/products/nexus/pro/docs

Sonatype CLM - Repository Manager User Guide 6

3.3 Connecting Nexus to CLM Server

The first step to enabling the features associated with Sonatype CLM is connecting to an existing Sonatype
CLM Server. The Sonatype CLM Server is a separate server application that Nexus integrates with via
API calls.

If this is your first time working with Sonatype CLM, and you haven’t already installed and configured
your Sonatype CLM Server, you will want to do that before moving forward. Instruction can be found in
our Sonatype CLM Server Install and Configuration User Guide.

Once your Sonatype CLM Server is installed and configured, you are ready to connect Nexus to the CLM
Server. From within Nexus Professional, click on the CLM menu item in Administration section on the
left of the Nexus application window. This will open the tab visible in Figure 3.1.

Figure 3.1: CLM configuration tab in Nexus

The CLM connection is established by providing the URL to the CLM Server in the CLM Server URL
input field and optionally a Request Timeout.

Additional details can be configured in the Properties input field using a key=value definition per line.
An example is

procArch=false
ipAddresses=true
operatingSystem=false

file:./server-install-guide/index.html

Sonatype CLM - Repository Manager User Guide 7

Alternatively you can enable, or if desired disable, and configure the Sonatype CLM integration by adding
the CLM: Configuration capability like any other capability as documented in the Accessing and Config-
uring Capabilities section of the Nexus book.

These properties are passed to the CLM Server and can, for example, determine what properties are
logged as part of a validation. Consult the CLM Server documentation for suitable parameters. In most
use cases you will not need to configure any properties.

Press Save after you have entered the desired URL and properties, and Nexus will attempt to contact the
CLM Server and potentially display an error message if the CLM Server could not be contacted.

Note
The features described here require licenses for Nexus Professional as well as Sonatype CLM Server
that activate them. You can obtain them from our support team and will have to install them prior to the
configuration.

3.4 Configuring the CLM Server

With the connection between the CLM Server and Nexus established, you can configure any organiza-
tions, applications, and policies in the CLM server. Because Nexus will be accessing the CLM server
using an application identifier (App ID), you will need to configure one application for each different
application use case in Nexus.

For more information of setting up organizations, applications, and policies, please review our Sonatype
CLM Policy Management Guide.

3.5 Accessing CLM Component Information

As a native capability, Nexus provides robust search capability for returning components that exist in
your repositories. When components are returned in your search results (see below), an option to see all
versions is displayed.

http://books.sonatype.com/nexus-book/reference/confignx-sect-capabilities.html
http://books.sonatype.com/nexus-book/reference/confignx-sect-capabilities.html
file:./policy-management-guide/index.html
file:./policy-management-guide/index.html

Sonatype CLM - Repository Manager User Guide 8

Figure 3.2: Typical Search Results in Nexus Pro

Clicking this link will display additional information in the search panel, as well as expand information
available for each selected component. Depending on your Nexus license you will have one of the two
options below.

RHC
Configuring an applicable repository to use RHC (Repository Health Check) will enable the repos-
itory to be analyzed by Sonatype directly, and will display (when available) security, license, age
and popularity data. Details are provided in the Component Info tab located below the search panel.

Sonatype CLM
Configuring Nexus to connect to Sonatype CLM will provide the same information available for
RHC, but will also provide additional general and policy violation information for each component.

Figure 3.3: Nexus Search Showing All Versions

Sonatype CLM - Repository Manager User Guide 9

Note
Currently both RHC and Sonatype CLM only provide information for open source Java components
available via Central.

For now, we’ll focus on the additional information available through Sonatype CLM. To access this, you
need to click on the Component Info tab. It is located just below the displayed search results, to the right
of the directory tree for the selected component.

Figure 3.4: Accessing the Component Info Tab

Note
Only users that are logged in will be able to see the Component Info tab.

Clicking on the Component Info tab will display a drop down list of applications associated with your
Sonatype CLM Server. Once you have selected an application, the Component Information Panel (CIP),
similar to what is provided via the Application Composition Report and CLM for Eclipse, will be dis-
played.

Sonatype CLM - Repository Manager User Guide 10

Figure 3.5: Component Information Panel

Note
Information on the Component Info tab requires a Sonatype CLM License. Nexus Pro Users will simply
be provided with additional details regarding the security vulnerabilities and license issues. Those using
Nexus Open Source will not have access to the Component Info tab.

3.6 The Component Information Panel (CIP)

As mentioned above, when the Component Information Panel is first displayed, you will need to select an
application corresponding to your application on the CLM Server. This application will not change until
you select a new one.

The Component Information Panel is divided into two areas. On the left side is component data, which
includes information related to the component itself. To the right of the component information, a graph-
ical display of any security or license issues, as well as popularity data for each version of the component
is displayed. By default the current version of the component is selected. In the event there are more
versions than can be displayed, arrows on the right and left allow for scrolling to newer or older versions.
In addition, you can click on any of these versions (if available), which will change the information that
is displayed on the left of the CIP.

Sonatype CLM - Repository Manager User Guide 11

Figure 3.6: Component Information Panel Example

Note
In the screenshot above, we have sized the panels in Nexus to make all CIP information visible. By
default the view will allow you to vertically scroll to view all information.

The textual information on the left includes:

Figure 3.7: CIP Text

Overridden License
If you have chosen a different license for the component, it will be displayed here. This could
e.g. be the case if you have purchased a license for a component allowing distribution, while the
component is originally GPL.

Declared License
Any license that has been declared by the author.

Sonatype CLM - Repository Manager User Guide 12

Observed License
Any license(s) found during the scan of the component’s source code.

Group
The group part of the GAV component identifier.

Artifact
The artifact part of the GAV component identifier.

Version
The version part of the GAV component identifier.

Highest Policy Threat
The highest threat level policy that has been violated, as well as the total number of violations.

Highest Security Threat
The highest threat level security issue and the total number of security issues.

Cataloged
The age of the component based on when it first was uploaded to the Central Repository.

Match State
How the component was matched (exact, similar, or unknown).

Identification Source
Whether a component is identified by Sonatype, or claimed during your own process.

Website
If available, an information icon providing a link to the project is displayed.

The graph itself is laid out like a grid, with each vertical piece representing a particular version. The
selected version being identified by a vertical line. The information displayed in the graph includes:

Figure 3.8: CIP Graph

Popularity
The popularity for each version is shown as a bar graph. The larger the graph the more popular the
version.

Sonatype CLM - Repository Manager User Guide 13

License Risk
This will display the license risk based on the application that is selected, and the associated pol-
icy and/or license threat groups for that application. Use the application selector to change the
application, and corresponding policies the component should be evaluated against.

Security Alerts
For each version, the highest security threat will be displayed by color, with the highest shown as
red, and no marker indicating no threat.

3.7 Component Details (CLM)

In addition to the security vulnerability and license issue details provided, any particular policy violations
for a component will be displayed as well. This can be helpful in determining if a component will meet
the standards for component lifecycle management your company has established.

To view these details, click on the View Details button located below the Component Information.

Figure 3.9: View Details Button

This will create a new tab in the main Nexus panel with the label CLM Detail.

Sonatype CLM - Repository Manager User Guide 14

Figure 3.10: View Details

Note
In order to see the details for additional components, select another component from the search results,
or select a different version in the CIP, and then click the View Details button.

Sonatype CLM - Repository Manager User Guide 15

Chapter 4

Using CLM for Staging

4.1 Introduction

CLM for staging in Nexus combines the powerful controls for your release process from Nexus with the
rich information and validation available in the CLM Server. Using them together you can ensure that
any releases you produce are actively and automatically validated against up to date information in terms
of security vulnerabilities and license characteristics of all the components you use and any whitelists or
blacklists you maintain as well as other policies you have defined are enforced.

You will need to have completed the following items before using CLM with Nexus Staging. This in-
cludes:

On the CLM Server

• Created an Organization

• Created an Application

• Created a Policy

In Nexus CLM

• Created a Staging Profile

Sonatype CLM - Repository Manager User Guide 16

Note
Before using CLM for staging you should be familiar with the general setup and usage patterns of the
Nexus Staging Suite documented in the chapter on staging, located in the Nexus book. There, you will
be guided through the process to get Nexus prepared to handle your staging needs.

4.2 Staging Profile Configuration

As mentioned in the note above, you should already have your staging profile configured. This configura-
tion can then be used for a staging profile or a build promotion profile by configuring the CLM Application
field in the Staging Profile.

The figure below shows an example staging profile with a CLM application configured.

Figure 4.1: Staging Profile with a CLM Application Configured

http://books.sonatype.com/nexus-book/reference/staging.html

Sonatype CLM - Repository Manager User Guide 17

4.3 Policy Actions

While not a requirement for using CLM with Nexus staging, CLM does have the ability to Fail or Warn
on staging closure. This is managed by setting the Stage Release and Release actions for each policy.
These policy actions can be configured to warn, fail, or do nothing (default). The figure below provides
an example policy that would warn for a staging deployment and fail a release.

Figure 4.2: Staging and Release Configuration for a Policy in the CLM Server

Configuration of Policy Actions is managed via the Sonatype CLM Server. While we’ll cover the basic
settings below, for instruction on setting these actions, please review the Policy Management Guide,
specifically the section on managing policy actions.

The configuration of the Stage Release action of a policy in the CLM Server is used for closing the staging
repository. Based on the action chosen, the staging repository will respond as follows:

• If the policy action is set to Fail, when a policy is violated, the staging repository closing fails.

• If the policy action is set to Warn, when a policy is violated, the staging repository closes successfully,

Sonatype CLM - Repository Manager User Guide 18

but a warning will be produced.

• If the policy action is set to Do Nothing, the staging repository closes successfully regardless of any
policy violations.

4.4 Release Repository Actions

As with CLM and policy, Nexus also has actions specific to the Release feature, and these can be config-
ured to fail, warn or do nothing and are used for releasing or promoting the staging repository.

Once the staging profile is configured with the CLM application identifier any deployment triggers a
CLM policy evaluation, which will be visible as Activity for the staging repository. Any rule failures are
provided with further information in the detail panel. Figure 4.3 displays a staging repository with CLM
rule validations and a failure. The View Full Report buttons links back to the Sonatype CLM Server,
which displays the detailed Application Composition Report.

Figure 4.3: Staging Repository Activity with a CLM Evaluation Failure and Details

Sonatype CLM - Repository Manager User Guide 19

Chapter 5

CLM Maven Plugin

5.1 Introduction

A Sonatype CLM evaluation of a Maven based software project can be assisted by the Sonatype CLM
Maven plugin. It can take advantage of the dependency information contained in the project’s pom.xml
files and the information about transitive dependencies available to Maven. It can be run on a command
line interface and can therefore be executed on any continuous integration server.

When using the plugin on a multi-module project in most cases you will only configure an execution for
the modules that produce components that will be deployed as an application. Typically these are ear
files or war files for deployment on application servers or tar.gz or other archives that are used for
production deployments or distribution to users. However you can also analyze a all modules of a project.
This will largely depend on what your CLM policy is enforcing and what you want to validate.

The index goal of the plugin allows you to prepare data for analysis with Sonatype CLM for CI.

The attach goal aids your integration with Sonatype Nexus CLM Edition and the release process using
the staging tools of Nexus.

The evaluate goal can trigger an evaluation directly against a Sonatype CLM server.

The help goal provides documentation for all the goals and parameters and you can invoke it with an

Sonatype CLM - Repository Manager User Guide 20

execution like

mvn com.sonatype.clm:clm-maven-plugin:2.1.1:help

5.2 Creating a Component Info Archive for Nexus Pro CLM Edition

The attach goal scans the dependencies and build artifacts of a project and attaches the results to the
project as another artifact in the form of a scan.xml.gz file. It contains all the checksums for the de-
pendencies and their classes and further meta information and can be found in the target/sonatype-clm
directory. A separate scan.xml.gz file is generated for each maven module in an aggregator project in
which the plugin is executed.

This attachment causes the file to be part of any Maven install and deploy invocation. When the
deployment is executed against a Sonatype Nexus CLM Edition server the artifact is used to evaluate
policies against the components included in the scan.

To use this goal, add an execution for it in the POM, e.g. as part of a profile used during releases:

<build>
<plugins>
<plugin>
<groupId>com.sonatype.clm</groupId>
<artifactId>clm-maven-plugin</artifactId>
<version>2.1.1</version>
<executions>

<execution>
<goals>
<goal>attach</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>

Once configured in your project, the build log will contain messages similar to

[INFO] --- clm-maven-plugin:2.1.1:attach (default) @ test-app ---
[INFO] Starting scan...
[INFO] Scanning ...plexus-utils-3.0.jar
[INFO] Scanning ...maven-settings-3.0.jar...
[INFO] Scanning target/test-app-1.0-SNAPSHOT.jar...

Sonatype CLM - Repository Manager User Guide 21

[INFO] Saved module scan to /opt/test-app/target/sonatype-clm/scan.xml.gz

The attachment of the scan.xml.gz file as a build artifact causes an it to be stored in the local
repository as well as the deployment repository manager or the Nexus staging repository ending with
-sonatype-clm-scan.xml.gz. This file will be picked up by Sonatype Nexus CLM Edition and
used in the policy analysis during the staging process. It improves the analysis since the CLM Maven
plugin is able to create a complete dependency list rather than relying on binary build artifacts.

5.3 Skipping CLM Maven Plugin Executions

The clm.skip parameter can be used, when a CLM plugin execution is configured in your project’s
pom.xml file, but you want to avoid the execution for a particular build. An example execution is

mvn clean install -Dclm.skip=true

The parameter can also be set in your IDE configuration for Maven build executions or as a property in
your settings.xml or pom.xml:

<properties>
<clm.skip>true</clm.serverUrl>

</properties>

	Introduction
	Sonatype CLM for Repository Managers
	Nexus Pro and Sonatype CLM Integration
	Introduction
	Repository Health Check (RHC) vs. Sonatype CLM
	Connecting Nexus to CLM Server
	Configuring the CLM Server
	Accessing CLM Component Information
	The Component Information Panel (CIP)
	Component Details (CLM)

	Using CLM for Staging
	Introduction
	Staging Profile Configuration
	Policy Actions
	Release Repository Actions

	CLM Maven Plugin
	Introduction
	Creating a Component Info Archive for Nexus Pro CLM Edition
	Skipping CLM Maven Plugin Executions

