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ABSTRACT

In this paper, a method is outlined for the sonification of
experimentally-observed Brownian motion organized into
optical structures. Sounds were modeled after the tracked,
three-dimensional motion of Brownian microspheres con-
fined in the potential wells of a standing-wave laser trap.
Stochastic compositions based on freely-diffusing Brown-
ian particles are limited by the indeterminacy of the data
range and by constraints on the data size and dimensions.
In this study, these limitations are overcome by using an
optical trap to restrict the random motion to an ordered
stack of two-dimensional regions of interest. It is argued
that the confinement of the particles in the optical lattice
provides an artistically appealing geometric landscape for
constructing digital audio effects and musical composi-
tions based on experimental Brownian motion. A discus-
sion of future work on data mapping and computational
modeling is included. The present study finds relevance in
the fields of stochastic music and sound design.

1. INTRODUCTION

In his 1956 work Pithoprakta [1], Greek composer Iannis
Xenakis modeled a sequence of glissandi after the random
walk of Brownian particles in a fluid [2]. Specifically, he
assigned values from a Maxwell-Boltzmann distribution of
particle speeds to the pitch changes of 46 solo strings. The
sequence was unique because it converted an intrinsic as-
pect of stochastic motion, namely the chance variation in
speed between particle collisions 1 , to audible sound.

Pioneered by Xenakis, stochastic music represented a
slight departure from the indeterminate music written ear-
lier by American composers Charles Ives, Henry Cowell,
and John Cage [3]. In Pithoprakta, indeterminacy was
present in the individual mappings of each instrument, but,
as a group, the mappings modeled well-defined laws of
probability. In this sense, the composition was both ran-
dom and deterministic. Although the mappings were also
physically-informed, Xenakis appeared to be guided more
by statistical descriptions of Brownian motion rather than
theoretical diffusion equations or experimental observa-
tions of the phenomenon. Moreover, the physical values

1 Although the distribution of speeds was Gaussian, the time intervals
used to define the speeds, or glissandi of each instrument, appear to have
been imposed arbitrarily [2, Fig. I–7].
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that defined the motion were modified to accommodate the
constraints of a live orchestra. For example, each three-
dimensional velocity vector was reduced to a directionless
value of speed from which the glissando of an individual
instrument could be deduced.

In the present study, an optical trapping setup was imple-
mented in hopes of better harnessing the experimentally-
observed nature of Brownian motion for use in data sonifi-
cation and sound design. An element of determinism was
incorporated into the compositional technique by restrict-
ing individual stochastic trajectories to user-controlled
data-mapping regions. In Section 2, the principles govern-
ing the Brownian motion of freely-diffusing and optically-
ordered particles are outlined and compared. In Section 3,
a historical overview of optical trapping configurations is
provided in order to motivate the necessity of a standing-
wave optical trap for purposes of surface isolation and data
variety. In Section 4, the experimental methods are briefly
outlined. In Section 5, the data sonification is described in
detail. Finally, the paper concludes with a discussion of fu-
ture research on data-mapping designs and computational
modeling for real-time data sonification.

2. BROWNIAN MOTION

2.1 Freely-Diffusing Particles

The equation of motion for the finite trajectory of a freely-
diffusing Brownian particle of mass M in a uniform vis-
cous fluid is [4]

M r̈ = −γṙ +
√

2γkBTΓ (t), (1)

where γ is the fluid drag coefficient, kB is Boltzmann’s
constant, T is the temperature of the fluid, Γ (t) is the zero-
average Gaussian white noise, and r = x(t)x̂ + y(t)ŷ +
z(t)ẑ is the particle’s position as a function of time t. By
“freely-diffusing”, it is understood that the particle’s tra-
jectory is only determined by the molecular interactions
with the background medium, assuming the walls of the
fluid chamber are sufficiently far away from the particle
and evaporation of the fluid is negligible. Since the inertial
term M r̈ is small compared to the drag term γṙ in a vis-
cous fluid, the inertial term can be dropped from Eq. (1).
This simplification gives the following solution 2 for the
velocity ṙ of the particle as a function of time t:

ṙ =
√

2DΓ (t). (2)

2 The system described by Eq. (2) is said to exhibit “overdamped” be-
havior since the viscous damping overpowers the inertial acceleration.
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Here, D is the theoretical diffusion coefficient defined by
Einstein’s formula:

D =
kBT

γ
. (3)

Absent any external force, the particle will amble indef-
initely through the fluid in an indeterminate manner. A
sonification scheme based on the experimental position
data of a freely-diffusing Brownian particle, as character-
ized above, is limited in at least three ways: (1) the range
of data values is generally unpredictable; (2) the collected
data will be sparse given the experimental state of the art
for imaging unbounded Brownian microparticles; and (3)
the data will be limited to two dimensions, barring the use
of a sophisticated method for measuring vertical displace-
ment from the imaging plane. In other words, there is an
undesirable indeterminacy on the physical range of values
obtained for mapping the audible parameters as well as
constraints on the size and dimensions of the data. In an
ideal scenario, however, the composer would have some
control over the range of values along with ample and var-
ied data to choose from.

To remedy these shortcomings, the particle’s motion was
confined to manageable regions of study by adding an
optical-trapping potential V (r) to the system.

2.2 Optically-Ordered Particles

Inserting the diffusion coefficient D and the trapping po-
tential V (r) into Eq. (1) gives the following time-varying
solution for the velocity ṙ of an optically-trapped (i.e.
“optically-ordered”) Brownian particle in a viscous fluid:

ṙ = −∇V (r)

γ
+
√

2DΓ (t). (4)

As in Eq. (2), the inertial term M r̈ was omitted to reflect
the overdamped nature of the motion. The confining po-
tential V (r) is defined by [5]

V (r) = −nα |E(r, z)|2

2
, (5)

where n is the refractive index of the background viscous
fluid, α is the polarizability of the particle, r =

√
x2 + y2

is the particle’s lateral displacement from the z-axis, and
|E(r, z)|2 is the magnitude squared of the total electric
field of the optical beam. The total field irradiance I(r, z)
of the beam is proportional to the total electric field by the
relation [5]

I(r, z) =
ε0c0

2
|E(r, z)|2, (6)

where ε0 is the electric permittivity of free space and c0 is
the speed of light in vacuum. Along a two-dimensional
trapping plane of the optical field, the solution for the
velocity ṙ of the particle becomes

ṙ =
nα∇⊥I(r, h)

ε0c0γ
+
√

2DΓ (t), (7)

where ∇⊥I(r, h) is the transverse irradiance gradient of
the laser beam along the z = h trapping plane. The fol-
lowing finite-difference algorithm can be implemented to
solve this stochastic differential equation numerically for

the positions ri = [xi, yi, h] as a function of the times
ti = i∆t [6]:

ri = ri−1 +
nα∇⊥I(r, h)

ε0c0γ
∆t+

√
2D∆twi. (8)

Here, i is the iteration of the finite-difference simulation,
∆t is the time step, and wi is a vector of Gaussian random
numbers with unit variance and zero mean. In the next sec-
tion, a brief overview of the historical development of op-
tical traps is provided in order to elucidate the advantages
of using a standing-wave optical trap to analyze Brownian
motion compared with other trapping models.

3. AN OPTICAL TRAPPING ODYSSEY

3.1 Particle Acceleration and Confinement

The acceleration of matter by radiated light pressure was
first explained by Johannes Kepler in 1619 [7]. Due to
the immense irradiance of light emitted by the sun, Kepler
observed that the gas and minerals of a comet could be
pushed by the light. In 1873, James Maxwell discovered
that the radiated light pressure P was equal to the time-
averaged field irradiance I of the light divided by the speed
of light c [8]. In theory, light radiation pressure could be
used to accelerate particulate matter on Earth, assuming
the irradiance of the light was substantially large compared
to the magnitudes of the perturbed masses.

With the invention of high-irradiance lasers in 1960 [9],
light radiation pressure could be feasibly applied to the
acceleration and confinement of microscopic-sized parti-
cles. The first laser trap was developed in 1970 by Arthur
Ashkin at Bell Laboratories [10]. It consisted of two
counter-propagating, coaxial Gaussian beams focused at
points upstream from their plane of intersection, as shown
in Fig. 1. A microsphere located inside the optical field
of the two beams was pulled toward the propagation axis
(i.e. z-axis) by a transverse gradient force Fgrad and accel-
erated downstream by an axial scattering force Fscat. To-
gether these forces tightly confined the particle at the point
where the intersection plane of the beams met the propa-
gation axis. A breakthrough in laser technology, Ashkin’s
trap eventually inspired the development of a wide array of
trapping configurations, including optical tweezers 3 .

y

z

Fgrad

Fscat

x 
(c, 0)

(a, b)

Figure 1. The first optical trap. Two opposing laser beams intersect along
the z = c plane. A spherical particle located at the point (a, b) in the zy-
plane is pulled to the force equilibrium position (c, 0) by optical forces
Fgrad and Fscat. Note: The positive x-axis is into the page.

3 One of the most common optical trapping designs employed by
scientists today, optical tweezers are optimal for high-precision, three-
dimensional manipulation of microscopic particles.
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Although these early trapping designs provided a use-
ful means for stable, surface-isolated trapping, they were
not ideal for tracking Brownian motion because they ei-
ther eliminated the particle’s microscopic motion or com-
plicated the imaging process. Standing-wave traps, on the
other hand, allowed for enlarged, two-dimensional trap-
ping regions that were convenient for analyzing Brownian
diffusion. Additionally, the particles could move vertically
from one trapping level to another, permitting a more di-
verse collection of data.

3.2 The Brownian Trap

The Brownian trap is a standing-wave optical trap con-
taining a vertical lattice of individual trapping regions that
are ideal for tracking transverse particle diffusion. The
first standing-wave optical trap was developed in 1999
by Zemánek et al. [11]. In a typical standing-wave trap-
ping setup, a laser beam reflects off a mirrored surface
positioned perpendicular to the propagation axis and su-
perimposes on the incident beam. The superposition of
the beams produces an optical standing wave capable of
simultaneous particle confinement in separate, surface-
isolated 4 regions.

When fluid-immersed microspheres are introduced in the
vicinity of the laser trap, optical forces pull the spheres to-
ward the antinodes of the standing wave, enclosing them in
two-dimensional optical pockets 5 . Assuming the counter-
propagating beams of the standing-wave trap are well-
aligned, the spheres primarily 6 experience an axial gra-
dient force FX and a transverse gradient force Fgrad. By
analogy to gravity, the optical barriers induced by FX and
Fgrad confine a single microsphere along a particular antin-
ode like a marble in a bowl, as depicted in Fig. 2. Due
to molecular interactions with the fluid, the particle may
jump in and out of the trap. However, the barriers tend to
contain the motion within the optical field.

With test particles captured in the confinement regions
of the Brownian trap, one can record the positions of the
particles over time using experimental imaging and track-
ing tools. The tracked points can then be mapped to audi-
ble parameters to create a data sonification of experimental
Brownian motion.

Figure 2. Force field analogy. The optical force field encountered by a
microsphere at an antinode of the Brownian trap is similar to the gravita-
tional field experienced by a marble rolling in a bowl.

4 Surface isolation simplifies the motion by eliminating surface drag.
5 Refer to Fig. 4 for an illustration of a standing-wave optical trap.

Note that the trapping regions (dotted lines) lie along the antinodal planes.
6 The reflective surface may transmit some laser light for imaging pur-

poses. In such cases, a net axial scattering force Fscat oriented down-
stream is also present in the trap, shifting the trapping planes slightly
downstream from the antinodal planes.

4. EXPERIMENTAL SETUP

To obtain tracking data of experimental Brownian mo-
tion, fluorescent microspheres were inserted into the op-
tical field of a Brownian trap 7 . The particles were im-
aged with a CCD camera at a rate of 15 frames per sec-
ond. Video files of individually trapped particles were
analyzed using video tracking software in order to deter-
mine the horizontal (x, y) positions of each particle over
time. The data sets ranged from 98 to 1690 points. The
horizontal magnitudes ri of the displacement vectors ri at
each time ti were subsequently calculated. The vertical
displacements zi were determined based on the sizes of the
diffraction patterns produced by the diffusing fluorescent
spheres relative to a measured standard 8 . In the follow-
ing section, the data-mapping scheme used to sonify the
horizontal and vertical displacements is outlined. Web ad-
dresses containing audio samples of the sonified data are
also provided.

5. DATA SONIFICATION

5.1 Audio Samples

To hear samples of the data sonification, email the author
or visit brownian.bandcamp.com. Audio-visual samples
are also available online at youtube.com/chadmckell and
vimeo.com/brownian.

5.2 Horizontal Dynamics

5.2.1 Equal-Area Mapping

The radial displacements ri of individual Brownian par-
ticles were mapped to specific notes on a selected mu-
sical scale for every time ti (see Fig. 3). To sonify
the horizontal data, two data-mapping approaches were
implemented—equal-area and biased mapping. In equal-
area mapping, the total area 9 of the trapping region was
divided into sub-regions of equal area AE = π/8 µm2, as
plotted in Fig. 3 (middle). Each sub-region corresponded
to a unique MIDI note number mi on a particular scale. In
the chromatic scale on C, for example, an r value in the
range (0 ≤ r <

√
8/8) µm mapped to C4 (m = 60); an

r value in the range (
√

8/8 ≤ r < 1/2) µm mapped to
C#4 (m = 61); and so forth.

Mapping algorithms were programmed in Java to de-
termine the MIDI note numbers mi for every displace-
ment ri measured at time ti. The computed note arrays
{m1,m2,m3...} were then inserted into Pure Data (Pd)
and sampled at a rate 10 of 15 Hz (900 beats per minute).
Reverberated sine waves were generated using objects
osc∼ and freeverb∼ in Pd. Files containing the
MIDI note arrays and Pd patches are available from the
author on request.

7 A detailed description and analysis of the laboratory setup is avail-
able in Ref. [5]. Information is included about the physical parameters of
the laser and other optical components, the measured distances between
the components, the sizes and material composition of the spheres, and
the experimental tools used to collect and analyze videos of trapped par-
ticles.

8 See [5, pp. 57–61].
9 The total area of the trapping region varied depending on the maxi-

mum horizontal displacement from the origin.
10 A sampling rate of 15 Hz was chosen in order to match the frame

rate of the imaging camera.
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Figure 3. Data-mapping scheme—horizontal dynamics. Top: Each radial
displacement ri of a trapped microsphere mapped to an audible pitch.
As the sphere moved from its starting point (“×”) to its ending point
(“18”) in 18 steps, the pitch was updated 18 times at a sampling rate of
15 Hz. Middle (equal-area mapping): The total area of the trapping re-
gion was divided into sub-regions of equal area. In the example depicted
here, the radial points in each sub-region mapped to a unique MIDI note
number mi in the chromatic scale on C. The ending point (“18”) mapped
to C#4 since it was located in the second sub-region (shaded area) from
the origin. Bottom (biased mapping): the area of the centermost sub-
region was increased to encircle the majority of the radial points. The
new mapping reassigned the ending point (“18”) to the centermost sub-
region (shaded area) so that the point charted to C4.

5.2.2 Biased Mapping

Biased data mapping allows the composer to increase the
stability of the centermost (i.e. lowest-frequency) note
while retaining the stochastic nature of higher-pitched note
combinations. In this mapping approach, the area of the
centermost sub-region is enlarged in order to increase the

probability that a given r value will lie within the center-
most sub-region. In Fig. 3 (bottom), the area of the cen-
termost sub-region was increased to AB = π/2 µm2 so
that, in the chromatic scale on C, an r value in the range
(0 ≤ r <

√
2/2) µm mapped to C4. Each remaining sub-

region retained an area of AE = π/8 µm2 so that an r

value in the range (
√

2/2 ≤ r < 2
√

10/8) µm mapped to
C#4; an r value in the range (2

√
10/8 ≤ r <

√
3/2) µm

mapped to D4; and so forth.

5.2.3 Multiple Particles

Single particle sonifications were summed in Pd in or-
der to hear the individual stochastic trajectories en masse.
Chordal harmonies were created by charting the center-
most sub-region of each trajectory to a different note in
a chosen scale. While dissonant, equal-area mapping more
accurately portrayed the movements of each particle near
the origin of the tracking grid. Biased mapping, on the
other hand, allowed for more musical consonance.

5.3 Vertical Dynamics

The three-dimensional 11 nature of the tracking data
emerged when transitions between trapping planes were
measured. As the fluorescent microspheres moved from
one trapping pocket to another, fluorescent light from the
spheres diffracted through the imaging apparatus. The
sizes of these diffraction patterns were compared to a mea-
sured standard in order to determine the discrete, vertical
displacements zi of the particles. One possible mapped
trajectory of a particle moving vertically in the trap is il-
lustrated in Fig. 4.

To sonify the vertical jumps zi, the mapping region (i.e.
the range of mapped notes) was shifted by one octave for
every unit transition along the lattice. For example, if a mi-
crosphere dropped down two trapping levels, the mapping
region transposed down two octaves; if the particle jumped
up one trapping level, the region moved up one octave.

Figure 4. Data-mapping scheme—vertical dynamics. A transition of one
antinode along the standing wave transposed the mapping region (shaded
area on the staff) by one octave. In the scenario shown here, the trajectory
caused a shift of one octave down, then two octaves down, then one octave
up. Note: each mapping region in this example spanned one octave in
the chromatic scale on C. In practice, however, a typical mapping region
covered several octaves.

11 The three dimensions are represented by the cylindrical coordinates
r, θ, and z. Mapping the polar coordinate θ is reserved for future work.
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6. FUTURE DIRECTIONS

6.1 Data Mapping

In order to extract more artistic value from the experimen-
tal tracking data discussed in this paper, future work on
data mapping is proposed. The data-mapping scheme out-
lined in Section 5 is one among many possible methods.
In addition to pitch, the calculated displacements 12 may
be mapped to other audible variables, such as timbre and
amplitude panning. In two-dimensional vector base am-
plitude panning (VBAP) [12], the gain factors gi of indi-
vidual loudspeakers in a circular array could fluctuate in
accordance with a particle’s position inside a trapping re-
gion, as depicted in Fig. 5. Assigning different values to
the sampling rate 13 and the mapping areas AE and AB
may also be explored. Additionally, other optical trapping
setups, aside from standing-wave traps, could be devised.
Maximizing the complexity of these trapping configura-
tions would be particularly desirable since a more intricate
setup would lend more options for mapping the data.

18

Figure 5. Two-dimensional VBAP. A listener (white circle) perceives
higher gain factors gi (darker shading) from loudspeakers located closer
to a particle’s mapped position (“18”). Note: the trapping region (dashed
border) was scaled to match the size of the circular loudspeaker array.

6.2 Computational Modeling

Given values for each of the physical variables in Eq. (8), a
computer program can be written to generate a continuous
stream of Brownian position data for real-time sonification
and manipulation. In a model based on the equation of
motion of an optically-ordered Brownian particle, the com-
poser would adjust the parameters of the “Brownian” audio
effect by altering the physical parameters of the particle,
the Brownian trap, or the background fluid environment.
Increasing the transverse irradiance gradient ∇⊥I(r, h) of
the laser, for example, would make the particle more likely
to reside in the centermost sub-region and less likely to
escape the trap. Such a change would increase the sta-
bility of the lowest-frequency note and reduce the likeli-
hood of higher-pitched, stochastic sequences. Increasing
the fluid viscosity γ, moreover, would slow the particle’s
average velocity, effectively increasing the duration over
which notes were played. Data-mapping algorithms could
also be incorporated into the model to manipulate the sam-
pling rate and mapping areas in real time.

12 Apart from displacement, other physical observables, such as average
velocity, may be computed from the tracking data and then sonified.

13 Although the sonification would no longer accurately reflect the
physical scenario observed in the laboratory, changing the sampling rate
to mismatch the imaging rate may be of artistic interest.

7. CONCLUSION

Data sonifications based on optically-ordered Brownian
motion benefit from the fact that the data range can be
controlled and the data size and dimensions can be maxi-
mized. In this study, a standing-wave optical trap was used
to restrict the random motion of diffusing Brownian micro-
spheres to an ordered stack of two-dimensional trapping
planes. It was shown that the arrangement of the particles
in the lattice provided an attractive framework for produc-
ing diverse and manageable sonification data. Lastly, a dis-
cussion of potential avenues for research in data mapping
and computational modeling was included in order to pro-
pel the ideas outlined in the paper.
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tical trapping of nanoparticles and microparticles by
a Gaussian standing wave,” Optics Letters, vol. 24,
no. 21, pp. 1448–1450, 1999.

[12] V. Pulkki, “Virtual sound source positioning using vec-
tor base amplitude panning,” Journal of the Audio En-
gineering Society, vol. 45, no. 6, pp. 456–466, 1997.

528 Proceedings of the International Computer Music Conference 2016


	 1. Introduction
	 2. Brownian Motion
	2.1 Freely-Diffusing Particles
	2.2 Optically-Ordered Particles

	 3. An Optical Trapping Odyssey
	3.1 Particle Acceleration and Confinement
	3.2 The Brownian Trap

	 4. Experimental Setup
	 5. Data Sonification
	5.1 Audio Samples
	5.2 Horizontal Dynamics
	5.2.1 Equal-Area Mapping
	5.2.2 Biased Mapping
	5.2.3 Multiple Particles

	5.3 Vertical Dynamics

	 6. Future Directions
	6.1 Data Mapping
	6.2 Computational Modeling

	 7. Conclusion
	 8. Acknowledgments
	 9. References

