SOPC Builder

ALTERAY

101 Innovation Drive
San Jose, CA 95134
www.altera.com

UG-01096-1.0

User Guide

=

Subscribe

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=UG-01096

© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard Warrant?/, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

o

QUALITY
150 9001:2008

NSAI Certified

SOPC Builder User Guide December 2010 Altera Corporation

http://www.altera.com/common/legal.html

QA | |:| —E 5Y/A ® Contents

Chapter 1. Introduction to SOPC Builder

Architecture of SOPC Builder Systems 1-1
SOPC Builder ModULest e e e et e e e 1-2
Functions of SOPC Builder i e e e e e et 1-5
Defining and Generating the System Hardware 1-5
Creating a Memory Map for Software Development 1-6
Creating a Simulation Modeland Test Bench oL 1-6
SOPC Builder Design Flow 1-6
Visualization of SOPC Builder Systems 1-8
Operating System Support 1-8
Talkback SUpport 1-8
Chapter 2. System Interconnect Fabric for Memory-Mapped Interfaces
High-Level Description 2-1
Fundamentals of Implementation 2-3
Functions of System Interconnect Fabric i i i i 2-3
Address Decoding 2-3
Datapath Multiplexing 2-4
Wait State INSertion 2-5
Pipelined Read Transfers 2-6
Dynamic Bus Sizing and Native Address Alignment 2-6
Dynamic Bus Sizing 2-7
Native Address Alignment 2-8
Arbitration for Multimaster Systems 2-9
Traditional Shared Bus Architectures i e 2-9
Slave-Side Arbitration 2-10
Arbiter Details o 2-11
Arbitration RUles 2-12
Burst Adapters 2-14
Interrupts ... 2-15
Individual Requests IRQ Scheme 2-15
Priority Encoded Interrupt Scheme 2-15
Assigning IRQs in SOPC Builder 2-16
Reset Distribution 2-16

Chapter 3. System Interconnect Fabric for Streaming Interfaces

High-Level Description 3-1
Avalon Streaming and Avalon Memory-Mapped Interfaces 3-2
Adapters 3-3
Data Format Adapter 3-4
Timing Adapter 34
Channel Adapter 3-5
Error Adapter 3-5
Multiplexer Examples 3-5
Example to Double Clock Frequency o il 3-6
Example to Double Data Width and Maintain Frequency 3-6
Example to Boost the Frequency 3-6

December 2010 Altera Corporation SOPC Builder User Guide

ii Contents

Chapter 4. SOPC Builder Components

Component Providers 4-1
Component Hardware Structure 4-2
Component Instances Inside the SOPC Builder System 4-2
Components Outside the SOPC Builder System 4-3
Exported Connection Points—Conduit Interfaces 4-3
SOPC Builder Component Search Path 4-4
Installing Additional Components 4-4
Copy to the IP Root Directory 4-5
Reference Componentsinan .ipx File 4-6
Understanding IPX File Syntax 4-7
Upgrading from Earlier Versions 4-8
Component Structure 4-8
Component Description File (_hw.tcl) 4-9
Component File Organization 4-9
Component Versioning 4-9
Classic Components in SOPC Builder 4-10
Chapter 5. Using SOPC Builder with the Quartus Il Software
Quartus ITIP File o e 5-1
Quartus II Incremental Compilation 5-1
TimeQuest Timing Analyzer 5-2
Analyzing PLLs 5-2
Analyzing Slow Asynchronous I/OPaths il 5-3
Analyzing Single Data Rate SDRAM and SSRAM o i il 54
Analyzing Tristate Bridges and Asynchronous Devices 5-6
Analyzing DDR and DDR2 Memories i i il 5-7
Chapter 6. Component Editor
Component Hardware Structure 6-1
Starting the Component Editor 6-2
HDL Files Tab 62
Bottom-Up Design 6-2
Top-Down Design 6-3
Signals Tab 6-3
Naming Signals for Automatic Type and Interface Recognition 64
Templates for Interfaces to External Logic 6-5
Interfaces Tab 6-6
HDL Parameters Tab 6-6
Library Info o 67
Saving a Component 67
Editing a Component 6-8
Software Assignments 6-8
Component Parameterization 6-8

Chapter 7. Component Interface Tcl Reference

Information in a Hardware Component Description File 7-1
Component Phases 7-2
Writing a Hardware Component Description File 72
Providing Basic Information 7-3
Declaring Parameters 7-3
Declaring Interfaces 7-5
Adding Files and Guiding Generation i 7-5

SOPC Builder User Guide December 2010 Altera Corporation

Contents jii

Default Behaviors e 7-6
Validation Phase Behavior e e e e e 7-6
Elaboration Phase Behavior e e e e 7-6
Generation Phase Behavior 7-7
Edit Phase BEhavior e e e 7-7

Overriding Default Behaviors 7-8
Validation Callback e e 7-9
Elaboration Callback e 7-9
Generation Callback e e 7-10
Editor Callback e 7-11

Hardware Tcl Command Reference i e e 7-12
Module Definition e e 7-14
Parameters 7-21
Display Itemso 7-29
Interfaces and PoOrts 7-32
GENETAtION . ..ottt e e 7-38

Deprecated Commands and Properties 7-40

Chapter 8. Archiving SOPC Builder Projects

Limitations e 8-1
Required Files 82
Chapter 9. SOPC Builder Memory Subsystem Development Walkthrough
Example Design 9-1
Example Design Starting Point 9-3
Hardware and Software Requirements i i 9-3
Design Flow o 94
Component-Level Design in SOPC Builder 94
SOPC Builder System-Level Design 94
Simulation 9-5
Quartus II Project-Level Design 9-5
Board-Level Design 9-5
Simulation Considerations 9-5
On-Chip RAM and ROM 9-6
Component-Level Design for On-Chip Memory 9-6
SOPC Builder System-Level Design for On-Chip Memory 9-8
Simulation for On-Chip Memory 9-8
Quartus II Project-Level Design for On-Chip Memory 9-8
Board-Level Design for On-Chip Memory i i .. 9-8
Example Design with On-Chip Memory i ... 9-8
EPCS Serial Configuration Device 9-9
Component-Level Design foran EPCS Device 9-9
SOPC Builder System-Level Design foran EPCSDevice 9-9
Simulation for an EPCS Device i 9-9
Quartus II Project-Level Design for an EPCS Device i, 9-10
Board-Level Design foran EPCS Device i 9-10
Example Design withan EPCS Device i 9-10
SDR SDRAM .. 9-11
Component-Level Design for SDRAM i 9-11
SOPC Builder System-Level Design for SDRAM 9-11
Simulation for SDRAM 9-11
Quartus II Project-Level Design for SDRAM 9-12
Board-Level Design for SDRAM 9-12

December 2010 Altera Corporation SOPC Builder User Guide

iv Contents

Example Design with SDRSDRAM i 9-12
DDR SDRAM ... 9-14
DDR2 SDRAM ... 9-14
Off-Chip SRAM and Flash Memory 9-15

Component-Level Design for SRAM and Flash Memory 9-15

SOPC Builder System-Level Design for SRAM and Flash Memory 9-17

Simulation for SRAM and Flash Memory i 9-17

Quartus II Project-Level Design for SRAM and Flash Memory 9-18

Board-Level Design for SRAM and FlashMemory 9-18

Example Design with SRAM and Flash Memory 9-20

Chapter 10. SOPC Builder Component Development Walkthrough
SOPC Builder Components and the Component Editor 10-1
Prerequisites 10-1
Hardware and Software Requirements L 10-2
Component Development Flow 10-2

Typical Design Steps 10-2

Hardware Design 10-3
Design Example: Checksum Hardware Acceleratoroiae. 104

Software Design 10-6

Verifying the Component 10-6
Sharing Components i 10-7
System Information Files (.sopcinfo) 10-7

Chapter 11. Avalon Memory-Mapped Bridges

Structure of a Bridge 11-2
Reasons for Using a Bridge 11-2
Address Mapping for Systems with Avalon-MM Bridges 11-6

Avalon-MM Pipeline Bridge 11-8
Component OVerVIEW i 11-9
Functional Description 11-10

Clock Crossing Bridge i 11-12
Choosing Clock Crossing Methodology 11-13
Functional Description 11-13
Instantiating the Avalon-MM Clock-Crossing Bridge in SOPC Builder 11-17

Clock Domain Crossing Logic o 11-17
Description of Clock Domain Adapter 11-18
Location of Clock Domain Adapter 11-19
Duration of Transfers Crossing Clock Domains 11-19
Implementing Multiple Clock Domains in SOPC Builder 11-20

Avalon-MM DDR Memory Half-Rate Bridge L 11-20
Resource Usage and Performance i 11-21
Functional Description 11-22
Instantiating the Core in SOPC Builder 11-23
Example System 11-24

Device SUPPOTIt ... 11-25

Hardware Simulation Considerations i i 11-25

Software Programming Model 11-25

Chapter 12. Avalon Streaming Interconnect Components

Interconnect Component Usage i 12-1
Address Mapping 12-2
Timing Adapter 122

SOPC Builder User Guide December 2010 Altera Corporation

Contents v

Resource Usage and Performance i 124
Instantiating the Timing Adapter in SOPC Builder 124
Data Format Adapter 12-5
Resource Usage and Performance i 12-6
Instantiating the Data Format Adapter in SOPC Builder 12-6
Channel Adapter 12-7
Resource Usage and Performance i 12-8
Instantiating the Channel Adapter in SOPC Builder 12-8
Error Adapter 12-9
Instantiating the Error Adapter in SOPC Builder 12-9
Installation and Licensing i 12-10
Hardware Simulation Considerations i 12-10
Software Programming Model 12-10
Additional Information
Document Revision Historyl Info-1
How to Contact Altera i Info-1
Typographic Conventions i Info-1

December 2010 Altera Corporation SOPC Builder User Guide

vi

Contents

SOPC Builder User Guide

December 2010 Altera Corporation

= m—— 1. Introduction to SOPC Builder

SOPC Builder is a powerful system development tool. SOPC Builder enables you to
define and generate a complete system-on-a-programmable-chip (SOPC) in much less
time than using traditional, manual integration methods. SOPC Builder is included as
part of the Quartus II software. For a quick introduction on how to use SOPC Builder,
follow these general steps:

m Install the Quartus®II software, which includes SOPC Builder. This is available at
www.altera.com.

m Take advantage of the one-hour online course, Using SOPC Builder.

m Download and run the checksum sample design described in Chapter 9, SOPC
Builder Memory Subsystem Development Walkthrough.

You may have used SOPC Builder to create systems based on the Nios® II processor.
However, SOPC Builder is more than a Nios II system builder; it is a general-purpose
tool for creating systems that may or may not contain a processor and may include a
soft processor other than the Nios II processor.

SOPC Builder automates the task of integrating hardware components. Using
traditional design methods, you must manually write HDL modules to wire together
the pieces of the system. Using SOPC Builder, you specify the system components in a
GUI and SOPC Builder generates the interconnect logic automatically. SOPC Builder
generates HDL files that define all components of the system, and a top-level HDL file
that connects all the components together. SOPC Builder generates either Verilog
HDL or VHDL equally.

In addition to its role as a system generation tool, SOPC Builder provides features to
ease writing software and to accelerate system simulation. This chapter includes the
following sections:

B “Architecture of SOPC Builder Systems” on page 1-1
m “Functions of SOPC Builder” on page 1-5

m “Operating System Support” on page 1-8

m “Talkback Support” on page 1-8

Architecture of SOPC Builder Systems

An SOPC Builder component is a design module that SOPC Builder recognizes and
can automatically integrate into a system. You can also define and add custom
components or select from a list of provided components. SOPC Builder connects
multiple modules together to create a top-level HDL file called the SOPC Builder
system. SOPC Builder generates system interconnect fabric that contains logic to
manage the connectivity of all modules in the system.

December 2010 Altera Corporation SOPC Builder User Guide

http://www.altera.com
http://www.altera.com/education/training/courses/OEMB1115

Chapter 1: Introduction to SOPC Builder
Architecture of SOPC Builder Systems

SOPC Builder Modules

14
&

SOPC Builder User Guide

This document refers to components as the class definition for a module, for example a
Nios® II processor. An instance is a parameterization of a component that's been added
to a system, for example cpu_0.

SOPC Builder modules are the building blocks for creating an SOPC Builder system.
SOPC Builder modules use Avalon® interfaces, such as memory-mapped, streaming,
and IRQ, for the physical connection of components. You can use SOPC Builder to
connect any logical device (either on-chip or off-chip) that has an Avalon interface.
There are different types of Avalon interfaces, as described in the Avalon Interface
Specifications.

For details on the Avalon-MM interface refer to Chapter 2, System Interconnect Fabric
for Memory-Mapped Interfaces. For details on the Avalon-ST interface, refer to
Chapter 3, System Interconnect Fabric for Streaming Interfaces. For details about the
Avalon-ST interface protocol, refer to Avalon Interface Specifications.

December 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 1: Introduction to SOPC Builder
Architecture of SOPC Builder Systems

1-3

Example System

Figure 1-1 shows an FPGA design that includes an SOPC Builder system and custom
logic modules. You can integrate custom logic inside or outside the SOPC Builder
system. In this example, the custom component inside the SOPC Builder system
communicates with other modules through an Avalon-MM master interface. The
custom logic outside of the SOPC Builder system is connected to the SOPC Builder
system through a PIO interface. The SOPC Builder system includes two SOPC Builder
components with Avalon-ST source and sink interfaces. The system interconnect
fabric connects all of the SOPC Builder components using the Avalon-MM or
Avalon-ST system interconnect as appropriate.

Figure 1-1. Example of an FPGA with a SOPC Builder System Generated by SOPC Builder

Printed Circuit Board

Custom

Logic

System Module

Processor Streaming
(32-bit Data
Master) Sink

System Interconnect Fabric

DDR2 Streaming
Memory Data
Controller Source

DDR2

Bus Bridge Memory

Co-Processor

DDR2
Memory

/M Avalon-MM Master Port

Avalon-MM Slave Port

Avalon-ST Source Port

EIY Avalon-ST Sink Port

El)
O

December 2010 Altera Corporation

SOPC Builder User Guide

1-4

Chapter 1: Introduction to SOPC Builder
Architecture of SOPC Builder Systems

SOPC Builder User Guide

A component can be a logical device that is entirely contained within the SOPC
Builder system, such as the processor component shown in Figure 1-1. Alternately, a
component can act as an interface to an off-chip device, such as the DDR2 interface
component in Figure 1-1. In addition to the Avalon interface, a component can have
other signals that connect to logic outside the SOPC Builder system. Non-Avalon
signals can provide a special-purpose interface to the SOPC Builder system, such as
the PIO in Figure 1-1. These non-Avalon signals are described in Conduit Interface
chapter in the Avalon Interface Specifications.

Available Components

Altera and third-party developers provide ready-to-use SOPC Builder components,
including:

m Microprocessors, such as the Nios II processor
m Microcontroller peripherals, such as a Scatter-Gather DMA Controller and timer

m Serial communication interfaces, such as a UART and a serial peripheral interface
(SPI)

m General purpose I/O
m Communications peripherals, such as a 10/100/1000 Ethernet MAC

m Interfaces to off-chip devices

Custom Components

You can import HDL modules and entities that you write using Verilog HDL or
VHDL into SOPC builder as custom components. You use the following design flow
to integrate custom logic into an SOPC Builder system:

1. Determine the interfaces used to interact with your custom component.
2. Create the component logic using either Verilog HDL or VHDL.

3. Use the SOPC Builder component editor to create an SOPC Builder component
with your HDL files.

4. Instantiate your component in the system.
Once you have created an SOPC Builder component, you can use the component in

other SOPC Builder systems, and share the component with other design teams.

For instructions on developing a custom SOPC Builder component, the details about
the file structure of a component, or the component editor, refer to Chapter 4, SOPC
Builder Components.

For details on the Avalon-MM interface refer to Chapter 2, System Interconnect Fabric

for Memory-Mapped Interfaces. For details on the Avalon-ST interface, refer to
Chapter 3, System Interconnect Fabric for Streaming Interfaces.

December 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 1: Introduction to SOPC Builder 1-5

Functions of SOPC Builder

Third-Party Components

You can also use SOPC-ready components that were developed by third-parties.
Altera awards the SOPC Builder Ready certification to IP functions that are ready to
integrate with the Nios Il embedded processor or the system interconnect fabric via
SOPC Builder. These cores support the Avalon-MM interface or the Avalon Streaming
(Avalon-ST) interface and may include constraints, software drivers, simulation
models, and reference designs when applicable.

To find SOPC Builder Ready third-party components that you can purchase and use
in SOPC Builder systems, complete the following steps:

1. On the Tools menu in SOPC Builder, click Download Components.

2. On the Intellectual Property Solutions web page, type SOPC Builder ready +in
the box labeled Search for IP, Development Kits and Reference Designs.

Functions of SOPC Builder

This section describes the functions of SOPC Builder.

Defining and Generating the System Hardware

SOPC Builder allows you to design the structure of a hardware system. The GUI
allows you to add components to a system, configure the components, and specify
connectivity.

After you add and parameterize components, SOPC Builder generates the system
interconnect fabric, and outputs HDL files to your project directory. During system
generation, SOPC Builder creates the following items:

m An HDL file for the top-level SOPC Builder system and for each component in the
system. The top-level HDL file is named <system_name>.v for Verilog HDL designs
and <system_name>.vhd for VHDL designs.

m Synopsis Design Constraints file (.sdc) for timing analysis.

m A Block Symbol File (.bsf) representation of the top-level SOPC Builder system for
use in Quartus II Block Diagram Files (.bdf).

B An example of an instance of the top-level HDL file, <SOPC_project_name_inst>.v
or <SOPC_project_name_inst>.vhd, which demonstrates how to instantiate the
top-level HDL file in your code.

B A data sheet called <systern_name>.html that provides a system overview
including the following information:

m All external connections for the system

m A memory map showing the address of each Avalon-MM slave with respect to
each Avalon-MM master to which it is connected

m All parameter assignments for each component

B A functional test bench for the SOPC Builder system and ModelSim® simulation
project files

December 2010 Altera Corporation SOPC Builder User Guide

http://www.altera.com/products/ip/ipm-index.html

Chapter 1: Introduction to SOPC Builder
SOPC Builder Design Flow

m SOPC information file (.sopcinfo) that describes all of the components and
connections in your system. This file is a complete system description, and is used
by downstream tools such as the Nios II tool chain. It also describes the
parameterization of each component in the system; consequently, you can parse its
contents to get requirements when developing software drivers for SOPC Builder
components.

® A Quartus II IP File (.qip) that provides the Quartus II software with all required
information about your SOPC Builder system. The .qip file includes references to
the following information:

m HDL files used in the SOPC Builder system
m TimeQuest Timing Analyzer Synopsys Design Constraint (.sdc) files
m Component definition files for archiving purposes

After you generate the SOPC Builder system, you can compile it with the Quartus II
software, or you can instantiate it in a larger FPGA design.

Creating a Memory Map for Software Development

When your SOPC Builder system includes a Nios II processor, SOPC Builder
generates a header file, cpu.h, that provides the base address of each Avalon-MM
slave component. In addition, each slave component can provide software drivers
and other software functions and libraries for the processor. You can create C header
files for your system using the sopc-create-header-files utility.

For details type sopc-create-header-files --help in a Nios II Command shell.

For more details about how to provide Nios II software drivers for components, refer
to the Developing Device Drivers for the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook. The Nios II EDS is separate from SOPC Builder, but it
uses the output of SOPC Builder as the foundation for software development.

Creating a Simulation Model and Test Bench

You can simulate your system after generating it with SOPC Builder. During system
generation, SOPC Builder outputs a simulation test bench and a ModelSim setup
script that eases the system simulation effort. The test bench does the following:

m Instantiates the SOPC Builder system
m Drives all clocks and resets

m Instantiates simulation models for off-chip devices when available

SOPC Builder Design Flow

SOPC Builder User Guide

Figure 1-2 illustrates an example bottom-up design flow in SOPC Builder which
starts with component design. As this flow diagram illustrates, the typical design flow
includes the following high-level steps:

1. Package your component for SOPC Builder using the Component Editor.

December 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

Chapter 1: Introduction to SOPC Builder
SOPC Builder Design Flow

Figure 1-2. Complete Qsys Design Flow

2. Simulate at the unit-level, possibly incorporating Avalon BFMs to verify the

system.

3. Complete the SOPC Builder design by adding other components, specifying

interrupts, clocks, resets, and addresses.

® N o g

Test in hardware.

Perform system level simulation.

Generate the SOPC Builder system.

Constrain and compile the design.

Download the design to an Altera device.

y®

Package Component
Using Component Editor

\4

Simulation at Unit-Level,
Possibly Using Avalon BFMs

Simulation Give
Expected Results?

@ Debug Design

@2 Complete System, Adding
" | Components, IRQs, Addrs

A\
@ Generate SOPC BuilderFid
System

@ A 4
~ | Perform System-Level
o Simulation

Simulation Give
Expected Results?

Debug Design

Yes Constraint, Compile
in Quartus Il Generating .Sof|
A 4
@‘ Download .sof to PCB
g with Altera FPGA

HW Testing Give
Expected Results?

Modify Design or
Constraints

SOPC Builder
System Complete

December 2010

Altera Corporation

SOPC Builder User Guide

Chapter 1: Introduction to SOPC Builder
Visualization of SOPC Builder Systems

In the alternative top-down valid design flow, you begin by designing the SOPC
Builder system and then define and instantiate custom SOPC Buildder component.
This approach clarifies the system requirements earlier in the design process.

Designs targeting HardCopy devices are require specific design constraints.
Consequently, if you are targeting a HardCopy series device, you must verify you
design for the HardCopy companion device.

Follow these guidelines to verify your design for both devices:

1. In the Quartus II Device dialog box, select both the FPGA and the appropriate
HardCopy companion device.

2. In Step 8 of the design flow shown in Figure 1-2, compile for both the FPGA and
HardCopy device.

3. After Step 10 of the design flow shown in Figure 1-2, if FPGA passes all functional
simulation and hardware verification tests, generate the HardCopy handoff
archive and send this archive to the HardCopy Design Center for the backend flow
and tapeout.

Visualization of SOPC Builder Systems

You can use the Filters dialog box to customize the display of your system in the
connections panel. You can filter the display of your system by interface type, instance
name, interface type, or using custom tags. For example, you can use filtering to view
only instances that include an Avalon-MM interface or instances that are connected to
a particular Nios II processor. For more information, refer to Quartus II online Help.

Operating System Support

SOPC Builder supports all of the operating systems that the Quartus II software
supports.

@ For details on installation and licensing, refer to the Altera Software Installation and

Licensing Manual.

Talkback Support

SOPC Builder User Guide

Talkback is a Quartus II software feature that provides feedback to Altera on tool and
IP feature usage. Altera uses the data to help guide future product planning efforts.
Talkback sends Altera information on the Altera components you use, including:
interface types, interface properties, parameter names and values, clocking, and
software assignments. For components from Altera, Talkback sends the component
parameter values to help understand what features of the component are being used.
For non-Altera components, Talkback collects information about how interfaces such
as Avalon-MM are being used. Connectivity between components is not sent. The
Talkback file does not include information about system connectivity, interrupts, or
the memory map seen by each master in the system. Talkback collects the same very
general information about your proprietary components.

The Talkback feature is enabled by default. You can disable Talkback from within the
Quartus II software if you do not wish to share your usage data with Altera.

December 2010 Altera Corporation

http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

2. System Interconnect Fabric for
/ANO S RYA /

® Memory-Mapped Interfaces

The system interconnect fabric for memory-mapped interfaces is a high-bandwidth
interconnect structure for connecting components that use the Avalon®
Memory-Mapped (Avalon-MM) interface. The system interconnect fabric consumes
less logic, provides greater flexibility, and higher throughput than a typical shared
system bus. It is a cross-connect fabric and not a tristated or time domain multiplexed
bus. This chapter describes the functions of system interconnect fabric for
memory-mapped interfaces and the implementation of those functions.

High-Level Description

The system interconnect fabric is the collection of interconnect and logic resources
that connects Avalon-MM master and slaves on components in a system. SOPC
Builder generates the system interconnect fabric to match the needs of the
components in a system. The system interconnect fabric implements the connection
details of a system. It guarantees that signals are routed correctly between master and
slaves, as long as the ports adhere to the rules of the Avalon Interface Specifications. This
chapter provides information on the following topics:

m “Address Decoding” on page 2-3

m “Datapath Multiplexing” on page 24

m “Wait State Insertion” on page 2-5

m “Pipelined Read Transfers” on page 2-6

m “Dynamic Bus Sizing and Native Address Alignment” on page 2—6
m “Arbitration for Multimaster Systems” on page 2-9

m “Burst Adapters” on page 2-14

m “Interrupts” on page 2-15

m “Reset Distribution” on page 2-16
For details about the Avalon-MM interface, refer to the Avalon Interface Specifications.
System interconnect fabric for memory-mapped interfaces supports the following

items:

B Any number of master and slave components. The master-to-slave relationship
can be one-to-one, one-to-many, many-to-one, or many-to-many.

® On-chip components.

m Interfaces to off-chip devices.

m Master and slaves of different data widths.

m Components operating in different clock domains.

m Components using multiple Avalon-MM ports.

December 2010 Altera Corporation SOPC Builder User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

2-2

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces

High-Level Description

Figure 2-1. System Interconnect Fabric—Example System

5

Figure 2-1 shows a simplified diagram of the system interconnect fabric in an
example memory-mapped system with multiple masters.

All figures in this chapter are simplified to show only the particular function being
discussed. In a complete system, the system interconnect fabric might alter the
address, data, and control paths beyond what is shown in any one particular figure.

Processor Control
Instruction Data i | DMA Controller
M : Read Write
A M M
s A
Y
.................. o
System N I I AGGGGGCCCEELr -
Interconnect : | | el SRR N I -
Fabric H
fYYY ivvy
é_Arbiter / \ Arbiter /

Tri-State Bridge

——p \Write Data & Control Signals
----p Read Data
== =% |nterface to Off-Chip Device

Py v I / A
S B rocé--
Instruction Data SDRAM \ 4 v
Memory Memory Controller Iil Iil
A Ethernet Flash
: MAC/PHY Memory
1 Chip Chip
\ 4
SDRAM Chip

IEI Avalon-MM Master Port

Avalon-MM Slave Port

SOPC Builder User Guide

SOPC Builder supports components with multiple Avalon-MM interfaces, such as the
processor component shown in Figure 2-1. Because SOPC Builder can create system
interconnect fabric to connect components with multiple interfaces, you can create
complex interfaces that provide more functionality than a single Avalon-MM
interface. For example, you can create a component with two different Avalon-MM
slaves, each with an associated interrupt interface.

System interconnect fabric can connect any combination of components, as long as
each interface conforms to the Avalon Interface Specifications. It can, for example,
connect a system comprised of only two components with unidirectional dataflow
between them. Avalon-MM interfaces are suitable for random address transactions,
such as to memories or embedded peripherals.

December 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2-3
Fundamentals of Implementation

Generating system interconnect fabric is SOPC Builder’s primary purpose. In most
cases, you are not required to modify the generated HDL; however, a basic
understanding of how HDL works can help you optimize your system. For example,
knowledge of the arbitration algorithm can help designers of multimaster systems
minimize the impact of arbitration on the system throughput.

Fundamentals of Implementation

System interconnect fabric for memory-mapped interfaces implements a partial
crossbar interconnect structure that provides concurrent paths between master and
slaves. System interconnect fabric consists of synchronous logic and routing resources
inside the FPGA.

For each component interface, system interconnect fabric manages Avalon-MM
transfers, interacting with signals on the connected component. Master and slave
interfaces can contain different signals and the system interconnect fabric handle any
adaptation necessary between them. In the path between master and slaves, the
system interconnect fabric might introduce registers for timing synchronization, finite
state machines for event sequencing, or nothing at all, depending on the services
required by the specific interfaces.

For more information, refer to the Avalon Memory-Mapped Design Optimizations
chapter in the Embedded Design Handbook.

Functions of System Interconnect Fabric

System interconnect fabric logic provides the following functions:
m “Address Decoding” on page 2-3

m “Datapath Multiplexing” on page 2—4

m “Wait State Insertion” on page 2-5

m “Pipelined Read Transfers” on page 2-6

m “Arbitration for Multimaster Systems” on page 2-9

m “Burst Adapters” on page 2-14

m “Interrupts” on page 2-15

m “Reset Distribution” on page 2-16

The behavior of these functions in a specific SOPC Builder system depends on the
design of the components in the system and the settings made in SOPC Builder. The
remaining sections of this chapter describe how SOPC Builder implements each
function.

Address Decoding

Address decoding logic in the system interconnect fabric forwards appropriate
addresses to each slave. Address decoding logic simplifies component design in the
following ways:

December 2010 Altera Corporation SOPC Builder User Guide

http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf

2-4 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces

Datapath Multiplexing

The system interconnect fabric selects a slave whenever it is being addressed by a
master. Slave components do not need to decode the address to determine when
they are selected.

m Slave addresses are properly aligned to the slave interface.

m Changing the system memory map does not involve manually editing HDL.

Figure 2-2 shows a block diagram of the address-decoding logic for one master and
two slaves. Separate address-decoding logic is generated for every master in a system.

As Figure 2-2 shows, the address decoding logic handles the difference between the
master address width (<M>) and the individual slave address widths (<S> and <T>).
It also maps only the necessary master address bits to access words in each slave’s
address space.

Figure 2-2. Block Diagram of Address Decoding Logic

read/write Slave
address [M..0] _ Address address [S..0] Port 1
Master "| Decoding g (8-bit)
Port Logic
read/write > Slave
address [T..2] Port 2
(32-bit)

In SOPC Builder, the user-configurable aspects of address decoding logic are
controlled by the Base setting in the list of active components on the System Contents
tab, as shown in Figure 2-3.

Figure 2-3. Base Settings in SOPC Builder Control Address Decoding

hodule Mame Deszcription Baze Encd IRz
E ecpu Mios Il Proces...
% inztruction_tmaster Master port
% data_tmaster haster port IRz 0 IR 31
¢ jtag_debug_mod... [Slave port | FLE RO 0021 207FF
ext_flash Flash Metnory...| & 0x00000000(0x007FFFFF
ext_ram DTHY41E S... | & 0x02000000| 0x020FFFFF
{+] ext_ram_bus Avalon Tri-St...
button_pio Pl (Parallel 1120 0x02120860(0021 2036F|[2
high_res_timer |Interval timer 0x02120820(0x0212033F|[3

Datapath Multiplexing

Datapath multiplexing logic in the system interconnect fabric drives the writedata
signal from the granted master to the selected slave, and the readdata signal from the

selected slave back to the requesting master.

SOPC Builder User Guide

December 2010 Altera Corporation

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2-5

Wiait State Insertion

Figure 2—4 shows a block diagram of the datapath multiplexing logic for one master
and two slaves. SOPC Builder generates separate datapath multiplexing logic for
every master in the system.

Figure 2-4. Block Diagram of Datapath Multiplexing Logic

readdatal
* >
Slave
address —> Port 1
_’
E::ﬁ % Msster writedata —>
Multiplexer ort o
_>
P>
Slave
> Port 2
_>
readdata2

In SOPC Builder, the generation of datapath multiplexing logic is specified using the
connections panel on the System Contents tab.

Wait State Insertion

Wait states extend the duration of a transfer by one or more cycles. Wait state insertion
logic accommodates the timing needs of each slave, and causes the master to wait
until the slave can proceed. System interconnect fabric inserts wait states into a
transfer when the target slave cannot respond in a single clock cycle. System
interconnect fabric also inserts wait states in cases when slave read_enable and
write_ enable signals have setup or hold time requirements.

Wait state insertion logic is a small finite-state machine that translates control signal
sequencing between the slave side and the master side. Figure 2-5 shows a block
diagram of the wait state insertion logic between one master and one slave.

Figure 2-5. Block Diagram of Wait State Insertion Logic

Wait-State
Insertion
Logic

read/write read/write

wait request
Master Slave
Port address Port

data

vy

-
«

System interconnect fabric can force a master to wait for several reasons in addition to
the wait state needs of a slave. For example, arbitration logic in a multimaster system
can force a master to wait until it is granted access to a slave.

December 2010 Altera Corporation SOPC Builder User Guide

2-6

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Pipelined Read Transfers

SOPC Builder generates wait state insertion logic based on the properties of all slaves
in the system.

Pipelined Read Transfers

The Avalon-MM interface supports pipelined read transfers, allowing a pipelined
master to start multiple read transfers in succession without waiting for the prior
transfers to complete. Pipelined transfers allow master-slave pairs to achieve higher
throughput, even though the slave requires one or more cycles of latency to return
data for each transfer.

SOPC Builder generates system interconnect fabric with pipeline management logic
to take advantage of pipelined components wherever possible, based on the pipeline
properties of each master-slave pair in the system. Regardless of the pipeline latency
of a target slave, SOPC Builder guarantees that read data arrives at each master in the
order requested. Because master and slaves often have mismatched pipeline latency,
system interconnect fabric often contains logic to reconcile the differences. Many cases
of pipeline latency are possible, as shown in Table 2-1.

Table 2-1. Various Cases of Pipeline Latency in a Master-Slave Pair

Master Slave Pipeline Management Logic Structure
L . The system interconnect fabric does not instantiate logic to handle pipeline
No pipeline No pipeline
latency.
The system interconnect fabric forces the master to wait through any slave-side
o e latency cycles. This master-slave pair gains no benefits of pipelining, because
L Pipelined with fixed . S
No pipeline . the master waits for each transfer to complete before beginning a new transfer.
or variable latency) : "
However, while the master is waiting, the slave can accept transfers from a
different master.
L - The system interconnect fabric carries out the transfer as if neither master nor
Pipelined No pipeline slave were pipelined, causing the master to wait until the slave returns data.
oo N The system interconnect fabric allows the master to capture data at the exact
- Pipelined with fixed . : .
Pipelined latenc clock cycle when data from the slave is valid. This process enables the
y master-slave pair to achieve maximum throughput performance.
o . This is the simplest pipelined case, in which the slave asserts a signal when its
. Pipelined with . : . i
Pipelined variable latenc readdata is valid, and the master captures the data. This case enables this
y master-slave pair to achieve maximum throughput.

SOPC Builder generates logic to handle pipeline latency based on the properties of the
master and slaves in the system. When configuring a system in SOPC Builder, there
are no settings that directly control the pipeline management logic in the system
interconnect fabric.

Dynamic Bus Sizing and Native Address Alignment

SOPC Builder User Guide

SOPC Builder generates system interconnect fabric to accommodate master and
slaves with unmatched data widths. Address alignment affects how slave data is
aligned in a master's address space, in the case that the master and slave data widths
are different. Address alignment is a property of each slave, and can be different for
each slave in a system. A slave can declare itself to use one of the following:

m Dynamic bus sizing

December 2010 Altera Corporation

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2-7
Dynamic Bus Sizing and Native Address Alignment

m Native address alignment

The following sections explain the implications of the address alignment property
slave devices.

Dynamic Bus Sizing

I

&

ri'/'"’

Dynamic bus sizing hides the details of interfacing a narrow component device to a
wider master, and vice versa. When an <N>-bit master accesses a slave with dynamic
bus sizing, the master operates exclusively on full <N>-bit words of data, without
awareness of the slave data width.

When using dynamic bus sizing, the slave data width in units of bytes must be a
power of two.

Dynamic bus sizing provides the following benefits:

m Eliminates the need to create address-alignment hardware manually.

B Reduces design complexity of the master component.

m Enables any master to access any memory device, regardless of the data width.

In the case of dynamic bus sizing, the system interconnect fabric includes a small
finite state machine that reconciles the difference between master and slave data
widths. The behavior is different depending on whether the master data width is
wider or narrower than the slave.

Wider Master

In the case of a wider master, the dynamic bus-sizing logic accepts a single, wide
transfer on the master side, and then performs multiple narrow transfers on the slave
side. For a data-width ratio of <N>:1, the dynamic bus-sizing logic generates up to
<N> slave transfers for each master transfer. The master waits while multiple
slave-side transfers complete; the master transfer ends when all slave-side transfers
end.

Dynamic bus-sizing logic uses the master-side byte-enable signals to generate
appropriate slave transfers. The dynamic bus-sizing logic performs as many
slave-side transfers as necessary to write or read the specified byte lanes.

Narrower Master

In the case of a narrower master, one transfer on the master side generates one
transfer on the slave side. In this case, multiple master word addresses map to a single
offset in the slave memory space. The dynamic bus-sizing logic maps each master
address to a subset of byte lanes in the appropriate slave offset. All bytes of the slave
memory are accessible in the master address space.

December 2010 Altera Corporation SOPC Builder User Guide

2-8

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Dynamic Bus Sizing and Native Address Alignment

I =

Table 2-2 demonstrates the case of a 32-bit master accessing a 64-bit slave with
dynamic bus sizing. In the table, offset refers to the offset into the slave memory
space.

Table 2-2. 32-Bit Master View of 64-Bit Slave with Dynamic Bus Sizing
32-hit Address Data

0x00000000 (word 0)
0x00000004 (word 1)
0x00000008 (word 2)
0x0000000C (word 3)

OFFSET [0]31.9
OFFSET [0] g3, 3
OFFSET [1]31.9
OFFSET [1] g3, 32

In the case of a read transfer, the dynamic bus-sizing logic multiplexes the appropriate
byte lanes of the slave data to the narrow master. In the case of a write transfer, the
dynamic bus-sizing logic uses slave-side byte-enable signals to write only to the
appropriate byte lanes.

Altera recommends that you select dynamic bus sizing whenever possible. Dynamic
bus sizing offers more flexibility when the master and slave components in your
system have different widths.

Native Address Alignment

Table 2-3 demonstrates native address alignment and dynamic bus sizing for a 32-bit
master connected to a 16-bit slave (a 2:1 ratio). In this example, the slave is mapped to
base address <BASE> in the master’s address space. In Table 2-3, OFFSET refers to the
offset into the 16-bit slave address space.

Table 2-3. 32-Bit Master View of 16-Bit Slave Data

32-hit Master Address

Data with Native Alignment

Data with Dynamic Bus Sizing

BASE + 0x0 (word 0)

0x0000:0FFSET [0]

OFFSET [1] :OFFSET [0]

BASE + 0x4 (word 1

0x0000:0FFSET [1]

OFFSET [3] : OFFSET [2]

0x0000:0FFSET [2]

OFFSET [5] :OFFSET [4]

()
BASE + 0x8 (word 2)
BASE + 0xC (word 3)

0x0000:0FFSET [3]

OFFSET [7] : OFFSET [6]

BASE + 4N (word M)

0x0000:0FFSET [N]

OFFSET [2N+1] : OFFSET [2N]

When connecting a wide master to a narrow slave port that uses native addressing,
the following addressing formula should be used to determine what address to
present to the system interconnect fabric:

<master address>

= <slave base address> + (<slave word offset> *
<master data width in bytess)

For example, a 64-bit master needs to write to the second word of a 32-bit slave that
uses native addressing the formula would reduce to:

<master address>

SOPC Builder User Guide

= <slave base address> + (1 * 8)

December 2010 Altera Corporation

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2-9
Arbitration for Multimaster Systems

SOPC Builder generates appropriate address-alignment logic based on the properties
of the master and slaves in the system. When configuring a system in SOPC Builder,
there are no settings that directly control the address alignment in the system
interconnect fabric.

Arbitration for Multimaster Systems

System interconnect fabric supports systems with multiple master components. In a
system with multiple masters, such as the system pictured in Figure 2-1 on page 2-2,
the system interconnect fabric provides shared access to slaves using a technique
called slave-side arbitration. Slave-side arbitration moves the arbitration logic close to
the slave, such that the algorithm that determines which master gains access to a
specific slave in the event that multiple masters attempt to access the same slave at the
same time.

The multimaster architecture used by system interconnect fabric offers the following
benefits:

m Eliminates having to create arbitration hardware manually.

m Allows multiple masters to transfer data simultaneously. Unlike traditional
host-side arbitration architectures where each master must wait until it is granted
access to the shared bus, multiple Avalon-MM masters can simultaneously
perform transfers with independent slaves. Arbitration logic stalls a master only
when multiple masters attempt to access the same slave during the same cycle.

m Eliminates unnecessary master-slave connections. The connection between a
master and a slave exists only if it is specified in SOPC Builder. If a master never
initiates transfers to a specific slave, no connection is necessary, and therefore
SOPC Builder does not waste logic resources to connect the two ports.

m Provides configurable arbitration settings, and arbitration for each slave is
specified independently. For example, you can grant one master more arbitration
shares than others, allowing it to gain more access cycles to the slave. The
arbitration share settings are defined for each slave independently.

m Simplifies master component design. The details of arbitration are encapsulated
inside the system interconnect fabric. Each Avalon-MM master connects to the
system interconnect fabric as if it is the only master in the system. As a result, you
can reuse a component in single-master and multimaster systems without
requiring design changes to the component.

Traditional Shared Bus Architectures

This section discusses the architecture of the system interconnect fabric generated by
SOPC Builder for multimaster systems. As a frame of reference for the discussion of
multiple masters and arbitration, this section describes traditional bus architectures.

December 2010 Altera Corporation SOPC Builder User Guide

2-10

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Arbitration for Multimaster Systems

In traditional bus architectures, one or more bus masters and bus slaves connect to a
shared bus, consisting of wires on a printed circuit board or on-chip routing. A single
arbiter controls the bus (that is, the path between bus masters and bus slaves), so that
multiple bus masters do not simultaneously drive the bus. Each bus master requests
control of the bus from the arbiter, and the arbiter grants access to a single master at a
time. Once a master has control of the bus, the master performs transfers with any bus
slave. When multiple masters attempt to access the bus at the same time, the arbiter
allocates the bus resources to a single master, forcing all other masters to wait.

Figure 26 illustrates the bus architecture for a traditional processor system. Access to
the shared system bus becomes the bottleneck for throughput: only one master has
access to the bus at a time, which means that other masters are forced to wait and only
one slave can transfer data at a time.

Figure 2-6. Bus Architecture in a Traditional Microprocessor System

Master 2
(TSNt Master 1 DMA
System CPU
Controller

Arbiter |

1t <«—Bottleneck

System Bus |

I

Slaves | UART PIO Program | | Data
Memory | | Memory

Slave-Side Arhitration

SOPC Builder User Guide

The system interconnect fabric uses multimaster architecture to eliminate the
bottleneck for access to a shared bus. Multiple masters can be active at the same time,
simultaneously transferring data with independent slaves. For example, Figure 2-1
on page 2-2 demonstrates a system with two masters (a CPU and a DMA controller)
sharing a slave (an SDRAM controller). Arbitration is performed at the SDRAM slave;
the arbiter dictates which master gains access to the slave if both masters initiate a
transfer with the slave in the same cycle.

December 2010 Altera Corporation

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Arbitration for Multimaster Systems

2-11

Figure 2-7 focuses on the two masters and the shared slave and shows additional

detail of the data, address, and control paths. The arbiter logic multiplexes all address,

data, and control signals from a master to a shared slave.

Figure 2-7. Detailed View of Multimaster Connections

M2 Write Data
Request Control

M1 Address _
M1 Write Data o
: > Address _
Request Control o5 »
= Write Data
» 2 > Slave
M2 Address ~| < | Control >
>
| -
Ll

Slave Read Data

Arbiter Details

SOPC Builder generates an arbiter for every slave, based on arbitration parameters
specified in SOPC Builder. The arbiter logic performs the following functions for its

slave:

m Evaluates the address and control signals from each master and determines which

master, if any, gains access to the slave next.

m Grants access to the chosen master and forces all other requesting masters to wait.

m Uses multiplexers to connect address, control, and datapaths between the multiple

masters and the slave.

December 2010 Altera Corporation SOPC Builder User Guide

2-12

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces

Arbitration for Multimaster Systems

Figure 2-8 shows the arbiter logic in an example multimaster system with two
masters, each connected to two slaves.

Figure 2-8. Block Diagram of Arbiter Logic

S1 Read Data & Control

Data-Path
Multiplexing
Logic

= o Arbiter

\ 4

Master 1
(M1)

M1 wait
M2 wait

Master Select

\

M1 Address, Write
Data & Control

Data-Path
Multiplexing
Logic

\ 4

\ 4

Master 2
(M2)

\ 4

Slave 2

Arbiter

S2 Read Data & Control

M2 Address, Write
Data & Control

\ 4

=
>

M1 wait
M2 wait

Master Select

Arbitration Rules

SOPC Builder User Guide

This section describes the rules by which the arbiter grants access to masters when

they contend.

Setting Arbitration Parameters in SOPC Builder

You specify the arbitration shares for each master using the connection panel on the
System Contents tab of SOPC Builder, as shown in Figure 2-9.

Figure 2-9. Arhitration Settings on the System Contents Tah

Module Mame
Eecpu
instruction_master
I ¢ data_master
1 1 =+ jtag_debug_moduls
I m— sys_clk_timer
[1 [1 @ ext_ram_bus
ext_flash
ext_ram
[1 1 @ epes_controller
| B1an91c111
,1_ jtag_uart

Description

Mios | Processor - Alte..
Master port

hdzster port

Slawve port

Interval timer

Avalon Tri-State Bridge
Flazh Memory (Commo...
IDT71% 416 SRAM

EPCS Setial Flash Cort...
LAMNITC111 Interface (..
JTAG UART

Clock

clk

clk

=2
=

=

i

clk

The arbitration settings are hidden by default. To see them, on the View menu, click
Show Arbitration.

December 2010 Altera Corporation

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2-13
Arbitration for Multimaster Systems

Fairness-Based Shares

Arbiter logic uses a fairness-based arbitration scheme. In a fairness-based arbitration
scheme, each master pair has an integer value of transfer shares with respect to a slave.
One share represents permission to perform one transfer.

For example, assume that two masters continuously attempt to perform back-to-back
transfers to a slave. Master 1 is assigned three shares and Master 2 is assigned four
shares. In this case, the arbiter grants Master 1 access for three transfers, then Master 2
for four transfers. This cycle repeats indefinitely. Figure 2-10 demonstrates this case,
showing each master’s transfer request output, wait request input (which is driven by
the arbiter logic), and the current master with control of the slave.

Figure 2-10. Arbitration of Continuous Transfer Requests from Two Masters

M1_transfer_request . | | | | | | | | | | | | | | | | |

M1_waitrequest ! ! ! / 1 \ ! ! / ! \ ! !
M2_transfer_request .: : : : :
M2_waitrequest [| | l

|
\
| |
| |
| T
| |
Current_Master -K Master 1 | Master 2 | Master,1 | Master 2 | Master 1,

If a master stops requesting transfers before it exhausts its shares, it forfeits all its
remaining shares, and the arbiter grants access to another requesting master. Refer to
Figure 2-11. After completing one transfer, Master 2 stops requesting for one clock
cycle. As a result, the arbiter grants access back to Master 1, which gets a replenished
supply of shares.

Figure 2-11. Arbitration of Two Masters with a Gap in Transfer Requests

M1 _transfer_request . | | | | | | | | | | | | | | | | |

M1_waitrequest ! ! ! / \ ! ! / 1 1 1 \‘ ! ! / 1 1

| | | | | | | | | | | | | | |

sztranSfer’requeSt .\ | | | \\\—)\I | | | | | | | | | | |
M2_waitrequest [0 | | L 1 L ; ; 1 |
Current_Master -K Masterh Master 2) Masteﬁ1 ; Maéter 2 ; Maste} 1 Maéter 2 ;

Round-Rohin Scheduling

When multiple masters contend for access to a slave, the arbiter grants shares in
round-robin order. Round-robin scheduling drives a request interface according to
space available and data available credit interfaces. At every slave transfer, only
requesting masters are included in the arbitration.

December 2010 Altera Corporation SOPC Builder User Guide

2-14

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Burst Adapters

Burst Transfers

Avalon-MM burst transfers grant a master uninterrupted access to a slave for a
specified number of transfers. The master specifies the number of transfers when it
initiates the burst. Once a burst begins between a master-slave pair, arbiter logic does
not allow any other master to access the slave until the burst completes. For burst
masters, the size of the burst determines the number of cycles that the master has
access to the slave, and the selected arbitration shares have no effect.

Burst Adapters

SOPC Builder User Guide

System interconnect fabric provides burst adaptation logic to accommodate the burst
capabilities of each port in the system, including ports that do not support burst
transfers. Burst adaptation logic consists of a finite state machine that translates the
sequencing of address and control signals between the slave side and the master side.

The maximum burst length for each port is determined by the component design and
is independent of other ports in the system. Therefore, a particular master might be
capable of initiating a burst longer than a slave’s maximum supported burst length. In
this case, the burst management logic translates the master burst into smaller slave
bursts, or into individual slave transfers if the slave does not support bursts. Until the
master completes the burst, the arbiter logic prevents other masters from accessing
the target slave.

For example, if a master initiates a burst of 16 transfers to a slave with maximum burst
length of 8, the burst adapter logic initiates two bursts of length 8 to the slave. If the
master initiates a burst of 14, the burst adapter logic segments the burst transfer into a
burst of 8 words followed by a burst of 6 words, because the slave can only handle a
maximum burst length of 8. If a master initiates a burst of 16 transfers to a slave that
does not support bursts, the burst management logic initiates 16 separate transfers to
the slave.

The burst adapter inserts one idle cycle at the start of each burst. System throughput is
maximized when burst sizes are as large as possible.

In the case of a non-linewrap burst master connected to a slave with the
linewrapBursts property set to TRUE, it is not always possible to issue the maximum-
sized burst to the slave. In these cases the burst adapter is not capable of adapting the
master and slave pairing. An adapter is generated; however, if the master performs a
burst transaction to the slave that crosses the slave burst boundary data corruption
can occur. To avoid a functional failure, you should ensure the master posts bursts of
length one until the master burst boundary has been reached. The master burst
boundary has an alignment of <master_data_width> x

<master maximum burst lengths>.

Any burst transaction that begins on a master burst boundary is guaranteed to not
cross the burst boundary of the slave port regardless of the slave port's maximum
burst length. Typically the only Avalon-MM interfaces that support burst wrapping
are burst capable SDRAM controllers.

For more information about the linewrapBursts property, refer to the Avalon Memory-
Mapped Slave Interfaces chapter in the Avalon Interface Specifications.

December 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2-15
Interrupts

Interrupts

In systems where components have interrupt request (IRQ) sender interfaces, the
system interconnect fabric includes interrupt controller logic. A separate interrupt
controller is generated for each interrupt receiver. The interrupt controller aggregates
IRQ signals from all interrupt senders, and maps them to user-specified values on the
receiver inputs.
“ e For further information, refer to the Interrupt Interfaces chapter in the Avalon Interface
Specifications.

Individual Requests IRQ Scheme

In the individual requests IRQ scheme, the system interconnect fabric passes IRQs
directly from the sender to the receiver, without making any assumptions about IRQ
priority. In the event that multiple senders assert their IRQs simultaneously, the
receiver logic (presumably under software control) determines which IRQ has highest
priority, then responds appropriately.

Using individual requests, the interrupt controller can handle up to 32 IRQ inputs.
The interrupt controller generates a 32-bit signal irg[31:0] to the receiver, and simply
maps slave IRQ signals to the bits of irq[31:0]. Any unassigned bits of irq[31:0] are
disabled. Figure 2-12 shows an example of the interrupt controller mapping the IRQs
on four senders to irq[31:0] on a receiver.

Figure 2-12. IRQ Mapping Using Software Priority

Sender irq
1
Interrupt
Controller
Sender irq g======5
2
| -
= == -~ .
=< Receiver
. 7
Sender | '"d al
3 Ll _‘/ _— - -
7
7
[
Ll
Sender irq
4

Priority Encoded Interrupt Scheme

In the priority encoded interrupt scheme, in the event that multiple slaves assert their
IRQs simultaneously, the system interconnect fabric provides the interrupt receiver
with a 1-bit interrupt signal, and the number of the highest priority active interrupt.
An IRQ of lesser priority is undetectable until all IRQs of higher priority have been
serviced.

December 2010 Altera Corporation SOPC Builder User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

2-16

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Reset Distribution

Using priority encoded interrupts, the interrupt controller can handle up to 64 slave
IRQ signals. The interrupt controller generates a 1-bit irg signal to the receiver,
signifying that one or more senders have generated an IRQ. The controller also
generates a 6-bit irgnumber signal, which outputs the encoded value of the highest
pending IRQ. See Figure 2-13.

Figure 2-13. IRQ Mapping Using Hardware Priority

Sender | irq Interrupt
1 Controller
Sender irq
2 >
| - \
=] irq
) ——p>
Sender Irq »
3 o /
o A
Receiver
Sender irq :
4 ::q(1) > irgnumber [5..0]
irg2 >
irq3
irq4 | Priority
irg5 . | Encoder
irg6 o
° Ll
irg63 >

Assigning IRQs in SOPC Builder

You specify IRQ settings on the System Contents tab of SOPC Builder. After adding
all components to the system, you make IRQ settings for all interrupt senders, with
respect to each interrupt receiver. For each slave, you can either specify an IRQ
number, or specify not to connect the IRQ.

Reset Distribution

SOPC Builder User Guide

SOPC Builder generates the logic used in the system interconnect fabric, which drives
the reset pulse to all the logic. The system interconnect fabric distributes the reset
signal conditioned for each clock domain. The duration of the reset signal is at least
one clock period.

The system interconnect fabric asserts the system-wide reset in the following
conditions:

m The global reset input to the SOPC Builder system is asserted.
B Any component asserts its resetrequest signal.

The global reset and reset requests are ORed together. This signal is then synchronized
to each clock domain associated to an Avalon-MM port, which causes the
asynchronous resets to be de-asserted synchronously.

December 2010 Altera Corporation

= o A 3. System Interconnect Fabric for

o Streaming Interfaces

The interconnect fabric for Avalon® Streaming connects high-bandwidth, low latency
components that use the Avalon Streaming (Avalon-ST) interface. This interconnect
fabric creates datapaths for unidirectional traffic including multichannel streams,
packets, and DSP data. This chapter describes the Avalon-ST interconnect fabric and
its use in connecting components with Avalon-ST interfaces. Descriptions of specific
adapters and their use in streaming systems can be found in the following sections:

m “Adapters” on page 3-3
m “Multiplexer Examples” on page 3-5

High-Level Description

Avalon-ST interconnect fabric is logic generated by SOPC Builder. Using SOPC
Builder, you specify how Avalon-ST source and sink ports connect. SOPC Builder
then creates a high performance point-to-point interconnect between the two
components. The Avalon-ST interconnect is flexible and can be used to implement
on-chip interfaces for industry standard telecommunications and data
communications cores, such as Ethernet IEEE 802.3 MAC and SPI 4.2. In all cases, bus
widths, packets, and error conditions are custom-defined.

Figure 3-1 illustrates the simplest system example that generates an interconnect
between the source and sink. This source-sink pair includes only the data and valid
signals.

Figure 3-1. Interconnect for a Simple Avalon Streaming Source-Sink Pair

Data valid Data

Source data > Sink

Figure 3-2 illustrates a more extensive interface that includes signals indicating the
start and end of packets, channel numbers, error conditions, and back pressure.

Figure 3-2. Avalon Streaming Interface for Packet Data

< ready
Data valid > Data
Source channel _ Sink

startofpackeit
endofpacket |
empty 5
error
data

vV v

December 2010 Altera Corporation SOPC Builder User Guide

3-2

Chapter 3: System Interconnect Fabric for Streaming Interfaces
Avalon Streaming and Avalon Memory-Mapped Interfaces

All data transfers using Avalon-ST interconnect occur synchronously to the rising
edge of the associated clock interface. All outputs from the source interface, including
the data, channel, and error signals, must be registered on the rising edge of the clock.
Registers are not required for inputs at the sink interface. Registering signals only at
the source provides for high frequency operation while eliminating back-to-back
registration with no intervening logic. There is no inherent maximum performance of
the interconnect. Throughput for a system depends on the components and how they
are connected.

For details about the Avalon-ST interface protocol, refer to the Avalon Interface
Specifications.

Avalon Streaming and Avalon Memory-Mapped Interfaces

SOPC Builder User Guide

The Avalon-ST and Avalon Memory-Mapped (Avalon-MM) interfaces are
complementary. High bandwidth components with streaming data typically use
Avalon-ST interfaces for the high throughput datapath. These components can also
use Avalon-MM connection interfaces to provide an access point for control. In
contrast to the Avalon-MM interconnect, which can be used to create a wide variety of
topologies, the Avalon-ST interconnect fabric always creates a point-to-point between
a single data source and data sink, as Figure 3-3 illustrates. There are two connection
pairs in this figure:

m The data source in the Rx Interface transfers data to the data sink in the FIFO.

m The data source in the FIFO transfers data to the Tx Interface data sink.

December 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 3: System Interconnect Fabric for Streaming Interfaces 3-3

Adapters

In Figure 3-3, the Avalon-MM interface allows a processor to access the data source,
FIFO or data sink to provide system control.

Figure 3-3. Use of the Avalon Memory-Mapped and Streaming Interfaces

/ Control Plane Avalon Memory Mapped Inteface \

Processor RAM UART Timer

< >
Y A4
Control Control Control
Slave Slave Slave
Data So e 0O Data
({1}
_ ready "“I ready
Data valid Data Data valid Data
Source | _channel | gink i Source Lchannel | gjng
data ¢ data N
({1}
KData Plane Avalon Streaming Interface J

Adapters

Adapters are configurable SOPC Builder components that are part of the streaming
interconnect fabric. They are used to connect source and sink interfaces that are not
exactly the same without affecting the semantics of the data. SOPC Builder includes
the following four adapters:

m Data Format Adapter
m Timing Adapter

m Channel Adapter

m Error Adapter

You can add Avalon-ST adapters between two components with mismatched
interfaces. The adapter allows you to connect a data source to a data sink of differing
byte sizes. If you connect mismatched Avalon-ST sources and sinks in SOPC Builder
without inserting adapters, SOPC Builder generates error messages. Inserting
adapters into the system does not change the types of components that SOPC Builder
allows you to connect. The Insert Avalon-ST Adapters command on the System
menu attempts to correct these errors automatically, if possible, by inserting the
appropriate adapter types.

December 2010 Altera Corporation SOPC Builder User Guide

3-4 Chapter 3: System Interconnect Fabric for Streaming Interfaces
Adapters

“ e TFor complete information about these adapters, refer to Chapter 12, Avalon Streaming

Interconnect Components.

The following sections provide an overview of these adapters.

Data Format Adapter

The data format adapter allows you to connect interfaces that have different values
for the parameters defining the data signal. One of the most common uses of this
adapter is to convert data streams of different widths. Figure 3—4 shows an adapter
that allows a connection between a 128-bit input data stream and three 32-bit output
data streams.

Figure 3-4. Avalon Streaming Interconnect Fabric with Data Format Adapter

. Data .
128 bits > Format 32 bits »| 32-bit TX
Adapter Interface

Data

_bi 128 bit i i
].I28t b}t RX | _ﬂ:[[[l]_» Eormat 32 bits > 32-bit TX
nterface Adapter Interface

. Data .
128 bits > Format 32 bits » 32-bit TX
Adapter Interface

Timing Adapter

The timing adapter allows you to connect component interfaces that require a
different number of cycles before driving or receiving data. This adapter inserts a
FIFO between the source and sink to buffer data or pipeline stages to delay the back
pressure signals. The timing adapter can also be used to connect interfaces that
support the ready signal and those that do not.

SOPC Builder User Guide December 2010 Altera Corporation

Chapter 3: System Interconnect Fabric for Streaming Interfaces 3-5

Multiplexer Examples

Channel Adapter

The channel adapter provides adaptations between interfaces that have different
support for the channel signal or channel-related parameters. For example, if the
source channel is narrower than the sink channel, you can use this adapter to connect
them. The high-order bits of the sink channel are connected to zero. You can also use
this adapter to connect a source with a wider channel to a sink with a narrower
channel. If the source provides data for a channel that the sink cannot receive, the data
is not transferred.

Error Adapter

The error adapter ensures that per-bit error information provided by the source
interface is correctly connected to the sink interface’s input error signal. Matching
error conditions handled by the source and sink are connected. If the source has an
error condition that is not supported by the sink, the signal is left unconnected; the
adapter provides a simulation error message and an error indication if this error is
ever asserted. If the sink has an error condition that is not supported by the source, the
sink’s input is tied to zero.

Multiplexer Examples

You can combine these adapters with streaming components to create datapaths
whose input and output streams have different properties. The following sections
provide examples of datapaths constructed using SOPC Builder in which the output
stream is higher performance than the input stream:

m The first example shows an output with double the throughput of each interface
with a corresponding doubling of the clock frequency.

m The second example doubles the data width.

m The third example boosts the frequency of a stream by 10% by multiplexing input
data from two sources.

December 2010 Altera Corporation SOPC Builder User Guide

3-6 Chapter 3: System Interconnect Fabric for Streaming Interfaces
Multiplexer Examples

Example to Double Clock Frequency

Figure 3-5 illustrates a datapath that uses the dual clock version of the on-chip FIFO
memory and Avalon-ST channel multiplexer to merge the 100 MHz input from two
streaming data sources into a single 200 MHz streaming output. As Figure 3-5
illustrates, this example increases throughput by increasing the frequency and
combining inputs.

Figure 3-5. Datapath that Doubles the Clock Frequency

On-Chip FIFO
Data Source Memory — Dual Clk
M 200 MHz !
E output_,
On-Chip FIFO 200 MHz
Data Source Memory — Dual Clk
input, 100 MHz 200 MHz /

Example to Double Data Width and Maintain Frequency

Figure 3-6 illustrates a datapath that uses the data format adapter and Avalon-ST
channel multiplexer to convert two, 8-bit inputs running at 100 MHz to a single 16-bit
output at 100 MHz.

Figure 3-6. Datapath to Double Data Width and Maintain Original Frequency

Data Source

Data Format
Adapter

ingut, 16 bits

ﬁ 16 bits ;
@100 MHz

Data Source

Data Format
Adapter

inQutl

Example to Boost the Frequency

Figure 3-7 illustrates a datapath that uses the dual clock version of the on-chip FIFO
memory to boost the frequency of input data from 100 MHz to 110 MHz by sampling
two input streams at differential rates. In this example, the on-chip FIFO memory has
an input clock frequency of 100 MHz and an output clock frequency of 110 MHz. The
channel multiplexer runs at 110 MHz and samples one input stream 27.3 percent of
the time and the second 72.7 percent of the time.

SOPC Builder User Guide December 2010 Altera Corporation

Chapter 3: System Interconnect Fabric for Streaming Interfaces

Multiplexer Examples

37

Figure 3-7. Datapath to Boost the Clock Frequency

You do not need to know what the typical and maximum input channel utilizations
are before attempting this. For example, if the first channel hits 50% utilization, the
output stream exceeds 100% utilization.

input N

input N

Data Source

Data Source

30%
channel utilization
8 bits
@100 MHz

@100 MHz
80%
channel utilization

sink|

On-Chip FIFO
Memory — Dual Clk

On-Chip FIFO
Memory — Dual Clk

27.3%
sample rate
110 MHz

72.7%
sample rate
110 MHz

100%
channel
utilization

E output ;
110 MHz

December 2010 Altera Corporation

SOPC Builder User Guide

3-8 Chapter 3: System Interconnect Fabric for Streaming Interfaces
Multiplexer Examples

SOPC Builder User Guide December 2010 Altera Corporation

4. SOPC Builder Components

An SOPC Builder component is a hardware design block available within SOPC
Builder that can be instantiated in an SOPC Builder system. This chapter defines
SOPC Builder components, with emphasis on the structure of custom components.

A component includes the following:

The HDL description of the component’s hardware.

A description of the interface to the component hardware, such as the names and
types of I/O signals.

A description of the parameters that determine the operation of the component.
A GUI for parameterizing an instance of the component in SOPC Builder.

Scripts and other information SOPC Builder requires to generate the HDL files for
the component and integrate the component instance into the SOPC Builder
system.

Other component-related information, such as reference to software drivers,
necessary for development steps downstream of SOPC Builder.

This chapter discusses the design flow for new and classic custom-defined SOPC
Builder components, in the following sections:

“Component Providers”

“Component Hardware Structure” on page 4-2

“Exported Connection Points—Conduit Interfaces” on page 4-3
“SOPC Builder Component Search Path” on page 4-4
“Component Structure” on page 4-8

“Classic Components in SOPC Builder” on page 4-10

Component Providers

SOPC Builder components can be obtained from many providers, including the
following:

The components automatically installed with the Quartus® II software.

Third-party IP developers can provide IP blocks as SOPC Builder-ready
components, including software drivers and documentation. A list of third-party
components can be found in SOPC Builder by clicking IP MegaStore on the Tools
menu.

Altera development kits, such as the Nios® I Development Kit, can provide SOPC
Builder components as features.

You can use the SOPC Builder component editor to convert your own HDL files
into custom components.

e For more information about the _hw.tcl file, refer to Chapter 6, Component Editor.

December 2010 Altera Corporation SOPC Builder User Guide

4-2

Chapter 4: SOPC Builder Components
Component Hardware Structure

Component Hardware Structure

There are the following types of components in an SOPC Builder system, based on
where the associated component logic resides:

m Components that include their associated logic inside the SOPC Builder system
m Components that interface to logic outside the SOPC Builder system

Figure 4-1 shows an example of both types of components.

Figure 4-1. Component Logic Inside and Outside the SOPC Builder System

Conduit-Ports
(or Interface) for
Exporting Signals

Avalon Interface
(Automatically Connected
by SOPC Builder)

System Module

Component

Exported Signals
from Component

System
Interconnect
Fabric

Logic
(HDL Files)

Rest of
the System

_/

°
g qg)_g External Sional
% S S [« > Logic Ignals
(% SE or . Unrelated
= Off-Chip ¢ [tosorc
Device Builder

Avalon Interface
(Manually Connected
by System Designer)

Component Instances Inside the SOPC Builder System

SOPC Builder User Guide

For components that are instantiated inside the SOPC Builder system, the component
defines its logic in an associated HDL file. During system generation, SOPC Builder
instantiates the component and connects it to the rest of the system. The component
can include exported signals in conduit interfaces. Conduit interfaces become ports
on the system, so they can be connected to logic outside the SOPC Builder system in
the board-level schematic.

For more information about conduit interfaces, refer to the Conduit Interfaces chapter
in the Avalon Interface Specifications.

In general, components connect to the system interconnect fabric using the Avalon®
Memory-Mapped (Avalon-MM) interface or the Avalon Streaming (Avalon-ST)
interface. A single component can provide more than one Avalon port. For example, a
component might provide an Avalon-ST source port for high-throughput data, in
addition to an Avalon-MM slave for control.

December 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf

Chapter 4: SOPC Builder Components 4-3
Exported Connection Points—Conduit Interfaces

Static HDL Components

You can define SOPC Builder components that accept Verilog HDL parameters or
VHDL generics. Examples of parameters that can be expressed as Verilog HDL
parameters or VHDL generics are address and data widths and FIFO depths. These
components have HDL files that are not generated as a function of the
parameterization, and are referred to as static HDL components. SOPC Builder
automatically generates the top-level HDL wrapper file to apply parameter values for
static components.

Generated HDL Components

Alternatively, you can also define a component whose HDL is generated based on the
value of its declared parameters. These components use a custom generation callback
to generate the HDL for each use of the component, instead of having SOPC Builder
create an HDL wrapper that specifies these values. An example of a parameter that
requires generated HDL is a parameter that controls the number of interfaces.

Composed HDL Components

Composed components are constructed from combinations of other components.You
can use a compose callback to connect and parameterize a composed component;
however, a custom compose callback may not be necessary for very simple composed
components.

For more information about defining your own generation or compose callback
procedure, refer to the Generation Callback and Compose Callback sections in Chapter 7,
Component Interface Tcl Reference.

Components Outside the SOPC Builder System

I

For components that interface to external logic or off-chip devices with
Avalon-compatible signals outside the SOPC Builder system, the component files
describe only the interface to the external logic. During system generation, SOPC
Builder exports an interface for the component in the top-level SOPC Builder system.
You must manually connect the signals at the top-level of SOPC Builder to pins or
logic defined outside the system that already has Avalon-compatible signals.

This type of component is deprecated and will not be available in future versions of
the Quartus II software.

Exported Connection Points—Conduit Interfaces

Conduit interfaces are brought to the top level of the system as additional ports.
Exported signals are usually either application-specific signals or the Avalon interface
signals.

Application-specific signals are exported to the top level of the system by the conduit
interface(s) defined in the _hw.tcl file. These are I/O signals in a component’s HDL
logic that are not part of any Avalon interfaces and connect to an external device, for
example DDR SDRAM memory, or logic defined outside of the SOPC Builder system.
You use conduit interfaces to connect application-specific signals of the external
device and the SOPC Builder system.

December 2010 Altera Corporation SOPC Builder User Guide

4-4 Chapter 4: SOPC Builder Components
SOPC Builder Component Search Path

You can also export the Avalon interfaces to manually connect them to external
devices or logic defined outside a system with Avalon-compatible signals. This
method allows a direct connection to the Avalon interface from any device that has
Avalon-compatible signals. You can also export the Avalon interface in either an HDL
file using conduit interfaces, or in the _hw.tcl file without an HDL file.

You export the Avalon interface signals as an HDL file with simple wire connections
in the HDL description. The Avalon interface port signals are directly connected to
external I/O signals in the HDL description. The conduit interface in the _hw.tcl file
exports the external I/O signals to the top level of the system.

In the _hw.tcl file, no HDL files are specified and only the Avalon signals and
interface ports are declared in the file.

SOPC Builder Component Search Path

Each time SOPC Builder starts, it searches for component files. The components that
SOPC Builder finds are displayed in the list of available components on the SOPC
Builder System Contents tab. When you launch SOPC Builder the directories in the IP
search path are searched for two kinds of files:

m _hw.tcl files. Each _hw.tcl file defines a single component.
m [P Index (.ipx) files. Each file indexes a collection of available components.

In general, .ipx files facilitate faster startup for SOPC Builder and other tools because
fewer files need to be read and analyzed.

Some directories are searched recursively; others only to a specific depth. In the
following list of search locations, a recursive descent is annotated by **. The * signifies
any file. When a directory is recursively searched, the search stops at any directory
containing a _hw.tcl or .ipx file; subdirectories are not searched.

B $$PROJECT DIR/*
B $SPROJECT DIR/ip/**/*
B $QUARTUS INSTALLDIR/../ip/**/*

In SOPC Builder, you can extend the default search path by including additional
directories by clicking Options, then clicking IP Search Path and Add. These
additional paths apply to all projects; that is, the paths are global to the current
version of SOPC Builder. The search path is ultimately defined by the file,
<$QUARTUS_INSTALLDIR>/sopc_builder/bin/root_components.ipx.

Installing Additional Components

There are a few different ways to make your components available to SOPC Builder
projects. The following sections describe some of these methods.

SOPC Builder User Guide December 2010 Altera Corporation

Chapter 4: SOPC Builder Components 4-5
Installing Additional Components

Copy to the IP Root Directory

The simplest strategy is to copy your components into the standard IP directory
provided by Altera. Figure 4-2 illustrates this approach.

Figure 4-2. User Library Included In Subdirectory of $IP_ROOTDIR

<install_dir>

altera
library.ipx
<components>
[:I user_components

@ "] component1

component1_hw.tcl
component1.v

@ —[:I component2

component2_hw.tcl
component2.v

In Figure 4-2, the circled numbers identify three steps of the algorithm that SOPC
follows during initialization. These steps are explained in the following paragraphs.

1. SOPC Builder recursively searches the <install_dir>/ip/ directory by default. It
finds the file in the altera subdirectory, which tells it about all of the Altera
components. library.ipx includes listings for all components found in its
subdirectories. The recursive search stops when SOPC Builder finds this .ipx file.

2. As part of its recursive search, SOPC Builder also looks in the adjacent
user_components directory. One level down SOPC Builder finds the component1
directory, which contains componentl_hw.tcl. When SOPC Builder finds that
component, the recursive descent stops so that no components in subdirectories of
componentl are found.

3. SOPC Builder then searches in the adjacent component2 directory, which includes
component2_hw.tcl. If SOPC Builder finds that component, the recursive descent
stops.

L=~ 1If yousave your _hw.tcl file in the <install_dir>/ip/ directory, SOPC Builder finds your
_hw.tcl file and stops. SOPC Builder does not conduct the search just described.

December 2010 Altera Corporation SOPC Builder User Guide

4-6

Chapter 4: SOPC Builder Components
Installing Additional Components

Reference Components in an .ipx File

SOPC Builder User Guide

A second approach is to specify your IP directory in a user_components.ipx file
under <install_dir>/ip path. Figure 4-3 illustrates this approach.

Figure 4-3. Specifying A User .ipx directory
<install_dir>
quartus

ip

altera
library.ipx
<components>

user_components
user_components.ipx

The user_components.ipx file includes a single line of code redirecting SOPC Builder
to the location of the user library. Example 4-1 shows the code for this redirection.

Example 4-1. Redirect to User Library

<librarys>
<path path="c:/<user install dir>/user_ip/**/*" />
/<librarys>

For both of these approaches, if you install a new version of the Quartus II software,
you must also update the installation to include your libraries.

You can verify that components are available and also decrease the time it takes to
launch SOPC Builder by using two utilities, ip-catalog and ip-make-ipx. The
following sections describe these utilities.

ip—catalog

Shows the a catalog of components in either plain text or XML format.
Usage

ip-catalog --project-dir[=<directory>] --name[=<value>]
--verbose [=<true[false>] --xml[=<true/false>] --help

December 2010 Altera Corporation

Chapter 4: SOPC Builder Components 4-7
Installing Additional Components

Options

m --project-dir[=<directory>]. Optional. Components can be found in
certain locations relative to the project, if any. By default, the current directory,
* is used. To exclude any project directory, use “.

m --name[=<valuex].Optional. This argument provides a pattern to filter the
names of the components found. To show all components, use a * or * . By
default, all components are shown. The argument is not case sensitive.

m --verbose[=<true|false>].Optional. When true, reports the progress of the
command.

m --xml[=<true|false>].Optional. When true, prints the output in XML
format instead of a line- and colon-delimited format.

m --help. Shows help for the ip-catalog command.

ip-make-ipx

This command creates an index file for the directory specified. It returns a 0 for
successful completion and a non-zero value for failure.

Usage
ip-make-ipx --source-directory[=<directory>] --output[=<file>]
--relative-vars|[=<value>] --thorough-descent
--message-before[=<value>] --message-after[=<value>] --help
Options

m --source-directory=<directorys. Optional. The directory to index. The
default directory is “.”. You can also provide a comma separated list of
directories.

m --output[=<file>].Optional. The name of the file to generate. The default
name is ./components.ipx.

m --relative-vars[=<value>].Optional. Causes the output file to include
references relative to the specified variable or variables where possible. You
can specify multiple variables as a comma-separated list.

m --thorough-descent [=<true|false>].Optional. If set, a component or .ipx
file in a directory does not prevent subdirectories from being searched.

m --message-before[=<valuex].Optional. A message to print to stdout when
indexing begins

m --message-after[=<values].Optional. A message to print to stdout when
indexing completes

m --help. Show help for this command

Understanding IPX File Syntax

An .ipx file is an XML file whose top-level element is <library> with a <path>
subelements are <path> and <component>.

December 2010 Altera Corporation SOPC Builder User Guide

4-8

Chapter 4: SOPC Builder Components
Component Structure

A <path> element contains a single attribute, also called path and may reference a
directory with a wildcard, (¥), or reference a single file. Two asterisks designate any
number of subdirectories. A single asterisk designates a match to a single file or
directory. In searching down the designated path, the following three types of files are
identified:

m .ipx—additional index files
m _hw.tcl—SOPC Builder component definitions
m _sw.tcl—Nios II board support package (BSP) software component definitions

A <component> element contains several attributes to define a component. If you
provide all the required details for each component in an .ipx file, the start-up time for
SOPC Builder is less than if SOPC Builder must discover the files in a directory.
Example 4-2 shows two <component> elements. Note that the paths for file names are
specified relative to the .ipx file.

Example 4-2. Component Elements

<librarys>
<component
name="An SOPC Component"
displayName="SOPC Component"
version="2.1"
file="./components/sopc_component/sc_hw.tcl"
/>
<component
name="legacy component"
displayName="Legacy Component (Classic Edition!)"
version="0.9"
file="./components/legacy/old component/class.ptf"
/>
</librarys>

Upgrading from Earlier Versions

If you specified a custom search path in SOPC Builder prior to v8.1 using the IP
Search Path option, or by adding it to the $SOPC_BUILDER PATH, SOPC Builder
automatically adds those directories to the user_components.ipx file in your home
directory. This file is saved in
<home_dir>/altera.quartus/ip/8.1/ip_search_path/user_components.ipx. Go to the IP
Search Path option in the Options dialog box to see the directories listed here.

Component Structure

SOPC Builder User Guide

Most components are defined with a _hw.tcl file, a text file written in the Tcl scripting
language that describes the components in to SOPC Builder. You can add a
component to SOPC Builder by either writing a Tcl description or you can use the
component editor to generate an automatic Tcl description of it. This section describes
the structure of Tcl components and how they are stored.

For details about the SOPC Builder component editor, refer to Chapter 6, Component

Editor. For details about the SOPC Builder Tcl commands, refer to Chapter 7,
Component Interface Tcl Reference.

December 2010 Altera Corporation

Chapter 4: SOPC Builder Components 4-9
Component Structure

Component Description File (_hw.tcl)
A Tcl component consists of:

m A component description file, which is a Tcl file with file name of the form <entity
name>_hw.tcl.

m Verilog HDL or VHDL files that define the top-level module of the custom
component (optional).

The _hw.tcl file defines everything that SOPC Builder requires about the name and
location of component design files.

The SOPC Builder component editor saves components in the _hw.tcl format. You can
use these Tcl files as a template for editing components by hand. When you edit a
previously saved _hw.tcl file, SOPC Builder automatically saves the earlier version as
_hw.tcl~.

For more information about the information that you can include in the _hw.tcl file,
refer to the Chapter 7, Component Interface Tcl Reference.

Component File Organization

A typical component uses the following directory structure. The precise names of the
directories are not significant.

m <component_directory>/

m <hdl>/— a directory that contains the component HDL design files and the
_hw.tcl file

m <component name>_hw.tcl—the component description file
m <component name>.v or .vhd—the HDL file that contains the top-level module

m <component_name>_sw.tcl—the software driver configuration file. This file
specifies the paths for the .c and .h files associated with the component.

m <software>/—a directory that contains software drivers or libraries related to
the component, if any. Altera recommends that the software directory be
subdirectory of the directory that contains the _hw.tcl file.

“ e For information on writing a device driver or software package suitable for
use with the Nios® II IDE design flow, refer to the Hardware Abstraction
Layer section of the Nios II Software Developer’s Handbook. The Nios 11 Software
Build Tool Reference chapter of the Nios II Software Developer’s Handbook
describes the commands you can use in the Tcl script.

Component Versioning

You can create and maintain multiple versions of the same component using one of
the following options:

m Define the module property version in your _hw.tcl file.

“ e For more information, refer to the Chapter 7, Component Interface Tcl
Reference.

December 2010 Altera Corporation SOPC Builder User Guide

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

4-10

Chapter 4: SOPC Builder Components
Classic Components in SOPC Builder

m If multiple versions of the component are defined in your component libraries,
you can add a different the version of a component by right-clicking on the
component and selecting Add version <version_number>.

B You can create an .ipx file in the same directory as your SOPC Builder project to
control the search path for your project.

Classic Components in SOPC Builder

SOPC Builder User Guide

If you use classic components created with an version 7.2 of SOPC Builder or earlier,
read through this section to familiarize yourself with the differences. This document
uses the term classic components to refer to class.ptf-based components created with a
previous version of the Quartus II software. If you do not use classic components, skip
this section.

Classic components are compatible with newer versions of SOPC Builder, but be
aware of the following caveats:

m Classic components configured with the More Options tab in SOPC Builder, such
as complex IP components provided by third-party IP developers, are not
supported in the Quartus II software in version 7.1 and beyond. If your
component has a bind program, you cannot use the component without recreating
it with the component editor or with Tcl scripting.

m To make changes to a classic component with the component editor, you must first
upgrade the component by editing the classic component and saving it in the
_hw.tcl component format in the component editor.

December 2010 Altera Corporation

QA | |:| £)/, 5. Using SOPC Builder with the Quartus Il

® Software

This chapter describes the Quartus®II software features that are used with SOPC
Builder, including the following:

m “Quartus II IP File”
m “Quartus II Incremental Compilation”

m “TimeQuest Timing Analyzer” on page 5-2

Quartus Il IP File

The Quartus II IP File (.qip) generated by SOPC Builder provides the Quartus II
software with all required information about your SOPC Builder system. SOPC
Builder creates the .qip during system generation and adds a reference to it in the
Quartus II Settings File (.qsf).

The .qip file includes references to the following information:

m HDL files used in the SOPC Builder system

m TimeQuest Timing Analyzer Synopsys Design Constraint (.sdc) files
m Component definition files for archiving purposes

The .qip file is based on Tcl scripting syntax and is similar to the .qsf file. The
information required to process most components is included in the system's single
.qip file. Some complex components provide their own .qip file, in which case the
system's .qip file references the component .qip file.

The .qip file is normally added to your project automatically by SOPC Builder. If it
does not get added automatically you can add the file in the same way that you add
other source files to your project. You can also have a .qip file for each component in
your design. When you generate a design, each .qip is pulled into the main .qip file
for your system by reference.

Quartus Il Incremental Compilation

SOPC Builder supports the Quartus II incremental compilation feature, which allows
you to separately compile isolated portions, or partitions, of a design. From within the
Quartus II software, you can designate an entire SOPC Builder system as a design
partition, or you can designate individual SOPC Builder components as design
partitions.

Changing the parameters of a component and regenerating your system only prompts
other partitions within the same system to recompile if the HDL in that partition
depends on the changed parameters. The HDL you generate for the Nios® II processor
is optimized as related to components to which the Nios II processor is connected.

December 2010 Altera Corporation SOPC Builder User Guide

5-2

Chapter 5: Using SOPC Builder with the Quartus Il Software
TimeQuest Timing Analyzer

For more information about incremental compilation, refer to the Quartus II
Incremental Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus I Handbook.

TimeQuest Timing Analyzer

Altera recommends the TimeQuest Timing Analyzer in the Quartus II software for
analysis of all new designs. SOPC Builder automatically generates a TimeQuest .sdc
constraints file for SOPC Builder systems and components. In most cases, you use the
TimeQuest constraints to declare false paths for signals that cross clock domains
within a component, so that the TimeQuest Timing Analyzer does not perform
normal setup and hold analysis for them. You can add .sdc files for custom
components, using Add Files command on HDL Files tab in the Component Editor.
Turn on the Synth option and turn off the Synth option.

The Classic Timing Analyzer was primary in earlier versions of the Quartus II
software. However, Altera now recommends that you constrain designs before
compilation, because the TimeQuest Timing Analyzer reports any unconstrained
paths by default during the compilation process.

Refer to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus I
Handbook for further description of the TimeQuest Timing Analyzer. Refer to the
Switching to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus 11 Handbook for a description of the benefits of using the TimeQuest Timing
Analyzer rather than the Classic Timing Analyzer. Refer to TimeQuest Example: Basic
SDC Example on www.altera.com for a working example of using the TimeQuest
Timing Analyzer. Refer to TimeQuest Design Examples on www.altera.com for further
details about how to constrain different types of circuits for the TimeQuest Timing
Analyzer.

Analyzing PLLs

SOPC Builder User Guide

You must constrain PLL clocks for proper analysis by the TimeQuest Timing
Analyzer. You can define clocks generated by PLLs using one of the following
methods:

m Use the derive pll clocks command to derive clocks for all PLL outputs in the
design. This is the best method.

m Use the create_generated_clock command to designate each clock output.

m Use the -create_base_clocks option of the derive_pll clock assighments to
designate the base clock feeding the PLL.

The following example focuses on the use of the derive_pll clocks assignment,
because this method automatically defines clock frequencies and phase shifts.

derive pll clocks generates clocks for all PLLs in the Quartus II hardware project,
not just for the PLLs in the SOPC Builder system.

December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/support/examples/timequest/exm-tq-basic-sdc-template.html
http://www.altera.com/support/examples/timequest/exm-tq-basic-sdc-template.html
http://www.altera.com/support/examples/timequest/exm-timequest.html
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com
http://www.altera.com

Chapter 5: Using SOPC Builder with the Quartus Il Software 5-3
TimeQuest Timing Analyzer

The SOPC system shown in Figure 5-1 illustrates the use of the derive_pll clocks
assignment in the case of a single clock input and one PLL using a single output.

Figure 5-1. Example SOPC System

Target Clock Settings
Diewvice Farily: Cyclone I w| || MName Source hHz Fipeline eld
- ik External 50.0]
imy_pll_c0 my_pll.co 125 [
Use Module Marme Description End
B my_master triaster
avalon_master _0 A alan Master
Bl my_pll PLL [
=1 Lyvalon Slave 0300000000 |0x000000LF |
B pio PIC (Parallel 107 [
=1 Ayalan Slave my_pll_c0 000000020 0x000000Z £
< 3|
Address Map...] [Fitter ..

After running the following commands in the TimeQuest Timing Analyzer, two clocks
are generated:

create_clock -name master clk -period 20 [get ports {clk}]
derive_pll clocks

The TimeQuest Timing Analyzer analyzes and reports performance of the constrained
clocks in the Clocks Summary report. This displays a report as shown in Figure 5-2.

Figure 5-2. Clocks Summary Report

Clock Mame Type Period
1 kmazter_clk Baze 20.000
2 |the_my_pllithe_pllaltpl_componentlauto_generatediplil [cik[0]| Generated | 80,000

master clkis defined by the create_clock command, and the my pll clock is
derived from the derive pll clocks command.

Analyzing Slow Asynchronous I/0 Paths

If you use slow asynchronous I/O in an SOPC Builder system, such as PIO and UART
peripherals, you do not have to analyze these paths because they are asynchronous to
the clock that is used to capture or output data. In this case you must designate false
paths to produce an accurate analysis.

For outputs, set a false path between the launch clock and the output. For inputs, a
false path should be set between the input and the latching clock. For bidirectional
signals, set a false path from the launching clock to the bidirectional pin and also from
the bidirectional pin to the latching clock. Launch and latch clocks are typically the
clocks associated with the SOPC Builder module that includes the I/O.

December 2010 Altera Corporation SOPC Builder User Guide

Chapter 5: Using SOPC Builder with the Quartus Il Software
TimeQuest Timing Analyzer

For the system described in the PLL section, the following command sets false paths
for the PLL outputs:

set false path -to [get ports {* pio[*]}]

Because design contains a 4-bit PIO, filter * pio[*] includes the following I/O
pins.

B out port from the pio[0]
B out port from the pio[l]
B out port from the pio[2]

B out port from the pio[3]

Analyzing Single Data Rate SDRAM and SSRAM

Single data SDRAM interfaces in SOPC Builder typically use the type of circuit shown
in Figure 5-3. You can use a PLL to fine tune the phase shift to the external memory to
meet [/O timing requirements.

Figure 5-3. Typical Single Data Rate SDRAM Circuit

FPGA .. SDRAM
SDRAM clk
Exernal Addr & Ctrl_|
Clock SDRAM
Controller Data

To constrain this interface, you must create a clock that is recognized by the external
SDRAM,; then you must set the I/O timing relative to that clock.

Example 5-1 shows how to constrain a PLL output clock and set a Tcl variable for that
clock.

Example 5-1. Constraining PLL Output Clock

create clock -period 20.000 -name ext clk [get ports {clk}]
derive_pll_clocks
set sdram clk\my pll inst|altpll component|auto generated|plll|clk[0]

SOPC Builder User Guide

You can then use the create generated clock command to define a clock as
recognized by the external memory. This generated clock automatically adds delays
associated with routing to the clock output pin and the delay of the pin itself. You
must also account for some board delay due to the PCB trace between the FPGA and
SDRAM by using the of fset option.

The following command shows the creation of the sdram_clk pin generated clock
derived from the output pin sdram_clk clock. A 0.5 ns offset accounts for PCB routing
delay.

December 2010 Altera Corporation

Chapter 5: Using SOPC Builder with the Quartus Il Software

TimeQuest Timing Analyzer

55

December 2010 Altera Corporation

create_generated clock -name sdram clk pin -source S$sdram clk \
-offset 0.5 [get ports {sdram clk}]

There may be some uncertainty associated with the PCB delay not accounted for in
this command. The uncertainty can be included in the I/ O constraints that are specific
to input or output and minimum or maximum delays.

The I/0O constraints must be defined in relation to the data sheet for the external
memory. Figure 5-4 shows part of a data sheet for an SDRAM device with the worst
case input and output timing highlighted for a CAS latency of 3.

Figure 5-4. AC Characteristics from SDRAM Device Data sheet

AC Characteristics ® 7

Parameter Symbol Min Max Min Max Units | Notes

Access time from CLK (pos. edge) CL=3 TAC (3) 55 55 ns
CL=2 TAC(2) 15 El ns
CL=1 TAC (1) 17 17 ns

Address hold time tAH 1 1 ns

Address setup time tas 1.5 2 ns

CLK high-level width CH 2.5 275 ns

CLK low-level width oL 2.5 275 ns

Clock cycle time CL=3 K (3) [7 ns 23
CL=2 oK (2) 10 10 ns 23
cL=1 LK (1) 20 20 ns 23

CKE hold time CKH 1 1 ns

CKE setup time kS 1.5 2 ns

C5#, RAS#, CAS#. WE#, DOM hold time TCMH 1 1 ns

C5#, RAS#, CAS#. WE#, DOM setup time CMS 1.5 2 ns

Data-in hold time 'DH 1 1 ns

Data-in setup time DS 1.5 2 ns

Data-out High-Z time CL=3 HZ (3) 55 55 ns 10
CL=2 THZ (2) 75 3 ns 10
CL=1 tHZ (1) 17 17 ns 10

Data-out Low-Z time Yz 1 1 ns

Data-out hold time tOH 2 25 ns

The mapping of external memory timing to FPGA 1/O delays is shown in Table 5-1.
This table also shows whether the minimum or maximum PCB routing delay should
be used, which must be added to the FPGA delay constraints.

Tahle 5-1. External Memory Timing

Memory Timing FPGA Timing PCB Routing
Max clock to out Max input delay Max
Min clock to out Min input delay Min
Min setup Max output delay Max
Min hold Min output delay (-ve) Min

Note to Table 5-1:
(1) The constraint for minimum output delay is actually 0 — Min hold.

SOPC Builder User Guide

5-6 Chapter 5: Using SOPC Builder with the Quartus Il Software
TimeQuest Timing Analyzer

You can use the set_input delay and set output delay commands to set the I/O
constraints. In the following examples, a common PCB routing delay of 0.5ns = 0.1 ns
is used, which adds a 0.4 ns or 0.6 ns delay to the paths. Example 5-2 illustrates the
use of these commands.

Example 5-2. set_input_delay and set_output_delay commands

set input delay -clock sdram clk pin -max [expr 5.5 + 0.6] <ports>
set input delay -clock sdram clk pin -min [expr 2.5 + 0.4] <ports>
set_output_delay -clock sdram clk pin -max [expr 2.0 + 0.6] <ports>
set output delay -clock sdram clk pin -min [expr -1 + 0.4)]<ports>

In this example, <ports> represent a list of I/O ports for the relevant constraints as
shown in Example 5-3.

Example 5-3. <poris>

set_output_delay -clock sdram clk pin -max [expr 2.0 + 1.2] \
[get _ports {cas n ras n cs n we n addr[*]}]

You can use multiple set_input delay and set output delay commands to set
different delays for different I/O.

Analyzing Tristate Bridges and Asynchronous Devices

This section discusses the timing constraints associated with the Avalon tristate
bridge and asynchronous external devices, such as the CFI Flash and user tristate
components. These components typically have slower performance requirements
compared with the FPGA, and SOPC Builder generates logic within the interface to
control timing across multiple clock cycles. You define the tristate component’s timing
parameters by entering data for setup, wait, and hold times.

For the interface types previously discussed, the timing is controlled by a state
machine that is generated based on setup, wait, and hold settings you specify in the
component editor. Because data sheet values for the FPGA are used in calculating the
timing, the constraints simply ensure the data sheet timing is met. Adding these
constraints ensures that issues associated with data sheet misinterpretation and fitting
problems that affect I/O timing are captured.

The TimeQuest Timing Analyzer uses constraints that are based upon the timing of
the external device.
“ e For further information on how to convert older FPGA-centric constraints into
system-centric constraints, refer to Switching to the Quartus Il TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

SOPC Builder User Guide December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf

Chapter 5: Using SOPC Builder with the Quartus Il Software 5-7
TimeQuest Timing Analyzer

Analyzing DDR and DDR2 Memories

When using DDR, DDR2, or DDR3 memory with Cyclone® III, Stratix® III, and
Stratix IV families, you must use the corresponding High-Performance Controller
MegaCore® function. You can use the MegaWizard™ Plug-In Manager interface to
parameterize these functions and generate timing constraints in the form of .sdc files.
You must ensure that the constraints file associated with the MegaCore function is
included in the project for timing analysis. You can add an .sdc file to the project by
clicking Add/Remove Files in Project on the Project menu in the Quartus II software.

Il Asthese MegaCore functions make use of the derive pll clocks command, conflicts
may occur if your .sdc file also uses these constraints.
“ e For more design examples, refer to TimeQuest Design Examples on www.altera.com.
Also, AN: 433 Constraining and Analyzing Source-Synchronous Interfaces describes
source synchronous constraints for the TimeQuest Timing Analyzer.

December 2010 Altera Corporation SOPC Builder User Guide

http://www.altera.com/literature/an/an433.pdf
http://www/support/examples/timequest/exm-timequest.html

http://www.altera.com

5-8 Chapter 5: Using SOPC Builder with the Quartus Il Software
TimeQuest Timing Analyzer

SOPC Builder User Guide December 2010 Altera Corporation

QA | |:| _E DY/A 6. Component Editor

The SOPC Builder component editor provides a GUI to support the creation and
editing of the Hardware Component Description File (_hw.tcl) file that describes a
component to SOPC Builder. You use the component editor to do the following:

m Specify the Verilog HDL or VHDL files that describe the modules in your
component hardware.

m Conversely, create an HDL template for a component by first defining its interface
using the HDL Files tab of the component editor.

m Specify the signals for each of the component’s interfaces, and define the behavior
of each interface signal.

m Specify relationships between interfaces, such as determining which clock
interface is used by a slave interface.

m Declare any parameters that alter the component structure or functionality, and

define a user interface to let users parameterize instances of the component.

For information about using the component editor in a development flow, refer to the
following pages on the Altera® website: SOPC Builder Component Development Flow
Using the Component Editor Overview. For information about Avalon® component
interfaces, refer to Avalon Component Interfaces Supported in the Component Editor
Version 7.2 and Later. For examples of changes to typical Avalon interfaces, refer to
Examples of Changes to Typical Avalon Interfaces for the Component Editor Version 7.2 and
Later. For information about upgrading components, refer to Upgrading Your
Component with SOPC Builder Component Editor Version 7.2 and Later.

For information about the use of the component editor, see the following sections:

m “Starting the Component Editor” on page 6-2.

m “HDL Files Tab” on page 6-2.

m “Signals Tab” on page 6-3.

m “Interfaces Tab” on page 6-6.

m “HDL Parameters Tab” on page 6—6.

m “Saving a Component” on page 6-7.

m “Editing a Component” on page 6-8.

m “Component Parameterization” on page 6-8.

For more information about components, refer to Chapter 7, Component Interface Tcl

Reference. For more information about the Avalon-MM interface, refer to the Avalon
Interface Specifications.

Component Hardware Structure

The component editor creates components with the following characteristics:

December 2010 Altera Corporation SOPC Builder User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interfaces.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interfaces.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interface-changes.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interface-changes.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interface-changes.html
http://www.altera.com/support/software/system/sopc/sof-sopc-upgrading-component.html
http://www.altera.com/support/software/system/sopc/sof-sopc-upgrading-component.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html

6-2

Chapter 6: Component Editor
Starting the Component Editor

m A component has one or more interfaces. Typically, an interface means an Avalon®
Memory-Mapped (Avalon-MM) master or slave or an Avalon Streaming
(Avalon-ST) source or sink. You can also specify exported component signals that
appear at the top-level of the SOPC Builder system, which can be connected to
logic outside the SOPC Builder system. The component editor lets you build a
component with any combination of Avalon interfaces, which include:

m Avalon-MM master and slave
m Avalon-ST source and sink
m Avalon-MM tristate slave
m Interrupt sender and receiver
m Clock input and output
m Nios II custom instruction master and slave interfaces
m Conduit (for exporting signals to the top level)
m Each interface is comprised of one or more signals.

m The component can represent logic that is instantiated inside the SOPC Builder
system, or can represent logic outside the system with an interface to it on the
generated system.

Starting the Component Editor

HDL Files Tab

To start the component editor in SOPC Builder, on the File menu, click New
Component. When the component editor starts, the Introduction tab displays, which
describes how to use the component editor.

The component editor presents several tabs that group related settings. A message
window at the bottom of the component editor displays warning and error messages.

Each tab in the component editor provides on-screen information that describes how
to use the tab. Click the triangle labeled About at the top-left of each tab to view these
instructions. You can also refer to Quartus® II online Help for additional information
about the component editor.

You navigate through the tabs from left to right as you progress through the
component creation process.

The HDL Files tab allows you to create an SOPC Builder component from existing
Verilog HDL or VHDL files, or to create an HDL template in either Verilog HDL or
VHDL for a SOPC Builder component by first specifying its interfaces. The following
sections describe both the bottom-up and top-down approaches to component design.

Bottom-Up Design

SOPC Builder User Guide

You can use the HDL Files tab to specify Verilog HDL or VHDL files that describe the
component logic. Files are provided to downstream tools such as the Quartus II
software and ModelSim® in the same order as they appear in the table.

December 2010 Altera Corporation

Chapter 6: Component Editor 6-3

Signals Tab

CAUTION

You can also use the component editor to define the interface to components outside
the SOPC Builder system. In this case, you do not provide HDL files. Instead, you use
the component editor to interactively define the hardware interface.

After you specify an HDL file, the component editor analyzes the file by invoking the
Quartus II Analysis and Elaboration module. The component editor analyzes signals
and parameters declared for all modules in the top-level file. If the file is successfully
analyzed, the component editor’s Signals tab lists all design modules in the Top
Level Module list. If your HDL contains more than one module, you must select the
appropriate top-level module from the Top Level Module list.

All files are managed in a single table, with options for Synth and Sim. You can select
the Top option to select the top-level file for synthesis. When the top-level module is
changed, the component editor performs best-effort signal matching against the
existing port definitions. If a port is absent from the module, it is removed from the
port list. You can use the up and down arrows to specify the HDL file analysis order.

By default, all files are added with both Synth and Sim options turned on. To add a
simulation-only file, turn off the Synth option for that file. Files that turn on the Sim
option are passed to ModelSim® for simulation. To add a synthesis-only file, turn off
the Sim file option. Only files that you mark for Synth are added to the Quartus II IP
File (.qip) for your project.

The component editor determines the signals on the component when only the
top-level module or entity is added to the table, but all of the files required for the
component must be added for the component to compile in Quartus II software or
work in simulation.

Top-Down Design

Signals Tah

The Create HDL Template button on the HDL Files tab allows you to create an HDL
template for a component if you have not provided a HDL description for it. Clicking
the Create HDL Template button shows you the component HDL and lets you choose
between Verilog HDL and VHDL. Altera recommends that you define your signals,
interfaces, parameters and basic component information, including the component
name, before creating the HDL template by clicking Save. The component editor
writes <component_name>.v or <component_name>.vhd to your project directory.

After you have component the component’s HDL code, you can add other files that
are required to define your component, including the _hw.tcl file, and synthesis and
simulation files using the Add button on the HDL Files tab.

You use the Signals tab to specify the purpose of each signal on the top-level
component module. If you specified a file on the HDL Files tab, the signals on the
top-level module appear on the Signals tab.

The Interface list also allows creation of a new interface so that you can assign a signal
to a different interface without first switching to the Interfaces tab. Each signal must
belong to an interface and be assigned a legal signal type for that interface. In addition
to Avalon Memory-Mapped and Streaming interfaces, components typically have
clock interfaces, interrupt interfaces, and perhaps a conduit interface for exported
signals.

December 2010 Altera Corporation SOPC Builder User Guide

Chapter 6: Component Editor
Signals Tab

Naming Signals for Automatic Type and Interface Recognition

SOPC Builder User Guide

The component editor recognizes signal types and interfaces based on the names of
signals in the source HDL file, if they conform to the following naming conventions:

Signal associated with a specific interface—<interface type>_<interface name>_<signal
type>[_n]

For any value of <interface_name> the component editor automatically creates an
interface by that name, if necessary, and assigns the signal to it. The <signal_type>
must match one of the valid signal types for the type of interface. Refer to the Avalon
Interface Specifications for the signal types available for each interface type. You can
append _n to indicate an active-low signal. Table 6-1 lists the valid values for
<interface_type>.

Tahle 6-1. Valid Values for <Interface Type>

Value Meaning
avs Avalon-MM slave
avm Avalon-MM master
ats Avalon-MM tristate slave
aso Avalon-ST source
asi Avalon-ST sink
S0 Clock output
csi Clock input
coe Conduit
inr Interrupt receiver
ins Interrupt sender
ncm Nios Il custom instruction master
ncs Nios Il custom instruction slave

December 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 6: Component Editor 6-5
Signals Tab

Example 6-1 shows a Verilog HDL module declaration with signal names that infer
two Avalon-MM slaves.

Example 6-1. Verilog HDL Module With Automatically Recognized Signal Names

module my slave irg_component (
// Signals for Avalon-MM slave port “sl1l” with irg

csi _clockreset clk; //clockreset clock interface
csi _clockreset reset n;//clockreset clock interface

avs_sl address;//sl slave interface

avs_sl read; //sl slave interface

avs_sl write; //sl slave interface

avs_sl writedata; //sl slave interface

avs_sl readdata; //sl slave interface

ins irqg0_irq; //irg0 interrupt sender interface

)i

input csi_clockreset_ clk;
input csi clockreset reset n;
input [7:0]avs_sl address;
input avs_sl read;

input avs_sl write;

input [31:0]avs_sl writedata;
output [31:0]avs_sl readdata;
output ins irqg0 irg;

/* Insert your logic here */

endmodule

Templates for Interfaces to External Logic

You can use the Create HDL Template to generate an HDL template for the
component. Then, you connect these signals outside of the SOPC Builder system. If
your component uses an Avalon interface to interface outside of SOPC Builder, you
can use the Templates menu in the component editor to add typical interface signals
to your signal list. There are templates for the following interfaces:

m Avalon-MM Slave

m Avalon-MM Slave with Interrupt
m Avalon-MM Master

m Avalon-MM Master with Interrupt
m Avalon-ST Source

m Avalon-ST Sink

After adding a typical Avalon interface using a template, you can add or delete
signals to customize the interface.

December 2010 Altera Corporation SOPC Builder User Guide

6-6

Chapter 6: Component Editor
Interfaces Tab

Interfaces Tab

The Interfaces tab allows you to configure the interfaces on your component and
specify a name for each interface. The interface name identifies the interface and
appears in the SOPC Builder connection panel. The interface name is also used to
uniquely identify any signals that are ports on the top-level SOPC Builder system.

The Interfaces tab allows you to configure the type and properties of each interface.
For example, an Avalon-MM slave interface has timing parameters that you must set
appropriately. The Interfaces tab displays waveforms that illustrate the timing that
you specified. If you update the timing parameters, the waveforms automatically
update to illustrate the new timing. The waveforms are available for the following
interface types:

m Avalon Memory-Mapped

m Avalon Memory-Mapped tristate
B Avalon Streaming

m Interrupts

If you convert a component from a class.ptf to a _hw.tcl file, you may require three
interfaces: a clock input, the Avalon slave, and an interrupt sender. A parameter in the
interrupt sender must be set to reference the Avalon slave.

HDL Parameters Tab

SOPC Builder User Guide

You specify the parameters that users of your component can set to configure your
component on the HDL Parameters tab. The Parameters table included on this tab
displays Verilog HDL parameters or VHDL generics that you declared in the top-level
HDL module. Using the Parameters table, you can specify the following information
about each parameter:

m Default value

m Whether or not it is user-editable

m Type

m Group

m Tool tip

Click Preview the Wizard at any time to see how the component GUI appears.
The following rules apply to HDL parameters exposed via the component GUI:
m Editable parameters cannot contain computed expressions.

m If a parameter <N> defines the width of a signal, the signal width must be of the
form <N-1>:0.

m When a VHDL component is used in a Verilog HDL SOPC Builder system, or vice
versa, numeric parameters must be 32-bit decimal integers. When passing other
numeric parameter types, unpredictable results occur.

Refer to Chapter 7, Component Interface Tcl Reference for detailed information about
creating and displaying parameters using Tcl scripts.

December 2010 Altera Corporation

Chapter 6: Component Editor 6-7

Saving a Component

Library Info

The Library Info tab allows you to specify the following information about your
component:

m Display Name—Specifies the user-visible name for this component in SOPC
Builder.

m Version—Specifies the version number of the component.

m Group—Specifies which group in SOPC Builder displays your component in the
list of available components. If you enter a previously unused group name, SOPC
Builder creates a new group by that name.

m Description—Allows you to describe the component.
m Created By—Allows you to specify the author of the component.

m Icon—Allows you to place an image in the title bar of your component, in place of
the MegaCore logo. The icon can be a .jpg, .gif, or .png file. The directory for the
icon is relative to the directory that contains the _hw.tcl file.

m Documentation—Allows you to specify multiple documents that pertain to your
component. You can use this property to specify a file on the internet or in your
company’s file system. The specified file can be in either .html or .pdf format. To
specify an internet file, begin your path with http://, for example:
http://mydomain.com/datasheets/my_memory_controller.html. To specify a file
in your company’s file system, you begin you path with file:/// for Linux and
file://// for Windows, for example: file:////company_server/datasheets/
my_memory_controller.pdf. For handwritten _hw.tcl files, you can specify
documentation using the add_documentation link Tcl command.

“ e For more information refer to the add_documentation link command in

Chapter 7, Component Interface Tcl Reference.

Saving a Component

=

You can save the component by clicking Finish on any of the tabs, or by clicking Save
on the File menu. Based on the settings you specify in the component editor, the
component editor creates a component description file with the file name
<class-name>_hw.tcl. The component editor saves the file in the same directory as the
HDL file that describes the component’s hardware interface. If you did not specify an
HDL file, you can save the component description file to any location you choose.

You can relocate component files later. For example, you could move component files
into a subdirectory and store it in a central network location so that other users can
instantiate the component in their systems. The _hw.tcl file contains relative paths to
the other files, so if you move the _hw.tcl file you should move all the HDL and other
files associated with it.

Altera recommends that you store _hw.tcl files for a project is in the
ip/<class-name> directory for the project. You should store the HDL and other files in
the same directory as the _hw.tcl file.

December 2010 Altera Corporation SOPC Builder User Guide

6-8

Chapter 6: Component Editor
Editing a Component

Editing a Component

Iz

After you save a component and exit the component editor, you can edit it in SOPC
Builder. To edit a component, right-click it in the list of available components on the
System Contents tab and click Edit Component.

You cannot edit components that were created outside of the component editor, such
as Altera-provided components.

If you edit the HDL for a component and change the interface to the top-level module,
you need to edit the component to reflect the changes you made to the HDL.

Software Assignments

You can use Tcl commands to create software assignments.You can register any
software assignment that you want, as arbitrary key-value pairs. Example 6-2 shows
a typical Tel API script:

Example 6-2. Typical Software Assignment with Tcl APl Scripting

set_module_assignment name value
set interface assignment name value

The assignments are added to the SOPC information file (.sopcinfo), available for use
for downstream components.

Component Parameterization

SOPC Builder User Guide

To edit component instance parameters, select a component in the System Contents
tab of the SOPC Builder window and click Edit.

December 2010 Altera Corporation

= A 7. Component Interface Tcl Reference

You define SOPC Builder components by declaring their properties and behaviors in a
Hardware Component Description File (_hw.tcl). Each _hw.tcl file represents one
component instance which you can add to an SOPC Builder system. You can also
share the components that you design with other designers. For your component to
have maximum flexibility, you should consider what aspects of its behavior can be
parameterized so that other users can change the default parameterization to address
different design requirements.

An SOPC Builder component is usually composed of the following four types of files:

m _hw.tcl file—describes the SOPC Builder related characteristics, such as interface
behaviors. This file is required.

m HDL files—define the component’s functionality as hardware. These files are
optional.

m _sw.tcl—used by the software build tools to compile the component driver code.
This file is optional.

m Component driver files—defines the component register map and driver software
to allow software to control the component. These files are optional.

This chapter discusses the following topics:

m “Information in a Hardware Component Description File”

m “Component Phases” on page 7-2

m “Writing a Hardware Component Description File” on page 7-2
m “Overriding Default Behaviors” on page 7-8

m “Hardware Tcl Command Reference” on page 7-12

Information in a Hardware Component Description File

A typical _hw.tcl file contains the following information:

m Basic component information—includes the component’s name, version, and
description, a link to its documentation, and pointers to HDL implementation files
for synthesis and simulation.

m Parameter Declarations—Parameters are values that the user of your component
can set that affect how the component is implemented, such as the size of a
memory. Properties of each parameter include the parameter’s name, whether or
not it is visible, and, if visible, the text to display when describing it. When the
SOPC Builder system is generated, the parameters can be applied to the
component as Verilog HDL parameters or VHDL generics.

m Interface Properties—The interfaces of a component define how to connect it to the
rest of the system and determine how other components in the system interact
with it. When you add interfaces to a component, you declare which signals make
up each interface. You also define interface properties, such as wait states for an
Avalon® Memory-Mapped (Avalon-MM) interface.

December 2010 Altera Corporation SOPC Builder User Guide

7-2 Chapter 7: Component Interface Tcl Reference
Component Phases

Depending on your component design, your _hw.tcl file may be one of the following
two types:

m Static—A static _hw.tcl file defines the top-level HDL file and associated
component files. The HDL that describes a static component is created by the
component author and is not changed by users of the component. HDL
parameters are available when instantiating the component.

m Generated—A generated _hw.tcl file provides a user-defined program to generate
the component’s HDL. The HDL can be different for different parameterizations of
the component.

Component Phases

The following section describes the distinct phases in the development of an SOPC
Builder component.

® Main Program—SOPC Builder first discovers a component and adds it to the
component library. The _hw.tcl file is executed and the Tcl statements provide
non-instance-specific information to SOPC Builder. During this phase, some
component interfaces may be incompletely described and ports may have a width
of 0 or -1 to indicate that they are variable.

m Validation—Validation allows the component to generate error, warning, or
informational messages. Validation occurs when an instance of a component is
created, when its parameters are changed, or when some other property of the
system is changed.

m Elaboration—Elaboration occurs as SOPC Builder queries a component for its
interface information. Elaboration typically occurs immediately after validation
and before generation. Interfaces defined in the main program can be enabled or
disabled during elaboration. Depending on the validation callback code,
elaboration and validation may alternate a few times. Elaboration and validation
always occur before generation. Once elaboration is complete, the component
must be completely described. For example, all port widths must have positive
values.

m Generation—Generation creates all the information that the Quartus® II software
and HDL simulator require. The required files typically include VHDL or Verilog
HDL files, simulation models, timing constraints, and other information.

m Editor—After an instance of your component has been added to an SOPC Builder
system, allows the user of your component to edit the GUI that displays the
parameterization. You can change the appearance of the default editor to make it
easier to use.

Writing a Hardware Component Description File

This section provides detailed information about _hw.tcl files and describes the
default behavior of a component in all phases. The following example uses a simple
UART with some simple parameterization.

SOPC Builder User Guide December 2010 Altera Corporation

Chapter 7: Component Interface Tcl Reference 7-3
Writing a Hardware Component Description File

Providing Basic Information

A typical _hw.tcl file first declares basic information such as the name, location, and
the files it includes. The first command in a _hw.tcl file should specify the version of
the _hw.tcl API to use, with the following Tcl command:

package require -exact sopc <version>

The version number is a Quartus II release version such as 10.0. SOPC builder
guarantees that a valid _hw.tcl file that requests a particular sopc package behaves
identically in future versions of the tool. Because of differences between versions of
the Quartus II software, you cannot assume that an HDL file that works with one sopc
package automatically works with other versions of the package.

L=~ This chapter describes the behavior of components that request the sopc 10.0
package. For earlier releases, refer to the documentation for that release.

“ e Anexcellent source of information about Tcl syntax is the Tcl Developer Xchange

website.

Example 7-1. Basic Information for _hw.tcl File

The package command must be the first command in the file
package require -exact sopc 10.0

The name and veErRsION of the component
set _module property NAME example uart
set_module property VERSION 1.0

The name of the component to display in the library
set_module property DISPLAY NAME "Example Component"

The component’s description.
set_module property DESCRIPTION "An Example Component"

The component library group that component belongs to
set_module property GROUP Examples

Declaring Parameters

By including configuration parameters in your _hw.tcl file, you allow users of your
component to parameterize it in different ways. Each parameter has a number of
properties such as its name, type, display name, and default value that can be used to
control how the parameter is displayed and used. Example 7-2 illustrates the use of
parameters that can be configured by users of your component.

Example 7-2. Declaring Parameters

Declare Baud Rate parameter as an integer with a default value of 9600.
add parameter BAUD RATE int 9600

Display this parameter as "Baud Rate" in the Parameter Editor.
set parameter property BAUD RATE DISPLAY NAME "Baud Rate (bps)"

We only support three baud rates
set_parameter property BAUD RATE ALLOWED RANGES {9600 19200 38400}

December 2010 Altera Corporation SOPC Builder User Guide

http://www.tcl.tk/

-4

Chapter 7: Component Interface Tcl Reference
Writing a Hardware Component Description File

Parameters can be divided into three types: user parameters, system information
parameters and derived parameters. The following sections describe these parameter

types.

User Parameters

User parameters are parameters that users have control over and that are exposed in
the component GUI.

Derived Parameters

Derived parameters are parameters that are inferred by the component itself from
user parameters or other derived parameters. For example, a clock period parameter
can be derived from a data rate parameter.

SYSTEM_INFO Parameters

You can use SYSTEM_INFO parameter to request that certain parameter values are
populated with information about the system. For example, you might want to know
the frequency of the clock that ends up being connected to your clock input. When
you declare SYSTEM_INFO properties, you provide an <info-type> and further
arguments. The <info-type> is the type of information you want, such as clock_rate,
and you use the additional arguments to specify things, such as which clock input
interface you require. Example 7-3 illustrates the use of the SYSTEM INFO parameter.
For more information about the SYSTEM_INFO parameter properties refer to Table 7-5
on page 7-26

Example 7-3. Syntax of Tcl Command using the SYSTEM_INFO Parameter

set parameter property my parameter SYSTEM INFO {<info-type> [<arg>]}

SOPC Builder User Guide

December 2010 Altera Corporation

Chapter 7: Component Interface Tcl Reference 7-5
Writing a Hardware Component Description File

Declaring Interfaces

To declare an interface, use the add_interface command. Then use the
set_interface_property and add_interface port commands to set its properties and
indicate which signals belong to it. The interface declaration statement includes the
name of the interface, the interface direction, and the clock interface with which it is
associated. For interfaces that are not associated with clocks (such as clock interfaces
themselves), omit the associated clock interface, or use the word asynchronous.
Example 74 illustrates interface declaration.

Example 7-4. Declare Interfaces

Declare the clock sink interface, "clock sink", type=clock, direction=sink
add_interface clock sink clock sink

The clock interface has two signals, named "clk" and "reset n" of types "clk" "reset n"
add_interface _port clock_sink clk clk input 1
add_interface port clock sink reset n reset n input 1

Declare the Avalon slave interface, name=avalon_slave_0, type=avalon,
directon=slave, associated with the clock_sink clock interface.
add_interface avalon_slave 0 avalon slave clock_ sink

Set a number of properties about the Avalon Slave interface
set_interface property avalon_slave 0 writeWaitTime 0

set interface property avalon slave 0 addressAlignment DYNAMIC
set_interface property avalon slave 0 readWaitTime 1
set_interface property avalon_slave 0 readLatency 0

Declare all the signals that belong to my Avalon Slave interface
add_interface port avalon _slave 0 my readdata readdata output 8
add_interface_port avalon slave 0 my read read input 1
add_interface port avalon slave 0 my write write input 1
add_interface port avalon_slave 0 my waitrequest waitrequest output 1
add_interface port avalon slave 0 my address address input 24
add_interface port avalon slave 0 my writedata writedata input 8

Adding Files and Guiding Generation

Component description files typically provide all of the information required for
generation and downstream tools. You also identify which of the added files is the
top-level HDL file and specify which Verilog module or VHDL entity within that file
is the top-level module for the component. Example 7-5 illustrates the files that are
typically required for generation and downstream tools.

Example 7-5. Add Files

Add the HDL file to the component,to be used for synthesis and simulation.
add_file simple uart.v {SYNTHESIS SIMULATION}

Indicate which of the added HDL files holds the top-level module/entity
that describes the component, name of the top-level module/entity
set_module_property TOP_LEVEL_HDL_FILE simple_uart.v

set module property TOP_LEVEL HDL MODULE simple uart

December 2010 Altera Corporation SOPC Builder User Guide

7-6

Chapter 7: Component Interface Tcl Reference
Default Behaviors

Default Behaviors

The _hw.tcl file described in the previous section has default behaviors during the
editor, validation, elaboration, and generation phases. These default behaviors apply
to instances of a component. This section describes the default SOPC Builder
behaviors for each of these phases. To override these default behaviors, refer to
“Overriding Default Behaviors” on page 7-8.

Validation Phase Behavior

SOPC Builder’s default validation checks each parameter value against its
ALLOWED_RANGES property. If the values specified are outside the allowed ranges, an
error message is displayed.

The ALLOWED RANGES property of each parameter is a list of ranges that the parameter
can take on, where each range is a single value, or a range of values defined by a start
and end value separated by a colon. Table 7-1 shows some examples of values the
ALLOWED_RANGES property can take.

Table 7-1. ALLOWED_RANGES Property

ALLOWED_RANGES Meaning
{a bc} aorborc
{124 8 16} 1,2,4,8,o0r16.
1:3 1 through 3, inclusive
{123 7:10} 1,2, 3, or 7 through 10 inclusive

Elaboration Phase Behavior

SOPC Builder User Guide

If the main program does not explicitly define the widths of all ports to constant
values or to an expression, then SOPC Builder’s default elaboration process calls
quartus_map to determine the correct port widths. If you define all port widths in the
main program, quartus_map is not called.

Automatic Port Widths

When port widths are not specified, or have a value of '-1', quartus_map is used to
determine port widths as a function of the parameter set. While this process makes
authoring a component easier, SOPC Builder can end up spending a lot of time calling
quartus_map. When using automatic port widths, you can indicate that a certain
parameter does not affect any port widths or interfaces by setting that parameter's
affects_elaboration property to false, meaning that quartus_map is not called when
the parameter's value is changed by your user. Be careful with this— indicating that a
parameter does not affect elaboration when it really does can lead to problems that are
mysterious and difficult to debug.

As an alternative to the automatic port widths, you can set port widths to simple HDL
expressions using the width_expr property. width expr is a string that holds an
expression describing the port width. By using the width expr property, you can
define port widths as an expression that is evaluated without needing to analyze the
HDL file or set them in an elaboration callback. The syntax for width expressions is
the same as the HDL language that you use; however, only the addition, subtraction,

December 2010 Altera Corporation

Chapter 7: Component Interface Tcl Reference 7-7
Default Behaviors

multiplication, and division operators are allowed. For more complex port widths, the
width of the port can be set as an arbitrary function of the component’s parameters in
an elaboration callback. The width expression is the last argument to the
add_interface port command. Example 7-6 illustrates the use of mathematical
operators and the width_expr property.

Example 7-6. Defining Port Widths Using Simple Mathematical Operators

add_interface port din din data data input {WIDTH * SYMBOLS}
set_port_ property din_data width_ expr WIDTH

Parameterized Parameter Widths

For VHDL users, SOPC Builder allows a std_logic_vector parameter to have a width
that is defined by another parameter. When adding a parameter of type
std_logic_vector you can also specify its width as a parameter property. The width
can be a constant or the name of another parameter. The commands below add a
std_logic_vector parameter called myParameter whose width is set by another
parameter, called datawidth.

add_parameter myParameter STD_LOGIC_VECTOR

set parameter property myParameter WIDTH dataWidth

Generation Phase Behavior

SOPC Builder’s default generation does one of the following:

m If the component defines the TOP_LEVEL HDL_MODULE property, SOPC Builder creates
a Verilog HDL or VHDL wrapper module to instantiate the top-level module and
applies the parameters as selected by the user of your component. SOPC Builder
does not apply parameters in the wrapper if they are not declared in the
underlying HDL file.

or

m If the component does not define the TOP_LEVEL_HDL_MODULE property, but instead
sets the INSTANTIATE IN SYSTEM MODULE module property to false, the module is
not instantiated inside the SOPC Builder system and a wrapper file is not created.
Rather, the interface to the module is exported to the top-level of the SOPC Builder
system, and the module must be connected outside the system.

Edit Phase Behavior

SOPC Builder’s default editor phase behavior is to use all of the parameter definitions
to display the parameter editor. The properties of the parameters guide SOPC Builder
when it builds the default GUI Table 7—4 on page 7-23 lists the properties of
parameters.

December 2010 Altera Corporation SOPC Builder User Guide

7-8 Chapter 7: Component Interface Tcl Reference
Overriding Default Behaviors

You can place parameters in logical groups and provide images and text to create a
custom GUI for your component. Example 7-7 defines four parameters and illustrates
the use of the add display item command and the DISPLAY HINT and ALLOWED RANGES
parameters.

Example 7-7. Defining and Customizing GUI Parameters

provide an icon for the sound group

add_display item icon Speaker speaker-image speaker.png
add parameter sound string 0 O

add parameter volume control boolean 0 0

add_parameter separate control string 0 0

Setup display names for the parameters

set_parameter_ property sound DISPLAY NAME Audio

set parameter property volume control DISPLAY NAME "Include Volume Control Interface"
set_parameter_ property separate control DISPLAY NAME "Treble/Bass Controls"

Display all parameters in the Speaker group
add_display item Speaker sound parameter
add_display item Speaker volume control parameter
add display item Speaker separate control parameter

There are 4 choices for the sound parameter.

Strings with internal spaces require double quotes

set parameter property sound ALLOWED RANGES {"0:No Audio" 1:Monophonic 2:Stereo
4:Quadraphonic}

set_parameter property separate control ALLOWED RANGES {"No Control" "Single Control" "Dual
Controls"}

#Specify how parameters should be displayed
set parameter property volume control DISPLAY HINT boolean
set_parameter property separate control DISPLAY HINT radio

Figure 7-1 shows the GUI that the Tcl commands in Example 7-13 produces.

Figure 7-1. Parameter GUI for Audio Component

”

Audio Guadraphonic

~ Speaker

Include YWolume Control Interface |:|

Treble/Baszs Contrals () Mo Cortral
() Single Cortrol
(%) Dual Cortrals

Overriding Default Behaviors

You can override each of the default behaviors by using callbacks. This section
explains how to write callback procedures for each phase of component development.

SOPC Builder User Guide December 2010 Altera Corporation

Chapter 7: Component Interface Tcl Reference 7-9
Overriding Default Behaviors

Validation Gallback

You can use the validation callback to provide validation that extends beyond the
default range checking. A validation callback is defined by setting the

VALIDATION CALLBACK module property to be the name of the validation callback
procedure, as shown in Example 7-8. This validation procedure displays an error if
you select a baud rate of 38400 and odd parity.

You can also use the validation callback to set the value of derived parameters.
Derived parameters are parameters that are derived from other parameters; their
values are not editable and are not saved in the SOPC Builder design file (.sopc). You
indicate that a parameter is derived by setting the parameter's DERIVED property to
true. In Example 7-8 BAUDRATE_PRESCALE is a derived parameter whose value is 1/16
of the value of the BAUDRATE parameter.

Example 7-8. Custom Validation Callback Function

Declare the validation callback.
set_module property VALIDATION CALLBACK my validation callback

Add the BAUDRATE_PRESCALE parameter, and indicate that it’s derived
add_parameter BAUDRATE PRESCALE int 600
set parameter property BAUDRATE PRESCALE DERIVED true

Add the PARITY parameter
add_parameter PARITY string ODD
set_parameter property PARITY ALLOWED RANGES {EVEN ODD}

The validation callback
proc my validation callback {} {
Get the current value of parameters we care about
set br [get parameter value BAUD RATE]
set p [get parameter value PARITY]
Display an error for invalid combinations.
if {($br==38400) && ($p=="0DD")} {
send_message warning "Odd parity at 38400 bps is not supported."
}

Set the value of our DERIVED parameter
set bp [expr $Sbr / 16]
set_parameter_ value BAUDRATE_ PRESCALE S$bp

Elahoration Callback

You can use an elaboration callback to change interface properties or add new
interfaces as a function of parameter values. You define an elaboration callback by
setting the ELABORATION CALLBACK module property to the name of the elaboration
callback function, as shown in Example 7-9. You can enable and disable interfaces
from the elaboration callback if they are only needed for some parameterizations of
the component. Example 7-9 shows how an Avalon-MM slave interface can be
included in an instance of the component, based on the USE_STATUS INTERFACE
parameter. All of the functionality available in the validation callback can also be used
in the elaboration callback; separate callbacks for validation and elaboration are not
required.

December 2010 Altera Corporation SOPC Builder User Guide

7-10 Chapter 7: Component Interface Tcl Reference
Overriding Default Behaviors

L=~ The elaboration callback will not be called when parameters with
AFFECTS_ELABORATION=false are changed by the user of the component.

Example 7-9. Elaboration Callback

Declare the callback.
set module property ELABORATION CALLBACK my elaboration callback

Add the USE_STATUS_INTERFACE parameter
add_parameter USE_STATUS INTERFACE boolean

Declare the status slave interface
add_interface status_slave avalon slave clock sink
set interface property status slave ENaBLED false

The elaboration callback

Declare signals

add_interface port status_slave st _readdata readdata output 16
add_interface_port status_slave st _read read input 1
add_interface port status slave st write write input 1
add_interface port status_slave st _waitrequest waitrequest output 1
add_interface_port status_slave st_address address input 24
add_interface port status slave st writedata writedata input 16

The elaboration callback
proc my elaboration callback {} {

Get the current value of parameters we care about
set use_status [get parameter value USE_STATUS INTERFACE]

Optionally add the status interface
if { $use status } {
set_interface property status_slave ENABLED true

Generation Gallback

If you define a generation callback, SOPC Builder does not generate an HDL wrapper
file to apply parameter values to your component. Instead, it calls the generation
callback you defined during the generation phase, allowing the component to
programmatically generate its HDL. A generation callback is defined by setting the
GENERATION CALLBACK module property to be the name of the generation callback
function, as Example 7-10 illustrates.

Generation callbacks typically retrieve the current value of the component’s
parameters and the generation properties that guide the generation process, and then
generate the HDL files and supporting files in Tcl or by calling an external program.
The callback procedure also reports the required files to SOPC Builder with the
add_file command. Any files added in the generation callback are in addition to the
files added in the main body of the _hw.tcl file.

The generation callback must write <output_name.v or .sv> for Verilog or
<output_name.vhd> for VHDL to the specified <output_directory>. This file is a
parameterized instance of the component. Other supporting files, such as .hex files to
initialize memory, may be written to <output_directory>. These file names must begin
with <output_name>. If the supporting files are the same for all parameterizations of
the component, you add them from the main program rather than the generation

SOPC Builder User Guide December 2010 Altera Corporation

Chapter 7: Component Interface Tcl Reference 7-1
Overriding Default Behaviors

callback. If your system includes multiple instantiations of a component with
different parameterizations, you must add the supporting files from the main
program to prevent failures. If a static supporting file is only needed in some
parameterizations of the component, you should add it from the main program and
turn it on or off by setting its SYNTHESIS and SIMULATION properties appropriately from
the elaboration callback.

Example 7-10. Generation Callback Example

set _module property GENERATION CALLBACK my generate
My generation method

proc my generate {} {
send message info "Starting Generation"

get generation settings

set language [get generation property HDL LANGUAGE]
set outdir [get generation property OUTPUT DIRECTORY]
set outputname [get generation property OUTPUT NAME]

get parameter values

set pl [get parameter value PARAMETER ONE]
set csr [get parameter value CSR_ENABLED]

Your callback needs to write Soutdir$Soutputname.v here,
perhaps by using exec to call an external program.

add file creates files relative to the hw.tcl directory; therefore specify Soutdir
for synthesis and simulation files

exec perl my generate.pl lang=$language dir=$outdir name=$Soutputname pl=$pl csr=S$csr
add _file ${outdir}${outputname}.v SYNTHESIS
add_file ${outdir}${outputname} sim.v SIMULATION

Editor Callback

You can use the editor callback procedure to replace the parameterization GUIL. An
editor callback is defined by setting the EDITOR CALLBACK module property to the name
of your editor callback procedure, as shown in the Example 7-11. If the editor callback
is defined, SOPC Builder calls the editor callback instead of displaying the
parameterization GUI, typically when the component is added to a system or updated
after it is in the system.

To display your custom GUI, the editor callback must call another program. Typically,
an editor callback provides the current parameter values to your program via the
command line and collects the new parameter values via stdout. The editor callback
then uses the set_parameter_value command to update SOPC Builder with the new
parameter values.

The editor callback returns one of the following three values:
B OK—indicates that the results of the edit should be applied.

B CANCEL—indicates that the system should revert to the state it was in before the
editor callback was called.

m ERROR—indicates that the GUI was unable to launch. An appropriate error message
should be displayed.

December 2010 Altera Corporation SOPC Builder User Guide

7-12 Chapter 7: Component Interface Tcl Reference
Hardware Tcl Command Reference

If no value is returned, OK is assumed.

Example 7-11. Editor Callback

set_module_property EDITOR CALLBACK my editor

Define Module parameters.
add_parameter PARAMETER ONE integer 32 "A parameter"
add_parameter CSR_ENABLED boolean true "Enable CSR interface"

My editor method
proc my editor {} ({

get parameter values
set pl [get parameter value PARAMETER ONE]
set csr [get parameter value CSR_ENABLED]

Display UI, populated with current parameter values.
The stdout returned by the UI program includes the new paramter values.
set result [exec my component ui.exe pl=$pl csr=$csr]

Use the fictional "parse_ for new value" procedure to parse the returned text for the
new parameter values.

set pl [parse for new value $result pl]

set csr [parse_for new value $result csr]

Return the new parameter values to SOPC Builder
set_parameter value PARAMETER_ONE S$pl
set_parameter value CSR_ENABLED $csr
return OK

Hardware Tcl Command Reference

This section provides a reference for all hardware Tcl commands, as follows:
m “Module Definition” on page 7-14

m “Parameters” on page 7-21

m “Display Items” on page 7-29

m “Interfaces and Ports” on page 7-32

B “Generation” on page 7-38

The description of each command indicates during which phases it is available: in the
main body of the program (main), or during the validation, elaboration, generation,
and editor callback phases, or any combination. Table 7-2 summarizes the commands
and provides a reference to the full description.

SOPC Builder User Guide December 2010 Altera Corporation

Chapter 7: Component Interface Tcl Reference
Hardware Tcl Command Reference

7-13

L=~ Starting with Quartus II software version 9.1, all Tcl commands that you can use in the
validation callback are also available in the elaboration callback. With this change,
you may be able to omit the custom validation callback by including some validation

commands in your elaboration callback.

Table 7-2. Command Summary (Note 1) (Part1 of 2)

Command Full Description
Module Definition
package <require> -exact sopc <version> page 7-14
get _module properties page 7-15
get_module property <propertyName> page 7-16
set _module property <propertyName> <propertyValue> page 7-17
get_module ports page 7-17
get_module_assignments page 7-17
get_module_assignment <moduleName> page 7-18
set_module_assignment <moduleName> [value] page 7-18
get files page 7-18
add file filename [<fileProperties>...] page 7-19
add_documentation_link <docType> <title> <fileOrUrl> page 7-19
get_file_properties page 7-20
get file property <filename> <propertyName> page 7-20
set file property <filename> <propertyName> <propertyValue> page 7-20
send message <messagelLevel> <messageText> page 7-21
Parameters
add _parameter <parameterName> <parameterType> [<defaultValue> <description>] page 7-22
get parameters page 7-22
get parameter properties page 7-23
get_parameter property <parameterName> <propertyName> page 7-27
set_parameter property <parameterName> <propertyName> <value> page 7-27
get parameter value <parameterName> page 7-28
set parameter value <parameterName> <value> page 7-28
decode_address_map <address_map_XML_string> page 7-28
Display Items
add display item <groupName> <id> <type> [<additionalInfos] page 7-29
GET_DISPLAY_ITEMS page 7-31
GET_DISPLAY_ITEM_properties page 7-31
GET_DISPLAY_ITEM_PROPERTY <itemName> <propertyName> page 7-31
set_display_item_PROPERTY <itemName> <propertyName> <value> page 7-31
Interfaces and Ports
add interface <interfaceName> <interfaceType> <directions
[<a_ssociatedcl ock>] page 7-33

December 2010 Altera Corporation

SOPC Builder User Guide

7-14

Chapter 7: Component Interface Tcl Reference
Hardware Tcl Command Reference

Table 7-2. Command Summary (Note 1) (Part2 of 2)

Command Full Description

get _interfaces <interfaceName> page 7-33
get_interface property <interfaceName> <propertyName> page 7-34
set_interface property <interfaceName> <propertyName> <value> page 7-35
add_interface port <interfaceName> <portName> <portRole> [<direction> <width_expr>] page 7-35
get interface ports [<interfaceName>] page 7-36
get port properties page 7-36
get port property <portName> <propertyName> page 7-37
set_port property <portNames> <propertyNames> [<values] page 7-37
get_interface assignments page 7-38
get interface assignment <interfaceName> <name> page 7-38
set_interface assignmet <interfaceName> <name> [<valuex>] page 7-38
Generation

get_generation property <propertyName> page 7-39
get generation properties page 7-39

Note to Table 7-2:
(1) Arguments enclosed in []’s are optional

Module Definition

This section provides information about the commands that you use to define and

query a module.

package

The package command allows you to specify a particular version of the SOPC Builder
software to avoid software compatibility issues. You should use the package command
at the beginning of your _hw.tcl file. When used, the component files behave as if they
are interpreted by the version of the SOPC Builder software that you specify. When
the package command is not used, version 9.0 of the SOPC Builder software is
assumed. For components designed before 9.0, you can set the required package to
9.0. This document describes the behavior of component which start with

package require -exact sopc 10.0 For earlier releases, refer to the documentation for

that release.

e package is a standard Tcl command. For more information on this command refer to

the following web page: http://www.tcl.tk/man/tcl8.0/TclCmd/package.htm

package

Callback . . .
availability Main (before any other commands in the file)
Usage package require -exact sopc <Version>
Returns None

SOPC Builder User Guide

December 2010 Altera Corporation

Chapter 7: Component Interface Tcl Reference
Hardware Tcl Command Reference

7-15

package
Arguments version | The version of SOPC Builder that you require, specified as decimal number
Example package require -exact sopc 10.0

get_module_properties

This command returns the names of all the available module properties as a list of
strings. You can use the get _module property and set module property commands to
get and set values of individual properties. The value returned by this command is
always the same for a particular version of SOPC Builder.

get_module_properties

g\ilalitl);t():ill(ity Main, validation, elaboration, generation, and editor
Usage get_module properties

Returns List of strings

Arguments None

Example get_module properties

Table 7-3 lists the available module properties, their use, and the phases in which they

can be set.

Tahle 7-3. Module Properties (Part 1 of 2)

Property Name Pr:;:‘:tv Can Be Set Description
AUTHOR String Main program | The module’s author.
, . The description of the module, such as
DESCRIPTION String Main program “Example SOPC Builder Module.”
DISPIAY NAME Strin Main proaram The name to display when referencing the
- d prog module, such as “My SOPC Component.”
EDITABLE Boolean Main program Indicates if the. component is editable in the
component editor.
The name of the editor callback. The default
EDITOR CALLBACK String Main program | parameterization Ul is displayed if this property
iS not set.
The name of the elaboration callback. For static
ELABORATION CALLBACK String Main program | and generated components, the default
elaborations used if this property is not set.
GENERATION CALLBACK String Main program | The name of the generation callback.
. . The component group that the module belongs
GROUP String Main program “ ”
to, such as “Example Components.
TCON PATH String Main program A path to an icon to display in the module’s

parameter editor.

December 2010 Altera Corporation

SOPC Builder User Guide

7-16

Chapter 7: Component Interface Tcl Reference
Hardware Tcl Command Reference

Tahle 7-3. Module Properties (Part 2 of 2)

Property

Property Name Type Can Be Set Description
When false the instances of the module are
not included in the generated system
INSTANTIATE IN SYSTEM MODULE Boolean | Main program | interconnect fabric. Instead, interfaces to the
module are exported out of the top-level of the
SOPC Builder system.
The directory containing the _hw.tcl file. All
relative file names within the Tcl file are
. Can only be . o .
MODULE_DIRECTORY String read. not set resolved relative to this directory. This
’ directory is set as the current directory when
running the main program or a callback.
MODULE TCL FILE String Gan only be The path to the _hw.tel file.
- read, not set
NAME String Main program The name of the module, such as
my sopc_component.
Indicates which of the files added by the
TOP_LEVEL HDL FILE String Main program | add_file command contains the module’s
top-level HDL.
Indicates the name of the top-level module
TOP_LEVEL_HDL_MODULE String Main program | which must be defined in the module’s
top-level HDL file.
The name of the validation callback. This
VALIDATION CALLBACK String Main program | callback is run in addition to the default
validation.
VERSION String Main program | The module’s version, such as 8.1.

s

The INSTANTIATE IN SYSTEM MODULE, TOP LEVEL HDL MODULE and GENERATION CALLBACK

commands are used to select the type of generation used by the component. You must
set only one of these in the main program of your file.

get_module_property

This command returns the value of a single module property.

get_module_property

g\ellelalitl);t():ill(ity Main, validation, elaboration, generation, and editor

Usage get module property <propertyName>

Returns String, boolean, Of file

Arguments propertyName One of the properties listed in Table 7-3 on page 7-15
Example set my name [get module property NAME]

SOPC Builder User Guide

December 2010 Altera Corporation

Chapter 7: Component Interface Tcl Reference

7-17

Hardware Tcl Command Reference

set_module_property

This command allows you to set the values for module properties.

set_module_property

Callback Main program
availability prog
Usage set_module property <propertyName> <propertyValue>
Returns None
propertyName One of the properties listed in Table 7-3 on page 7-15
Arguments
propertyValue The new value of the property
Example set_module property VERSION 10.0

get_module_ports

This command returns a list of the names of all the ports which are currently defined.

get_module_ports

g\ilelllitl):t?ill(ity Main, validation, elaboration, generation, and editor
Usage get_module ports

Returns String

Arguments None |

Example get_module ports

get_module_assignments

This command returns names of the module assignment variables.

get_module_assignments

g\?zlili?:gill(ity Main, validation, elaboration, and compose
Usage get module assignments

Returns String

Arguments None

Example get_module assignments

December 2010 Altera Corporation

SOPC Builder User Guide

7-18

Chapter 7: Component Interface Tcl Reference
Hardware Tcl Command Reference

get_module_assignment

This command returns the value of the specified argument. You can use the

get _module assignment and set module assignment and theget interface assignment
and set_interface assignment commands to transfer information about hardware
components to embedded software tools and applications.

get_module_assignment

g\ilelllitl):t?ill(ity Main, validation, elaboration, and compose

Usage get_module assignment <name>

Returns String

Arguments name | The name whose value is being retrieved
Example get _module assignment embedded.sw.CMacro.colorSpace

set_module_assignment

This command sets the value of the specified argument.

set_module_assignment

gjzlilitl):t;:ill(ity Main, validation, elaboration, and compose
Usage set_module assignment <name> [<value>]
Returns None
Arguments name The name whose value is being set
value The value of the <name > argument
Example set_module assignment embedded.sw.CMacro.colorSpace CMYK
get_files
This command returns a list of all the files that have been added to the module.
get_files
g\ilalitl);t():ill(ity Main, validation, elaboration, generation, and editor
Usage get files
Returns List of strings
Arguments None
Example set list of files [get files]

SOPC Builder User Guide December 2010 Altera Corporation

Chapter 7: Component Interface Tcl Reference 7-19
Hardware Tcl Command Reference

add_file

This command adds a synthesis, simulation, or TimeQuest constraints file to the
module. Files added in the main program cannot be removed. Adding files in the
generation callback allows the included files to be a function of the parameter set or to
be a result of generation. Files added in callbacks are in addition to any files added in
the main program.

add_file
CaII'bac'k. Main and generation
availability
Usage add_file filename [<fileProperties>...]
Returns String
filename The file name to be added, relative to the directory containing the _hw.tel file
Files support the following 3 properties:
Arguments m sIMULATION—TFile for simulation
fileProperties))
m SYNTHESIS—File for synthesis
m sDCc—TimeQuest constraints (SDC behaves like a synthesis file)
Example add file my component.v {SIMULATION SYNTHESIS)}

add_documentation_link

This command allows you to add multiple documentation links for a single
component.

add_documentation_link

Callback .
S Main
availability
Usage add documentation link filename <docType> <title> <fileOrUrl>
Returns None
One of the following document types: USER_GUIDE, RELEASE NOTES, WEBLINK,
docType ERRATA, DATASHEET, REFERENCE MANUAL, WAVEFORM, SCHEMATICS. TUTORIAL,
OTHER
Arguments title The title of the document for use on menus and buttons.
A path to the component documentation, using a syntax that provides the entire
fileOrUrl URL, not a relative path. For example: hitp://www.mydomain.com/my_
memory_controller.html or file:///datasheet.txt.
£ | add documentation link USER GUIDE "Avalon Verification IP Suite User Guide"
xample - - -
http://www.altera.com/literature/ug/ug_avalon verification ip.pdf

December 2010 Altera Corporation SOPC Builder User Guide

7-20

Chapter 7: Component Interface Tcl Reference
Hardware Tcl Command Reference

get_file_properties

This command returns the list of all properties that have been defined for a file.

get_file_properties

lIback . N . . .
Ca 'bac') Main, validation, elaboration, generation, and editor
availability
Usage get file properties
Returns List of strings

Arguments None

Example get file properties

get_file_property

This command returns the value of a single file property. The file name passed as an
argument may be a partial as long as it is unique. For example, if the full file name is
/components/my_file.v, my_file.v is sufficient.

get_file_property

lIback . I . . .
Ca .bac.) Main, validation, elaboration, generation, and editor
availability
Usage get file property <filename> <propertyName>
Returns Boolean
filename The file name whose properties are being retrieved
Arguments - —— .
propertyName The file name property whose value is being retrieved
Example set forSynthesis [get file property my file.v SYNTHESIS]

set_file_property

This command sets the value of a single file property. The file name passed to the
function can be a partial file name as long as it is unique. For example, if the full file
name is /components/my_file.v, my_file.v is sufficient. The available properties are
described in the add_files command.

set_file_property

g\?;lalitl);t():ill(ity Main, elaboration, and generation
Usage set file property <filename> <propertyName> <propertyValues
Returns Boolean
filename The file name whose properties are being retrieved
Arguments propertyName Name of the file property whose value is being retrieved
propertyValue Value to set for the file property
Example set file property my file.v SYNTHESIS true

SOPC Builder User Guide

December 2010 Altera Corporation

Chapter 7: Component Interface Tcl Reference 7-21
Hardware Tcl Command Reference

send_message

This command sends a message to the user of the component. The message text is
normally interpreted as HIML. The element can be used to provide emphasis. If
you do not want the message text to be interpreted as HTML then pass a list like {
info text } asthe message level.

send_message

Callback . I . . ,
S Main, validation, elaboration, generation, and editor
availability
Usage send message <messagelevel> <messageText>
Returns None
The following 4 message levels are supported:
m Error—provides an error message. The SOPC Builder system cannot be
generated while there are error messages.
messageLevel , . .
Arguments ® Warning—provides a warning message.
m Info—provides an informational message.
m Debug—provides messages when debug mode is enabled.
messageText The text of the message
Example send message Error "paraml must be greater than param2."
Parameters

Parameters allow users of your component to affect its operation in the same manner
as Verilog HDL parameters or VHDL generics.

add_parameter

This command adds a parameter to your component. Most of the parameter types are
self-explanatory because they are used in the C programming language or HDL.
However, the string_list and integer list parameters that are used to create tables
in GUISs require some explanation.

m When you use the add_parameter command with a string list or integer_ list
parameter type, the parameter you define is displayed in a variable-sized table
that includes add and remove buttons.

December 2010 Altera Corporation SOPC Builder User Guide

7-22

Chapter 7: Component Interface Tcl Reference
Hardware Tcl Command Reference

m If you define multiple parameters of type string list or integer_list, you can
also use the add_display_itemcommand to specify that parameters should each be
displayed as a column in a table, each parameter of type string list or
integer_ list becomes a column in the table. Example 7-12 illustrates the use of
the integer_list parameter types to create a multi-column table.

Example 7-12. Creating Tables Using the string_list and integer_list Parameter Types

add_parameter
add parameter
add parameter
add_parameter

bitsWide INTEGER

divider INTEGER
coefficients INTEGER_LIST
positions INTEGER LIST

add _display item myTable coefficients TABLE
add_display item myTable positions TABLE

add_parameter
Callback Main program
availability
Usage add parameter <parameterName> <parameterType> [<defaultValue> <descriptions]
Returns String
parameterName A name that you, the component author, choose for your parameter
The following types are supported: Integer, Natural, Positive,
parameterType Boolean, Std logic, Std logic vector, String, String list, and
Arguments Inte Doy - - -
ger list.
defaultvalue The default length of the parameter is derived from its range.
description Explains the use of the parameter
Example add parameter seed integer 17 "The seed to use for data generation."

get_parameters

This command returns the names of all parameters that have been previously defined
by add_parameter as a space separated list.

get_parameters

g\?zlili?:lfill(ity Main, validation, elaboration, generation, and editor
Usage get parameters

Returns List of strings

Arguments None

Example set parameter summary [get parameters]

SOPC Builder User Guide December 2010 Altera Corporation

Chapter 7: Component Interface Tcl Reference
Hardware Tcl Command Reference

7-23

get_parameter_properties

This command returns a list of all the available parameter properties as a list of
strings. The get_parameter property and set_parameter_property commands are used
to get and set the values of these properties, respectively.

get_parameter_properties

g\ilelllitl):t?ill(ity Main, validation, elaboration, generation, and editor

Usage get parameter properties

Returns List of strings

Arguments None

Example set property summary [get parameter properties]

Tahle 7-4. Parameter Properties (Part 1 of 3)

Table 7—4 describes the properties available to describe the behaviors of each of the
parameters you can specify, their use, and when they can be set.

Property Name

Type/
Default

Can Be Set

Description

Boolean,

AFFECTS_ELABORATION (1) refer to

description

Main program

Set AFFECTS ELABORATION t0 false for parameters
that do not affect the external interface of the module.
An example of a parameter that does not affect the
external interface is isNonVolatileStorage. An
example of a parameter that does affect the external
interface is width. When the value of a parameter
changes, if that parameter has set
AFFECTS_ELABORATION=false, the elaboration phase
(calling the callback or hardware analysis) is not
repeated, improving performance. Because the default
value of AFFECTS ELABORATION iS true, the provided
HDL file is normally re-analyzed to determine the new
port widths and configuration every time a parameter
changes.

Boolean,

AFFECTS_GENERATION refer to

DESCRIPTION

Main program

The default value of AFFECTS GENERATION iS false if
you provide a top-level HDL module, it is true if you
provide a custom generation callback. Set
AFFECTS_GENERATION to false if the value of a
parameter does not change the results of system
generation.

December 2010 Altera Corporation

SOPC Builder User Guide

7-24

Chapter 7: Component Interface Tcl Reference
Hardware Tcl Command Reference

Table 7-4. Parameter Properties (Part 2 of 3)
Property Name Dg'::l/“ Can Be Set Description
Indicates the range or ranges that the parameter value
can have. For integers, The ALLOWED RANGES property
is a list of ranges that the parameter can take on, where
each range is a single value, or a range of values
defined by a start and end value separated by a colon,
String such as 11:15. This property can also specify legal

ALLOWED RANGES

Main program

values and display strings for integers, such as {0:None
1:Monophonic 2:Stereo 4:Quadrophonic} meaning
0,1,2,4 are the legal values. You can also assign longer
strings to be displayed in the GUI to string variables.
For example, ALLOWED RANGES {"devl:Cyclone IV
GX" "dev2:Stratix V GT"}Referto Example 7-7 on
page 7-8 and Figure 7—1 on page 7-8 for additional
examples illustrating the use of this property.

DERIVED

Boolean/
false

Main program

When true, indicates that the parameter value does not
need to be stored, typically because it is set from the
validation callback. The default value is false.

DESCRIPTION

String,

Main program

A user-visible description of the parameter.

DISPLAY_HINT

String,

Main program

Provides a hint about how to display a property. The
following values are possible:

m boolean—for integer parameters whose value can
be 0 or 1. The parameter displays as a checkbox.

m radio—displays a parameter with a list of values as
radio buttons instead of a drop-down list.

m hexadecimal—for integer parameters, display and
interpret the value as a hexadecimal number, for
example: 0x00000010 instead of 16.

m fixed size—for string list and
integer list parameters, the fixed size
DISPLAY HINT eliminates the add and remove
buttons from tables.

Refer to Example 7—7 on page 7-8 and Figure 7—1 on
page 7-8 for examples illustrating the use of this
property.

DISPLAY NAME

String,

Main program

This is the GUI label that appears to the left of the
parameter.

DISPLAY_UNITS

String,

Main program

This is the GUI label that appears to the right of the
parameter.

ENABLED

Boolean, tr
ue

Main program,
validation, and
elaboration,
callbacks

When false, the parameter is disabled, meaning that it
is displayed, but greyed out, indicating that it is not
editable on the parameterization GUI.

HDL_PARAMETER

Boolean,
false

Main program

When true, the parameter must be passed to the HDL
component description. The default value is false.

SOPC Builder User Guide

December 2010 Altera Corporation

Chapter 7: Component Interface Tcl Reference

Hardware Tcl Command Reference

7-25

Table 7-4. Parameter Properties (Part 3 of 3)

Property Name

Type/
Default

Can Be Set

Description

NEW_INSTANCE_VALUE

String,

Main program

This property allows you to change the default value of
a parameter without affecting older components that
have assigned a default value to this parameter using
the defaultvalue argument. The practical result is
that older components will continue to use
defaultvalue for the parameter and newer
components can use the value assigned by
NEW_INSTANCE VALUE.

SYSTEM_INFO

String,

Main program

Allows you to assign information about the instantiating
system to a parameter that you define. SYSTEM INFO
requires a keyword argument specifying the type of
information requested, <info-types. <info-
type> may also take an argument. The syntax of the
Tcl command is:

set parameter property my parameter
SYSTEM INFO <info-type> [<arg>]

The following values for <info-type> are predefined:
B CLOCK RATE

m CLOCK DOMAIN

m RESET DOMAIN

m ADDRESS WIDTH

m ADDRESS MAP

m MAX SLAVE DATA WIDTH

m INTERRUPTS USED

m DEVICE FAMILY

m DEVICE FEATURES

UNITS

String,

Main program

Sets the units of the parameter. The following values
are possible: picoseconds, nanoseconds
microseconds, milliseconds, seconds, hertz
kilohertz, megahertz, gigahertz, address, bits
bytes, kilobytes, megabytes, gigabytes
bitspersecond, kilobitspersecond
megabitspersecond, gigabitspersecond. For
exampm,set_parameter_property frequency
UNITS gigahertz

VISIBLE

Boolean, tr
ue

Main program,
validation, and
elaboration,
callbacks

Indicates whether or not to display the parameter in the
parameterization GUI.

Note to Table 7-4:

(1) The AFFECTS_ELABORATION property was called AFFECTS_PORT WIDTHS before version 9.0 of the Quartus Il software.

December 2010 Altera Corporation

SOPC Builder User Guide

7-26

Chapter 7: Component Interface Tcl Reference
Hardware Tcl Command Reference

Table 7-5 lists the properties that you can use with the system_info parameter

property.

Table 7-5. SYSTEM_INFO Properties (Part 1 of 2)

Property

Type

Description

ADDRESS MAP

String

Assigns an XML formatted string describing the address map to the
parameter you specify.

set parameter property <my parameter> SYSTEM INFO
{ADDRESS MAP <my avalon-mm masters}

ADDRESS WIDTH

Integer

Assigns an integer to the parameter that you specify that is the number of
bits an Avalon-MM master must drive to address all of its slaves, using
byte addresses.

set parameter property <my_parameter> SYSTEM INFO
{ADDRESS WIDTH <my_avalon-mm_master>}

CLOCK_DOMAIN

Integer

Assigns an integer representing the clock domain to the parameter you
specify. You can use this command to determine whether multiple
interfaces in your module are on the same clock domain. The absolute
value of the integer value is arbitrary, but if two interfaces are on the same
clock domain, the CLOCK _DOMAIN value is guaranteed to be the same and
greater than zero.

set parameter property <my_parameter> SYSTEM INFO
{cLoCK DOMAIN <my_clk>}

CLOCK_RATE

Integer Or
String

Assigns a positive number which is the clock frequency in Hz to the clock
input interface you specify. Assigns 0 if the clock rate is not known.

set parameter property <my_parameter> SYSTEM INFO
{cLock RATE <my_clk>}

DEVICE FAMILY

String

Assigns the family name (not the specific device part number) of the
currently selected device to the parameter you specify.

set parameter property <my parameter> SYSTEM INFO
{DEVICE FAMILY}

DEVICE_ FEATURES

String

Creates a list of key/value pairs delineated by spaces indicating whether a
particular device feature is available in the currently selected device family.
The format of the list is suitable for passing to the Tcl array set
command. This list is assigned to the parameter you specify. The following
features are supported: M512_MEMORY, M4K_MEMORY, M9K_MEMORY,
M144K_MEMORY, MRAM MEMORY, MLAB MEMORY, ESB, DSP, and EMUL.

set parameter property <my parameter> SYSTEM INFO
{DEVICE FEATURES)

INTERRUPTS USED

Integer Or
string

Creates a mask indicating which bits of the interrupt receiver vector are
connected to an interrupt sender. This mask is assigned to the parameter
you specify. You can use this interrupt mask to optimize logic that handles
interrupts.

set parameter property <my parameter> SYSTEM INFO
(INTERRUPTS USED <my interrupt receivers}

SOPC Builder User Guide

December 2010 Altera Corporation

Chapter 7: Component Interface Tcl Reference 7-27
Hardware Tcl Command Reference

Table 7-5. SYSTEM_INFO Properties (Part 2 of 2)

Property Type Description
Assigns an integer to the parameter you specify that is the data width of the
MAX SLAVE DATA WIDTH widest slave connected to the specified Avalon-MM master.
Integer

set parameter property <my parameter> SYSTEM INFO
{ MAX SLAVE DATA WIDTH <my_avalon_mm_ master>}

Assigns an integer representing the reset domain to the parameter you
specify. You can use this command to determine whether multiple
interfaces in your module are on the same reset domain. The absolute
RESET DOMAIN value of the integer value is arbitrary, but if two interfaces are on the same
Integer reset domain, the RESET DOMAIN value is guaranteed to be the same and
greater than zero.

set parameter property <my_parameter> SYSTEM INFO
{RESET DOMAIN <my._reset>}

get_parameter_property

This command returns a single parameter property.

get_parameter_property

g\ilelllitl):t?ill(ity Main, validation, elaboration, generation, and editor

Usage get parameter property <parameterName> <propertyName>

Returns string, boolean, Or units depending on property refer to Table 7-4 on page 7-23

Arguments parameterName The name of the parameter whose property value is being retrieved
propertyName One of the properties listed in Table 7-4 on page 7-23

Example get parameter property parameterl GROUP

set_parameter_property

This command sets a single parameter property.

set_parameter_property

g\?elllitl):gill(ity Main, validation, and elaboration

Usage set parameter property <parameterName> <propert