
Last Revised: 1/17/2017 1

Sound the Alarm

1 Introduction
In this lab you will use the Xilinx CAD tools to complete the design of a simple home
alarm system containing sensors for that indicate whether the Windows, Door, and
Garage are secure. In addition, there is an overall Enable switch to the system and
an Exiting button that indicate the reason the door is open is because you are
exiting.

2 What you will learn
This lab is intended to show you the process of using an FPGA (Field-Programmable
Gate Array) chip to implement digital HW designs while allowing you to practice
your ability to implement an arbitrary logic function.

3 Background Information and Notes
The Alarm System: The alarm system to be designed has the following inputs.

Input Description

N The system enable (i.e. the on/off state of the alarm system).
1 = Enabled / 0 = Disabled)

X Exiting input. 1 indicates that you are currently leaving the house
and thus an open door or window should not cause the alarm to
turn on. 0 indicates that you are out of the house.

W Window sensors = 1 indicates all windows are secured/closed
D Door sensors = 1 indicates all doors are secured/closed
G Garage sensor = 1 indicates the garage door is secure

The only output of the alarm system should be a single bit, A, which will be 1 if the
alarm is activated and 0 otherwise. The alarm should activate if the system is
enabled, you are not exiting, and the house is not secure. The house is
considered secure if all the sensors (windows, doors, garage) are 1.

Sound the Alarm -

2 Last Revised: 1/17/2017

SW7 SW0
BTN

3
BTN

2
BTN

1
BTN

0

LD7 LD0

W D GX
(Exiting)

All LEDs will light if the
output (alarm) is on

N
(Enable)

Figure 1 - Switches will be used as the eNable, eXiting, and Windows, Door, Garage sensor inputs. All the LEDs

will light up if the Alarm output is 1 (on). The 7-segment displays and buttons will not be used.

FPGAs: Field-programmable Gate Arrays are chips that have many hardware
resources (e.g. "gates", registers, etc.) built on it but can be configured for how to
wire them together. The idea is this one chip can be configured to wire the
resources together to implement one design and then be reconfigured to wire the
resources together differently to implement another design. This is handy for our
lab since we don't want to buy separate chips for each lab, but instead reuse the
chip. The designs you draw and describe in the Xilinx tools will be converted (i.e.
synthesized) to produce the appropriate configuration to implement that exact
design on the FPGA. Your job is just to produce the write design description (i.e.
schematic in this case).

Your task: Your job will be to express the home alarm system description using
logic and then describe it in Verilog and implement it on the Xilinx FPGA.

Overall Design: If you took EE 109 we want to draw a comparison and have you
realize you could easily implement this in your Arduino by polling the inputs (N, X,
W, D, or G) but it would run significantly slower than this HW version can execute
(though for a human user interacting at the seconds/milliseconds level that
difference is undetectable). But we simply want to point out that what can be done
in SW can be done in HW and vice versa.

4 Prelab
None.

5 Procedure
1. On the lab report page (at the end) write a single logic equation for the alarm

output A in terms of N, X, W, D, G.

 Sound the Alarm

Last Revised: 1/17/2017 3

2. Now, download the project skeleton zip file from our website and extract it to a
folder. Then load the project file (the file with the .xise extension) in Xilinx's
Project Navigator

3. Open the alarm.v Verilog file (not the alarm_top.v). You will see the module
declaration with the inputs and output. You must now implement the missing
logic by describing the necessary gates corresponding to the equation you
found earlier.

4. Simulate your design using the provided testbench by clicking the Simulation
radio box in the upper right of the window. Open the alarm_tb.v file and
understand what cases it is simulating by carefully reading the sequence of
input stimulus generated. Then simulate the design by choosing Simulate
Behavioral Model in the Processes area.

[Important] The best way to make sure you
understand the design is to painstakingly trace
through the simulation waveform and see what
happens. Think about what the input stimulus is: the
Enable, Exiting, Windows, Door, and Garage switches.
In your head think carefully about what the expected
output *should* be. Confirm them on the simulation
waveform. It is important to grow in your ability to
debug digital circuits, so please invest that time.

If you find the simulation doesn’t behave as intended,
add more intermediate signals, rerun your simulation,
etc. until you can figure out the problem.

5. Now change the testbench file to EXHAUSTIVELY test
your design with all possible input combinations of N,
X, W, D, and G waiting 10 ns per input combination.
Reference the online Xilinx tutorial video for how you
might write this code.

6. Once you are satisfied the design seems to work in
simulation we will now implement it on the FPGA. To do so, go to the
Design/Hierarchy tab in the top right and select the top-level file alarm_top.v.

7. Important: In the Processes pane, right-click “Generate Programming File”,
click “Properties” and under “Startup Options” ensure that the “FPGA Start-Up
Clock” is set to “JTAG Clock”. This is necessary for your design to work properly
but only needs to be done once (the project settings will be saved).

8. Now double click the Generate Programming File. It will take some time to
synthesize the design and implement it but when it is done double check that
there are no errors (look at the errors tab in the bottom console area) or at the

Sound the Alarm -

4 Last Revised: 1/17/2017

color of the icon next to the Synthesize and Implement processes. Warnings
(yellow triangles) are fine however.

9. At this point the hardware configuration file (.bit) file has been generated and is
ready to configure the hardware on the FPGA boards. Get a Nexys-2 board
from your TA and connect it via USB to your laptop. If you are running on the
Remote Desktop (VDI) you'll need have the virtual machine "take control" of the
Nexys board by selecting "Connect USB Device" and then choosing "Digilent
Onboard USB".

10. If you are running on your own PC you'll need to download the Digilent Adept
software using the link on the Tools page of our course website.

11. Start the Digilent Adept software which is
used to download the HW configuration.
Make sure the Connect field in the upper
right says Onboard USB and the Product is
recognized as Nexys2 – 500. Finally in the
FPGA row, select the Browse button and
find the alarm_top.bit file in your project
folder. Then click Initialize Chain which
should configure your hardware and start
the program running.

12. Try playing the game on the board and
ensure the display is showing appropriate
digits. If you got your logic wrong go back and examine it and try to fix it. You
will then need to repeat steps 8-11.

13. Demonstrate your working alarm to a TA and get their signatures/initials.
Submit your files online.

 Sound the Alarm

Last Revised: 1/17/2017 5

6 Lab Report

Name: ___________________________________ Score: ________

Due: _____________
(Detach and turn this sheet along with any other requested work or printouts)

Turn in the following items:

1. Alarm equation: A = __________________________________

2. Demonstration (TA Signature): __________________________

Item Outcome Score Max.

Design

 Correct Alarm Equation

 Correct Verilog implementation

 Correct exhaustive testbench file

 Working FPGA demonstration signoff

Yes / No

Yes / No

Yes / No

Yes / No

2

3

3

2

SubTotal 10

Late Deductions (-1 pts. per day)

Total 10

Open Ended Comments:

