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The South Pointing Chariot

The South-Pointing Chariot was a two-wheeled vehicle in ancient China
with a moveable pointer that always pointed south, no matter how the
chariot turned.
Dubious legends place its origins as far back as 2635 BCE, but most
believe one was built by Ma Jun around 250 CE, and that it probably
involved gears.
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How Does This Work? Geometry

The left wheel and right wheel travel different distances around a turn

w

r + w

r

(r + w)θ

rθ

How much more does the left wheel travel than the right wheel? Call the
width of the axle w . In a turn of radius r and angle θ (in radians) the left
wheel travels (r + w)θ and the right wheel travels rθ, so the difference is
wθ. When the chariot rotates θ degrees right, the left wheel travels wθ
more than the right wheel.
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How Does This Work? Geometry
Any path can be approximated by straight lines and arcs of circles. So in
any path the left wheel travels wθtot more than the right wheel, where θtot

is the sum of all the rotations.

+
wθ1

wθ2

dl − dr =

θtot =
dl − dr

w

where

θtot is the total rotation clockwise undergone by the chariot

dl is the distance traveled by the left wheel

dr is the distance traveled by the right wheel

w is the distance between the two wheels
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How Does This Work? Mechanics
It relies on a differential:

the middle axle rotates at a rate that is the average of the left and right
axles’ rotations so

dθ

dt
=

1

2

(
dθl
dt

+
dθr
dt

)
.

The middle axle is connected to the pointer. The left axle by an odd
number of gears to the left wheel, so dθl/dt ∝ vl the velocity of left wheel
and right axle is connected by even number of gears to right wheel, so
dθr/dt ∝ −vr the velocity of the right wheel.
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How Does This Work? Mechanics

dθpoint

dt
∝ vl − vr

Integrating over the time of travel yields

θpoint ∝ dl − dr =
dl − dr

w

if we size the gears right, where θpoint is the total angle of rotation of the
pointer counterclockwise (relative to the chariot) during the journey.
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How Does This Work? Another View
Notice our formula gives the same value for the rotation no matter what
the width is (of course). Let d(x) be the distance traveled by a wheel
positioned x to the left of the center.

w

X
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x
x

w
2

−w
2

d
(
w
2

)
= dl , d

(
−w

2

)
= dr , So

θpoint =
dl − dr

w
=

d
(
w
2

)
− d

(
−w

2

)
w

= diff. quot.!

= lim
w→0

d
(
w
2

)
− d

(
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w

=
δd

δx
.
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How Does This Work? Another View

Putting this all together we get the following remarkable fact. The total
angle θtotal the chariot rotates clockwise, which is also the total angle
θpoint the pointer rotates counterclockwise relative to the chariot, is the
rate at which the length of the path changes as you move the path left.
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And Now The Truth!

South pointing chariot does not work.

When the surface is curved, it will
not always point southThe left wheel travels further than the right wheel,
so the pointer rotates!

A bird thinks the chariot is going straight, but the pointer thinks it is
turning right!
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Who Is Right: Bird or Chariot?

We need a neutral referee.

I nominate Euclid! A straight line is the
shortest distance between two points. Is the bird-straight line the shortest
distance? No! δd/δx > 0, so red line is shorter!
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Who Is Right: Bird or Chariot?

We need a neutral referee. I nominate Euclid! A straight line is the
shortest distance between two points. Is the bird-straight line the shortest
distance? No! δd/δx > 0, so red line is shorter! More precisely, some line
like the purple line is shorter.
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Who Is Right: Bird or Chariot?

We need a neutral referee. I nominate Euclid! A straight line is the
shortest distance between two points. Is the bird-straight line the shortest
distance? No! δd/δx > 0, so red line is shorter! But pointer still rotates
right on purple line. So move it further right.
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We need a neutral referee. I nominate Euclid! A straight line is the
shortest distance between two points. Is the bird-straight line the shortest
distance? No! δd/δx > 0, so red line is shorter! Until the pointer does
not rotate at all relative to chariot. δd

δx = 0, so doesn’t get shorter moving
right or left!
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Who Is Right: Bird or Chariot?

We need a neutral referee. I nominate Euclid! A straight line is the
shortest distance between two points. Is the bird-straight line the shortest
distance? No! δd/δx > 0, so red line is shorter! The shortest path
(Euclid-straight) is chariot-straight!
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Euclid Hands It To The Chariot

Let’s recap. As long as δd
δx is nonzero, we can nudge our path to the left or

right to make it shorter. Eventually we get to a path where the pointer
does not rotate relative to the chariot, so δd

δx = 0. This is the shortest path
between the endpoints (at least the shortest nearby). A path where the
pointer stays fixed relative to the chariot is called a geodesic, and is the
closest thing to a straight line on a curved surface. Shortest paths are
always geodesics, but we’ll see geodesics are not always shortest paths.
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That Sounded Familiar

W-W-Wait. The minimum length happens when the derivative is zero?
Where have I heard that before? We can think of the set of all possible
paths between two points as a (infinite dimensional!) space. Length is a
continuous function in it. A (local) minimum should be a critical point. A
critical point is typically where the derivative is zero, i.e. where any small
perturbation of the path causes no first order change in length. That is
what δd/δx = 0 tells us. Of course you have to trust multivariable
calculus on infinite dimensional spaces.
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An Example
What does this look like on a sphere? If SPC traveled along equator, its
pointer would not turn. Everything is symmetric about plane the equator
lies on, so left wheel and right wheel travel same distance. Equator is a
geodesic. Any “great circle,” on plane through through origin is a
geodesic.

Airplanes fly on geodesics. Yellow line is a minimal geodesic, red line is
nonminimal geodesic (saddle point).
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More Example

Now let’s think about a loop.
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More Example

Now let’s think about a loop. Head east 1/4 way round equator. It’s a
geodesic, so pointer stays pointing south.
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More Example

Now let’s think about a loop. Turn 90◦ left and head to north pole.
Again a geodesic, so pointer stays point to the south.
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More Example

Now let’s think about a loop. Turn 90◦ left again and head back south.
pointer remains pointing east.
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Now let’s think about a loop. Turn 90◦ left again and head back south.
pointer remains pointing east.
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More Example

Now let’s think about a loop. We are back where we started, but the
“south pointer” has turned counterclockwise 90◦! Not only doesn’t it
agree with the south, it doesn’t even agree with itself!
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More Example

Now let’s think about a loop. Another way to look at it is we drew a
“triangle” with three right angles. Interior angles add up to 270◦, which is
90◦ too much!
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More Example
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Holonomy

The 90◦ rotation SPC underwent through that loop happens because the
surface is curved. Let’s use as tool to explore and measure a surface’s
curvature. To each loop L on the surface associate a number, the
holonomy H(L) of the loop, the amount the pointer on SPC rotates from
its starting position as it traverses the loop. To understand what it tells us
about curvature, need to understand its properties.
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Holonomy - Concatenation

A

AB

LK

The concatenation AB of two paths A and B is the path AB that
traverses one then the other. You can compose two loops as well.

H(LK ) =H(L) + H(K )

holonomy is a homomorphism.
Steve (Ffld. U.) South Pointing Chariot: An Invitation to Geometry July 3, 2014 16 / 30



Holonomy - Concatenation

B

AB

LK

The concatenation AB of two paths A and B is the path AB that
traverses one then the other. You can compose two loops as well.

H(LK ) =H(L) + H(K )

holonomy is a homomorphism.
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Holonomy - Starbucks Move

L

Suppose SPC is traversing loop L when it remembers coffee... it traverses
over then back then finishes the loop to make a new loop L′.

H(L′) =H(L).
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Holonomy - Starbucks Move - Why?

L
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Holonomy - Starbucks Move - Why?

L

left wheel and right wheel travel the same distance during detour.
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Holonomy - Another Version

H

( )
= H

( )
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Holonomy - Cutting Loops Into Pieces

L

Consider a loop L surrounding a certain region of the surface. Add a
Starbucks move back to the start to get L′. Which we can write as L1

concatenated with L2. Thus holonomy is sum of pieces just like area.

H(L) =H(L′) =H(L1) + H(L2)
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Holonomy - More Chopping into Pieces

L

(xi , yi )

∆x

∆y

R∆x ,∆y (xi , yi )

So we can chop up a loop around a region as much as we want. Let’s say
we want a lot.

H(L) =
∑
i ,j

H [R∆x ,∆y (xi , yi )] .
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Holonomy - Limits of Chopping in Pieces
Subtlest holonomy property: Nearby points are curved almost same
amount, so nearby small loops same size/shape have almost same
holonomy.

(x , y)

∆x

∆y

n steps

m steps

So H
[
R∆x/n,∆y/m(x , y)

]
∼ H

[
R∆x/n,∆y/m(x ′, y ′)

]
So

H [R∆x ,∆y (x , y)] ∼ nmH
[
R∆x/n,∆y/m(x ′, y ′)

]
So

H [R∆x ,∆y (x , y)]

∆x∆y
∼

H
[
R∆x/n,∆y/m(x , y)

]
∆x/n∆y/m
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Curvature

We just argued that for small ∆x and ∆y the quantity
H [R∆,∆y (x , y)] /∆x∆y doesn’t depend on ∆x and ∆y . That is the limit
of this quantity as ∆x and ∆y go to zero exists. Define

k(x , y) = lim
∆x ,∆y→0

H [R∆,∆y (x , y)]

∆x∆y
.

k assigns a number to each point on the surface, which we call the
curvature at that point. Notice

H(L) =
∑
i ,j

H [R∆x ,∆y (xi , yi )] ∼
∑
i ,j

k(xi , yj)∆x∆y →
∫∫

I
k(x , y)dx dy

where I is the region bounded by L.

Steve (Ffld. U.) South Pointing Chariot: An Invitation to Geometry July 3, 2014 23 / 30



Curvature

We just argued that for small ∆x and ∆y the quantity
H [R∆,∆y (x , y)] /∆x∆y doesn’t depend on ∆x and ∆y . That is the limit
of this quantity as ∆x and ∆y go to zero exists. Define

k(x , y) = lim
∆x ,∆y→0

H [R∆,∆y (x , y)]

∆x∆y
.

k assigns a number to each point on the surface, which we call the
curvature at that point. Notice

H(L) =
∑
i ,j

H [R∆x ,∆y (xi , yi )] ∼
∑
i ,j

k(xi , yj)∆x∆y →
∫∫

I
k(x , y)dx dy

where I is the region bounded by L.

Steve (Ffld. U.) South Pointing Chariot: An Invitation to Geometry July 3, 2014 23 / 30



Curvature

We just argued that for small ∆x and ∆y the quantity
H [R∆,∆y (x , y)] /∆x∆y doesn’t depend on ∆x and ∆y . That is the limit
of this quantity as ∆x and ∆y go to zero exists. Define

k(x , y) = lim
∆x ,∆y→0

H [R∆,∆y (x , y)]

∆x∆y
.

k assigns a number to each point on the surface, which we call the
curvature at that point. Notice

H(L) =
∑
i ,j

H [R∆x ,∆y (xi , yi )] ∼
∑
i ,j

k(xi , yj)∆x∆y →
∫∫

I
k(x , y)dx dy

where I is the region bounded by L.

Steve (Ffld. U.) South Pointing Chariot: An Invitation to Geometry July 3, 2014 23 / 30



Curvature

We just argued that for small ∆x and ∆y the quantity
H [R∆,∆y (x , y)] /∆x∆y doesn’t depend on ∆x and ∆y . That is the limit
of this quantity as ∆x and ∆y go to zero exists. Define

k(x , y) = lim
∆x ,∆y→0

H [R∆,∆y (x , y)]

∆x∆y
.

k assigns a number to each point on the surface, which we call the
curvature at that point. Notice

H(L) =
∑
i ,j

H [R∆x ,∆y (xi , yi )] ∼
∑
i ,j

k(xi , yj)∆x∆y →
∫∫

I
k(x , y)dx dy

where I is the region bounded by L.

Steve (Ffld. U.) South Pointing Chariot: An Invitation to Geometry July 3, 2014 23 / 30



Curvature

We just argued that for small ∆x and ∆y the quantity
H [R∆,∆y (x , y)] /∆x∆y doesn’t depend on ∆x and ∆y . That is the limit
of this quantity as ∆x and ∆y go to zero exists. Define

k(x , y) = lim
∆x ,∆y→0

H [R∆,∆y (x , y)]

∆x∆y
.

k assigns a number to each point on the surface, which we call the
curvature at that point. Notice

H(L) =
∑
i ,j

H [R∆x ,∆y (xi , yi )] ∼
∑
i ,j

k(xi , yj)∆x∆y →
∫∫

I
k(x , y)dx dy

where I is the region bounded by L.

Steve (Ffld. U.) South Pointing Chariot: An Invitation to Geometry July 3, 2014 23 / 30



Curvature

We just argued that for small ∆x and ∆y the quantity
H [R∆,∆y (x , y)] /∆x∆y doesn’t depend on ∆x and ∆y . That is the limit
of this quantity as ∆x and ∆y go to zero exists. Define

k(x , y) = lim
∆x ,∆y→0

H [R∆,∆y (x , y)]

∆x∆y
.

k assigns a number to each point on the surface, which we call the
curvature at that point. Notice

H(L) =
∑
i ,j

H [R∆x ,∆y (xi , yi )] ∼
∑
i ,j

k(xi , yj)∆x∆y →
∫∫

I
k(x , y)dx dy

where I is the region bounded by L.

Steve (Ffld. U.) South Pointing Chariot: An Invitation to Geometry July 3, 2014 23 / 30



Curvature

We just argued that for small ∆x and ∆y the quantity
H [R∆,∆y (x , y)] /∆x∆y doesn’t depend on ∆x and ∆y . That is the limit
of this quantity as ∆x and ∆y go to zero exists. Define

k(x , y) = lim
∆x ,∆y→0

H [R∆,∆y (x , y)]

∆x∆y
.

k assigns a number to each point on the surface, which we call the
curvature at that point. Notice

H(L) =
∑
i ,j

H [R∆x ,∆y (xi , yi )] ∼
∑
i ,j

k(xi , yj)∆x∆y →
∫∫

I
k(x , y)dx dy

where I is the region bounded by L.

Steve (Ffld. U.) South Pointing Chariot: An Invitation to Geometry July 3, 2014 23 / 30



Curvature

We just argued that for small ∆x and ∆y the quantity
H [R∆,∆y (x , y)] /∆x∆y doesn’t depend on ∆x and ∆y . That is the limit
of this quantity as ∆x and ∆y go to zero exists. Define

k(x , y) = lim
∆x ,∆y→0

H [R∆,∆y (x , y)]

∆x∆y
.

k assigns a number to each point on the surface, which we call the
curvature at that point. Notice

H(L) =
∑
i ,j

H [R∆x ,∆y (xi , yi )] ∼
∑
i ,j

k(xi , yj)∆x∆y →
∫∫

I
k(x , y)dx dy

where I is the region bounded by L.

Steve (Ffld. U.) South Pointing Chariot: An Invitation to Geometry July 3, 2014 23 / 30



Curvature

We just argued that for small ∆x and ∆y the quantity
H [R∆,∆y (x , y)] /∆x∆y doesn’t depend on ∆x and ∆y . That is the limit
of this quantity as ∆x and ∆y go to zero exists. Define

k(x , y) = lim
∆x ,∆y→0

H [R∆,∆y (x , y)]

∆x∆y
.

k assigns a number to each point on the surface, which we call the
curvature at that point. Notice

H(L) =
∑
i ,j

H [R∆x ,∆y (xi , yi )] ∼
∑
i ,j

k(xi , yj)∆x∆y →
∫∫

I
k(x , y)dx dy

where I is the region bounded by L.

Steve (Ffld. U.) South Pointing Chariot: An Invitation to Geometry July 3, 2014 23 / 30



Curvature on a Sphere

R∆x ,∆y (x , y)

Any loop of the same size and shape on a sphere has the same holonomy.
So the limit k(x , y) at any point on the sphere is the same: The sphere
has constant curvature k . We know this loop has holonomy 90◦ or π

2 .

π

2
= H(L) =

∫∫
kdx dy = kArea =

4πr2k

8

since the loop takes up 1/8 the surface area of sphere. So

k =
1

r2
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Curvature on a Cylinder

Consider a rectangular path on a cylinder.Clearly vertical lines and
horizontal circles are geodesics. So the holonomy around such a rectangle
is 0, which means the curvature k at each point is 0. So a cylinder is not
curved?!??
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Cloth, Rubber, and Curvature

Draw a line on your shirt. Put it on
a hanger, or throw it on a chair, the
line is the same length. Changes you
can do to cloth do not change dis-
tances. SPC only measures distances,
holonomy unchanged by distance pre-
serving transformations.

A cylinder of cloth, if cut, can be flattened. So a “cloth invariant” notion
of curvature would say a cylinder has no curvature. Could you flatten a
(cut) sphere made of cloth?
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(cut) sphere made of cloth?
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Flattening the Sphere

Flattening the sphere – that is, mapping the sphere to a plane so that
there is no distortion – was a big question for those who mapped the
earth. You probably know that the standard map of the earth introduces
distortion. Lots of alternatives have been created to try to solve that.

Do
they? Can they?
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No!

As long as you can draw a loop on the projection, it will have holonomy on
the sphere proportional to area, but holonomy 0 on the map. So the
distances cannot agree, there is distortion. We have proven that it is not
possible to make a map of the world without distortion.

L
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How To Do This For Real

Gauss defined curvature as the product of the maximum and minimum
curvature of the intersection of the surface with all possible normal planes
to surface at that point. This appears to depend on the embedding of the
surface, i.e. is not a cloth embedding. Gauss proved in his Theorema
Egregium that it was intrinsic, that is that it depended only on distances.
His theorem effectively proved that his definition was equivalent to ours in
terms of SPC. From this he could easily prove that you can’t map the
earth. Geodesics, holonomy and curvature can all be extended to higher
dimensions and form the basis of modern differential geometry.
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From Cloth To Rubber

Now suppose you have a sphere made of rubber. Draw a very small
clockwise loop near the north pole. The integral of curvature outside the
loop is just about 4π, so the loop has holonomy 4π = 0. Now hold a
neighborhood of the loop fixed by pinching and stretch the rest of the
sphere. The curvature at every point may change. What about the
integral? Since the holonomy of the loop does not change, the integral
remains 4π.
On any surface which can be continuously deformed into a sphere, the
integral of the curvature over the whole surface is 4π. The integral of
curvature is not just a cloth invariant, it is a rubber invariant! In general
the integral of curvature of a surface is 2π times the Euler number of the
surface. This is called the Gauss-Bonnet Theorem. The study of cloth
invariant properties of an object is roughly speaking geometry. The study
of rubber-invariant properties is called topology.
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