# ORDER

SW 6050.12A

# SOUTHWEST REGION SPECTRUM MANAGEMENT HANDBOOK



(Date of Order to be entered at time of ASW-400 signature)

# DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

Distribution: A-X-5; A-FAF/AT-0 (STD)

Initiated By: ASW-473

# **RECORD OF CHANGES**

DIRECTIVE NO.

# SW 6050.12A

| CHANGE<br>TO<br>BASIC | SUP | PLEME | NTS | OPTIONAL | CHANGE<br>TO<br>BASIC | SUP | PLEME | NTS | OPTIONAL |
|-----------------------|-----|-------|-----|----------|-----------------------|-----|-------|-----|----------|
| BASIC                 |     |       |     |          | DAGIC                 |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |
|                       |     |       |     |          |                       |     |       |     |          |

# FOREWORD

The radio frequency spectrum is a finite, vital, and very limited natural resource available to all countries of the world. This international resource serves mankind in innumerable ways, and each country exercises its own sovereign rights in the use of the electromagnetic waves. Because the radio spectrum knows no bounds, its use cannot be restricted to individual countries. Requirements for use of this resource generally exceed the amount available; therefore, it is necessary that international, national, and regional spectrum management be rigidly practiced.

The purpose of this spectrum management order is to present radio frequency spectrum information, guidance, and policy to those organizations using or administrating the radio frequency spectrum within the Southwest Region.

Marcos Costilla Manager, Airway Facilities Division SW 6050.12A

12/12/01

# TABLE OF CONTENTS

#### CHAPTER 1. ORGANIZATION, AUTHORITY AND RESPONSIBILITY

| 1. Purpose                  | 1 |
|-----------------------------|---|
| 2. Distribution             | 1 |
| 3. Cancellations.           |   |
| 4. Effective Date           |   |
| 5. Background               |   |
| 6. Explanation of Changes   |   |
| 7. Electromagnetic Spectrum |   |
| 8. Line of Authority        | 2 |
| 9. General.                 | 2 |

#### **CHAPTER 2. OPERATIONS**

#### SECTION 1. NEW REQUIREMENTS AND CHANGES

| 200. | New Frequency Requests.                                   | .4 |
|------|-----------------------------------------------------------|----|
|      | Figure 2-1 Frequency Assignment Request Example #1        | .7 |
|      | Figure 2-2 Frequency Assignment Request Example # 2       | .9 |
|      | Figure 2-3 Summary of Frequency Bands Supporting Aviation | 11 |
|      | Figure 2-4 Common II S Localizer Antenna Types            | 13 |
|      |                                                           |    |

#### SECTION 2. ARTCC SECTOR UTILIZATION CHARTS

| 201. | CHANGES IN ARTCC FREQUENCY USAGE | . 14 |
|------|----------------------------------|------|
|------|----------------------------------|------|

#### SECTION 3. COMMUNICATIONS FREQUENCIES

| 202. | VHF Functional Breakdown                                   | . 14 |
|------|------------------------------------------------------------|------|
| 203. | UHF Functional Breakdown                                   | . 14 |
|      | Figure 2-5 VHF Allocations - 118 - 137 MHz.                | . 16 |
|      | Figure 2-6 UHF Allocations, Specific Frequencies Available | . 17 |

#### SECTION 4. ATCT AND TRACON FREQUENCY ASSIGNMENTS

| 204. G | General | 0 |
|--------|---------|---|
|--------|---------|---|

#### SECTION 5. ARTCC/RCAG FREQUENCY ASSIGNMENTS

| 205. | General                         | . 21 |
|------|---------------------------------|------|
| 206. | Examples of En Route Dimensions | . 21 |

#### SECTION 6. FLIGHT SERVICE STATION (FSS) VHF/UHF ASSIGNMENTS

| 207. | FSS | 21 |
|------|-----|----|
|------|-----|----|

#### SECTION 7. USE OF BASE, PORTABLE, AND MOBILE (BP/M)

| 208. | VHF/UHF Aeronautical Frequencies For BP/M Purposes                      | 22 |
|------|-------------------------------------------------------------------------|----|
| 209. | Frequency Modulation (FM) National Radio Communications System (NARACS) | 22 |

## 12/12/01

#### **SECTION 8. EMERGENCY**

| 210. | HF Emergency Network                         | 23 |
|------|----------------------------------------------|----|
| 211. | Emergency Locator Transmitter (ELT) Training | 24 |
| 212. | Scene-of-Accident Communications             | 24 |

#### SECTION 9. NON-DIRECTIONAL BEACONS (NDB)

| 213. | General     | . 24 |
|------|-------------|------|
| 214. | Definitions | . 25 |

#### SECTION 10. VOR/TACAN/Distance Measuring Equipment (DME)/ILS/VOT

| 215. | VOR                                                                | 26 |
|------|--------------------------------------------------------------------|----|
|      | Figure 2-7 Service Volumes for VOR, DME/TACAN                      | 26 |
| 216. | ILS                                                                | 26 |
|      | Figure 2-8 Channel and Frequency Pairing with DME Pulse Time/Codes | 27 |
|      | Figure 2-9 Standard ILS Frequency Protected Service Volume (FPSV)  | 32 |
| 217. | DME/TACAN                                                          | 35 |
| 218. | VHF Omnidirectional Range Test (VOT)                               | 35 |
| 219. | Spot Frequency                                                     | 35 |
|      |                                                                    |    |

#### **SECTION 11. RADAR**

| General                                           | 35                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Air Route Surveillance Radar (ARSR)               | 36                                                                                                                                                                                                                                                                                                                                                                 |
| Airport Surveillance Radar (ASR)                  | 36                                                                                                                                                                                                                                                                                                                                                                 |
| Air Traffic Control Radar Beacon Service (ATCRBS) | 36                                                                                                                                                                                                                                                                                                                                                                 |
| Mode-S Beacon System                              | 37                                                                                                                                                                                                                                                                                                                                                                 |
| RBPM                                              | 37                                                                                                                                                                                                                                                                                                                                                                 |
| Precision Approach Radar (PAR)                    | 37                                                                                                                                                                                                                                                                                                                                                                 |
| Airport Surveillance Detection Equipment (ASDE)   | 37                                                                                                                                                                                                                                                                                                                                                                 |
| New Shared Band                                   | 37                                                                                                                                                                                                                                                                                                                                                                 |
| Next Generation Weather Radar (NEXRAD)            | 37                                                                                                                                                                                                                                                                                                                                                                 |
| Terminal Doppler Weather Radar (TDWR)             | 37                                                                                                                                                                                                                                                                                                                                                                 |
|                                                   | General<br>Air Route Surveillance Radar (ARSR)<br>Airport Surveillance Radar (ASR)<br>Air Traffic Control Radar Beacon Service (ATCRBS)<br>Mode-S Beacon System<br>RBPM<br>Precision Approach Radar (PAR)<br>Airport Surveillance Detection Equipment (ASDE)<br>New Shared Band<br>Next Generation Weather Radar (NEXRAD)<br>Terminal Doppler Weather Radar (TDWR) |

#### SECTION 12. COMMUNICATIONS/VIDEO LINKS

| 231. | General                                                 | . 37 |
|------|---------------------------------------------------------|------|
|      | Figure 2-10 Bands Currently Used by FAA for Radio Links | 38   |
| 232. | RCL                                                     | . 38 |
| 233. | Frequency Engineering for Low Density RCL (LDRCL)       | . 39 |
| 234. | Television Microwave Link (TML)                         | . 39 |
| 235. | 932-935/941-944 MHz Microwave Links                     | . 39 |
| 236. | VHF/UHF Links                                           | . 39 |
|      |                                                         |      |

### SECTION 13. USE OF AIR NAVIGATION FACILITIES BEYOND THE NORMAL FPSV

| 237. | General                      | 39 |
|------|------------------------------|----|
| 238. | Procedures to Acquire an ESV | 39 |
| 239. | Responsibility               | 40 |

#### SECTION 14. OBSTRUCTION EVALUATION (OE)

| 240. | General                        | 41 |
|------|--------------------------------|----|
|      | Figure 2-11 Screening Criteria | 41 |

#### **SECTION 15. SPECIAL USE**

| 241. | Temporary Towers                               | .41  |
|------|------------------------------------------------|------|
| 242. | Testing of VHF/Direction Finder (DF) Equipment | .41  |
| 243. | Other Special Use                              | . 42 |

#### SECTION 16. SPECIAL SIGNIFICANT PROGRAMS

| 244. | AWOS/ASOS Frequency Assignment Criteria  | .42 |
|------|------------------------------------------|-----|
| 245. | RMM                                      | .43 |
| 246. | RMS                                      | 44  |
| 247. | Low Level Windshear Alert System (LLWAS) | 44  |
| 248. | Approach Lighting System (ALS)           | 44  |
| 249  | Ten-Year Reviews                         | 44  |

#### SECTION 17. MILITARY COORDINATION AND ASSIGNMENTS

| 250. | Military Coordination                               | .44 |
|------|-----------------------------------------------------|-----|
| 251. | Electronic Countermeasures (ECM) Missions/Exercises | .44 |

#### SECTION 18. FTA AND DOCUMENTATION

| General                                                              | .45                                                                                          |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Documentation                                                        | . 45                                                                                         |
| Figure 2-12 Sample FTA                                               | . 46                                                                                         |
| Emission                                                             | . 46                                                                                         |
| Station Class                                                        | .49                                                                                          |
| FCC Forms                                                            | .49                                                                                          |
| Figure 2-13 Typical Emission Designators/Station Classes for the FAA | . 50                                                                                         |
|                                                                      | General<br>Documentation<br>Figure 2-12 Sample FTA<br>Emission<br>Station Class<br>FCC Forms |

#### CHAPTER 3. REPORTING AND INVESTIGATING RFI

#### SECTION 1. RFI PROCEDURES

| 300. | General                                                  | . 51 |
|------|----------------------------------------------------------|------|
| 301. | Procedures for RFI                                       | . 51 |
| 302. | Procedures for Deliberate RFI (Phantom Controller/Pilot) | . 52 |
| 303. | FCC Liaison                                              | . 53 |
|      |                                                          |      |

#### **SECTION 2. GENERAL RFI**

| 304. Interference Problems                      |  |
|-------------------------------------------------|--|
| 305. Non-FAA Transmitters Adjacent to FAA Sites |  |
| 306. Transmitter Operating Frequencies          |  |
| 307. Testing on Emergency Channels              |  |

#### SECTION 3. COMMUNICATIONS INTERFERENCE

| General | 56      | )       |
|---------|---------|---------|
| (       | Jeneral | Jeneral |

#### SECTION 4. NAVAID INTERFERENCE

| 309. | General | . 57 | 7 |
|------|---------|------|---|
|------|---------|------|---|

#### SW 6050.12A

# 12/12/01

#### **SECTION 5. RADAR INTERFERENCE**

| 310. | Primary Radar |              | 8 |
|------|---------------|--------------|---|
| 311. | ATCRBS (IFF)  | Interference | 8 |

#### **SECTION 6. OTHER/SPECIAL INTERFERENCE**

| 312. Power Line Interference                           |  |
|--------------------------------------------------------|--|
| 313. VHF and UHF Cavities and Receiver Crystal Filters |  |
| 314. Receiver Local Oscillator Interference            |  |
| 315. TV Interference                                   |  |

#### **APPENDICES**

#### FILE NAME

| APPENDIX 1 - ABBREVIATIONS, ACRONYMS, AND LETTER SYMBOLS            | 60501201.DOC |
|---------------------------------------------------------------------|--------------|
| APPENDIX 2 - SW REGION ATCT/RAPCON/RTR FREQUENCY ASSIGNMENTS        | 60501202.DOC |
| APPENDIX 3 - SW REGION ARTCC/RCAG/BUEC FREQUENCY ASSIGNMENTS        | 60501203.DOC |
| APPENDIX 4 - SW REGION FSS/RCO FREQUENCY ASSIGNMENTS                | 60501204.DOC |
| APPENDIX 5 - SW REGION ASOS AND AWOS FREQUENCY ASSIGNMENTS          | 60501205.DOC |
| APPENDIX 6 - SW REGION HF AND VHF NARACS ASSIGNMENTS                | 60501206.DOC |
| APPENDIX 7 - SW REGION COMMUNICATIONS AND VIDEO LINK ASSIGNMENTS    | 60501207.DOC |
| APPENDIX 8 - SW REGION NDB FREQUENCY ASSIGNMENTS                    | 60501208.DOC |
| APPENDIX 9 - SW REGION ILS FREQUENCY ASSIGNMENTS                    | 60501209.DOC |
| APPENDIX 10 - SW REGION VOR/TACAN/DME AND VOT FREQUENCY ASSIGNMENTS | 60501210.DOC |
| APPENDIX-11 - SW REGION EXPANDED SERVICE VOLUMES (ESV)              | 60501211.DOC |
| APPENDIX 12 - SW REGION RADAR/ATCRB/RBPM FREQUENCY ASSIGNMENTS      | 60501212.DOC |
| APPENDIX 13 - SW REGION AIRPORT DATA LINKS FREQUENCY ASSIGNMENTS    | 60501213.DOC |
|                                                                     |              |

#### **FORMS**

SW FORM 6050-1 - FREQUENCY ASSIGNMENT REQUEST

# CHAPTER 1. ORGANIZATION, AUTHORITY AND RESPONSIBILITY

**1. PURPOSE.** This Spectrum Management Handbook provides information and guidance concerning radio frequency management, its organization, authority, responsibilities, and operation. In addition, the appendices contain Southwest (SW) Region's frequencies authorized for the varied functions, whether for aviation services or supporting requirements.

**2. DISTRIBUTION.** This order is being distributed to all supervisors, SW Region divisions; and all SW Region Air Traffic (AT) and Airway Facilities (AF) field offices. This order is available in published form through established distribution channels.

At a later date this order will also be available electronically on the FAA Intranet. At that time, the various appendices and forms will be individually accessible through use of the file names reflected in the appendix index. Guidance on electronic access will be provided when this service is available.

**3.** CANCELLATIONS. SW Order 6050.12, SW Region Spectrum Management Handbook, dated March 11, 1994, is canceled.

**4. EFFECTIVE DATE.** The effective date of this order is shown on the cover page, reflecting the date of signature. The appendices, which are subject to frequent change, reflect correct data as of \_\_\_\_\_\_\_ which is an arbitrary cut-off point for publication.

**5. BACKGROUND.** Spectrum pollution is becoming very significant in this country, as are the fresh water and fresh air pollution. No longer can inefficient management or utilization of this medium be tolerated. More conscientious effort and cooperation are called for in all areas of the electromagnetic environment to conserve this limited resource wherever and whenever we can.

**6. EXPLANATION OF CHANGES.** SW Order 6050.12 is out-of-date in terms of recognizing the realigned AF organization. For instance, to eliminate conflict with the new acronym for the System Management Office (SMO), all references to Spectrum Management Office/Officer (SMO) have been changed to Frequency Management Office/Officer (FMO). Additionally, many frequencies have changed and appendices have been updated. Due to the editorial changes necessary to effect currency and the desire to incorporate the updated appendices contained in Change 1 into this order, a single new edition is being issued.

Changes to the appendices, when available electronically, will be updated frequently with the effective date shown on the specific appendix. All changes to the appendices and the basic order will be reissued as a current document and published once a year.

**7. ELECTROMAGNETIC SPECTRUM.** The control of the spectrum is vested in the International Telecommunications Union (ITU) through international treaties and conventions. Most of the countries of the world are signatories, including the United States (US), and are thus bound by ITU allocations and regulations. The US has its national regulatory function vested in two separate agencies, the National Telecommunications Information Agency (NTIA) and the Federal

Communications Commission (FCC). These agencies were created out of the Communications Act of 1934, as amended, and Executive Orders.

**a.** The NTIA is situated in the Department of Commerce and exercises its authority through Interdepartment Radio Advisory Committee (IRAC). The NTIA authorizes and controls the use of frequencies by all Federal Government agencies, including the Federal Aviation Administration (FAA) and the Department of Defense (DOD).

**b.** The FCC is an independent agency whose members are appointed by the President, but whose actions are principally controlled by the Congress. The FCC issues term licenses to all non-Federal users, including state and municipal governments.

**c.** The electromagnetic spectrum is divided into three categories in the US. The NTIA portions, the FCC portions, and the joint-use portions. Each agency manages its own portions, while joint-use portions are authorized by the appropriate agency (NTIA for Federal, FCC for non-Federal) only after coordination with the other agency.

**8.** LINE OF AUTHORITY. Within the FAA, frequency management is under the Office of Spectrum Policy and Management, ASR-1. From this organization, the authority and responsibility for the engineering of all new or modified frequency requirements and the enforcement of NTIA frequency and spectrum tolerances are delegated to the FMO. The SW Region FMO is assigned to the Telecommunications and Spectrum Engineering Section, ASW-473.

# 9. GENERAL.

# a. The SW Region FMO is responsible for:

(1) Engineering and procuring IRAC authority for regional frequency requirements and assuring IRAC technical standards are met and maintained.

(2) Engineering and reserving aeronautical use frequencies for other Federal agencies, including military and non-Federal entities licensed by the FCC.

(3) Acting as the focal point for resolution of radio frequency interference (RFI) problems not promptly solved in the field.

(4) Coordination and assistance in phantom controller/pilot resolution.

(5) Conducting ionizing and non-ionizing radiation hazard measurements for the region.

- (6) Conducting electromagnetic interference (EMI) studies and measurements.
- (7) Operation of the regional EMI vans.
- (8) Frequency protection and coverage studies for AT sector boundary realignments.

(9) Obstruction evaluation (OE) studies involving transmission of frequencies.

(10) Ten-year review of all FAA frequency assignments within the SW region.

(11) Coordination and ten-year review of all frequency assignments that are within the SW region for which the FAA is the national coordinator.

(12) Determining frequency protection and power availability for expanded service volumes (ESV).

(13) All functions specified in FAA Order 6050.32, Spectrum Management Regulations and Procedures Manual, Chapter 3, Section 304.

**b.** The appendices are based on our national spectrum management database and are current as of the date listed on each appendix. A proposed frequency will be marked ppsd. All coordinates are in North American Datum of 1983 (NAD83). Appendices will be updated individually on an as needed basis determined by the FMO.

# CHAPTER 2. OPERATIONS

## SECTION 1. NEW REQUIREMENTS AND CHANGES

**200. NEW FREQUENCY REQUESTS.** The FMO will secure and coordinate frequency assignments for all SW Region facilities. Requests for new assignments or for changes of existing assignments shall be on a completed SW Form 6050-1, Frequency Assignment Request (see Figures 2-1 and 2-2), to the FMO. This form is available through Forms and Distribution, ASW-52A4 and electronically at \_\_\_\_\_\_\_. A copy of this form will be retained by the requesting office.

The Resource Management Branch, ASW-420; the NAS Implementation Center, ANI-600; and the Operations Branch, ASW-470, shall be responsible for preparing and submitting SW Form 6050-1 for new or relocated facilities or for any change that affects the parameters of a transmitting facility where they, respectively, have project responsibility. This includes backup emergency communications (BUEC) sites.

The AF SMO shall be responsible for preparing and submitting the SW Form 6050-1 when transmitting facility parameters have been proposed for change. If possible, requests should be submitted at least 120 days prior to the date the service will be required. In the event this lead time is not available, the requesting official, in addition to submitting SW Form 6050-1, shall contact the FMO by telephone to coordinate the request.

If the request is for a change to an existing Facility Transmitting Authorization (FTA), FAA Form 6050-1, a red-lined copy (review for accuracy) of the FTA shall be submitted along with the SW Form 6050-1. When the frequency selection is entered into the Government Master File (GMF), the SW Form 6050-1 will be annotated showing the date of entry for national coordination and an interim copy will be returned to the originator.

When formal IRAC authorization has been obtained, the SW Form 6050-1 will be annotated with the results, and the FTA will be issued, if appropriate, and the SW Form 6050-1 will be returned to the originator. A copy of the SW Form 6050-1 will be retained by the FMO.

A summary of the frequency bands supporting aviation is shown in Figure 2-3. The form (SW 6050-1) should contain a description of the operational requirements for each new frequency or each change of function, including BUEC sites. An itemized list of the data required for frequency engineering purposes is described below. Applicable information, as determined from the list, should be submitted with each request for a frequency assignment.

**a. Function;** i.e., local control (LC), approach control (AC), air route traffic control center (ARTCC) low or high altitude sector number.

(1) Airport Traffic Control Tower (ATCT) Channels. Provide the type of service volume required; i.e., LC or AC.

(2) ARTCC Channels. Identify the sector number of use; i.e., L-83 or UH-91.

(3) Navigational Aids (NAVAID). Identify the facility classification; i.e., homing beacon (H) with automatic transcribe weather service (H-SAB), terminal (T) very high frequency (VHF) omnidirection range (VOR)(T-VOR), high (H)-VOR collocated with tactical air navigation (TACAN)(VORTAC), etc.

**b. SMO**; The SMO in which the facility is physically located.

c. Facility Identifier (ID); The three or four letter ID for the facility.

**d.** Location; The name of the city which the site is located in/near and the state.

**e. Facility Type;** i.e., remote center air/ground communications facility (RCAG), localizer (LOC), BUEC, radio communications link (RCL), etc. Collocated facilities may also be listed.

#### f. Frequency;

(1) For an updated FTA, relocated frequency, change of frequency, or frequency to be deleted, give the existing frequency.

(2) For a new frequency, give the frequency range required; such as VHF, 118-137 megahertz (MHz), or give the exact frequency, such as 1030 or 1090 MHz, if part of a national program.

g. Control Facility; If the site is a remote facility, give the name or ID for the control facility.

**h. Service Volume;** Indicate the maximum service volume in terms of nautical miles (NM) and maximum altitude. Indicate whether the altitude is above mean sea level (AMSL) or above ground level (AGL).

**i.** Coordinates; Geographical coordinates, to the second, for each transmitter site where the frequencies will be used. Coordinates must be in NAD83. For receiver locations located separately from the transmitters, list all receiver locations on the back of the form or on a separate, attached sheet.

j. Site Elevation; In mean sea level (MSL).

k. Transmitter Type; i.e., AN/GRT-21, FA-10207/1, etc.

**I. Transmitter Power;** The maximum transmit power.

m. Emission Type; i.e., 6MM1D, 6KA3E, etc. Refer to Paragraph 292.

n. Pulse Repetition Frequency (PRF); For primary and secondary radar.

o. Runway Number; For instrument landing system (ILS), lighting, and monitor systems.

**p.** Receiver Type; If different from the transmitter.

#### q. Antenna Type;

(1) Low-frequency NAVAID's. Furnish information as to type of antenna and its dimensions.

(2) ILS LOC. Indicate whether 8-loop, V-ring, traveling wave, or log-periodic (see Figure 2-4).

(3) VHF/Ultra High Frequency (UHF) communications channels. Furnish antenna nomenclature or type; i.e., dipole, DPV-37, TACO.

r. Antenna Height Above Ground; For the transmitter antenna.

s. Antenna Gain; In decibel (dB).

t. Antenna Polarization; Vertical or horizontal.

u. Path Azimuth; For communications link systems or as necessary.

Advance information concerning plans for new communications channels, NAVAID's, or relocations is needed for frequency planning purposes.

# Figure 2-1 Frequency Assignment Request Example #1

# **Frequency Assignment Request**

To: Telecommunications/Spectrum Engineering Section, ASW-473 Date: 9/30/98

From: Terminal Platform Section, ANI-640

# **ACTION REQUESTED** (see note):

| New Assignment<br>Delete Frequency | Change Frequency<br>Update FTA       | X Relocate Frequency |  |  |
|------------------------------------|--------------------------------------|----------------------|--|--|
| EXISTING DATA:                     |                                      | NEW DATA:            |  |  |
| Approach Control                   | Function                             |                      |  |  |
| RRR                                | SMO                                  |                      |  |  |
| OKCA                               | Facility ID                          |                      |  |  |
| Oklahoma City, OK                  | Location                             |                      |  |  |
| RTR                                | Facility Type                        | ATCT/RTR             |  |  |
| <u>118.45 (M)Hz</u>                | Frequency                            | <u>    ( )Hz</u>     |  |  |
| OKC ATCT                           | Control Facility                     |                      |  |  |
| <u>60 NM @ 15000 ft</u>            | Service Volume                       | NM/FL                |  |  |
| 1920'                              | Site Elevation (MSL)                 | 1201                 |  |  |
| AN/GRT-21                          | Transmitter Type                     |                      |  |  |
|                                    | Transmitter Coordinates:             |                      |  |  |
| 35 / 22 / 15                       | Latitude                             | 35 / 23 / 53         |  |  |
| 97 / 36 / 07                       | Longitude                            | 97 / 36 / 01         |  |  |
| 10 WATTS                           | Transmit Power                       |                      |  |  |
| 6KA3E                              | Emission Type                        |                      |  |  |
|                                    | PRF (Radar)                          |                      |  |  |
|                                    | Runway Number (ILS)                  |                      |  |  |
| AN/GRR-23                          | Receiver Type                        |                      |  |  |
|                                    | Receiver Coordinates (if different): |                      |  |  |
| 35 / 22 / 15                       | Latitude                             | 35 / 23 / 53         |  |  |
| 97 / 36 / 07                       | Longitude                            | 97 / 36 / 01         |  |  |
| Dipole                             | Antenna Type                         |                      |  |  |
| 40 ft                              | Antenna Height Above Ground          | <u>75 ft</u>         |  |  |
| 0 dB                               | Antenna Gain                         |                      |  |  |
| Vertical                           | Antenna Polarization                 |                      |  |  |
|                                    | Path Azimuth (RCL)                   |                      |  |  |
|                                    |                                      |                      |  |  |

**REMARKS**: <u>Example of relocating an RTR frequency from the RTR site to the ATCT.</u>

DATE REQUIRED:REQUESTED BY:APPROVED BY:DATE RECEIVED ASW-473:DATE SUBMITTED NAT'L ACTION:APPROVED:DENIED:DATE:CC:

**<u>NOTE</u>**: Approval by HQ FAA/IRAC requires 120 days from receipt of this form by ASW-473.

SW Form 6050-1 (9/93) Previous Editions Obsolete

# FIGURE 2-2 Frequency Assignment Request Example #2

# **Frequency Assignment Request**

To: Telecommunications/Spectrum Engineering Section, ASW-473 Date: 9/30/98

From: Communications/Interfacility Section, ANI-670

# **ACTION REQUESTED** (see note):

| <u>X</u> New Assignme<br>Delete Frequen | ntChange Frequency<br>cyUpdate FTA   | Relocate Frequency  |
|-----------------------------------------|--------------------------------------|---------------------|
| EXISTING DATA:                          |                                      | NEW DATA:           |
|                                         | Function                             | Standard ILS        |
|                                         | SMO                                  | RRR                 |
|                                         | Facility                             | I-DU                |
|                                         | Location                             | Little Rock, AR     |
|                                         | Facility Type                        | ILS LOCALIZER       |
| (M)Hz                                   | Frequency                            | 108.3-111.95 M)Hz   |
|                                         | Control Facility                     |                     |
|                                         | Service Volume                       | 18 NMStandard)NM/FL |
|                                         | Site Elevation (MSL)                 | 253                 |
|                                         | Transmitter Type                     | Mark 1F             |
|                                         | Transmitter Coordinates:             |                     |
|                                         | Latitude                             | 34 / 44 / 09        |
|                                         | Longitude                            | 92 / 12 / 02        |
|                                         | Transmit Power                       | 15 W                |
|                                         | Emission Type                        | 2K04A1A             |
|                                         | PRF (Radar)                          |                     |
|                                         | Runway Number (ILS)                  | 4R                  |
|                                         | Receiver Type                        |                     |
|                                         | Receiver Coordinates (if different): |                     |
|                                         | Latitude                             | 34 / 44 / 09        |
|                                         | Longitude                            | 92 / 12 / 02        |
|                                         | Antenna Type                         | LOG Periodic        |
|                                         | Antenna Height Above Ground          | 6 ft                |
|                                         | Antenna Gain                         | 17 dB               |
|                                         | Antenna Polarization                 | Horizontal          |
|                                         | Path Azimuth (RCL)                   |                     |

**REMARKS:** Example of installing a new ILS Localizer

**DATE REQUIRED:** 

**REQUESTED BY:** 

**APPROVED BY:** 

**DATE RECEIVED ASW-473:** 

# DATE SUBMITTED NAT'L ACTION:

| APPROVED:   | <b>DENIED:</b> |       | DATE: |
|-------------|----------------|-------|-------|
| FTA ISSUED: | Number:        | Date: |       |

cc:

NOTE: Approval by HQ FAA/IRAC requires 120 days from receipt of this form by ASW-473.

# Figure 2-3 Summary of Frequency Bands Supporting Aviation

|    | 9      | 14 kHz      | OMEGA Navigation System                               |
|----|--------|-------------|-------------------------------------------------------|
|    | 90     | 110 kHz     | LORAN C Navigation System                             |
| *  | 190    | 435 kHz     | Non Directional Beacon                                |
| *  | 510    | 535 kHz     | Non Directional Beacon                                |
|    | 2100   | 28,000 kHz  | High Frequency Communications                         |
| *  | 74.8   | 75.2 MHz    | NAVAID Marker Beacons                                 |
| *  | 108    | 118 MHz     | NAVAID (VOR, ILS Localizer, SCAT-II)                  |
| *  | 118    | 137 MHz     | VHF Air/Ground Communications                         |
|    | 138    | 150.8 MHz   | Fixed, Mobile Communications                          |
|    | 162    | 174 MHz     | Fixed, Mobile Communications                          |
|    | 225.0  | 328.6 MHz   | UHF Air/Ground Communications                         |
| *  | 328.6  | 335.4 MHz   | NAVAID (ILS Glide Slope)                              |
|    | 335.4  | 399.9 MHz   | Air/Ground Communications                             |
|    | 406.0  | 406.1 MHz   | Satellite Emergency Position Indicating Radio Beacon  |
|    | 406.1  | 420.0 MHz   | Fixed, Mobile Communications                          |
|    | 932    | 935 MHz     | Fixed Communications                                  |
|    | 941    | 944 MHz     | Fixed Communications                                  |
| *  | 960    | 1215 MHz    | NAVAID (TACAN/DME, etc.)                              |
| *  | **     | 1030 MHz    | Radar Beacon, TCAS, Mode S, etc.                      |
| *  | **     | 1090 MHz    | Radar Beacon, TCAS, Mode S, etc.                      |
|    |        | 1227.6 MHz  | Global Positioning System (L2)                        |
| ** | 1215   | 1400 MHz    | Air Route Surveillance Radar                          |
|    | 1544   | 1545 MHz    | Emergency Mobile Satellite Communications             |
|    | 1545   | 1559 MHz    | Aeronautical Mobile Satellite (R) (Downlink)          |
|    |        | 1575.42 MHz | Global Positioning System (L1)                        |
|    | 1645.5 | 1646.5 MHz  | Emergency Mobile Satellite Communications             |
|    | 1646.6 | 1660.5 MHz  | Aeronautical Mobile Satellite (R) (Uplink)            |
|    | 1710   | 1850 MHz    | Low Density Microwave Link                            |
| ** | 2700   | 2900 MHz    | Airport Surveillance Radar, Weather Radar             |
|    | 2900   | 3000 MHz    | Weather Radar                                         |
|    | 4200   | 4400 MHz    | Airborne Radio Altimeters                             |
| *  | 5000   | 5250 MHz    | NAVAID (Microwave Landing System)                     |
|    | 5350   | 5470 MHz    | Airborne Weather Radar and Associated Airborne Beacon |
|    | 5600   | 5650 MHz    | Terminal Doppler Weather Radar                        |
|    | 7125   | 8500 MHz    | Radio Communication Links                             |
|    | 8750   | 8850 MHz    | Airborne Doppler Radar                                |
| ** | 9000   | 9200 MHz    | Military Precision Approach Radar                     |
|    | 9300   | 9500 MHz    | Airborne Weather Radar                                |
|    | 13.25  | 13.40 GHz   | Airborne Doppler Radar                                |
|    | 14.00  | 15.35 GHz   | Television (Video) Microwave Link                     |
|    | 15.40  | 15.70 GHz   | Airborne Weather Radar                                |

| 15.70 | 16.20 GHz | Airport Surface Detection Equipment (ASDE III) |
|-------|-----------|------------------------------------------------|
| 21.20 | 23.60 GHz | Microwave Link (Multi-Use)                     |

\* denotes AAG bands engineered by the FAA; see NTIA Manual

\*\* denotes those bands for which the FAA is the national coordinator, see NTIA Manual

| NOMENCLATURE                                                                                                                        | STYLE             | MAINBEAM GAIN (dB) |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| MK20, FA9913                                                                                                                        | LPD (14-10)       | 25                 |
| FA5692, FA5693, FA5707,<br>FA5708, FA8001, FA8002,<br>FA8035, FA8036, FA8038,<br>FA8621, FA8622, FA8719,<br>FA8720, FA8843, FA8844. | V RING            | 12                 |
| FA9320                                                                                                                              | TRVLG WAVE (8EL)  | 14                 |
| FA9325                                                                                                                              | TRVLG WAVE (14EL) | 17                 |
| FA9358, FA9708, FA9912<br>MK2, MK12.                                                                                                | LPD 8 EL ARRAY    | 17                 |
| FA9358, FA9708, FA9912,<br>MK2, MK12.                                                                                               | LPD 14 EL ARRAY   | 20                 |
| FA9759, AN/GRN29,<br>AN/GRN30                                                                                                       | LPD               | 23                 |
| AN/GRN-27 (Narrow)                                                                                                                  | TRVLG WAVE (14/6) | 17                 |
| AN/GRN-27 (Wide)                                                                                                                    | PARABOLIC         | 17                 |
| AN/GRN-27                                                                                                                           | PARABOLIC         | 17                 |
| AN/MRN7                                                                                                                             | DIPOLE            | 12                 |
| REDLICH                                                                                                                             | LPD (14-10)       | 26                 |
| MODIFIED V RING                                                                                                                     | MOD V RING        | 12                 |
| 1201                                                                                                                                | DIPOLE            | 16                 |
| 1203                                                                                                                                | LPD               | 17                 |
| 1204                                                                                                                                | DIPOLE            | 14                 |
| 1261                                                                                                                                | DIPOLE            | 15                 |
| STAN37                                                                                                                              | DIPOLE            | 12                 |
| 55                                                                                                                                  | TWIN TEE          | 13                 |

Figure 2-4 Common ILS Localizer Antenna Types

# SECTION 2. ARTCC SECTOR UTILIZATION CHARTS

**201. CHANGES IN ARTCC FREQUENCY USAGE.** All planning on any change in the altitude or area of use for frequencies SHALL be coordinated with the FMO to avoid creating harmful interference situations. Whenever ARTCC sector boundaries need changing (service volume changes), a feasibility study will be required. The ARTCC will forward its proposed sector boundary change(s) to the Requirements Branch, ASW-510. ASW-510 will forward the request to ASW-473 (attention FMO) for analysis. ASW-473 will convey its findings to the ARTCC through ASW-510. The analysis may show implement as proposed, implement with proposed changes, or an explanation as to why the ARTCC proposal cannot be implemented. If the ARTCC agrees to the analysis, a formal request for action shall be submitted to ASW-473 through ASW-510.

When the sector charts are updated or sector boundaries are changed, five copies of the low, high, ultra high, and intermediate altitude sector charts, as applicable, shall be forwarded from the ARTCC to ASW-420, through ASW-510. ASW-420, shall then distribute one copy to the FMO, ANI-600, ASW-470, and the appropriate SMO. The primary and secondary use of all frequencies shall be shown and special utilization situations shall be indicated. These sector charts are an essential tool for the FMO and adjacent region FMO's. Reference FAA Order 7210.3, Facility Operation and Administration, for AT requirements for the submission of sector boundary charts.

# SECTION 3. COMMUNICATIONS FREQUENCIES

**202.** VHF FUNCTIONAL BREAKDOWN. The frequency band currently used for communications with all civil and some military aircraft is 118.00-136.975 MHz. Assignment of odd 25 kilohertz (kHz) channels; i.e., 118.025, 118.075 MHz, etc., is authorized. These frequencies are used by all types of FAA air traffic control (ATC) facilities (ARTCC, terminal radar approach control (TRACON), ATCT, automated flight service station (AFSS)). The entire band is shared with non-Federal users, although frequency engineering is done by the FAA and supplied to the FCC for its licensing for non-Federal users. (See Figure 2-5 for a complete VHF air-to-ground (A/G) frequency breakdown.)

**203.** UHF FUNCTIONAL BREAKDOWN. The limits of the band used by all military services, principally for A/G communications, are 225.000-399.950 MHz. The band is exclusively for military use with few exceptions. To facilitate ATC of tactical aircraft that are normally UHF-only equipped, the military has given certain discrete frequencies to the FAA for ATC within this band (see Figure 2-6 for a complete list). These frequencies are engineered by the FAA for best spectrum utilization. All terminal requirements are met by frequencies separately supplied by the military. A simplified breakdown of FAA use of the band is as follows:

| FREQUENCY (MHz)     | PRIMARY USE                                |
|---------------------|--------------------------------------------|
| 225.00-328.60       | A/G Communications                         |
| 328.60-335.40       | ILS Glide Slope (GS)                       |
| 335.50-399.90*      | A/G Communications                         |
| 243.00              | Military Emergency Search and Rescue (SAR) |
| 255.4, 257.8, 296.7 | Military Common Advisory (FSS)             |

\*380.0, 380.1, FAA Flight Inspection/ SMO Ground Personnel

# Figure 2-5 VHF Allocations - 118-137 MHz

| 118.00-121.400 ATC*                                       | 123.325-123.475 Flight Test                  |
|-----------------------------------------------------------|----------------------------------------------|
| 121.425-121.475 Band Protection for 121.500               | 123.500 Aviation Support                     |
| 121.500 Emergency SAR (ELT Operational Check, 5 Sec.)     | 123.525-123.575 Flight Test                  |
| 121.525-121.575 Band Protection for 121.500               | 123.600-123.650 FSS Air Carrier Advisory     |
| 121.600-121.925 Airport Utility                           | 123.675-126.175 ATC*                         |
| 121.775 SAR ELT Location Training                         | 126.200 Military Common (Advisory)           |
| 121.950 Aviation Support                                  | 126.225-128.800 ATC*                         |
| 121.975 FSS Private Aircraft Advisory                     | 128.825-132.000 Operational Control          |
| 122.000-122.050 EFAS                                      | 132.025-134.075 ATC                          |
| 122.075-122.675 FSS Private Aircraft Advisory             | 134.100 Military Common (Advisory)           |
| 122.700-122.725 UNICOM – Uncontrolled Airports            | 134.125-135.825 ATC                          |
| 122.750 Fixed Wing Aircraft – Air-to-Air                  | 135.850 FAA Flight Inspection                |
| 122.775 Aviation Support                                  | 135.875-135.925 ATC                          |
| 122.800 UNICOM – Uncontrolled Airports                    | 135.950 FAA Flight Inspection                |
| 122.825 Domestic VHF                                      | 135.975-136.075 ATC                          |
| 122.850 MULTICOM                                          | 136.100 Reserved for Future AWOS/UNICOM      |
| 122.875 UNICOM – Domestic VHF                             | 136.125-136.175 ATC                          |
| 122.900 MULTICOM, SAR Training                            | 136.200 Reserved for Future AWOS/UNICOM      |
| 122.925 MULTICOM – Special Use                            | 136.225-136.250 ATC                          |
| 122.950 UNICOM – Full Time ATCT, FSS                      | 136.275 Reserved for Future AWOS/UNICOM      |
| 122.975-123.000 UNICOM – Uncontrolled Airports            | 136.300-136.350 ATC                          |
| 123.025 Helicopter – Air-to-Air                           | 136.375 Reserved for Future AWOS/UNICOM      |
| 123.050-123.075 UNICOM – Uncontrolled Airports            | 136.400-136.450 ATC                          |
| 123.100 SAR; Temp. ATCT's & Fly-Ins with SAR Coordination | 136.475 Reserved for Future AWOS/UNICOM      |
| 123.125-123.275 Flight Test                               | 136.500-136.875 Domestic VHF                 |
| 123.300 Aviation Support                                  | 136.900-136.975 International & Domestic VHF |

#### **\*RESERVED AS NOTED:**

119.675, 120.625 – ATIS 118.325, 118.375, 118.525, 119.025, 119.275, 119.925, 120.000, 121.125, 124.175, 128.325 - AWOS/ASOS

# Figure 2-6 UHF Allocations, Specific Frequencies Available

| M225.400 | M259.100 | M270.350 | M284.750 | M294.700 |
|----------|----------|----------|----------|----------|
| M229.400 | M259.300 | M270.800 | M285.400 | M296.700 |
| M233.700 | M263.000 | M273.450 | M285.425 | M298.850 |
| M239.000 | M263.025 | M273.475 | M285.450 | M298.875 |
| M239.025 | M263.050 | M273.500 | M285.475 | M298.900 |
| M239.050 | M263.075 | M273.525 | M285.500 | M298.925 |
| M239.250 | M263.100 | M273.550 | M285.525 | M298.950 |
| M239.275 | M263.125 | M273.575 | M285.550 | M299.200 |
| M239.300 | M263.150 | M273.600 | M285.575 | M299.600 |
| M251.050 | M266.800 | M275.800 | M285.600 | M305.200 |
| M251.075 | M268.700 | M276.400 | M285.625 | M306.200 |
| M251.100 | M269.000 | M277.400 | M285.650 | M306.300 |
| M251.125 | M269.025 | M278.300 | M288.250 | M306.900 |
| M251.150 | M269.050 | M278.800 | M288.275 | M306.925 |
| M253.500 | M269.075 | M279.500 | M288.300 | M306.950 |
| M254.250 | M269.100 | M279.525 | M288.325 | M306.975 |
| M254.275 | M269.125 | M279.550 | M288.350 | M307.000 |
| M254.300 | M269.150 | M279.575 | M289.400 | M307.025 |
| M254.325 | M269.175 | M279.600 | M290.200 | M307.050 |
| M254.350 | M269.200 | M279.625 | M290.225 | M307.075 |
| M254.375 | M269.225 | M279.650 | M290.250 | M307.100 |
| M254.400 | M269.250 | M281.400 | M290.275 | M307.125 |
| M255.400 | M269.275 | M281.425 | M290.300 | M307.150 |
| M256.700 | M269.300 | M281.450 | M290.325 | M307.175 |
| M256.800 | M269.325 | M281.475 | M290.350 | M307.200 |
| M256.875 | M269.350 | M281.500 | M290.375 | M307.225 |
| M256.900 | M269.375 | M281.525 | M290.400 | M307.250 |
| M257.200 | M269.400 | M281.550 | M290.425 | M307.275 |
| M257.600 | M269.425 | M282.200 | M290.450 | M307.300 |
| M257.625 | M269.450 | M282.225 | M290.475 | M307.325 |
| M257.650 | M269.475 | M282.250 | M290.500 | M307.350 |
| M257.675 | M269.500 | M282.275 | M290.525 | M307.375 |
| M257.700 | M269.525 | M282.300 | M290.550 | M307.800 |
| M257.725 | M269.550 | M282.325 | M290.900 | M307.900 |
| M257.750 | M269.575 | M282.350 | M291.100 | M308.400 |
| M257.775 | M269.600 | M282.375 | M291.600 | M310.800 |
| M257.800 | M269.625 | M284.000 | M291.625 | M314.000 |
| M257.850 | M269.900 | M284.600 | M291.650 | M316.050 |
| M257.875 | M270.100 | M284.625 | M291.675 | M316.075 |
| M257.900 | M270.250 | M284.650 | M291.700 | M316.100 |
| M257.925 | M270.275 | M284.675 | M291.725 | M316.125 |
| M257.950 | M270.300 | M284.700 | M291.750 | M316.150 |
| M257.975 | M270.325 | M284.725 | M291.775 | M317.400 |

| M317.425 | M323.250 | M346.400 | M354.000 | M377.100 |
|----------|----------|----------|----------|----------|
| M317.450 | M323.275 | M348.000 | M354.025 | M377.125 |
| M317.475 | M323.300 | M348.600 | M354.050 | M377.150 |
| M317.500 | M326.200 | M348.625 | M354.075 | M377.175 |
| M317.525 | M327.000 | M348.650 | M354.100 | M377.200 |
| M317.550 | M327.025 | M348.675 | M354.125 | M379.100 |
| M317.575 | M327.050 | M348.700 | M354.150 | M379.125 |
| M317.600 | M327.075 | M348.725 | M355.600 | M379.150 |
| M317.625 | M327.100 | M348.750 | M360.200 | M379.175 |
| M317.650 | M327.125 | M349.000 | M360.600 | M379.200 |
| M317.675 | M327.150 | M350.200 | M360.625 | M379.225 |
| M317.700 | M327.800 | M350.225 | M360.650 | M379.250 |
| M317.725 | M328.400 | M350.250 | M360.675 | M379.275 |
| M317.750 | M335.500 | M350.275 | M360.700 | M379.300 |
| M317.775 | M335.525 | M350.300 | M360.725 | M379.900 |
| M317.800 | M335.550 | M350.325 | M360.750 | M379.925 |
| M318.100 | M335.575 | M350.350 | M360.775 | M379.950 |
| M318.200 | M335.600 | M351.700 | M360.800 | M379.975 |
| M318.800 | M335.625 | M351.800 | M360.825 | M380.000 |
| M319.000 | M335.650 | M351.825 | M360.850 | M380.025 |
| M319.100 | M335.800 | M351.850 | M363.000 | M380.050 |
| M319.150 | M336.400 | M351.900 | M363.025 | M380.075 |
| M319.200 | M338.200 | M351.950 | M363.050 | M380.100 |
| M319.250 | M338.225 | M352.000 | M363.075 | M380.125 |
| M322.300 | M338.250 | M352.050 | M363.100 | M380.150 |
| M322.325 | M338.275 | M353.500 | M363.125 | M380.175 |
| M322.350 | M338.300 | M353.525 | M363.150 | M380.200 |
| M322.375 | M338.325 | M353.550 | M363.175 | M380.225 |
| M322.400 | M338.350 | M353.575 | M363.200 | M380.250 |
| M322.425 | M339.800 | M353.600 | M363.225 | M380.275 |
| M322.450 | M340.200 | M353.625 | M363.250 | M380.300 |
| M322.475 | M341.700 | M353.650 | M370.850 | M380.325 |
| M322.500 | M343.600 | M353.675 | M370.875 | M380.350 |
| M322.525 | M343.625 | M353.700 | M370.900 | M380.600 |
| M322.550 | M343.650 | M353.725 | M370.925 | M381.400 |
| M323.000 | M343.675 | M353.750 | M370.950 | M381.425 |
| M323.025 | M343.700 | M353.775 | M371.850 | M381.450 |
| M323.050 | M343.725 | M353.800 | M371.875 | M381.475 |
| M323.075 | M343.750 | M353.825 | M371.900 | M381.500 |
| M323.100 | M346.250 | M353.850 | M371.925 | M381.525 |
| M323.125 | M346.275 | M353.875 | M371.950 | M381.550 |
| M323.150 | M346.300 | M353.900 | M371.975 | M381.575 |
| M323.175 | M346.325 | M353.925 | M372.000 | M381.600 |
| M323.200 | M346.350 | M353.950 | M377.050 | M381.625 |
| M323.225 | M346.375 | M353.975 | M377.075 | M381.650 |

| M382.000 | M385.500 | M385.650 | M387.125 | M392.100 |
|----------|----------|----------|----------|----------|
| M384.400 | M385.525 | M387.000 | M387.150 | M397.850 |
| M385.400 | M385.550 | M387.025 | M388.200 | M397.875 |
| M385.425 | M385.575 | M387.050 | M390.800 | M397.90  |
| M385.450 | M385.600 | M387.075 | M391.900 |          |
| M385.475 | M385.625 | M387.100 | M392.000 |          |

# SECTION 4. ATCT AND TRACON FREQUENCY ASSIGNMENTS

**204. GENERAL.** Whenever possible, frequency assignments are engineered to provide a radio service which is free from harmful interference within a prescribed volume of airspace. A certain amount of undesired aircraft-to-aircraft communications will have to be tolerated; however, pilot complaints of hazardous situations resulting from such radio interference should immediately be reported for remedial action.

**a. Protection** from co-channel and adjacent channel interference is provided by geographic separation of facilities and is dependent on the service volumes normally utilized.

**b.** The assignments outlined in Appendix 2 are identified by the location and operational function (LC, ground control (GC), etc.). They are afforded a degree of frequency protection based on knowledge of the service volumes normally required for these functions. At locations where ARTCC's provide AC service on terminal frequencies, caution should be exercised by the ARTCC's not to use the frequencies beyond their terminal protected service volume for AC. The following are typical terminal frequency protected service volume (FPSV) dimensions:

| <u>Service</u>                                                                            | FPSV (AGL) | <u>Radius (NM)</u> |
|-------------------------------------------------------------------------------------------|------------|--------------------|
| Ground Control (GC)                                                                       | 100'       | 2 - 5              |
| <b>Clearance Delivery (CD)</b>                                                            | 100'       | 2 - 5              |
| PAR (Military Radar)                                                                      | 5000'      | 15                 |
| Helicopter (HC)                                                                           | 5000'      | 30                 |
| Local Control (LC)                                                                        | 25,000'    | 30                 |
| Approach Control (AC)                                                                     | 25,000'    | 60                 |
| Departure Control (DC)                                                                    | 25,000'    | 60                 |
| Arrival Automated Terminal<br>Information Service (ATIS)                                  | 25,000'    | 60                 |
| Automated Weather Observing<br>System (AWOS)/Automated<br>Surface Observing System (ASOS) | 10,000'    | 25                 |
| Departure ATIS                                                                            | 100'       | 2 - 5              |

**c. If discrepancies** are noted between the operational use, location, etc., and that outlined in Appendix 2, they should be brought to the attention of the FMO.

## SECTION 5. ARTCC/RCAG FREQUENCY ASSIGNMENTS

**205. GENERAL.** Frequency assignments are engineered to provide a radio service which is free from harmful interference within a prescribed volume of airspace. A certain amount of undesired aircraft-to-aircraft communications will have to be tolerated. However, pilot complaints of hazardous situations resulting from such radio interference should immediately be reported for remedial action.

**a. Protection** from co-channel and adjacent channel interference is provided by geographical separation of facilities and is dependent on the service volume.

**b.** The assignments outlined in Appendix 3 are identified by the RCAG location, altitude use, and controlling ARTCC. They are afforded a degree of frequency protection for use within certain sectors as indicated on sector charts provided by the respective ARTCC.

**c.** At selected locations, AC service is provided by ARTCC's utilizing the terminal assigned AC frequencies. The ARTCC's are cautioned not to use the ATCT shared frequencies beyond their protected service volumes.

**d. If discrepancies** are noted between the operational use, location, etc., and those listed in Appendix 3, they should be brought to the attention of the FMO.

| <u>Service</u>        | Altitude | <u>Radius (NM</u> |     |  |
|-----------------------|----------|-------------------|-----|--|
| Super High En Route   | > 45,000 | AMSL              | 150 |  |
| High En Route         | 45,000   | AMSL              | 150 |  |
| Intermediate En Route | 25,000   | AMSL              | 60  |  |
| Low En Route          | 18,000   | AMSL              | 60  |  |

#### 206. Examples of En Route Dimensions:

#### SECTION 6. FLIGHT SERVICE STATION (FSS) VHF/UHF ASSIGNMENTS

**207. FSS.** FSS frequencies, including low or high altitude En Route Flight Advisory Service (EFAS), are located either at the FSS or at a nearby remote communications facility (RCF). FSS frequencies are protected as much as possible considering that many sites geographically within the radio line of sight (RLOS) use the same frequency. This is normally accomplished by separating FSS co-channel assignments by at least 100 NM, where possible.

**a. Appendix 4** contains a list of frequencies currently available at each AFSS/FSS and at remote communications outlet (RCO) facilities controlled by regional AFSS's. If discrepancies are noted between the actual operating parameters, transmitter locations, facility coordinates, etc., and those listed in Appendix 4, they should be brought to the attention of the FMO.

**b.** Appendix 10 indicates which VOR facilities transmit either VOR voice and/or hazardous in-flight weather advisory service (HIWAS) information. Any discrepancies with Appendix 10 should also be brought to the attention of the FMO.

**c.** Noncovered Services. The following VHF aeronautical frequency services are not covered by this chapter, since all are controlled and authorized by the FCC. Refer to FCC Part 87 Rules and Regulations for details and frequencies.

- (1) Aviation Support. Flying schools, soaring, ballooning, etc.
- (2) Aeronautical Advisory (UNICOM). Fixed base operators.
- (3) Multiple Use UNICOM (MULTICOM). A special use of UNICOM.
- (4) Flight Test. Manufacturer's use for flight tests of aircraft or equipment.
- (5) Operational Control. Airline's own use.
- (6) **SAR**. As the name implies.
- (7) Airport Utility. Non-FAA vehicles on airports.

#### SECTION 7. USE OF BASE, PORTABLE AND MOBILE (BP/M)

**208.** VHF/UHF AERONAUTICAL FREQUENCIES FOR BP/M PURPOSES. This category of operation is currently limited to the range of 118.000-136.975, 225.000-328.600, and 335.400-399.950 MHz. Emission is amplitude modulation (AM) and power is normally limited to 10 watts or less. The function is strictly for control of ground vehicles by the ATCT, communication with ground vehicles by the FSS, and communication between FAA ground personnel/vehicles and FAA Flight Inspection aircraft during a flight inspection. Any other communication in this range by BP/M stations, including vehicle-to-vehicle, is PROHIBITED.

# 209. FREQUENCY MODULATION (FM) NATIONAL RADIO COMMUNICATIONS SYSTEM (NARACS).

**a. FM is limited** to 5 kHz deviation, resulting in a 16KF3E emission designator. The separate emission designator 16KF1E is required for digital voice privacy.

**b.** The SW Regional High Frequency (HF) band frequency assignments are given in Appendix 6.

**c.** The following frequencies in the VHF band are authorized for any official FAA business where BP/M is required. Any combination of BP/M communications is permitted.

| Repeater Frequencies | Repeater Transmit (MHz) | Repeater Receive (MHz) |
|----------------------|-------------------------|------------------------|
| CH 1                 | 172.925                 | 169.325                |
| CH 2                 | 172.950                 | 169.350                |
| CH 3                 | 172.975                 | 169.375                |
| CH 4                 | 172.850                 | 169.250                |
| CH 5                 | 172.875                 | 169.275                |
| CH 6                 | 172.900                 | 169.300                |
| CH 7                 | 172.825                 | 169.225                |
| Non-Repeater Frequen | <u>cies</u>             |                        |
| CH 8                 | 172.125                 |                        |
| CH 9                 | 172.150                 |                        |
| CH 10                | 172.175                 |                        |
| CH 11                | 166.175                 |                        |
| CH 12                | 172.925                 |                        |
| CH 13                | 172.950                 |                        |
| CH 14                | 172.975                 |                        |
| CH 15                | 172.850                 |                        |
| CH 16                | 172.875                 |                        |
| CH 17                | 172.900                 |                        |
| CH 18                | 172.825                 |                        |

The SW Region's FM NARACS network is outlined in Appendix 6 of this order. If discrepancies are noted between the frequency, location, etc., and that outlined in Appendix 6, they should be brought to the attention of the FMO.

# **SECTION 8. EMERGENCY**

**210. HF REGIONAL EMERGENCY NETWORK.** To provide for emergencies where catastrophic loss of wire communications might occur, long distance communications capability is needed. The Regional Emergency Network provides communication between ARTCC's, the Regional Office, the regional relocation site, other regions, and Civil Defense offices. This network is a part of the National and Civil Defense Emergency System. Authorized emissions are upper sideband (USB) or lower sideband (LSB), suppressed carrier resulting in a 3K00J3E characteristic or independent sideband (ISB) resulting in a 6K00B9W characteristic. To alleviate confusion, the carrier or dial frequency and the USB, LSB or ISB designator will be used when referring to these frequencies. The following HF frequencies are authorized for use by the FAA in the contiguous US:

**a. Fixed point-to-point (PTP) use**--1 kilowatt (kW) peak envelope power (PEP)--4055, 4625, 6870, 7475, 7611, 8125, 9914, 11637, 13457, 13630, 15851, 16348, 19410, 20852, and 24550 kHz (ISB, USB, and LSB) and 5860 kHz (USB only).

b. A/G use--1 kW (PEP)--3428, 5571, 8912, 11288, 13312, and 17952 kHz--(USB only).

**c.** When submitting to headquarters (HQ), each single sideband (SSB) frequency, as authorized by NTIA, is 1.5 kHz above or below the reference carrier frequency. For instance, a reference carrier frequency of 4625 kHz USB is listed by NTIA as 4626.5 kHz. ISB's are assigned on the carrier frequency.

**d.** The SW Region's HF NARACS network is outlined in Appendix 6 of this order. If discrepancies are noted between the frequency, location, etc., and that outlined in Appendix 6, they should be brought to the attention of the FMO.

**211. EMERGENCY LOCATOR TRANSMITTER (ELT) TRAINING.** Civil Air Patrol (CAP) and other SAR organizations require training in air search efforts for locating downed aircraft with a radiating ELT. 121.6, 121.65, 121.7, 121.75, 121.8, 121.85, and 121.9 MHz are the only frequencies that may be used for this purpose. The following agreement has been reached between the FAA and the CAP:

**a.** CAP units will contact the appropriate regional FMO at least seven calendar days prior to the date of intended use.

b. The FMO will notify the affected offices of the planned ELT training.

**c.** The CAP will coordinate with the appropriate FAA control facility prior to and during ELT training.

Any other SAR organization requiring such test training should be referred to the FMO.

**212. SCENE-OF-ACCIDENT COMMUNICATIONS.** A group of frequencies has been authorized for communications incident to the scene of an aircraft accident at remote locations. The equipment is packaged in a regional "Fly-Away Kit." Scene-of-accident communications have priority. The exact frequencies are not available for general publication due to the nature of their use.

# SECTION 9. NON-DIRECTIONAL BEACONS (NDB)

# 213. GENERAL.

**a.** The bands 190-490 kHz and 510-535 kHz are allocated nationally for all low/medium frequency (L/MF) facilities. The specific frequency is selected by standard spectrum engineering criteria. The 285-325 kHz band is primarily allocated to the Maritime Navigation Service and available to the FAA only under certain conditions. NDB voice is not permitted in the bands 190-199.9, 285-324.9, and 415-535 kHz. The band 525-535 kHz is available to aeronautical radionavigation for offshore use only and on a non-interference basis to the Travelers Information Service (TIS).

**b.** A dual carrier NDB is an SSB system, but with a full carrier. It radiates a continuous wave (CW) carrier on the assigned frequency. The identification signal is provided by an on/off keying of a

second carrier, transmitted at a frequency signal equal to the first carrier plus the frequency of the modulation tone. A dual carrier system will be assigned a frequency equal to the selected frequency plus .51 kHz and its emission designator is 1K12XXA for an identification signal of 1020 hertz (Hz).

**c.** The NDB's located within the SW Region are listed in Appendices 8 and 9 of this order. NDB's which are solely used as compass locators at outer markers (LOM) are listed in Appendix 9 only. If discrepancies are noted between the frequency, location, etc., and that outlined in Appendices 8 or 9, they should be brought to the attention of the FMO.

# 214. DEFINITIONS.

a. Low-Power H (MH) - NDB for 25 NM at all altitudes with less than 50 watts power.

**b. H** - NDB for 50 NM at all altitudes with 50 to 1999 watts power.

c. High-Power H (HH) - NDB for 75 NM at all altitudes with 2000 watts or more power.

d. H-SAB - NDB with automatic transcribe weather service.

e. Compass Locator at Middle Marker (LMM) - Compass locator station installed at a middle marker (MM).

f. LOM - Compass locator station installed at an outer marker (OM).

**g. H-SAB Not Authorized for Instrument Flight Rules (IFR) or ATC (SABH)** - NDB not authorized for IFR or ATC and provides automatic weather broadcasts.

# SECTION 10. VOR/TACAN/Distance Measuring Equipment (DME)/ILS/VOT

**215. VOR.** VOR's are allocated even-decimal and even-half-decimal frequencies from 108.0 to 111.85 MHz and every decimal and half-decimal frequencies from 112.00 to 117.95 MHz (see Figure 2-8). There are three different standard service volumes for VOR's (see Figure 2-7).



# Figure 2-7 Service Volumes for VOR, DME/TACAN

The VOR's and their associated DME or TACAN, located within the SW Region are listed in Appendix 10 of this order. If discrepancies are noted between the frequency, location, etc., and that outlined in Appendix 10, they should be brought to the attention of the FMO.

**216. ILS.** ILS LOC's are allocated odd-decimal and odd-half-decimal between 108.1 and 111.95 MHz. The GS band is 328.6-335.4 MHz with a mixed paired allocation. A standard ILS has a FPSV of 18 NM from 1,000 up to 4,500 feet. A "super" ILS has an FPSV of 25 NM from 1,000 up to 6,250 feet (see Figure 2-9). ILS's, including markers, located within the SW Region are listed in Appendix 9 of this order. If discrepancies are noted between the frequency, location, etc., and that outlined in Appendix 9, they should be brought to the attention of the FMO.

-

|                    |        |                  |        |        | DME AIRBORNE<br>INTERROGATE |      |    |    | DME GROUND<br>REPLY |       |    |  |  |
|--------------------|--------|------------------|--------|--------|-----------------------------|------|----|----|---------------------|-------|----|--|--|
| DME                |        |                  |        |        | MLS                         | NORM | AL | DM | IE/P                |       |    |  |  |
| CHN                | FRE    | QUENCY           | MHz    |        | CHN                         | DME  |    | IA | FA                  | DME   | PC |  |  |
| NO.                | LOC    | GS               | VOR    | MLS    | NO.                         | FREQ | μs | μs | μs                  | FREQ  | μs |  |  |
| 1X                 | -      | -                | -      | -      | -                           | 1025 | 12 |    |                     | 962   | 12 |  |  |
| 1Y                 | -      | -                | -      | -      | -                           | 1025 | 36 |    |                     | 1088  | 30 |  |  |
| 2X                 | -      | -                | -      | -      | -                           | 1026 | 12 |    |                     | 963   | 12 |  |  |
| 2Y                 | -      | -                | -      | -      | -                           | 1026 | 36 |    |                     | 1089  | 30 |  |  |
| 3X                 | -      | -                | -      | -      | -                           | 1027 | 12 |    |                     | 964   | 12 |  |  |
| 3Y                 | -      | -                | -      | -      | -                           | 1027 | 36 |    |                     | 1090  | 30 |  |  |
| 4X                 | -      | -                | -      | -      | -                           | 1028 | 12 |    |                     | 965   | 12 |  |  |
| 4Y                 | -      | -                | -      | -      | -                           | 1028 | 36 |    |                     | 1091  | 30 |  |  |
| 5X                 | -      | -                | -      | -      | -                           | 1029 | 12 |    |                     | 966   | 12 |  |  |
| 5Y                 | -      | -                | -      | -      | -                           | 1029 | 36 |    |                     | 1092  | 30 |  |  |
| 6X                 | -      | -                | -      | -      | -                           | 1030 | 12 |    |                     | 967   | 12 |  |  |
| 6Y                 | -      | -                | -      | -      | -                           | 1030 | 36 |    |                     | 1093  | 30 |  |  |
| 7X                 | -      | -                | -      | -      | -                           | 1031 | 12 |    |                     | 968   | 12 |  |  |
| 7Y                 | -      | -                | -      | -      | -                           | 1031 | 36 |    |                     | 1094  | 30 |  |  |
| 8X                 | -      | -                | -      | -      | -                           | 1032 | 12 |    |                     | 969   | 12 |  |  |
| 8Y                 | -      | -                | -      | -      | -                           | 1032 | 36 |    |                     | 1095  | 30 |  |  |
| 9X                 | -      | -                | -      | -      | -                           | 1033 | 12 |    |                     | 970   | 12 |  |  |
| 9Y                 | -      | -                | -      | -      | -                           | 1033 | 36 |    |                     | 1096  | 30 |  |  |
| 10X                | -      | -                | -      | -      | -                           | 1034 | 12 |    |                     | 971   | 12 |  |  |
| 10Y                | -      | -                | -      | -      | -                           | 1034 | 36 |    |                     | 1097  | 30 |  |  |
| 11X                | -      | -                | -      | -      | _                           | 1035 | 12 |    |                     | 972   | 12 |  |  |
| 11Y                | -      | _                | _      | _      | _                           | 1035 | 36 |    |                     | 1098  | 30 |  |  |
| 12X                | -      | _                | _      | _      | _                           | 1036 | 12 |    |                     | 973   | 12 |  |  |
| 12N                | -      | _                | _      | _      | _                           | 1036 | 36 |    |                     | 1099  | 30 |  |  |
| 121<br>13X         | -      | -                | -      | -      | _                           | 1030 | 12 |    |                     | 974   | 12 |  |  |
| 13Y                | -      | _                | _      | _      | _                           | 1037 | 36 |    |                     | 1100  | 30 |  |  |
| 14X                | -      | _                | _      | _      | _                           | 1038 | 12 |    |                     | 975   | 12 |  |  |
| 14Y                | -      | _                | _      | _      | _                           | 1038 | 36 |    |                     | 1101  | 30 |  |  |
| 15X                | _      | _                | _      | _      | _                           | 1030 | 12 |    |                     | 976   | 12 |  |  |
| 15X                | -      | -                | -      | -      | _                           | 1039 | 36 |    |                     | 1102  | 30 |  |  |
| 16X                | _      | -                | _      | _      | _                           | 1040 | 12 |    |                     | 977   | 12 |  |  |
| 16X                | _      | -                | _      | _      | _                           | 1040 | 36 |    |                     | 1103  | 30 |  |  |
| 17X                | -      | _                | 108.00 | _      |                             | 1041 | 12 |    |                     | 978   | 12 |  |  |
| 17X                | _      | _                | 108.05 | 5043.0 | 540                         | 1041 | 36 | 36 | 42                  | 1104  | 30 |  |  |
| 171<br>18X         | 108 10 | 334 70           | -      | 5031.0 | 500                         | 1041 | 12 | 12 | 18                  | 979   | 12 |  |  |
| 18V                | 108.15 | 334.55           | _      | 5043.6 | 542                         | 1042 | 36 | 36 | 42                  | 1105  | 30 |  |  |
| 101<br>10 <b>Y</b> | 100.15 | 554.55           | 108.20 | 5045.0 | 542                         | 1042 | 12 | 50 | 72                  | 980   | 12 |  |  |
| 10V                |        | -                | 108.20 | -      | - 544                       | 1043 | 36 | 36 | 12                  | 1106  | 30 |  |  |
| 20X                | 108 30 | -                | 100.23 | 5031 6 | 502                         | 1043 | 12 | 12 | ≁∠<br>19            | 0.001 | 12 |  |  |
| 20X<br>20Y         | 108.30 | 334.10           | -      | 5021.0 | 5/16                        | 1044 | 36 | 36 | 42                  | 1107  | 30 |  |  |
| 201<br>21X         | -      | -                | -      | -      | -                           | 1044 | 12 |    | <b>⊣</b> ∠          | 987   | 12 |  |  |
| 21A<br>21V         | -      | -                | 100.40 | -      | - 510                       | 1045 | 12 | 26 | 12                  | 1109  | 30 |  |  |
| 211<br>22V         | -      | -                | 108.43 | 5022.2 | 504                         | 1043 | 10 | 10 | 42<br>19            | 1100  | 10 |  |  |
| 22A<br>22W         | 108.50 | 329.90<br>220.75 | -      | 5032.2 | 504                         | 1040 | 12 | 12 | 18                  | 983   | 12 |  |  |
| 22 Y               | 108.55 | 529.15           | -      | 5046.0 | 550                         | 1046 | 30 | 36 | 42                  | 1109  | 30 |  |  |
| 23X                | -      | -                | 108.60 | -      | -                           | 1047 | 12 |    |                     | 984   | 12 |  |  |
| 23Y                | -      | -                | 108.65 | 5046.6 | 552                         | 1047 | 36 | 36 | 42                  | 1110  | 30 |  |  |
|                    |        |                  |        |        |                             |      |    |    |                     |       |    |  |  |

# Figure 2-8 CHANNEL AND FREQUENCY PAIRING WITH DME PULSE TIME/CODES

|             |        |          |        |        | DME AIRBORNE<br>INTERROGATE |             |    | DME GROUND<br>REPLY |          |      |         |
|-------------|--------|----------|--------|--------|-----------------------------|-------------|----|---------------------|----------|------|---------|
| DME<br>CHN  | FRE    | OUENCY   | MHz    |        | MLS<br>CHN                  | NORM<br>DME | AL | DME/P<br>Ia fa dmf  |          |      |         |
| NO.         | LOC    | GS       | VOR    | MLS    | NO.                         | FREQ        | μs | μs                  | μs       | FREQ | μ       |
| 24X         | 108.70 | 330.50   | -      | 5032.8 | 506                         | 1048        | 12 | 12                  | 18       | 985  | 12      |
| 24Y         | 108.75 | 330.35   | -      | 5047.2 | 554                         | 1048        | 36 | 36                  | 42       | 1111 | 30      |
| 25X         | -      | -        | 108.80 | -      | -                           | 1049        | 12 |                     |          | 986  | 12      |
| 25Y         | -      | -        | 108.85 | 5047.8 | 556                         | 1049        | 36 | 36                  | 42       | 1112 | 30      |
| 26X         | 108.90 | 329.30   | -      | 5033.4 | 508                         | 1050        | 12 | 12                  | 18       | 987  | 12      |
| 26Y         | 108.95 | 329.15   | -      | 5048.4 | 558                         | 1050        | 36 | 36                  | 42       | 1113 | 30      |
| 27X         | -      | -        | 109.00 | -      | -                           | 1051        | 12 |                     |          | 988  | 12      |
| 27Y         | -      | -        | 109.05 | 5049.0 | 560                         | 1051        | 36 | 36                  | 42       | 1114 | 30      |
| 28X         | 109.10 | 331.40   | -      | 5034.0 | 510                         | 1052        | 12 | 12                  | 18       | 989  | 12      |
| 28Y         | 109.15 | 331.25   | _      | 5049.6 | 562                         | 1052        | 36 | 36                  | 42       | 1115 | 30      |
| 29X         | -      | -        | 109.20 | -      | -                           | 1053        | 12 |                     |          | 990  | 12      |
| 29Y         | -      | -        | 109.25 | 5050.2 | 564                         | 1053        | 36 | 36                  | 42       | 1116 | 3(      |
| 20X         | 109 30 | 332.00   | -      | 5034.6 | 512                         | 1054        | 12 | 12                  | 18       | 991  | 1'      |
| 30Y         | 109.35 | 331.85   | _      | 5050.8 | 566                         | 1054        | 36 | 36                  | 42       | 1117 | 30      |
| 31X         | -      | -        | 109.40 | -      | -                           | 1055        | 12 |                     |          | 992  | 1       |
| 31X<br>31V  |        |          | 109.40 | 5051 / | 568                         | 1055        | 36 | 36                  | 12       | 1118 | 31      |
| 311<br>37X  | -      | - 332.60 | 107.45 | 5035.2 | 514                         | 1055        | 12 | 12                  | 42<br>18 | 003  | 1       |
| 32A<br>37V  | 109.50 | 332.00   | -      | 5052.0 | 570                         | 1056        | 36 | 36                  | 10       | 1110 | 31      |
| 32 I<br>33V | 109.55 | 552.45   | -      | 5052.0 | 570                         | 1050        | 12 | 50                  | 42       | 004  | 1       |
| 33A<br>33V  | -      | -        | 109.00 | -      | -<br>572                    | 1057        | 36 |                     | 42       | 1120 | 31      |
| 21 <b>V</b> | -      | -        | 109.05 | 5025.0 | 516                         | 1057        | 12 | 12                  | 42       | 005  | 1       |
| 34A<br>24V  | 109.70 | 222.05   | -      | 5052.0 | 574                         | 1058        | 26 | 26                  | 10       | 995  | 21      |
| 341<br>25V  | 109.75 | 555.05   | -      | 5055.2 | 574                         | 1050        | 12 | 50                  | 42       | 006  | یں<br>1 |
| 25X         | -      | -        | 109.00 | -      | -                           | 1059        | 12 |                     | 42       | 990  | 1.      |
| 33 I<br>26V | -      | -        | 109.85 | 5055.8 | 5/0                         | 1059        | 10 | 30                  | 42       | 1122 | 30      |
| 30A<br>26W  | 109.90 | 222.65   | -      | 5050.4 | 518                         | 1060        | 12 | 12                  | 18       | 997  | 1.      |
| 30 Y        | 109.95 | 333.65   | -      | 5054.4 | 5/8                         | 1060        | 30 | 30                  | 42       | 1123 | 30      |
| 3/X<br>27N  | -      | -        | 110.00 | -      | -                           | 1061        | 12 |                     |          | 998  | 1.      |
| 3/Y         | -      | -        | 110.05 | 5055.0 | 580                         | 1061        | 30 | 30                  | 42       | 1124 | 30      |
| 38X         | 110.10 | 334.40   | -      | 5037.0 | 520                         | 1062        | 12 | 12                  | 18       | 999  | 12      |
| 38Y         | 110.15 | 334.25   | -      | 5055.6 | 582                         | 1062        | 36 | 36                  | 42       | 1125 | 30      |
| 39X         | -      | -        | 110.20 | -      | -                           | 1063        | 12 |                     |          | 1000 | Ľ       |
| 39Y         | -      | -        | 110.25 | 5056.2 | 584                         | 1063        | 36 | 36                  | 42       | 1126 | 30      |
| 40X         | 110.30 | 335.00   | -      | 5037.6 | 522                         | 1064        | 12 | 12                  | 18       | 1001 | Ľ       |
| 40Y         | 110.35 | 334.85   | -      | 5056.8 | 586                         | 1064        | 36 | 36                  | 42       | 1127 | 30      |
| 41X         | -      | -        | 110.40 | -      | -                           | 1065        | 12 |                     |          | 1002 | 12      |
| 41Y         | -      | -        | 110.45 | 5057.4 | 588                         | 1065        | 36 | 36                  | 42       | 1128 | 30      |
| 42X         | 110.50 | 329.60   | -      | 5038.2 | 524                         | 1066        | 12 | 12                  | 18       | 1003 | 12      |
| 42Y         | 110.55 | 329.45   | -      | 5058.0 | 590                         | 1066        | 36 | 36                  | 42       | 1129 | 30      |
| 43X         | -      | -        | 110.60 | -      | -                           | 1067        | 12 |                     |          | 1004 | 12      |
| 43Y         | -      | -        | 110.65 | 5058.6 | 592                         | 1067        | 36 | 36                  | 42       | 1130 | 30      |
| 44X         | 110.70 | 330.20   | -      | 5038.8 | 526                         | 1068        | 12 | 12                  | 18       | 1005 | 12      |

# Figure 2-8 CHANNEL AND FREQUENCY PAIRING WITH DME PULSE TIME/CODES (CONTINUED)

44Y

110.75

330.05

-

5059.2

594

1068

36

36 42

1131

30

| Figure 2-8 | CHANNEL AND FREQUENCY PAIRING WITH DME PULSE TIME/CODES |
|------------|---------------------------------------------------------|
|            | (CONTINUED)                                             |

|     |        |        |        |        | DME AIRBORNE<br>INTERROGATE |      |     | DME GROUND<br>REPLY |      |      |    |  |
|-----|--------|--------|--------|--------|-----------------------------|------|-----|---------------------|------|------|----|--|
| DME |        |        |        |        | MLS                         | NORM | AL. | DM                  | IE/P |      |    |  |
| CHN | FRE    | OUENCY | MHz    |        | CHN                         | DME  |     | IA                  | FA   | DME  | PC |  |
| NO. | LOC    | GS     | VOR    | MLS    | NO.                         | FREO | us  | us                  | us   | FREO | us |  |
| 45X | -      | -      | 110.80 | -      | -                           | 1069 | 12  |                     |      | 1006 | 12 |  |
| 45Y | -      | -      | 110.85 | 5059.8 | 596                         | 1069 | 36  | 36                  | 42   | 1132 | 30 |  |
| 46X | 110.90 | 330.80 | -      | 5039.4 | 528                         | 1070 | 12  | 12                  | 18   | 1007 | 12 |  |
| 46Y | 110.95 | 330.65 | -      | 5060.4 | 598                         | 1070 | 36  | 36                  | 42   | 1133 | 30 |  |
| 47X | -      | -      | 111.00 | -      | -                           | 1071 | 12  |                     |      | 1008 | 12 |  |
| 47Y | -      | -      | 111.05 | 5061.0 | 600                         | 1071 | 36  | 36                  | 42   | 1134 | 30 |  |
| 48X | 111.10 | 331.70 | -      | 5040.0 | 530                         | 1072 | 12  | 12                  | 18   | 1009 | 12 |  |
| 48Y | 111.15 | 331.55 | -      | 5061.6 | 602                         | 1072 | 36  | 36                  | 42   | 1135 | 30 |  |
| 49X | -      | -      | 111.20 | -      | -                           | 1073 | 12  |                     |      | 1010 | 12 |  |
| 49Y | -      | -      | 111.25 | 5062.2 | 604                         | 1073 | 36  | 36                  | 42   | 1136 | 30 |  |
| 50X | 111.30 | 332.30 | -      | 5040.6 | 532                         | 1074 | 12  | 12                  | 18   | 1011 | 12 |  |
| 50Y | 111.35 | 332.15 | -      | 5062.8 | 606                         | 1074 | 36  | 36                  | 42   | 1137 | 30 |  |
| 51X | -      | -      | 111.40 | -      | -                           | 1075 | 12  |                     |      | 1012 | 12 |  |
| 51Y | -      | -      | 111.45 | 5063.4 | 608                         | 1075 | 36  | 36                  | 42   | 1138 | 30 |  |
| 52X | 111.50 | 332.90 | -      | 5041.2 | 534                         | 1076 | 12  | 12                  | 18   | 1013 | 12 |  |
| 52Y | 111.55 | 332.75 | -      | 5064.0 | 610                         | 1076 | 36  | 36                  | 42   | 1139 | 30 |  |
| 53X | -      | -      | 111.60 | -      | -                           | 1077 | 12  |                     |      | 1014 | 12 |  |
| 53Y | -      | -      | 111.65 | 5064.6 | 612                         | 1077 | 36  | 36                  | 42   | 1140 | 30 |  |
| 54X | 111.70 | 333.50 | -      | 5041.8 | 536                         | 1078 | 12  | 12                  | 18   | 1015 | 12 |  |
| 54Y | 111.75 | 333.35 | -      | 5065.2 | 614                         | 1078 | 36  | 36                  | 42   | 1141 | 30 |  |
| 55X | -      | -      | 111.80 | -      | -                           | 1079 | 12  |                     |      | 1016 | 12 |  |
| 55Y | -      | -      | 111.85 | 5065.8 | 616                         | 1079 | 36  | 36                  | 42   | 1142 | 30 |  |
| 56X | 111.90 | 331.10 | -      | 5042.4 | 538                         | 1080 | 12  | 12                  | 18   | 1017 | 12 |  |
| 56Y | 111.95 | 330.95 | -      | 5066.4 | 618                         | 1080 | 36  | 36                  | 42   | 1143 | 30 |  |
| 57X | -      | -      | 112.00 | -      | -                           | 1081 | 12  |                     |      | 1018 | 12 |  |
| 57Y | -      | -      | 112.05 | -      | -                           | 1081 | 36  |                     |      | 1144 | 30 |  |
| 58X | -      | -      | 112.10 | -      | -                           | 1082 | 12  |                     |      | 1019 | 12 |  |
| 58Y | -      | -      | 112.15 | -      | -                           | 1082 | 36  |                     |      | 1145 | 30 |  |
| 59X | -      | -      | 112.20 | -      | -                           | 1083 | 12  |                     |      | 1020 | 12 |  |
| 59Y | -      | -      | 112.25 | -      | -                           | 1083 | 36  |                     |      | 1146 | 30 |  |
| 60X | -      | -      | -      | -      | -                           | 1084 | 12  |                     |      | 1021 | 12 |  |
| 60Y | -      | -      | -      | -      | -                           | 1084 | 36  |                     |      | 1147 | 30 |  |
| 61X | -      | -      | -      | -      | -                           | 1085 | 12  |                     |      | 1022 | 12 |  |
| 61Y | -      | -      | -      | -      | -                           | 1085 | 36  |                     |      | 1148 | 30 |  |
| 62X | -      | -      | -      | -      | -                           | 1086 | 12  |                     |      | 1023 | 12 |  |
| 62Y | -      | -      | -      | -      | -                           | 1086 | 36  |                     |      | 1149 | 30 |  |
| 63X | -      | -      | -      | -      | -                           | 1087 | 12  |                     |      | 1024 | 12 |  |
| 63Y | -      | -      | -      | -      | -                           | 1087 | 36  |                     |      | 1150 | 30 |  |
| 64X | -      | -      | -      | -      | -                           | 1088 | 12  |                     |      | 1151 | 12 |  |
| 64Y | -      | -      | -      | -      | -                           | 1088 | 36  |                     |      | 1025 | 30 |  |
| 65X | -      | -      | -      | -      | -                           | 1089 | 12  |                     |      | 1152 | 12 |  |
| 65Y | -      | -      | -      | -      | -                           | 1089 | 36  |                     |      | 1026 | 30 |  |
| 66X | -      | -      | -      | -      | -                           | 1090 | 12  |                     |      | 1153 | 12 |  |
| 66Y | -      | -      | -      | -      | -                           | 1090 | 36  |                     |      | 1027 | 30 |  |
| 67X | -      | -      | -      | -      | -                           | 1091 | 12  |                     |      | 1154 | 12 |  |
| 67Y | -      | -      | -      | -      | -                           | 1091 | 36  |                     |      | 1028 | 30 |  |

|              |     |        |        |             | DME AIRBORNE<br>INTERROGATE |      |    | DME GROUND<br>REPLY |             |      |    |  |
|--------------|-----|--------|--------|-------------|-----------------------------|------|----|---------------------|-------------|------|----|--|
| DME          |     |        |        |             | MLS                         | NORM | AL | DMF                 | '/ <b>P</b> |      |    |  |
| CHN          | FRF | EOUENC | YMHz   |             | CHN                         | DME  |    | IA                  | FA          | DME  | PC |  |
| NO.          | LOC | GS     | VOR    | MLS         | NO.                         | FREQ | μs | μs                  | μs          | FREQ | μs |  |
|              |     |        |        |             |                             |      |    |                     |             |      |    |  |
| 91X          | -   | -      | 114.40 | -           | -                           | 1115 | 12 |                     |             | 1178 | 12 |  |
| 91Y          | -   | -      | 114.45 | 5073.6      | 642                         | 1115 | 36 | 36                  | 42          | 1052 | 30 |  |
| 92X          | -   | -      | 114.50 | -           | -                           | 1116 | 12 |                     |             | 1179 | 12 |  |
| 92Y          | -   | -      | 114.55 | 5074.2      | 644                         | 1116 | 36 | 36                  | 42          | 1053 | 30 |  |
| 93X          | -   | -      | 114.60 | -           | -                           | 1117 | 12 |                     |             | 1180 | 12 |  |
| 93Y          | -   | -      | 114.65 | 5074.8      | 646                         | 1117 | 36 | 36                  | 42          | 1054 | 30 |  |
| 94X          | -   | -      | 114.70 | -           | -                           | 1118 | 12 |                     |             | 1181 | 12 |  |
| 94Y          | -   | -      | 114.75 | 5075.4      | 648                         | 1118 | 36 | 36                  | 42          | 1055 | 30 |  |
| 95X          | -   | -      | 114.80 | -           | -                           | 1119 | 12 |                     |             | 1182 | 12 |  |
| 95Y          | -   | -      | 114.85 | 5076.0      | 650                         | 1119 | 36 | 36                  | 42          | 1056 | 30 |  |
| 96X          | -   | -      | 114.90 | -           | -                           | 1120 | 12 |                     |             | 1183 | 12 |  |
| 96Y          | -   | -      | 114.95 | 5076.6      | 652                         | 1120 | 36 | 36                  | 42          | 1057 | 30 |  |
| 97X          | -   | -      | 115.00 | -           | -                           | 1121 | 12 |                     |             | 1184 | 12 |  |
| 97Y          | -   | -      | 115.05 | 5077.2      | 654                         | 1121 | 36 | 36                  | 42          | 1058 | 30 |  |
| 98X          | -   | -      | 115.10 | -           | -                           | 1122 | 12 |                     |             | 1185 | 12 |  |
| 98Y          | -   | -      | 115.15 | 5077.8      | 656                         | 1122 | 36 | 36                  | 42          | 1059 | 30 |  |
| 99X          | -   | -      | 115.20 | -           | -                           | 1123 | 12 |                     |             | 1186 | 12 |  |
| 99Y          | -   | -      | 115.25 | 5078 4      | 658                         | 1123 | 36 | 36                  | 42          | 1060 | 30 |  |
| 100X         | -   | -      | 115.30 | _           | -                           | 1124 | 12 |                     |             | 1187 | 12 |  |
| 100Y         | -   | -      | 115.35 | 5079.0      | 660                         | 1124 | 36 | 36                  | 42          | 1061 | 30 |  |
| 101X         | -   | -      | 115.40 | -           | -                           | 1125 | 12 |                     |             | 1188 | 12 |  |
| 101Y         | -   | _      | 115 45 | 5079.6      | 662                         | 1125 | 36 | 36                  | 42          | 1062 | 30 |  |
| 102X         | _   | _      | 115.15 | -           | -                           | 1125 | 12 |                     |             | 1189 | 12 |  |
| 102X         | _   | _      | 115.55 | 5080.2      | 664                         | 1126 | 36 | 36                  | 42          | 1063 | 30 |  |
| 1021<br>103X | _   | _      | 115.55 | -           | -                           | 1120 | 12 |                     |             | 1190 | 12 |  |
| 103Y         | _   | _      | 115.65 | 5080.8      | 666                         | 1127 | 36 | 36                  | 42          | 1064 | 30 |  |
| 104X         | _   |        | 115.05 | 5000.0      | 000                         | 1127 | 12 | 50                  | 72          | 1101 | 12 |  |
| 104X         | -   | -      | 115.70 | -<br>5081 / | -                           | 1120 | 36 | 36                  | 42          | 1065 | 30 |  |
| 1041         | -   | -      | 115.75 | 5001.4      | 008                         | 1120 | 12 | 50                  | 42          | 1102 | 12 |  |
| 105X         | -   | -      | 115.00 | -           | -<br>670                    | 1129 | 12 |                     | 42          | 1066 | 20 |  |
| 1051         | -   | -      | 115.00 | 5082.0      | 070                         | 1129 | 10 | 30                  | 42          | 1102 | 12 |  |
| 100A         | -   | -      | 115.90 | -           | -                           | 1120 | 12 |                     | 40          | 1195 | 12 |  |
| 1001         | -   | -      | 115.95 | 5082.0      | 072                         | 1130 | 30 | 30                  | 42          | 1067 | 30 |  |
| 10/X         | -   | -      | 116.00 | -           | -                           | 1131 | 12 |                     |             | 1194 | 12 |  |
| 10/Y         | -   | -      | 116.05 | 5083.2      | 6/4                         | 1131 | 36 | 36                  | 42          | 1068 | 30 |  |
| 108X         | -   | -      | 116.10 | -           | -                           | 1132 | 12 |                     |             | 1195 | 12 |  |
| 108Y         | -   | -      | 116.15 | 5083.8      | 6/6                         | 1132 | 36 | 36                  | 42          | 1069 | 30 |  |
| 109X         | -   | -      | 116.20 | -           | -                           | 1133 | 12 |                     |             | 1196 | 12 |  |
| 109Y         | -   | -      | 116.25 | 5084.4      | 678                         | 1133 | 35 | 35                  | 42          | 1070 | 30 |  |
| 110X         | -   | -      | 116.30 | -           | -                           | 1134 | 12 |                     |             | 1197 | 12 |  |
| 110Y         | -   | -      | 116.35 | 5085.0      | 680                         | 1134 | 36 | 36                  | 42          | 1071 | 30 |  |
| 111X         | -   | -      | 116.40 | -           | -                           | 1135 | 12 |                     |             | 1198 | 12 |  |
| 111Y         | -   | -      | 116.45 | 5085.6      | 682                         | 1135 | 36 | 36                  | 42          | 1072 | 30 |  |
| 112X         | -   | -      | 116.50 | -           | -                           | 1136 | 12 |                     |             | 1199 | 12 |  |
| 112Y         | -   | -      | 116.55 | 5086.2      | 684                         | 1136 | 36 | 36                  | 42          | 1073 | 30 |  |
| 113X         | -   | -      | 116.60 | -           | -                           | 1137 | 12 |                     |             | 1200 | 12 |  |
| 1            |     |        | 116 65 | 50050       | 101                         | 1105 | 24 | 26                  | 40          | 1074 | 20 |  |

#### Figure 2-8 CHANNEL AND FREQUENCY PAIRING WITH DME PULSE TIME/CODES (CONTINUED)

| Figure 2-8 CHANNEL AND FREQUENCY PAIRING WITH DME PULSE TIME/CODES |
|--------------------------------------------------------------------|
| (CONTINUED)                                                        |

|      |     |        |        |        | DME AIRBORNE<br>INTERROGATE |      |    | DME GROUND<br>REPLY |    |      |    |
|------|-----|--------|--------|--------|-----------------------------|------|----|---------------------|----|------|----|
| DME  |     |        |        |        | MLS                         | NORM | ٩L | DME                 | /P |      |    |
| CHN  | FRE | QUENCY | MHz    |        | CHN                         | DME  |    | IA                  | FA | DME  | PC |
| NO.  | LOC | GS     | VOR    | MLS    | NO.                         | FREQ | μs | μs                  | μs | FREQ | μs |
| 114X | -   | -      | 116.70 | -      | -                           | 1138 | 12 |                     |    | 1201 | 12 |
| 114Y | -   | -      | 116.75 | 5087.4 | 688                         | 1138 | 36 | 36                  | 42 | 1075 | 30 |
| 115X | -   | -      | 116.80 | -      | -                           | 1139 | 12 |                     |    | 1202 | 12 |
| 115Y | -   | -      | 116.85 | 5088.0 | 690                         | 1139 | 36 | 36                  | 42 | 1076 | 30 |
| 116X | -   | -      | 116.90 | -      | -                           | 1140 | 12 |                     |    | 1203 | 12 |
| 116Y | -   | -      | 116.95 | 5088.6 | 692                         | 1140 | 36 | 36                  | 42 | 1077 | 30 |
| 117X | -   | -      | 117.00 | -      | -                           | 1141 | 12 |                     |    | 1204 | 12 |
| 117Y | -   | -      | 117.05 | 5089.2 | 694                         | 1141 | 36 | 36                  | 42 | 1078 | 30 |
| 118X | -   | -      | 117.10 | -      | -                           | 1142 | 12 |                     |    | 1205 | 12 |
| 118Y | -   | -      | 117.15 | 5089.8 | 696                         | 1142 | 36 | 36                  | 42 | 1079 | 30 |
| 119X | -   | -      | 117.20 | -      | -                           | 1143 | 12 |                     |    | 1206 | 12 |
| 119Y | -   | -      | 117.25 | 5090.4 | 698                         | 1143 | 36 | 36                  | 42 | 1080 | 30 |
| 120X | -   | -      | 117.30 | -      | -                           | 1144 | 12 |                     |    | 1207 | 12 |
| 120Y | -   | -      | 117.35 | -      | -                           | 1144 | 36 |                     |    | 1081 | 30 |
| 121X | -   | -      | 117.40 | -      | -                           | 1145 | 12 |                     |    | 1208 | 12 |
| 121Y | -   | -      | 117.45 | -      | -                           | 1145 | 36 |                     |    | 1082 | 30 |
| 122X | -   | -      | 117.50 | -      | -                           | 1146 | 12 |                     |    | 1209 | 12 |
| 122Y | -   | -      | 117.55 | -      | -                           | 1146 | 36 |                     |    | 1083 | 30 |
| 123X | -   | -      | 117.60 | -      | -                           | 1147 | 12 |                     |    | 1210 | 12 |
| 123Y | -   | -      | 117.65 | -      | -                           | 1147 | 36 |                     |    | 1084 | 30 |
| 124X | -   | -      | 117.70 | -      | -                           | 1148 | 12 |                     |    | 1211 | 12 |
| 124Y | -   | -      | 117.75 | -      | -                           | 1148 | 36 |                     |    | 1085 | 30 |
| 125X | -   | -      | 117.80 | -      | -                           | 1149 | 12 |                     |    | 1212 | 12 |
| 125Y | -   | -      | 117.85 | -      | -                           | 1149 | 36 |                     |    | 1086 | 30 |
| 126X | -   | -      | 117.90 | -      | -                           | 1150 | 12 |                     |    | 1213 | 12 |
| 126Y | -   | -      | 117.95 | -      | -                           | 1150 | 36 |                     |    | 1087 | 30 |
|      |     |        |        |        |                             |      |    |                     |    |      |    |
|      |     |        |        |        |                             |      |    |                     |    |      |    |

Note: An additional 200 channels will be available in 2010.

-





#### LOC FRONT COURSE FPSV'S











**FPSV FOR ILS GS** 





**217. DME/TACAN.** DME and TACAN frequencies are paired with ILS/VOR by International Civil Aviation Organization (ICAO) standards, except TACAN channels 1-16 and 60-69 which are unpaired and authorized for tactical military use only. When an ILS LOC or VOR frequency is assigned, the associated DME frequency is protected in the event of future installation. See Figure 2-8 for comprehensive ICAO frequency pairings of the NAVAID's listed above.

**218.** VHF OMNIDIRECTIONAL RANGE TEST (VOT). VOT's are assigned 108.0 MHz, 108.05 MHz, or a regular VOR frequency. VOR's should not be used for operational control on 108.0 or 108.05 MHz. VOT's located within the SW Region are listed in Appendix 10.

**219. SPOT FREQUENCY.** Markers are continuously operating low-power transmitters with antennas radiating signals in an upward direction in a fan shape. All markers operate on 75.0 MHz. Inner markers (IM), MM's, OM's, and backcourse markers (BCM) are categorically identified by different Morse Code class identifiers as follows:

a. OM: - - - - - - - - - - - - - - (continuous dashes @ 400 Hz)

- **b.** MM: - - - (alternating dots and dashes @ 1300 Hz)
- c. IM: •••••••(continuous dots @ 3000 Hz)
- d. BCM: •• •• •• •• ••(alternating pairs of dots)

# **SECTION 11. RADAR**

# 220. GENERAL.

**a.** Most primary radars have two separate transmitters and receivers. Older radars operate only one transmit/receive (T/R) channel at a time. The other channel is normally tuned to another frequency and is used as a backup or an alternate system. For interference protection, it is desirable to separate the two frequencies as much as possible within the band. But in most areas of the country, the frequency congestion is so severe in each band that the two channels must be assigned frequencies that are separated by a few megahertz. Since the used channel is kept "hot", some frequency separation is necessary to prevent interference to the operating channel.

**b. Diplex radars** operate both channels simultaneously, although their actual transmitting time is usually separated in time so that the transmitted pulse of one is off while the transmitted pulse of the other is firing. The difficulty for the FMO is that the nature of the system requires a minimum frequency separation between the two channels.

**c.** The pulse repetition rate (PRR) is the number of pulses of energy per second (pps) transmitted by the system and is critical in the assignment of the associated ATC radar beacon system (ATCRBS). In ATC functions, the ATCRBS is usually tied to a primary radar and its PRR is equal to or a sub-multiple of the primary's PRR. In the case of staggered PRR, there is a basic clock relationship between the radar and ATCRBS.

**d. Appendix 12** lists all radars, ATCRBS, and remote beacon performance monitors (RBPM) within the SW Region.

**221. AIR ROUTE SURVEILLANCE RADAR (ARSR).** The band 1240-1370 MHz is allocated exclusively for ARSR service. The ARSR's are generally very high power and long range radars. The coverage for an ARSR is about 200 NM. The ARSR-1 and ARSR-2 may be assigned two frequencies within 5-10 MHz of each other, since only one channel transmits at a time. The ARSR-3 operates in a diplex mode which requires at least 25 MHz separation between the two frequencies assigned. The ARSR-4, a joint US Air Force (USAF)/FAA project, requires less power than older radars, but has increased range. It is a diplex radar with two separate frequencies using a set pairing scheme.

**222. AIRPORT SURVEILLANCE RADAR (ASR).** The band 2700-2900 MHz is allocated for ASR service, however the band is shared with DOD ASR's and National Weather Service (NWS) radars. Since the FAA is the coordinating authority and responsibility is assigned to the FAA by NTIA, the FMO selects and recommends the frequency upon which all users will operate. Two frequencies are to be assigned, with at least 60 MHz separation, for diplex operations.

# 223. ATCRBS.

**a. The frequency** 1030 MHz transmit and 1090 MHz receive are allocated for ATCRBS. The system has had many names: radar beacon, secondary radar (SECRA), and the original identification-friend or foe (IFF) from its World War II origin. The military still uses the nomenclature IFF. A tolerance of  $\pm$ .2 MHz will be maintained on the 1030 MHz assignment.

**b.** The entire national airspace system (NAS) automated system is keystoned upon ATCRBS, since it not only reinforces radar reflections, but is the only source of automatic aircraft altitude reporting. It is universally used by all aircraft (civil and military) as a ground interrogate/air transponder system. It is strictly controlled by PRR and power limitations. The legal maximum PRR is 450 pps for all users. A specific PRR is assigned each FAA ATCRBS and cannot be changed except through the FMO. All military IFF's have the same restriction. Enroute ATCRBS/IFF peak power is limited to 1.5 kW or less. Terminal ATCRB/IFF is normally limited to 300 watts peak power or less to minimize interference.

**224. MODE-S BEACON SYSTEM.** Mode-S beacon system is a combined secondary surveillance radar (beacon) and ground-air-ground data link system capable of providing the aircraft surveillance and communications necessary to support ATC automation. Mode-S systems are similar to ATCRBS in the use of 1030 MHz and 1090 MHz and will have the same PRF's.

**225. RBPM.** The RBPM program has been allocated the frequency 1090 MHz ( $\pm$  3 MHz). The transmitters are operating at various locations throughout the region to serve all the ARSR sites and some of the ASR sites at the present time. Included in this category is the calibration performance monitor equipment (CPME) used for the Mode-S beacons.

**226. PRECISION APPROACH RADAR (PAR).** The band 9000-9200 MHz is allocated for PAR. There are several PAR's in service in the SW Region and are all operated by the military.

**227. AIRPORT SURVEILLANCE DETECTION EQUIPMENT (ASDE).** The band 15.7-16.2 gigahertz (GHz) is allocated for ASDE. Only a few ASDE's are currently operating. This band is shared with and subject to coordination with DOD as co-equal.

**228. NEW SHARED BAND.** The 3500-3700 MHz band of frequencies has been reallocated to include Aeronautical Radionavigation, which is the international term for those radars used in ATC. This band is available only when the 2700-2900 MHz band has no frequency available for a requirement.

**229. NEXT GENERATION WEATHER RADAR (NEXRAD).** NEXRAD is a joint DOD/FAA/NWS weather radar system. NEXRAD operates in the frequency band 2700-3000 MHz. The direction of the antenna beam continuously varies in azimuth and elevation. The NEXRAD utilizes varying PRR's and pulse durations.

**230. TERMINAL DOPPLER WEATHER RADAR (TDWR).** TDWR is an FAA short range weather radar. It is used for weather radar near airports. TDWR operates in the frequency band of 5600-5650 MHz. It is designed to identify microbursts, windshear, gust fronts, and precipitation. The TDWR antenna also varies in both azimuth and elevation.

# SECTION 12. COMMUNICATIONS/VIDEO LINKS

231. GENERAL. Bands currently used by the FAA for radio links are shown in Figure 2-10.

|                                                                                                                                                                                                                                                                                                                    | 162-174 MHz    | Land Mobile*     | Very congested band                               |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|---------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                    | 406.1-420 MHz  | Land Mobile*     | Very congested band                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                    | 932-935 MHz    | Fixed Station*** | LDRCL                                             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                    | 941-944 MHz    | Fixed Station    | LDRCL<br>LDRCL<br>Radio Communications Link (RCL) |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                    | 1710-1850 MHz  | Fixed Station**  |                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                    | 7125-8500 MHz  | Fixed Station    |                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                    | 14.4-15.35 GHz | Fixed Station    | TV Microwave Link (TML)                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                    | 21.2-23.6 GHz  | Fixed Station    | Microwave links                                   |  |  |  |  |
| * Specific frequencies are allotted for fixed operations such as Low Level Windshear systems (LLWAS), RMM, MALSR, etc. (See chapter 17.)                                                                                                                                                                           |                |                  |                                                   |  |  |  |  |
| ** New requirements for radio links will not be satisfied in the 1710-1850 band.<br>Future LDRCL's will utilize 932-935/941-944 MHz, 7125-8500 MHz or<br>21.2-23.6 GHz. 1710-1755 MHz is to be transferred to the private sector due<br>to Title VI of the Omnibus Reconciliation Act of 1993, on January 1, 1999. |                |                  |                                                   |  |  |  |  |
| *** New spectrum requirements for LLWAS by 1999.                                                                                                                                                                                                                                                                   |                |                  |                                                   |  |  |  |  |
| Note: In addition, there are other bands for fixed radio links, such as 2200-2300 MHz, 4400-4990 MHz, 25.25-27.50 GHz, 36.0-38.6 GHz, etc., which also are available for FAA use.                                                                                                                                  |                |                  |                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                    |                |                  |                                                   |  |  |  |  |

# Figure 2-10 Bands Currently Used by FAA for Radio Links

All frequencies used for links systems, except for remote maintenance system (RMS), remote maintenance monitor (RMM), and AWOS/ASOS are listed in Appendix 7.

**232. RCL.** The RCL system for the SW region is complete and all frequencies have been assigned in the 7 to 9 GHz band. Any changes to a frequency on the RCL system must be engineered through FAA HQ in advance.

**233. FREQUENCY ENGINEERING FOR LOW DENSITY RCL (LDRCL)**. As directed by Title VI of the Omnibus Budget Reconciliation Act of 1993, the 1710-1755 MHz portion of this band will be transferred to the private sector on January 1, 1999. FAA assignments in the 1710-1850 MHz band which are outside of a 150 kilometer (km) radius of the 25 largest cities in the US are "grandfathered" and will be allowed to remain. However, it is FAA policy that there will be no further FAA assignments in the 1710-1850 MHz band. Present and future assignments will be in the 7125-8500 MHz and 21.2-23.6 GHz bands.

**234. TELEVISION MICROWAVE LINK (TML).** The only purpose of the TML is to relay scanconverted, television (TV) type video from an indicator site to a monitor point such as a second control tower via the digital bright radar indicator tower equipment (DBRITE). The basic system consists of a transmitter site and a receiver site. Repeater sites are established when it is necessary to expand the remoting distance or avoid obstacles in the line-of-sight transmission path. TML operates in the 14.5000-14.7145 and 15.1365-15.3500 GHz bands.

**235. 932-935/941-944 MHz MICROWAVE LINKS.** Because of special frequency coordination considerations, three 932-935/941-944 MHz links have been established between the US and Mexico. These links are Brownsville/Matamoros, McAllen/Reynosa and El Paso/Juarez.

**236. VHF/UHF Links.** Various VHF/UHF link systems have been installed in the Rio Grande SMO. They are normally used to remote the VORTAC control signals to/from the remote maintenance control facility (RMCF) instead of using telephone company (TELCO) lines.

# SECTION 13. USE OF AIR NAVIGATION FACILITIES BEYOND THE NORMAL FPSV

**237. GENERAL.** The usable distance and altitude (service volume) of aeronautical NAVAID's are determined by freedom and protection from RFI caused by co-channel or adjacent channel radio facilities. Geographical separation of NAVAID's is utilized to establish FPSV's. The responsibility for providing these theoretical interference-free service volumes is vested in the FMO. The FMO will also guarantee power availability of the signal at the extremity of the ESV.

# 238. PROCEDURES TO ACQUIRE AN ESV.

**a. When developing** new or revised procedures of any type, every effort should be made to develop them within the limits of the FPSV of airspace (normal service volume) associated with the facility class. This airspace is a cylindrical volume for NDB, VOR, DME, VORTAC, and TACAN, and a trapezoidal volume for ILS. The dimensions and latitudes of the various service volumes are defined in Section 10.

**b.** NAVAID's shall not be certified for use beyond the normal service volume unless the following criteria are satisfied:

(1) The FMO determines that the desired ESV (course, altitude, and distance) is theoretically frequency-protected in accordance with criteria in FAA Order 6050.32.

(2) The FMO determines that the required power availability at the extremity of the ESV can be obtained.

(3) A confirming flight check is accomplished.

(4) Co-channel and adjacent channel facilities which may cause interference are operating.

(5) A check is made with the power output of the facility being reduced to the monitor alarm limit (ILS LOC only).

(6) The ESV is flight checked on the even years (ILS LOC only).

(7) The final certification (course, altitude, and distance) is filed with the FMO and the FMO is informed of subsequent changes.

**c.** Requests for establishment of flight procedures or general operational use of a NAVAID beyond the normal service volume, an ESV, shall be submitted to the FMO on FAA Form 6050-4, Expanded Service Volume Request.

(1) The originator of the flight procedure or operational requirement shall forward all requests for an ESV on FAA Form 6050-4, Part I, to the FMO or as required per SW Supplement to FAA Order 7400.2, Procedures for Handling Airspace Matters.

(2) The form will then be processed according to SW Supplement to FAA Order 7400.2.

(3) The FMO will determine whether or not the desired theoretical frequency protection and signal strength can be provided and complete Part II of FAA Form 6050-4. The ESV will then be considered pending until the final action by the Flight Inspection Area Office (FIAO).

(4) FIAO will complete Part III of FAA Form 6050-4 and make distribution of the copies as indicated. Upon receipt of final action, the FMO will consider the ESV complete. These same steps will apply to an ESV modification or cancellation.

# 239. RESPONSIBILITY.

**a.** The originating offices, upon receipt of this order, will review Appendix 11 to ensure that all ESV requirements are recorded and are still valid. This tabulation does not include SW Region's requirements on other region facilities.

**b.** The FMO will inform the originating office of any changes in the theoretical frequency protection or areas of possible interference resulting from frequency changes, reclassification, new assignments, etc.

**c.** The originating office, upon receipt of any changes in the theoretical frequency protection or areas of possible interference resulting from frequency changes, reclassification, new assignments, etc., will take immediate action to limit use of the facility as necessary to assure interference free operation.

**d.** The FMO shall be responsible for interregional coordination, through channels, of matters concerning frequency interference and service volumes traversing regional boundaries.

# SECTION 14. OBSTRUCTION EVALUATION (OE)

**240. GENERAL.** OE's are reviewed by the FMO when the proposed construction or alteration includes transmission of any frequency. The FMO is tasked with evaluating the proposed frequency in respect to the aeronautical effect from electromagnetic radiation and possible interference with both ground facilities and aircraft using such aids. The screening criteria, shown in Figure 2-11, is used to determine if the proposed frequencies require complete analysis. If the frequency or power of the proponent is other than listed in Figure 2-11, it must be examined.

#### Figure 2-11 Screening Criteria

| Frequency (MHz)    | Power      | <b>Required Distance (NM)</b> |  |  |
|--------------------|------------|-------------------------------|--|--|
| .535 - 1.605 (AM)  | Any        | 3.0                           |  |  |
| 5.25 - 801.25 (TV) | Any        | 10.0                          |  |  |
| 88 - 108 (FM)      | Any        | 30.0                          |  |  |
| 150 - 170          | up to 1 kW | 4.5                           |  |  |
| 400 - 600          | up to 1 kW | 4.5                           |  |  |
| 800 - 1000         | up to 1 kW | 3.6                           |  |  |

If an FAA facility is found to be within the above stated distances, further analysis shall be made.

#### **SECTION 15. SPECIAL USE**

**241. TEMPORARY TOWERS.** "Fly-ins", air shows, and certain other special AT functions require the use of frequencies at a temporary ATCT operated by AT controllers. Upon AT request, the FMO will authorize the required frequencies. The FMO will notify the appropriate sector of the selected frequencies by issuance of a temporary FTA. Non-Federal entities must apply for an FCC license for an air show frequency.

**242. TESTING OF VHF/DIRECTION FINDER (DF) EQUIPMENT.** Regular VHF frequencies used in VHF/DF require periodic testing and azimuth calibration. Use of discrete frequencies in portable/mobile transceivers or other low power devices for such testing is permissible without further authorization, provided transmitter radiation is limited to absolute minimum time required and the controlling AT facility is notified and concurs.

# 243. OTHER SPECIAL USE. The FMO will authorize frequencies for special use as required.

#### SECTION 16. SPECIAL SIGNIFICANT PROGRAMS

**244. AWOS/ASOS Frequency Assignment Criteria.** AWOS is an unmanned automatic sensing, processing, and voice-generating system which provides up-to-date information on weather conditions, such as altimeter setting, wind, temperature, dewpoint, etc., at non-tower and part-time airports with published instrument approaches and remote locations requiring updated weather information as an aid to air navigation. AWOS refers to any number of different types of automatic weather observation systems. One such system is the wind, altimeter, voice equipment (WAVE) system.

AWOS is comprised of government (FAA) procured systems or sponsor procured (commercial) systems approved by the FAA. A discrete VHF frequency will be used for the voice broadcast and should be one of the frequencies listed in paragraph 244 a(1)(d). The VHF frequencies for AWOS are limited to a service volume of 25 NM at 10,000 feet. Also, an FM data link may be used to transmit data from the sensors to the central control point; the 406-420 MHz band has been selected for this purpose. The AWOS frequencies are listed in Appendix 5.

ASOS is an NWS sponsored system similar to AWOS but provides additional weather information such as precipitation identification and intensity and freezing rain occurrence. The ASOS system has the same frequency engineering conditions as the AWOS system. The ASOS frequencies are also listed in Appendix 5.

**a. The following criteria will be used** to the maximum extent possible in selecting AWOS/ASOS voice outlets:

(1) **Priority** for selecting a frequency to support AWOS/ASOS voice outlets;

(a) At airports with ATCT', the AWOS/ASOS shall utilize the existing automated terminal information service (ATIS) voice outlet, if available. If the tower is operated part-time, the AWOS/ASOS shall operate independently of the ATIS during non-operational hours.

(b) At airports without ATIS, when the AWOS/ASOS facility will be within 3 NM of a non-Doppler VOR or VORTAC site, the AWOS/ASOS shall transmit weather information over the VOR frequency. This only applies to those VOR's that do not currently use the facility for other broadcast signals such as EFAS.

(c) If a VOR is not available, when the AWOS/ASOS facility will be within 3 NM of an NDB, the NDB shall be modified for voice and the AWOS/ASOS placed on the NDB frequency. This does not apply to two-frequency NDB's which are not capable of voice transmission. A frequency change will be required if the existing NDB frequency is not in the 325-425 kHz range.

(d) If no NDB is available, the AWOS/ASOS facility shall be assigned a discrete 25 kHz A/G frequency. To minimize the potential for interference, the following ten frequencies have been designated specifically for AWOS/ASOS use and must be considered before any other discrete frequency in the 118-137 MHz band:

| 118.325 MHz | 119.925 MHz |
|-------------|-------------|
| 118.375 MHz | 120.000 MHz |
| 118.525 MHz | 121.125 MHz |
| 119.025 MHz | 124.175 MHz |
| 119.275 MHz | 128.325 MHz |
|             |             |

(2) Power output of an AWOS/ASOS operating on a discrete VHF frequency channel shall not exceed 2.5 watts.

(3) Service volume of an AWOS/ASOS operating on a discrete VHF is normally limited to 25 NM and 10,000 feet AGL. Requirements in excess of this value must be approved by regional AT. Under no circumstances shall the radius of the service volume exceed the terminal area.

(4) Frequency protection ratio (D/U) for an AWOS/ASOS operating on a discrete VHF channel shall be a minimum of :

(a) **14 dB from an aircraft** at the edge of the AWOS/ASOS service volume to another co-channel ATIS, AWOS, ASOS or an airborne interferer's air traffic control communications.

(b) Beyond RLOS separation from a potential interferer at the edge of an ATC service volume to the transmitter site of the AWOS/ASOS. (Note: The minimum separation is inclusive, i.e., both (a) and (b) must be met.)

(5) A letter of justification is submitted by the sponsor to the appropriate FMO identifying the need for a discrete VHF frequency.

(6) If the proposed AWOS/ASOS facility does not conform to requirements 1 through 5 of above, the FAA may not assign a broadcast frequency.

(7) It is highly encouraged that ATC assignments using any of the above frequencies be moved to another channel at the first practical opportunity. AWOS, ASOS, or ATIS assignments outside of the above listed frequencies need not be changed. However, if operational necessities require a frequency change, the new assignment should be made from the channel plan.

**245. RMM.** The RMM system is for monitoring of various components of the NAS system, i.e., the LOC, DME, GS, etc. A master unit will poll each of the components to be monitored by means of either FAA land lines or a UHF FM link. If a UHF FM link is used, it will be in the 406-420 MHz band. Refer to Appendix 13 for the RMM frequencies.

**246. RMS.** RMS is similar to RMM in that it has a master unit which polls each of the runway systems. However, the RMS includes the precision approach path indicator (PAPI), runway-end identifier lights (REIL), and medium-intensity approach lighting system with runway alignment indicator lights (MALSR) systems in addition to the ILS RMM system. A UHF FM link is also used in the 406-420 MHz band. Refer to Appendix 13 for the RMS frequencies.

**247. LOW LEVEL WINDSHEAR ALERT SYSTEM (LLWAS).** LLWAS performs a continuous comparison of the center field wind speed and direction with peripheral wind speed and direction. The system sequentially polls each remote station at a minimum rate of once each 10 seconds. A software defined alarm threshold is used to determine when a windshear alert is necessary. A central station does the interrogating, and the remote stations respond, on UHF FM frequencies normally in the band 406-420 MHz. Some systems that have not been modified are still operating on VHF frequencies in the band 162-174 MHz. (Refer to Appendix 13.)

**248. APPROACH LIGHTING SYSTEM (ALS).** ALS's can be controlled from aircraft and, in the case of a MALSR system, from ground facilities. The A/G system uses the common traffic advisory frequency (CTAF) and intermittently keys the aircraft transmitter three, five, or seven times. The lighting system will go off automatically 15 minutes later. The ground-to-ground system employs a VHF FM frequency with an encoder and a decoder. The MALSR ground-to-ground frequency is assigned one common frequency of 165.7625 MHz. Some MALSR ground-to-ground frequencies are still operating on other VHF frequencies in the 162-174 MHz frequency band and should be changed as soon as possible. (Refer to Appendix 13.)

**249. TEN-YEAR REVIEWS.** All FAA frequency assignments must be reviewed every ten years. The ten-year review process is designed to ensure accurate frequency assignments. Frequencies undergoing the ten-year review process must meet all the current criteria for that frequency assignment.

# SECTION 17. MILITARY COORDINATION AND ASSIGNMENTS

**250. MILITARY COORDINATION.** The military must coordinate all frequencies for which the FAA is the national coordinator or conducts the engineering (see Figure 2-3) with the FMO. Once a new frequency, modification, or five/ten-year review assignment has been reviewed, a coordination number beginning with ASW and followed by a 6-digit number will be given to the military representative. The pending assignment, for the coordinated frequency, unless classified, will then be submitted to ASR-1 for approval and further coordination.

**251. ELECTRONIC COUNTERMEASURES (ECM) MISSIONS/EXERCISES.** Any ECM activity to be employed which will effect FAA frequency bands (other than normal daily routine) shall be coordinated with the FAA. This requirement has been laid down by HQ to prevent undue radio interference of a hazardous nature. Coordination with the FMO is the first step of the approval process. Military obligation in this regard is contained in Air Force Regulation 55-44. The ARTCC will receive the final coordination from the military prior to the ECM mission. The coordination with the ARTCC serves two purposes. The first is to verify that the ARTCC is aware of this activity and that they know the appropriate military personnel to contact in the event of interference. The second

is for the ARTCC to have the ability to deny or delay the ECM operation when safety-of-life or harmful interference is expected during the time frame of the ECM.

# SECTION 18. FTA AND DOCUMENTATION

**252. GENERAL.** Every transmitter, on any frequency, must be properly authorized and registered in accordance with IRAC procedures. To accomplish this requirement, the FMO has established documentation procedures.

**253. DOCUMENTATION.** Fixed radio transmitters shall be operated only if a current frequency authorization exists as indicated by FAA Form 6050-1 (see Figure 2-12). Operation shall be limited to the power, emission, frequency, and location shown. Power indicated is the maximum permitted and is specified for input to the antenna or power divider. Installed or operating power may be less. An FTA will be issued for the frequency to tune up the new equipment and to permit commissioning thereafter as soon as normal procedures permit. It is the responsibility of the SMO to assure that the FTA is posted at the appropriate facility prior to use of the frequency and that the frequency is not used prior to the effective date. The FTA shall be posted in the transmitter building and mounted in a simple picture frame or placed in a plastic cover.

**a. Each document** will contain the type of facility authorized and a serial number. Modification of frequency or other parameters will require issuance of a new FTA.

**b.** When an FTA is issued, it will be sent to the action party or the appropriate SMO. The FTA will be retained by the SMO until transmitter tune-up is imminent. At that time, the new FTA will be posted to cover the transmitters.

**c.** Upon receipt of an FTA, the action party should check the actual facility installation as proposed against the FTA. Any deviation between the authorized parameters should be brought to the attention of the FMO immediately.

**d.** Special temporary frequency needs may require that action on frequency authorizations be taken more rapidly than the above procedure will permit. In these cases, the FMO will notify the appropriate parties by telephone/cc:mail and then send by facsimile (FAX) the new FTA to the appropriate SMO. Such telephone/cc:mail or FAXed information will constitute temporary authority to use radio frequencies. Such action will be followed by the original FTA, when the authorization is for a permanent facility.

Figure 2-12 Sample FTA

| ERAL AVIA                           |                          |                |           |                  |                              |                          | AU            | JTHORIZATION NUMBER        |  |
|-------------------------------------|--------------------------|----------------|-----------|------------------|------------------------------|--------------------------|---------------|----------------------------|--|
|                                     |                          | •              | UNI       | TED STATES OF    | AMERICA                      |                          |               | SW 1053 C                  |  |
| * * *                               |                          | DEB            | ADTM      | ENT OF TR        | NCDODTAT                     | ION                      |               |                            |  |
|                                     |                          | DEP            | AKIM      | ENT OF TRA       | ANSPORTAL                    | ION                      |               |                            |  |
| WISTRA'                             | F                        | 'EDERA         | L AV      | IATION A         | DMINIST                      | RATI                     | ON            |                            |  |
|                                     |                          |                |           |                  |                              |                          |               |                            |  |
| FACILITY TRANSMITTING AUTHORIZATION |                          |                |           |                  |                              |                          |               |                            |  |
| In accordance with                  | h authori                | ty granted the | Federal A | viation Administ | ration by the Natio          | nal Telec                | ommunicati    | ions & Information         |  |
| Administration throug               | the Int                  | erdepartmenta  | l Radio A | dvisorv Committe | e, this Authorizati          | on is issue              | ed for the or | peration of this facility. |  |
|                                     | ,                        |                |           |                  |                              |                          | 1             | , <b>,</b>                 |  |
| FACILITY: HARLING                   | GEN, T                   | х              |           |                  | COORDINATES<br>ELEVATION     | : 26 13<br>: <b>3</b> 4′ | '35"N         | 097 39'43"W                |  |
|                                     | FAC.                     | MAX.           |           | TYPE OF          | COST                         |                          | FAA           | MISCELLANEOUS              |  |
| FREQUENCY                           | TYPE                     | POWER          | CLASS     | SERVICE          | CENTER                       | IDENT                    | SERIAL        | REMARKS                    |  |
| 124 850 MHz                         | ATTS                     | 10.0 W         | FAB       | ATTS/AWOS        |                              | HRL                      | 840340        |                            |  |
| 101.050 1110 .                      |                          | 2010           |           | 11,10,11100      |                              |                          |               |                            |  |
| 172.900 MHz I                       | MALSR                    | 5.0 W          | FX        |                  |                              | SJT                      | 766635        |                            |  |
| 169.300 MHz                         | NRCS                     | 100.0 W        | FX        |                  |                              | HRL                      | 901164        |                            |  |
|                                     |                          | 100.0 W        | FX        |                  |                              |                          | 901164        |                            |  |
|                                     |                          | 45.0 W         | ML        |                  |                              |                          | 901164        |                            |  |
|                                     |                          | 45.0 W         | ML        |                  |                              |                          | 901164        |                            |  |
| 169.325 MHz 1                       | NRCS                     | 100.0 W        | FX        |                  |                              | HRL                      | 901165        |                            |  |
|                                     |                          | 100.0 W        | FX        |                  |                              |                          | 901165        |                            |  |
|                                     |                          | 45.0 W         | ML        |                  |                              |                          | 901165        |                            |  |
|                                     |                          | 45.0 W         | ML        |                  |                              |                          | 901105        |                            |  |
| 409.175 MHz                         | RMM                      | 5.0 W          | FX        |                  |                              | HRL                      | 980071        |                            |  |
|                                     |                          |                |           |                  |                              |                          |               |                            |  |
| 8150.000 MHz                        | TMLT                     | .5 W           | FX        |                  |                              | QU8                      | 860081        |                            |  |
| 8350.000 MHz                        | TMLT                     | .5 W           | FX        |                  |                              | QU9                      | 860082        |                            |  |
|                                     |                          |                |           | A day            | Atuni                        | $\sum$                   |               |                            |  |
| 10 Mar 1998                         | -                        | Southw         | est       | Y                | ur ja                        | /                        |               | 1_of_1                     |  |
| EFFECTIVE DATE                      | FFECTIVE DATE FAA REGION |                |           | PREC             | FREQUENCY MANAGEMENT OFFICER |                          |               | PAGE                       |  |
|                                     |                          |                |           | /                | -                            |                          |               |                            |  |

FAA Form 6050-1 (10-95)

NSN: 0052-00-688-6001

**e.** Documentation of only the main and standby transmitters is required. Therefore, when a frequency is required at two sites, such as the mains at a remote transmitter (RT) site with the standbys at an ATCT, authorization is required at both sites. However, the emergency transceivers located at the ATCT do not require a separate authorization for use of the frequencies already assigned to the airport and do not need to be listed on the ATCT FTA.

**f.** If the FTA data needs correction, the AF SMO shall red-line a copy of the FTA (review for accuracy), complete SW Form 6050-1, and send it to the FMO.

**254. EMISSION.** The emission of a transmitted signal is identified by a characteristic symbol. That symbol consists of four parts:

**a.** A group of up to 5 digits representing the necessary bandwidth followed by one letter which represents the unit of bandwidth as follows:

H = Hertz K = kiloHertz M = MegaHertz G = GigaHertz

b. A letter indicating the type of modulation of the main carrier;

N = Unmodulated carrier

Amplitude-Modulated

- A = Double sideband
- B = Independent sidebands
- C = Vestigial sideband
- H = Single sideband, full carrier
- J = Single sideband, suppressed carrier
- R = Single sideband, reduced or variable level carrier
- K = Amplitude
- F = Frequency (or phase)
- P = Pulse

Angle-Modulated

- F = Frequency modulation
- G = Phase modulation

#### Amplitude-Modulation and Angle-Modulated

D = Amplitude and Angle Modulation either simultaneously or in a sequence

#### Pulse

- P = Sequence of unmodulated pulses
- K = Sequence of pulses modulated in amplitude
- L = Sequence of pulses modulated in width or duration
- M = Sequence of pulses modulated in position or phase
- Q = Carrier is angle modulated during the period of the pulse
- V = Combination of the foregoing produced by other means

# **Combination**

W = Cases not covered above, in which an emission consists of the main carrier modulated, either simultaneously or in a combination of two or more of the following modes: amplitude, angle, pulse

X = Cases not otherwise covered

- c. A letter or number indicating the nature of the signal modulating the main carrier;
  - 0 = No modulating signal
  - 1 = A single channel containing quantized or digital signals without the use of a modulating subcarrier. Does not include Time Digital Multiplexing (TDM).
  - 2 = A single channel containing a quantized or a digital signal with the use of a modulating subcarrier.
  - 3 = A single channel containing an analogue signal.
  - 7 = Two or more channels containing quantized or digital signals.
  - 8 = Two or more channels containing analogue signals.
  - 9 = A composite system with one or more channels containing quantized or digital signals, together with one or more channels containing analogue signals.
  - X = Cases not otherwise covered.
- d. A letter indicating the information to be transmitted;
  - N = No information transmitted
  - A = Telegraphy -- for aural reception
  - B = Telegraphy -- for automatic reception
  - C = FAX
  - D = Data transmission, telemetry, telecommand; separately or simultaneously
  - E = Telephony (Audio)
  - F = Television (Video)
  - W = Combination of the above
  - X = Cases not otherwise covered

#### Examples:

#### <u>6KA3E (VHF/UHF A/G transmitter)</u>

- a. 6 kHz bandwidth
- b. Amplitude Modulated (Double-sideband)
- c. Analogue Signal
- d. Voice telephony

#### <u>2K04A2A</u>(NDB)

- a. 2.04 kHz bandwidth
- b. Amplitude Modulated (Double sideband)
- c. Containing a digital signal with the use of a modulating subcarrier
- d. Telegraphy (aural)

# <u>6MM1D</u> (Radar Beacon)

- a. 6 MHz bandwidth
- b. Sequence of pulses modulated in position or phase
- c. Single channel containing quantized or digital data without the use of modulating subcarrier
- d. Data transmission

Common FAA emission designators are shown in Figure 2-13.

**255.** Station Class. Station classes denote the use for which the transmitted signal is intended. Figure 2-14 also indicates the most common station classes versus FAA facility type.

**256.** FCC Forms. The following forms are to be used for a station license in the Aviation and Maritime Services:

- a. FCC Form 405-A, Application for Renewal of Radio Station License.
- **b.** FCC Form 406, Application for Ground Station Authorization in the Aviation Services.
- c. FCC Form 503, Application for Land Radio Station in the Maritime Services.
- d. FCC Form 1046, Assignment of Authorization.

Forms should be mailed to the Federal Communications Commission, 334 York Street, Gettysburg, Pennsylvania 17325. Inquiries should be directed to the Gettysburg Office at (717) 334-7631 or (717) 334-9167. (Check the internet at WWW.FCC.GOV for more information on this subject).

| FACILITY TYPE/FREQUENCY BAND                  | DESIGNATOR      | STATION CLASS        |
|-----------------------------------------------|-----------------|----------------------|
| NDB (single corrier) (190,525 kHz)            | 9804494         | BI B                 |
| NDB (single carrier) (190-535 kHz)            | 1K12XXA         | RLB                  |
|                                               |                 | TUED .               |
| Marker Beacon [75 MHz (OM)]                   | 800HA2A         | RLA                  |
| Marker Beacon [75 MHz (MM)]                   | 2K60A2A         | RLA                  |
| Marker Beacon [75 MHz (IM/BCM)]               | 6K00A2A         | RLA                  |
|                                               |                 |                      |
| Localizer with voice (108.3-111.95 MHz)       | 6K00A9W         | KLL<br>DI I          |
| Localizer without voice ( $108.3-111.95$ MHz) | 2K04AIA         |                      |
| Glide Slope (328.6-335.4 MHZ)                 | 300HAIN         | KLG<br>DLC           |
| Glide Slope capture effect (328.6-335.4 MHz)  | 8K3UAIN         | RLG<br>DI            |
| DME (960-1215 MHz)                            | 650KM1A         | KL<br>DI             |
| DME/P (960-1215 MHz)                          | 750KM1A         | RL<br>DI             |
| TACAN (960-1215 MHz)                          | 650KVIA         | RL<br>DLO            |
| VOR with Voice (108.2-117.9875 MHz)           | 20K9A9W         | RLO                  |
| VOR without voice (108.2-117.9875 MHz)        | 20K9A2A         | RLO                  |
| MLS (5000-5250 MHz)                           | 150KM1D         | KLL/KLG              |
| Radar (TDWR) (5600-5650 MHz)                  | 4M00P0NAN       | WXD                  |
| Radar (ASR-9) (2700-2900 MHz)                 | 5M00P0N         | RLS                  |
| Radar (ASR-8) (2700-2900 MHz)                 | 6M00P0N         | RLS                  |
| Radar (ASR-7) (2700-2900 MHz)                 | 8M00P0N         | RLS                  |
| Radar (ARSR-4) (1215-1400 MHz)                | 5M00P0N         | RLS                  |
| Radar (ARSR-3) (1215-1400 MHz)                | 6M00P0N         | RLS                  |
| Radar (ARSR1/2) (1215-1400 MHz)               | 10M0P0N         | RLS                  |
| Radar (ASDE-3) (15.7-16.2 GHz)                | 28M0P0N         | LR                   |
| ATCRBS [1030 MHz - receive 1090 MHz)          | 6M00M1D         | RL                   |
| Voice communications using double sideband    | 6K00A3E         |                      |
| (118-137 and 225-400 MHz)                     | FA              | (enroute)            |
|                                               | FAC             | C (AC. LC. DC. etc.) |
|                                               | FAE             | 3 (ATIS, AWOS, etc.) |
|                                               | FLU             | J (GC, CD, etc.)     |
| HF (2, 20 MHz)                                | 11092111        | FY                   |
| 111 (0-00 WIIIZ)                              | 3K00J3E         | ΓA<br>FΔ             |
|                                               | 2K8013E         | FB                   |
|                                               | 6KUUSE<br>BUUSE | r D<br>oto           |
|                                               | 0120003 11      | 610.                 |
| RCL (7125-8500 MHz)                           | 20M0F9W         | FX                   |
| TML (14.4-15.35 GHz)                          | 27M0F9W         | FX                   |
| CHAPTER 3 REPORTING AND                       | ) INVESTIGATIN  | G RFI                |

| Figure 2-13 | 3 Typical | Emission | Designators | s/Station | <b>Classes</b> for | or the | FAA | ł |
|-------------|-----------|----------|-------------|-----------|--------------------|--------|-----|---|
| <b>0</b>    | J I       |          |             |           |                    |        |     |   |

# SECTION 1. RFI PROCEDURES

**300. GENERAL.** The RFI reporting program is being streamlined. The procedures listed in this chapter follow those in FAA Order 6050.22, Radio Frequency Interference Reporting.

**301. PROCEDURES FOR RFI.** In order to discharge frequency management responsibilities, the following interim guidelines are provided for RFI reporting.

**a.** Use the Maintenance Management System (MMS) in lieu of FAA Form 6050-3, Frequency Interference Report.

**b.** If there is an RFI-associated facility or service interruption, use the Log Interruption Report (LIR).

**c.** If there is no RFI-associated facility or service interruption, use the Log Line Frequency (LLF).

**d.** For both LIR and LLF:

(1) Enter 84 in the CODE CAT fields.

(2) Enter the duration of the RFI in the OPEN/START and ENTRY/CLOSE fields

e. RFI Investigation and Resolution:

(1) AF SMO personnel shall attempt to identify the RFI source. If identified, they may try to eliminate the interference by dealing directly with individuals located at the site.

(2) If the source is not immediately identified, the AF SMO involved will immediately notify the SW regional FMO. In all instances, the AF SMO shall report all unresolved cases to the FMO within 24 hours of the initial report.

(3) Regional FMO's will analyze each report and determine the action required to expedite resolution.

(4) If the interference resulted in a facility outage, significantly degraded the facility operation, contributed to an AT operational error, or contributed to a near mid-air accident, the regional FMO will immediately notify the National Maintenance Coordination Center (NMCC) and ASR-1.

(5) ASR-1 will determine whether HQ support will be provided.

(6) All interference cases requiring international coordination, including those with Mexico, shall be referred to ASR-1.

(7) Coordination with the FCC field engineering office and monitoring stations <u>shall</u> be through the regional FMO.

(8) Regional FMO's may request aircraft support from the FIAO directly and from the FAA Technical Center's Navigation/Spectrum/Power Systems Division (ACW-300), or other available resources, through ASR-1. Other types of aircraft support are also available through the FMO.

**302. PROCEDURES FOR DELIBERATE RFI (Phantom Controller/Pilot)**. These procedures supplement the Interagency Task Force Agreement between the FAA, the Federal Bureau of Investigation (FBI), and the FCC dated August 1989 and are paraphrased from FAA Order 6050.22.

a. FAA AT Manager is responsible for all actions described in FAA Order 7210.3.

**b.** FAA Regional Operations Officer sets up conference call with the parties listed above.

c. AF SMO Manager or designee (Task Force Coordinator) will:

(1) Take action to verify if the reported interference is a valid phantom controller incident (with input provided from the FMO, security officer, and AT supervisor).

(2) If validated, notify the NMCC of the phantom controller situation and activate the task force, if appropriate.

(3) Designate a time and place for the task force to meet.

(4) Notify local FCC personnel if the regional FMO is not available.

#### d. Regional FMO will:

- (1) Assist the task force coordinator in validation of the incident.
- (2) Activate the task force if the task force coordinator is not available.
- (3) Notify the appropriate FCC district office.
- (4) Notify ASR-1.
- (5) Participate with the FCC in the on-site investigation.

# e. Local AF SMO personnel will:

- (1) Provide assistance at airports during the investigation.
- (2) Coordinate communications between the direction finding teams and AT.

## f. Regional Security Officer will:

(1) Assist the task force coordinator in the validation of the incident.

(2) Activate the task force if the task force coordinator and the regional FMO are not available.

(3) Notify the local FBI personnel of the situation.

## g. ASR-1 will:

- (1) Notify HQ Security Office.
- (2) Notify HQ FCC personnel.
- (3) Provide additional guidance and resources to the task force if necessary.

#### h. HQ Security Office will:

- (1) Notify HQ FBI personnel.
- (2) Interface with the FBI and other Federal and local law enforcement agencies.

# **303. FCC LIAISON.**

**a. Background.** In years past, the FCC has periodically requested that liaison contacts with the field be accomplished through a specific point source to prevent a series of requests from various individuals, leading to confusion rather than coordination. To that end, various interagency agreements have ensued.

#### b. Procedure.

(1) The FMO is the sole contact point in the region for liaison with the FCC for all frequency management, assignment, and interference matters.

(2) In doubtful circumstances, particularly after regular office business hours, contact the Regional Duty Officer for proper channeling of your call.

(3) When the FCC originates action with any field personnel involving problem areas, the problem should be immediately brought to the attention of the FMO directly or through the Regional Duty Officer.

# **SECTION 2. GENERAL RFI**

**304. INTERFERENCE PROBLEMS.** Interference problems are numerous and endless. No one handbook, regardless of size, could describe symptoms and resolutions of all known problems. Certain basic considerations and procedures should be applied to any interference problem to form a solid basis for resolution.

**a.** Is the interfering signal "on channel"? In radar, this is usually the case. While the center operating frequency of the source is frequently a few megahertz removed from the affected radar, the source bandwidth will easily "hit" the affected receiver.

#### b. Is the receiver or interfering transmitter at fault?

(1) Is the transmitter (or interference source) actually radiating on the frequency to which the receiver is tuned? If so, resolution must be concentrated on reducing or eliminating this transmitter spurious radiation.

(2) Is the receiver responding to other than its intended-to-be received frequency? If so, the receiver or receiving conditions must be modified or improved.

(3) Determination of the above is absolutely essential, particularly when an interference source is outside the agency, since the basic premise of "cause must be resolved" is strictly adhered to.

**c.** The human ear is priceless in identifying interference sources. It is nearly always the sound that gives the source an identity. Careful listening to the signal or reviewing AT tapes can reveal such information as:

(1) Service -- whether it is police business, taxi dispatching, aeronautical, FM radio, etc.

(2) Emission -- pulse modulation such as radar, ATCRBS, and other pulse type emissions are recognizable by their characteristic "buzz".

(3) Nature -- the sweep of a frequency by an industrial heating device, the characteristic of a video field change "buzz", the rhythmic ticking of a timing circuit, and the musical sound of varying telemetry signal are examples.

(4) Duration/Time -- if the interfering signal is constant, varying, or periodic is an important indication as to the source. For example, if a radar is interfering, the exact radar can be determined just by timing the period between each interference pulse.

d. What solutions are possible other than a frequency change?

(1) Because of inevitable chain reactions, a frequency change to eliminate an interference problem will be accomplished **ONLY AS A LAST RESORT.** 

(2) There are actions that can be taken at the local level to expedite resolution:

(a) Where the source is known to be FAA equipment, all available site preparations (i.e. relocating antennas, checking equipment, etc.) should be tried.

(b) If the source is other than FAA, make an attempt to identify it.

(3) If the source cannot be identified by monitoring, the FMO should be notified immediately. Only through the FMO, the FCC mobile DF may be available, other DF airborne assistance may be procured, or the FMO may provide direct assistance.

(4) In all cases, a little time spent in serious analysis and evaluation of the problem will save many hours of wasted time later.

e. An EMI van is operated by FMO. It is best used for interference that can be heard from the ground or when the interference source has been narrowed down to a small geographical area. If an unresolved interference problem exists, the EMI van may be used to help find the resolution.

**305.** NON-FAA TRANSMITTERS ADJACENT TO FAA SITES. Although the FAA does not always procure sufficient land to permit proper separation of undesired transmitters for effective interference prevention, the following three conditions are considered desirable:

**a.** Transmitter(s) and antenna(s) must be a minimum of 1,000 feet from the FAA equipment and antenna site. Check siting criteria orders for each class of equipment.

**b.** Antennas or buildings installed so that the top of their tower (including antenna) or buildings shall be below the FAA radiating system.

**c.** Equipment shall not cause harmful interference. In the event of any interference which occurs to the FAA as a result of the other user's operation, the other user shall cease operation until interference is eliminated and shall stand any expense incurred in the correction thereof.

# **306. TRANSMITTER OPERATING FREQUENCIES.**

**a.** There are times when a simple solution to an interference problem is to change frequency, such as "exchanging" frequencies end-for-end on a VHF/UHF link. This type of unauthorized operation, while it may solve a local FAA problem, can cause serious repercussions in the form of interference to other FAA and non-FAA radio facilities, possible resultant loss of life and property, and criticism to the FAA.

**b.** Transmitter power as listed on the FTA is the maximum, not necessarily the operating power, authorized at that particular location and represents the power level when measured at the transmitter output.

#### 307. TESTING ON EMERGENCY CHANNELS.

**a.** Excessive and unnecessary testing on 121.5/243.0 MHz derogates the basic emergency function of these two frequencies.

**b. AF SMO routine** maintenance will confine radiation to the barest minimum consistent with effective maintenance. Power and modulation tests will be made with a dummy load. The briefest possible operational check will be made when restoring the channel to normal operation.

# SECTION 3. COMMUNICATIONS INTERFERENCE

**308. GENERAL.** This type of interference is by far the most common and is classified into three basic areas: internal, local, and external.

**a. Internal interference** is that generated within the communications receiver. "Birdies" are harmonics or spurious emissions generated by internal crystal oscillators or synthesizers used in the superheterodyne action. They manifest themselves as unmodulated carriers on specific frequencies, appearing constantly. You should not assume that because interference suddenly appears that it must be external. An aging crystal, "tweaking" of the oscillator during maintenance, and a change in a receiver voltage bus due to any cause can initiate a spurious signal where none had appeared before. Determination is simple, just remove the antenna from the receiver and ground the input terminal. If the signal remains, the source is internal and the receiver should be repaired.

**b.** Local interference is that caused by other sources in the same rack, room, or building. It is a signal generated by another transmitter or receiver, which causes a receiver response on the assigned frequency. You should not assume upon receiving an interference report that the interference just started. It could have been present since installation but only recently became noticeable. Problems can be masked by normal squelch settings and then become noticeable only when squelch is lowered or increased traffic on the frequency causes the squelch to be open more frequently. If intermods are suspected, they are easily recognizable by their mixture of two or more local frequencies, other than the victim. Some remedies are:

- (1) Antenna relocation (vertical or horizontal separation).
- (2) Receiver or transmitter relocation to another site.
- (3) Removal of the receiver from the T/R relay in the transmitter.
- (4) Cavity or crystal filter installation at the victim receiver input.
- (5) Cavity or ferrite isolator installation at the transmitter outputs.

(6) A frequency change is absolutely the last resort, especially considering the everpresent danger that a change will create a new problem.

**c. External interference** can be caused by a myriad of sources, such things as heater thermostats, broken power pole, insulators, spark ignitors for gas heaters, plastic welders, etc. The problems can be divided into three categories: on channel, adjacent channel, and brute force.

(1) On channel interference occurs when a signal is generated that falls within the receiver bandpass of the assigned frequency. The victim receiver does not know the signal is spurious or a harmonic from a transmitter on an entirely different fundamental frequency. The initial task is to identify the signal (voice, pulse, etc.)

(2) Adjacent channel interference is essentially the same as co-channel, except that the signal is much stronger or much broader, so that part of the signal falls into the bandpass of the victim receiver.

(3) Brute force, also called front-end overload, is an exceedingly strong signal which might be anywhere in the spectrum. As an example, a 50 kW FM broadcast transmitter in the 88-108 MHz band a few hundred feet from an RCAG or remote transmitter/receiver (RTR) may completely overload the receiver. The result is desensitization of the receiver and usually the passing of the FM signal through the receiver. Brute force can also be in-band and near frequency. For instance, a receiver tuned to 125.55 MHz would undoubtedly receive devastating interference from a transmitter on 125.6 MHz in the vicinity. Adjacent channel or brute force problems can normally be cured by relocating the transmitter or receiver to achieve a separation of 1000 feet or more or by installation of a cavity or crystal filter.

# SECTION 4. NAVAID INTERFERENCE

**309. GENERAL.** NAVAID interference is usually more difficult to identify. Generally, any interference is first noticed in the air by a pilot. Unless the source is very strong, there is a good possibility that it cannot be heard on the ground, except in the immediate vicinity of the source. A DF or a receiver with a signal level indicator should be used to locate a NAVAID interference.

**a.** Interference to a VOR occurring locally may be reported principally on an airport. In this case, it would be worth trying a ground search on and around the airport.

**b.** Interference to a VOR or LOC frequently is from FM broadcast stations, especially if they are in the upper part of the 88-108 MHz band, creating brute force and intermod problems in the airborne receiver when the aircraft nears the FM transmitter site. Unless the FM station is clearly identified by the reporting pilot, it will be necessary for the FMO or FIAO to observe the signal in the air.

**c.** Interference to a TACAN can be caused in two ways. Airborne reception can be affected by a source somewhere on the ground or the ground based TACAN receiver can receive interference

from any source nearby. Therefore, it must be determined if the interrogator or transponder frequency is being interfered with before any further investigation can be done.

# **SECTION 5. RADAR INTERFERENCE**

**310. PRIMARY RADAR.** Interference to a primary radar is often difficult to locate. Primary radar interference is normally due to another search radar, although it can be caused by a harmonic of a lower frequency transmitter. If the interference is caused by another radar, it will appear as dotted spirals called "running rabbits," which appear to "run" as the radar rotates. Interference due to another radar is most likely to occur near a military base where frequent changes of radars are made by transient troop groups.

**311. ATCRBS (IFF) INTERFERENCE.** This type of interference is very difficult to resolve because all interrogators and transponders work on the same frequency (1030/1090 MHz) and are segregated only by PRR. Interference is usually from another interrogator which could be several hundred miles away. Interference will normally appear as intermittent false targets. This is because an aircraft can be illuminated by two different interrogators at nearly the identical times, resulting in both radars receiving both replies, offset in time. For this reason, ASR-1 is responsible for the assignment of all FAA radar PRR's.

## **SECTION 6. OTHER/SPECIAL INTERFERENCE**

**312. POWER LINE INTERFERENCE.** When a power line carries interference, it acts as a Beverage antenna and can conduct the RFI for miles along its lines. This type of problem is best solved by "cruising" the lines coming into the facility and other lines nearby.

**a.** If it sounds like an electric motor, it could be anywhere from next door to several miles away. Driving along the line feeding the facility will show a gradually increasing/decreasing average signal, although there may be peaks as each power pole is passed. Electric motor RF noise can be cured only by fixing the problem at the source, probably with power line filters or additional or better grounding at the motor.

**b.** If it sounds like intermittent arcing, its probably a cracked or broken insulator on the pole crossarm. The utility company should be notified, stressing the safety of life and property aspect. Insulator arcing may occur at any time, but frequently starts after a long dry period when dust and dirt accumulate on the surfaces. Often the first heavy rain will clear up the problem, but a light rain could make matters worse.

**313.** VHF AND UHF CAVITIES AND RECEIVER CRYSTAL FILTERS. Where two or more VHF or UHF T/R frequencies are installed in near proximity, intermod or brute force interference may result. Improved selectivity by front-end filtering with cavity or crystal filters normally solves the problem. For interfering frequencies separated by 1 MHz for VHF, or 2 MHz for UHF, tuneable cavity filters are useful. The VHF is National Stock Number (NSN) 5915-00-309-0514. The UHF is NSN 5915-00-163-5690. Crystal filters for VHF frequencies separated by 100 kHz or more are very

effective. Contact the FMO for further details and for information on additional types of filtering devices.

**314. RECEIVER LOCAL OSCILLATOR INTERFERENCE.** The inexpensive VHF aviation receivers used by the general public often utilize 10.7 MHz as an intermediate frequency. When tuned to a frequency, the necessary superheterodyne conversion requires that the local oscillator frequency be  $\pm 10.7$  MHz of the frequency tuned. If this  $\pm 10.7$  MHz of the tuned frequency happens to fall on another aviation frequency utilized in the area, it can be a serious source of interference.

**315. TV INTERFERENCE.** The 75 MHz markers used in the ILS are frequently located in or very near residential homes. When this is so, interference to TV reception of Channel 5, and sometimes Channel 4, occurs. This is due to frequency adjacency. Channel 4 is 66-72 MHz; Channel 5 is 76-82 MHz. If this type of interference is reported to you, contact the FMO for assistance. DO NOT TOUCH the viewer's TV set.