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Example: Image Restoration
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Sparse Coding and Natural Language Processing
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The aim of sparse coding, revisited

We assume our data x satisfies

x ≈
n∑

i=1

αidi = αD

Learning:
Given training data xj , j ∈ {1, · · · ,m}
Learn dictionary D and sparse code α

Encoding:
Given test data x, dictionary D
Learn sparse code α
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Learning: The Objective Function

Dictionary learning involves optimizing:

arg min
{di},{αj}

m∑
j=1

‖xj −
n∑

i=1

αj
idi‖2

+ β
m∑

j=1

n∑
i=1

|αj
i |

subject to ‖di‖2 ≤ c, ∀i = 1, · · · ,n.

In matrix notation:

arg min
D,A
‖X− AD‖2F + β

∑
i,j

|αi,j |

subject to
∑

i

D2
i,j ≤ c, ∀i = 1, · · · ,n.

Split the optimization over D and A in two.
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Step 1: Learning the Dictionary

Reduced optimization problem:

arg min
D
‖X− AD‖2F

subject to
∑

i

D2
i,j ≤ c, ∀i = 1, · · · ,n.

Introduce Lagrange multipliers:

L (D, λ) = tr
(

(X− AD)T (X− AD)
)

+
n∑

j=1

λj

(∑
i

Di,j − c

)

where each λj ≥ 0 is a dual variable...
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Step 1: Moving to the dual

From the Lagrangian

L (D, λ) = tr
(

(X− AD)T (X− AD)
)

+
n∑

j=1

λj

(∑
i

D2
i,j − c

)

minimize over D to obtain Lagrange dual

D (λ) = min
D
L (D, λ) =

tr
(

XT X− XAT
(

AAT + Λ
)−1 (

XAT
)T
− cΛ

)

The dual can be optimized using congugate gradient
Only n, λ values compared to D being n × k
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Step 1: Dual to the Dictionary

With the optimal Λ, our dictionary is

DT =
(

AAT + Λ
)−1 (

XAT
)T

Key point: Moving to the dual reduces the number of
optimization variables, speeding up the optimization.
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Step 2: Learning the Sparse Code

With D now fixed, optimize for A

arg min
A
‖X− AD‖2F + β

∑
i,j

|αi,j |

Unconstrained, convex quadratic optimization
Many solvers for this (e.g. interior point methods, in-crowd
algorithm, fixed-point continuation)

Note:

Same problem as the encoding problem.
Runtime of optimization in the encoding stage?
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Speeding up the testing phase

Fair amount of work on speeding up the encoding stage:

H. Lee et al., Efficient sparse coding algorithms
http://ai.stanford.edu/~hllee/
nips06-sparsecoding.pdf

K. Gregor and Y. LeCun, Learning Fast Approximations of
Sparse Coding
http://yann.lecun.com/exdb/publis/pdf/
gregor-icml-10.pdf

S. Hawe et al., Separable Dictionary Learning
http://arxiv.org/pdf/1303.5244v1.pdf

http://ai.stanford.edu/~hllee/nips06-sparsecoding.pdf
http://ai.stanford.edu/~hllee/nips06-sparsecoding.pdf
http://yann.lecun.com/exdb/publis/pdf/gregor-icml-10.pdf
http://yann.lecun.com/exdb/publis/pdf/gregor-icml-10.pdf
http://arxiv.org/pdf/1303.5244v1.pdf
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Example: Image Patches
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Example: Document Topics
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Problem Statement

Goal:
Have sub-groups of sparse code
α all be non-zero (or zero).

Hierarchical:
If a node is non-zero, it’s parent
must be non-zero
If a node’s parent is zero, the
node must be zero

Implementation:
Change the regularization
Enforce sparsity differently...
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Group Regularization

Updated objective function:

arg min
D,{αj}

m∑
j=1

[
‖xj − Dαj‖2

+ βΩ
(
αj
)

]

where
Ω (α) =

∑
g∈P

wg‖α|g‖

α|g are the code values for group g.
wg weights the enforcement of the hierarchy
Solve using proximal methods.
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Other Examples

Other examples of structured sparsity:

M. Stojnic et al., On the Reconstruction of Block-Sparse
Signals With an Optimal Number of Measurements,
http://dx.doi.org/10.1109/TSP.2009.2020754

J. Mairal et al., Convex and Network Flow Optimization for
Structured Sparsity, http://jmlr.org/papers/
volume12/mairal11a/mairal11a.pdf

http://dx.doi.org/10.1109/TSP.2009.2020754
http://jmlr.org/papers/volume12/mairal11a/mairal11a.pdf
http://jmlr.org/papers/volume12/mairal11a/mairal11a.pdf
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