
Spatial Big Data Analytics for Urban Informatics

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Michael Robert Evans

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Advisor: Professor Shashi Shekhar

August, 2013

c© Michael Robert Evans 2013

ALL RIGHTS RESERVED

Acknowledgements

I want to thank my advisor, Professor Shashi Shekhar, for his incredible support through-

out my Ph.D. One phone call from him out of the blue back in 2008 truly changed my

life. His dedication and patience has been invaluable over the past five years. I also

want to thank all of the professors who helped me over the years in classes and espe-

cially those who accepted to serve on my committee: Dr. Vipin Kumar, Dr. Mohamed

Mokbel, and Dr. Francis Harvey. Each of your unique insights helped shape and craft

this work and my overall research interests. Thank you.

I extend thanks to Prof. Shekhar’s spatial research group, members both past and

present, for all the meetings, proposals and late nights we spent together. I will miss all

of you and thank you for all the help you have given me over the years. Lastly I want

to thank my lovely wife and parents for all their support.

i

Abstract

Urban Informatics is the practice of using computer technology to support core city

functions: planning, governance and operations. This technology consists of hardware,

software, databases, sensors, and communication devices used to develop and sustain

more livable and healthy cities. Urban Informatics provides governments with the tools

to make data-driven decisions regarding long-term plans, predict and respond to current

and upcoming situations, and even help with day-to-day tasks such as monitoring water

use and waste processing. New and immense location-aware datasets formally defined

in this thesis as Spatial Big Data are emerging from a variety of sources and can be used

to find novel and interesting patterns for use in urban informatics. Spatial big data is

the key component driving the emerging field of Urban Informatics at the intersection of

people, places, and technology. However, spatial big data presents challenges for existing

spatial computing systems to store, process, and analyze such large datasets. With these

challenges come new opportunities in many fields of computer science research, such as

spatial data mining and spatial database systems. This thesis contains original research

on two types of spatial big data, each study focusing on a different aspect of handling

spatial big data (storage, processing, and analysis). Below we describe each data type

through a real-world problem with challenges, related work, novel algorithmic solutions,

and experimental analysis.

To address the challenge of analysis of spatial big data, we studied the problem of

finding primary corridors in bicycle GPS datasets. Given a set of GPS trajectories

on a road network, the goal of the All-Pair Network Trajectory Similarity (APNTS)

problem is to calculate the similarity between all trajectories using the Network Haus-

dorff Distance. This problem is important for a variety of societal applications, such

as facilitating greener travel via bicycle corridor identification. The APNTS problem is

challenging due to the high cost of computing the exact Network Hausdorff Distance be-

tween trajectories in spatial big datasets. Previous work on the APNTS problem takes

over 16 hours of computation time on a real-world dataset of bicycle GPS trajectories in

Minneapolis, MN. In contrast, this work focuses on a scalable method for the APNTS

problem using the idea of row-wise computation, resulting in a computation time of

ii

less than 6 minutes on the same datasets. We provide a case study for transportation

services using a data-driven approach to identify primary bicycle corridors for public

transportation by leveraging emerging GPS trajectory datasets. Experimental results

on real-world and synthetic data show a two orders of magnitude improvement over

previous work.

To address the challenge of storage of spatial big data, we studied the problem of

storing spatio-temporal networks in spatial database systems. Given a spatio-temporal

network and a set of database query operators, the goal of the Storing Spatio-Temporal

Networks (SSTN) problem is to produce an efficient data storage method that minimizes

disk I/O access costs. Storing and accessing spatio-temporal networks is increasingly

important in many societal applications such as transportation management and emer-

gency planning. This problem is challenging due to strains on traditional adjacency

list representations when storing temporal attribute values from the sizable increase

in length of the time-series. Current approaches for the SSTN problem focus on or-

thogonal partitioning (e.g., snapshot, longitudinal, etc.), which may produce excessive

I/O costs when performing traversal-based spatio-temporal network queries (e.g., route

evaluation, arrival time prediction, etc) due to the desired nodes not being allocated to

a common page. We propose a Lagrangian-Connectivity Partitioning (LCP) technique

to efficiently store and access spatio-temporal networks that utilizes the interaction be-

tween nodes and edges in a network. Experimental evaluation using the Minneapolis,

MN road network showed that LCP outperforms traditional orthogonal approaches.

The work in this thesis is the first step toward understanding the immense challenges

and novel applications of Spatial Big Data Analytics for Urban Informatics. In this

thesis, we define spatial big data and propose novel approaches for storing and analyzing

two popular spatial big data types: GPS trajectories and spatio-temporal networks. We

conclude the thesis by exploring future work in the processing of spatial big data.

iii

Contents

Acknowledgements i

Abstract ii

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Urban Informatics . 2

1.2 Spatial Big Data . 3

1.2.1 Analysis of GPS Trajectories . 4

1.2.2 Storage of Spatio-Temporal Networks 5

1.3 Thesis Contributions . 7

1.4 Thesis Overview . 8

1.5 Outline . 9

2 Enabling Urban Informatics with Spatial Big Data 10

2.1 Defining Spatial Big Data . 13

2.2 Spatial Big Data Opportunities . 17

2.2.1 Estimating Spatial Neighbor Relationships 17

2.2.2 Supporting Place-based Ensemble Models 18

2.2.3 Simplifying Spatial Models . 19

2.2.4 On-line Spatio-Temporal Data Analytics 19

2.3 Spatial Big Data Infrastructure . 20

iv

2.3.1 Parallelization of Spatial Big Data 20

2.3.2 Difficulties of Parallelization . 21

2.3.3 Problems with Current Techniques 22

2.4 Conclusion . 22

3 Analysis of GPS Trajectories for Bicycle Corridor Identification 24

3.1 Introduction . 24

3.2 Problem Formulation . 28

3.2.1 Basic Concepts . 28

3.2.2 Problem Statement . 30

3.3 Computational Structure . 31

3.3.1 Graph-Node Track Similarity Baseline (GNTS - B) 32

3.3.2 Graph-Node Track Similarity with Precomputed Distances (GNTS

- P) . 33

3.4 Proposed Approach . 33

3.4.1 Matrix-Element Track Similarity (METS) 33

3.4.2 Row-Wise Track Similarity (ROW-TS) 35

3.5 Case Study: k-Primary Corridors for Commuter Bicyclists 37

3.6 Analytical Analysis . 39

3.6.1 Cost Analysis . 41

3.7 Experimental Evaluation . 42

3.7.1 Experimental Goals . 42

3.7.2 Experimental Design . 43

3.7.3 Experimental Results . 43

3.8 Conclusion . 44

4 Storage of Spatio-Temporal Networks for Advanced Routing 50

4.1 Introduction . 50

4.1.1 Motivation . 51

4.1.2 Spatio-Temporal Networks (STN) 53

4.1.3 Problem Statement . 55

4.1.4 Related Work and Limitations 57

4.1.5 Contribution . 59

v

4.1.6 Scope and Outline . 60

4.2 Proposed Approach . 61

4.2.1 Lagrangian-Connectivity Partitioning 63

4.2.2 Cost Model . 64

4.3 Experimental Evaluation . 65

4.3.1 Experiment Setup: . 65

4.3.2 LCP Approximation: ATSS . 67

4.3.3 Experimental Results . 68

4.4 Related Work . 71

4.5 Conclusions and Future Work . 73

5 Conclusion and Future Work 75

5.1 Key Results . 75

5.2 Future Directions . 77

5.2.1 Short-term Directions . 77

5.2.2 Long-term Directions . 78

References 80

vi

List of Tables

1.1 Examples of Current Urban Informatics Projects 2

1.2 Thesis Framework: Spatial Big Data Analytics for Urban Informatics . . 8

2.1 Spatial Auto-Regression and the W -matrix 17

3.1 Output for the All-Pair Network Trajectory Similarity problem: a Tra-

jectory Similarity Matrix for the input data in Figure 3.1 using Network

Hausdorff Distance. 30

3.2 Network distance between node pairs; required for NHD(tB, tA) (Input:

Figure 3.1, Full trajectory similarity matrix shown in Table 3.1. 31

3.3 Descriptive statistics about the case study dataset from [1]. 38

3.4 CPU Execution Time on Bicycle GPS trajectories in Minneapolis, MN . 38

3.5 Notation used in this chapter. 41

3.6 Asymptotic Complexity of Track Similarity Algorithms 41

4.1 Access Operators for Spatio-Temporal Networks from [2] 54

4.2 Related work for Spatio-Temporal Network 72

5.1 Thesis Contributions: Spatial Big Data Analytics for Urban Informatics 76

vii

List of Figures

1.1 A commuter’s GPS tracks over three months reveal preferred routes.

(Best viewed in color) . 5

1.2 Traffic speed measurements averaged over 30 days by time of day. Cour-

tesy: [3] . 7

2.1 Eco-routing supports sustainability and energy independence. (Best in

color) . 11

2.2 Hurricane Rita and Evacuation Traffic. Source: National Weather Ser-

vices and FEMA. 12

2.3 Engine measurement data improve understanding of fuel consumption [4].

(Best in color) . 15

2.4 Spatial Big Data on Historical Speed Profiles. (Best viewed in color) . . 16

3.1 Road network represented as an undirected graph with four trajectories

illustrated with bold dashed lines. 25

3.2 Classifications of Hausdorff Trajectory Similarity Algorithms. 26

3.3 Inserting a virtual node (Avirtual) to represent Track A for efficient Net-

work Hausdorff Distance computation. 34

3.4 Example input and output of the k-Primary Corridor problem. 36

3.5 Set of 8 -primary corridors identified from bicycle GPS trajectories and

candidate corridors with varying restrictions on number of street traversals. 37

3.6 Experiment Design . 42

3.7 Experimental results on synthetic data. Note the y-axis is in logarithmic

scale. 49

4.1 Airline travel information as a spatio-temporal network. 51

4.2 The U.S. natural gas pipeline network. [5] 52

viii

4.3 Traffic speed measurements over 30 days on a portion of highway. Cour-

tesy: [3] . 53

4.4 Snapshot model of a spatio-temporal network 54

4.5 Snapshot storage of a STN . 57

4.6 Longitudinal storage of a STN . 59

4.7 STN as a time-expanded network . 61

4.8 Orthogonal partitioning of Spatio-Temporal Networks. 62

4.9 Lagrangian-Connectivity Partitioning 63

4.10 Minneapolis, MN road network [6] . 66

4.11 Experimental Setup . 66

4.12 Aggregated Time-Stamped Snapshot . 67

4.13 Experiment 1 - The effect of the route length. Note that Snapshot and

Longitudinal are overlapping. 68

4.14 Experiment 2 - Effects of varying the size of data pages 69

4.15 Experiment 3 - Accuracy of the cost model in a Lagrangian path evaluation 70

4.16 Experiment 4 - Comparison of Non-Orthogonal Methods 71

4.17 Experiment 5 - Changing the Spatio-Temporal Network 72

4.18 Related work in Record Formats for Time Series Storage 73

5.1 Many potential route solutions will require merging and grouping of

routes, similar to trajectory similarity. 79

ix

Chapter 1

Introduction

Urban Informatics is a set of ideas and technologies that will transform the lives of every-

day citizens by helping understand the urbanized world, knowing and communicating

our relation to people and places in that world, and generally enabling more livable

and healthier cities. Recent examples of urban informatics in use across the world are

listed in Table 1.1. The city of Santander, Spain uses over “12,000 electronic sensors

that track everything from traffic and noise to surfing conditions at local beaches [7]”.

A reoccurring theme in the example cities given is a centralized computer system to

collect data and respond to events in real-time.

New and immense location-aware datasets formally defined in this thesis as Spatial

Big Data are emerging from a variety of sources and can be used to find novel and

interesting patterns for use in urban informatics. This large variety of disparate data

sources is fostering the new field of Urban Informatics which has the potential to trans-

form metropolitan services such as public health, transportation, and urban utilities. In

public health, spatial aspects, e.g., neighborhood context [8], are critical in understand-

ing many contributors to disease process including environmental toxicant exposure as

well as human behavior and lifestyle choices. This exposome [9], a characterization of a

person’s lifetime exposures, is becoming an increasingly popular subject of research for

public health [10].

Urban Informatics requires the ability to store, process, and analyze spatial big

data, something that challenges traditional spatial computing systems [11]. With these

challenges come new opportunities in many fields of computer science research, such as

1

2

spatial data mining and spatial database systems. This thesis contains original research

on two types of spatial big data, each study focusing on a different aspect of handling

spatial big data (storage, processing, and analysis).

Table 1.1: Examples of Current Urban Informatics Projects

City Country Urban Informatics and Use-Cases

Songdo South Korea “Computers will be built into the houses, streets
and offices as part of a “ubiquitous” net-
work linking everyone in a sort of digital com-
mune [12].”

SmartSantander Spain “Buried under the streets of Santander, Spain -
or discreetly affixed to buses, utility poles, and
dumpsters - are some 12,000 electronic sensors
that track everything from traffic to noise to
surfing conditions at local beaches [7].”

PlanIT Valley Portugal “using a centralized computer brain to con-
trol functions like water use, waste processing...
from a network of sensors much like a nervous
system to collect data and control the city [13].”

Masdar City Abu Dhabi “Everything is connected through a cloud to
an Urban Operating System, which acts as the
city’s brain [13].”

1.1 Urban Informatics

Urban Informatics is the practice of using computer technology to support core city

functions: planning, governance and operations. This technology consists of hardware,

software, databases, sensors and communication devices used to develop and sustain

more livable and healthy cities [14]. Urban Informatics provides governments with the

tools to make data-driven decisions regarding long-term plans, predict and respond to

current and upcoming situations, and even help with day-to-day tasks such as monitor-

ing water use and waste processing.

Urban Informatics is an interdisciplinary field across many related disciplines (e.g.,

Citizen Science [15], Urban Computing [16], Ubiquitous Computing [17]) and consist of

a variety of academic fields. Recently defined in the Handbook of Urban Informatics [18],

3

urban informatics can be defined as:

“the study, design, and practice of urban experiences across different urban

contexts that are created by new opportunities of real-time, ubiquitous tech-

nology and the augmentation that mediates the physical and digital layers

of people, networks, and urban infrastructures.” (Forth, Choi, & Satchell,

2011, p.4).

Urban informatics and related technologies are beginning to quantify these toxicant

exposures through the use of wide-spread sensing devices. For example, Accra, Ghana

used air quality measuring devices attached to smartphones to record spatio-temporal

air quality information and compare it to the static daily reports given out by the

government [15]. This data-driven approach found a huge variation of air quality across a

single city and a single day, questioning single-source measurement for quantifying public

health risks [15]. These case-studies provide ample motivation to push the development

of Urban Informatics and the technologies behind it, such as Spatial Big Data.

1.2 Spatial Big Data

Increasingly, the size, variety, and update rate of spatial datasets exceed the capacity of

commonly used spatial computing technologies to learn, manage, and process the data

with reasonable effort. We refer to these datasets as Spatial Big Data (SBD). A 2011

McKinsey Global Institute report defines traditional big data as data featuring one or

more of the 3 “V’s”: Volume, Velocity, and Variety [19]. Examples of emerging SBD

include temporally detailed roadmaps that provide traffic speed values every minute for

every road in a city, GPS trajectory data from cell-phones, and engine measurements

of fuel consumption, greenhouse gas emissions, etc. Temporally-detailed roadmaps are

providing more accurate travel time estimates for commuters depending on the time of

day. Location-based services are allowing cities to examine usage patterns of bike lanes

and park trails and make data-driven decisions about placing new corridors. Spatial

big data is the key component driving the emerging field of Urban Informatics at the

intersection of people, places, and technology. However, spatial big data presents chal-

lenges for existing spatial computing systems to store, process, and analyze such large

4

datasets. With these challenges come new opportunities in many fields of computer

science research, such as spatial data mining and spatial database systems. Below we

describe the societal applications, related work, and challenges of working with these

two example spatial big datasets.

1.2.1 Analysis of GPS Trajectories

GPS trajectories are quickly becoming available for a larger collection of people due to

rapid proliferation of cell-phones, in-vehicle navigation devices, and other GPS data-

logging devices [20] such as those distributed by insurance companies [21]. Such GPS

traces allow analysis of people for a number of urban informatics use-cases. For exam-

ple, indirect estimation of fuel efficiency and GHG emissions is possible via estimation

of vehicle-speed, idling and congestion. They also make it possible to make personalized

route suggestions to users to reduce fuel consumption and GHG emissions. For exam-

ple, Figure 1.1 shows 3 months of GPS trace data from a commuter with each point

representing a GPS record taken at 1 minute intervals, 24 hours a day, 7 days a week.

As can be seen, 3 alternative commute routes are identified between home and work

from this dataset. These routes may be compared for idling which are represented by

darker (red) circles. Assuming the availability of a model to estimate fuel consumption

from speed profile, one may even rank alternative routes for fuel efficiency. In recent

years, consumer GPS products [20, 22] are evaluating the potential of this approach.

A key hurdle is the dataset size, which can reach 1013 items per year given constant

minute-resolution measurements for all 100 million US vehicles.

Trajectory pattern mining is a popular field with a number of interesting problems

both in geometric (Euclidean) spaces [24] and networks (graphs) [25]. A key component

to traditional data mining in these domains is the notion of a similarity metric, the mea-

sure of sameness or closeness between a pair of objects. A variety of trajectory similarity

metrics, both geometric and network, have been proposed in the literature [26]. One

popular metric is Hausdorff distance, a commonly used measure to compare similarity

between two geometric objects (e.g., polygons, lines, sets of points) [27]. A number

of methods have focused on applying Hausdorff distance to trajectories in geometric

space [28, 29, 30, 31].

5

(a) GPS Trace Data. Color indicates speed. (b) Routes 1, 2, 3, & 4 [23].

Figure 1.1: A commuter’s GPS tracks over three months reveal preferred routes. (Best
viewed in color)

Hausdorff distance has been shown to be a useful tool in geometric space for measur-

ing similarity between trajectories, but applying Hausdorff distance to network-based

trajectories is non-trivial. A number of papers have proposed approximation heuristics

to compute Hausdorff distance on networks [32, 33, 34, 35, 36]. This is due to the

expensive graph-distance computations needed when dealing with trajectories on net-

works. These approximations allow for interesting and useful pattern discovery, but do

not compute exact similarities between trajectories and may alter results. We propose

fast and correct algorithms for computing these similarities for a variety of use cases.

We go on to provide a case study on real-world GPS data from cyclists in Minneapolis,

MN.

1.2.2 Storage of Spatio-Temporal Networks

A Spatio-Temporal Network (STN) can be defined as a graph G = (N, E, T), where N

is a set of nodes, E is a set of edges connecting two nodes, and every node and edge is

associated with temporal information T (e.g., travel time). STN datasets are becoming

6

indispensable in societal applications, such as surface and air transportation manage-

ment systems. One of the most appealing properties of these datasets is their ability to

capture network attributes that vary over time. Consequently, STN datasets are usually

massive in size and are accessed based on spatio-temporal movement patterns, making

I/O efficient storage and access methods a significant challenge. Analyzing movement

in spatio-temporal networks is important in many societal applications such as trans-

portation, distribution of electricity and gas, and evacuation route planning. The ability

to efficiently store, process and analyze spatio-temporal networks with large time series

data would provide benefit to a wide variety of applications.

The Federal Highway Administration [3] is recording traffic data of major roads and

highways using sensors such as loop detectors, among others, across the United States.

Depending on the type of sensor, traffic levels are recorded every minute throughout a

day, as shown in Figure 1.2. The Mobility Monitoring Program (MMP), started in 2000

by the Texas Transportation Institute, aimed to evaluate the use of sensors for traffic

information around the United States. By 2003, MMP was receiving traffic sensor data

from over 30 cities and 3,000 miles of highway, with sensor readings occurring roughly

every 30 seconds. This data is then recorded 24 hours a day, 365 days a year, resulting

in millions of time steps per year for each sensor. MMP published a report citing the

need for processing and storage of historical traffic data, and how it may benefit traffic

management [37].

Spatio-temporal networks (STN) are used to represent temporally-detailed road net-

works, where analysis can be done on fine-grained traffic speed measurements. How-

ever, these datasets are significantly larger than their atemporal brethren, and pose

a number of challenges for existing analytical, processing, and underlying infrastruc-

ture technology. Over the last decade, considerable work on STNs has focused on

pre-computation techniques and speed-up algorithms for time-dependent route plan-

ning [38, 39, 40, 41, 42, 43]. By comparison, there has been relatively little work on the

design and evaluation of storage and access methods for STNs. Early work employed

geometric space indexes for both space and space-time [44]. Orthogonal partitioning

methods, such as the longitudinal or snapshot method [43], are able to capture net-

work connectivity based on either space or time orthogonally. The longitudinal method

stores temporally consecutive properties of a node (or edge) into the same data page

7

Figure 1.2: Traffic speed measurements averaged over 30 days by time of day. Cour-
tesy: [3]

whereas the snapshot method stores a topologically connected sub-graph for a given

time instance into the same data page. Current related work for storing and access-

ing STN data have relied on these orthogonal approaches [43]. In contrast with these

methods, our approach focuses on non-orthogonal partitioning based on movement-

connectivity [45, 46].

1.3 Thesis Contributions

The main contributions of this thesis address the challenges of defining, storing, pro-

cessing, and analyzing spatial big data. First, we define spatial big data and discuss the

challenges and opportunities SBD brings to spatial computing, elaborating on work we

did in [11]. Second, we address the challenge of analyzing spatial big data using GPS

trajectories as a case-study, motivated by the societal application of finding bicycle cor-

ridors from urban cyclists [47, 48]. Third, we address the challenge of storing spatial

big data in spatial database systems, specifically storing spatio-temporal networks for

use in advanced routing services [45, 46]. We lastly present our preliminary work on the

challenge of processing spatial big data in the future work section of the thesis.

8

Table 1.2: Thesis Framework: Spatial Big Data Analytics for Urban Informatics

Spatial Big Data Urban Informatics

Strategic Tactical Operational

Long-term Forecasts
(climate, demo-
graphics, economy)

SBD for Ur-
ban Informatics
(Ch. 2)

Location Traces
(GPS)

Bicycle Corridor
Selection (Ch. 3)

Spatio-Temporal
Networks (STN)

Commuter Infor-
mation Systems
(Ch. 4)

1.4 Thesis Overview

Each layer of urban management (planning, governance, and operations) can be mapped

to a temporal range consisting of strategic, tactical, and operational (STO) plans. This

STO model is traditionally used to describe short and long term planning and manage-

ment in businesses and government. Strategic plans provide long-term directions for

a city, such as 20 year traffic and demographic projections. Tactical plans are on the

time scale of 2-5 years, corresponding to the term of a mayor who may fund new bike

lanes and other eco-friendly transportation options. Finally, operational tools provide

day-to-day tools and information for city employees to help keep the city functioning

smoothly and efficiently.

Table 1.2 illustrates how spatial big data may facilitate different scales of manage-

ment and analysis for urban informatics. The left column labeled Spatial Big Data

contains three different example datasets. The right three columns, strategic, tactical,

and operational, labeled under the umbrella of Urban Informatics, correspond to differ-

ent temporal scales of urban informatics. Each cell intersecting an urban informatics

scale and example spatial big dataset illustrate a potential application. For example,

the cell intersecting Location Traces and Tactical, Bicycle Corridor Selection, refers to

a real-world application described in Chapter 3 of using GPS trajectory data to iden-

tify bicycle corridors for urban commuters. The rest of the cells in Table 1.2 highlight

the other work in this thesis, such as an introduction to spatial big data for Urban

9

Informatics, and work on spatio-temporal networks to illustrate operational analysis for

day-to-day driving information for travelers.

1.5 Outline

We begin in Chapter 2 by defining Spatial Big Data (SBD) and the underlying chal-

lenges and opportunities it presents for Urban Informatics. In Chapter 3, we describe

GPS trajectory datasets and provide a case-study and contributions from our work

on identifying primary corridors for urban cyclists [47]. Chapter 4 introduces spatio-

temporal networks, and illustrates our contributions of storage and access of these net-

works from [45, 46] along with the potential uses for urban informatics. Finally, we

conclude the thesis with our planned future work.

Chapter 2

Enabling Urban Informatics with

Spatial Big Data

Increasingly, the size, variety, and update rate of spatial datasets exceed the capacity of

commonly used spatial computing and spatial database technologies to learn, manage,

and process the data with reasonable effort. We refer to these datasets as Spatial Big

Data, processed via spatial computing. In this chapter, we present published work in

which we were first to define spatial big data and the challenges and opportunities it

presents to the spatial computing community [11]. Spatial computing is a set of ideas

and technologies that transform lives by understanding the geo-physical world, knowing

and communicating relations to places in that world, and navigating through those

places. The transformational potential of spatial computing technologies is already

evident. From Google Maps to consumer Global Positioning System (GPS) devices,

society has benefited immensely from routing services and technology. Scientists use

GPS to track endangered species to better understand behavior, and farmers use GPS

for precision agriculture to increase crop yields while reducing costs. We’ve reached

the point where a hiker in Yellowstone, a biker in Minneapolis, and a taxi driver in

Manhattan know precisely where they are, their nearby points of interest, and how to

reach their destinations.

We believe that harnessing Spatial Big Data (SBD) will enable the growing field of

Urban Informatics. Examples of emerging SBD datasets include temporally detailed

10

11

(TD) roadmaps that provide speeds every minute for every road-segment, GPS trace

data from cell-phones, and engine measurements of fuel consumption, greenhouse gas

(GHG) emissions, etc.

(a) UPS avoids left-
turns to save fuel [49].

(b) Petroleum is dominant en-
ergy source for US Transporta-
tion [50].

(c) Gap between US petroleum con-
sumption and production is large and
growing [51, 52].

Figure 2.1: Eco-routing supports sustainability and energy independence. (Best in
color)

Eco-Routing: A 2011 McKinsey Global Institute report estimates savings of “about

$600 billion annually by 2020” in terms of fuel and time saved [19] by helping vehicles

avoid congestion and reduce idling at red lights or left turns. Preliminary evidence

for the transformative potential includes the experience of UPS, which saves millions

of gallons of fuel by simply avoiding left turns (Figure 2.1(a)) and associated engine-

idling when selecting routes [49]. Immense savings in fuel-cost and GHG emission are

possible in the future if other fleet owners and consumers avoided left-turns and other

hot spots of idling, low fuel-efficiency, and congestion. ‘Eco-routing’ may help identify

routes which reduce fuel consumption and GHG emissions, as compared to traditional

route services reducing distance traveled or travel-time. Eco-routing has the potential

to significantly reduce US consumption of petroleum, the dominant source of energy for

transportation (Figure 2.1(b)). It may even reduce the gap between domestic petroleum

consumption and production (Figure 2.1(c)), helping bring the nation closer to the goal

of energy independence [53].

Public Safety: Evacuation planning is a crucial task for managing public safety.

Whether natural (flood, hurricanes, etc.) or man-made (release of chemical or toxic

substances, etc.) disasters require that emergency personnel be able to move affected

populations to safety in as short a time as possible. Despite the increased threat of

disasters posed by global climate change and the rise of terrorism, however, current

12

Figure 2.2: Hurricane Rita and Evacuation Traffic. Source: National Weather Services
and FEMA.

evacuation planning tools have serious limitations. Evacuation conducted during Hur-

ricane Katrina and Rita in 2005 were a stark reminder of how much can go wrong

despite intensive emergency preparation. For example, Figure 2.2 shows the miles of

backed-up traffic that occurred as Houston residents followed orders to flee the path

of Hurricane Rita. Therefore, efficient tools are needed to produce plans that identify

optimal evacuation routes and schedules, given a transportation network, node/edge

capacity constraints, source/destination nodes and evacuee population.

Even before cable news outlets began reporting the tornadoes that ripped through

Texas on Tuesday, a map of the state began blinking red on a screen in the Red Cross’

new social media monitoring center [54], alerting weather watchers that something was

happening in the hard-hit area.

UN Global Challenges: Real-time or near real-time water quality monitoring is

gaining traction in the field of environmental engineering as a way to better respond

to water quality problems. Nevertheless, our ability to use the data generated in such

systems is limited. These systems generate so much data (#/day for a single sen-

sor) that analyzing the information generated by networks of sensors quickly becomes

impossible. In addition, although we turn to computational methods to help us under-

stand events, current computational thinking in environmental engineering emphasizes

simulation. Thus, we are currently limited to explaining observations based on our

knowledge of biological/chemical/physical phenomena. Indeed, we do not rely on com-

putational methods to help identify new phenomena and lead beyond what is already

known. Data mining techniques will allow this to occur, however, and drive discovery

in the environmental field.

13

2.1 Defining Spatial Big Data

Spatial datasets are discrete representations of typically continuous phenomena. Dis-

cretization of continuous space is necessitated by the nature of digital representation.

There are three basic models to represent spatial data, namely, raster (grid), vector and

graph. Satellite images are good examples of raster data. On the other hand, vector

data consists of points, lines, polygons and their aggregate (or multi-) counter parts.

Graphs consisting of spatial networks are another important data type. Spatial Big

Data can also be represented via these basic models, only the datasets have become

much richer and more sophisticated.

(a) Wide-area persistent surveillance.
FOV: Field of view. (Photo courtesy of
the Defense Advanced Research Projects
Agency.) EO: Electro-optical. [55]

(b) LIDAR images of ground zero rendered
Sept. 27, 2001 by the U.S. Army Joint
Precision Strike Demonstration from data
collected by NOAA flights. Thanks to
NOAA/U.S. Army JPSD.

Raster data, such as geo-images (Google Earth), are frequently used for remote

sensing and land classification. New Spatial Big Raster Datasets are emerging from a

number of sources.

UAV Data: Wide area motion imagery (WAMI) sensors are increasingly being used

for persistent surveillance of large areas, including densely populated urban areas. The

wide-area video cover-age and 24/7 persistence of these sensor systems allow for new

and interesting patterns to be found via temporal aggregation of information. However,

there are several challenges associated with using UAVs in gathering and managing

raster datasets. First, UAV has a small footprint due to the relatively low flying height,

therefore, it captures a large amount of images in a very short period of time to achieve

the spatial coverage for many applications. This poses a significant challenge to store

14

rapidly increasing digital images. Image processing is another challenging because it

would be too time consuming and costly to rectify and mosaic the UAV photography

for large areas. The large quantity of data far exceeds the capacity of the available pool

of human analysts [56]. It is essential to develop automated, efficient, and accurate

technique to handle these spatial big data.

LiDAR: Lidar (Light Detection and Ranging or Laser Imaging Detection and Rang-

ing) data is generated by timing laser pulses from an aerial position (plane or satellite)

over a selected area to produce a surface mapping [57]. Lidar data are very rich to

analyze surface or extract features. However, these data sets contain irrelevant data for

spatial analysis and sometimes miss critical information. These large volumes of data

from multiple sources poses a big challenge on management, analysis, and timely acces-

sibility. Particularly, Lidar points and their attributes have tremendous sizes making

it difficult to categorize these datasets for end-users. Data integration from multi-

ple spatial sources is another challenge due to the massive amounts of Lidar datasets.

Therefore, Spatial Big Data is an essential issue for Lidar remote sensing

Vector data over space is a framework to formalize specific relationships among

a set of objects. Traditionally vector data consists of points, lines and polygons; and

with the rise of Spatial Big Data, corresponding datasets have arisen from a variety of

sources.

VGI Data: Volunteered geographic information (VGI) brings a new notion of in-

frastructure to collect, synthesize, verify, and redistribute geographic data through geo-

location technology, mobile devices, and geo-databases. Theses geographic data are

provided, modified, and shared based on user interactive online services (e.g., Open-

StreetMap, Wikimapia, GoogleMap, GoogleEarth, Microsofts Virtual Earth, Flickr,

etc). In recent years, VGI leads an explosive growth in the availability of user-generated

geographic information and requires bigger storage model to handle large scale spatial

dataset. The challenge for VGI is to enhance data service quality regard to accuracy,

credibility, reliability, and overall value [54].

Graph data, in spatial computing, is commonly used to represent road maps for

routing queries. While the network structure of the graph may not be changing, the

amount of information about the network is rising drastically. New temporally-detailed

road maps give minute by minute speed information, along with elevation and engine

15

measurements to allow for more sophisticated querying of road networks.

Spatio-Temporal Engine Measurement Data: Many modern fleet vehicles include

rich instrumentation such as GPS receivers, sensors to periodically measure sub-system

properties [58, 59, 60, 61, 62, 63], and auxiliary computing, storage and communication

devices to log and transfer accumulated datasets. Engine measurement datasets may

be used to study the impacts of the environment (e.g., elevation changes, weather),

vehicles (e.g., weight, engine size, energy-source), traffic management systems (e.g.,

traffic light timing policies), and driver behaviors (e.g., gentle acceleration or braking) on

fuel savings and GHG emissions. These datasets may include a time-series of attributes

such as vehicle location, fuel levels, vehicle speed, odometer values, engine speed in

revolutions per minute (RPM), engine load, emissions of greenhouse gases (e.g., CO2

and NOX), etc. Fuel efficiency can be estimated from fuel levels and distance traveled

as well as engine idling from engine RPM. These attributes may be compared with

geographic contexts such as elevation changes and traffic signal patterns to improve

understanding of fuel efficiency and GHG emission. For example, Figure 2.3 shows

heavy truck fuel consumption as a function of elevation from a recent study at Oak

Ridge National Laboratory [4]. Notice how fuel consumption changes drastically with

elevation slope changes. Fleet owners have studied such datasets to fine-tune routes to

reduce unnecessary idling [64, 65]. It is tantalizing to explore the potential of this dataset

to help consumers gain similar fuel savings and GHG emission reduction. However,

these datasets can grow big. For example, measurements of 10 engine variables, once a

minute, over the 100 million US vehicles in existence [66, 67], may have 1014 data-items

per year.

Figure 2.3: Engine measurement data improve understanding of fuel consumption [4].
(Best in color)

Historical Speed Profiles: Traditionally, digital road maps consisted of center lines

16

and topologies of the road networks [68, 69]. These maps are used by navigation devices

and web applications such as Google Maps [23] to suggest routes to users. New datasets

from companies such as NAVTEQ [70], use probe vehicles and highway sensors (e.g.,

loop detectors) to compile travel time information across road segments for all times

of the day and week at fine temporal resolutions (seconds or minutes). This data is

applied to a profile model, and patterns in the road speeds are identified throughout

the day. The profiles have data for every five minutes, which can then be applied to the

road segment, building up an accurate picture of speeds based on historical data. Such

TD roadmaps contain much more speed information than traditional roadmaps. While

traditional roadmaps have only one scalar value of speed for a given road segment (e.g.,

EID 1), TD roadmaps may potentially list speed/travel time for a road segment (e.g.,

EID 1) for thousands of time points (Figure 2.4(a)) in a typical week. This allows a

commuter to compare alternate start-times in addition to alternative routes. It may

even allow comparison of (start-time, route) combinations to select distinct preferred

routes and distinct start-times. For example, route ranking may differ across rush hour

and non-rush hour and in general across different start times. However, TD roadmaps

are big and their size may exceed 1013 items per year for the 100 million road-segments

in the US when associated with per-minute values for speed or travel-time. Thus,

industry is using speed-profiles, a lossy compression based on the idea of a typical day

of a week, as illustrated in Figure 2.4(b), where each (road-segment, day of the week)

pair is associated with a time-series of speed values for each hour of the day.

(a) Travel time along four road
segments over a day.

(b) Schema for Daily Historic Speed Data.

Figure 2.4: Spatial Big Data on Historical Speed Profiles. (Best viewed in color)

17

2.2 Spatial Big Data Opportunities

Spatial Big Data provides the opportunity to solve some of the long-standing challenges

in spatial computing which stemmed from lack of data. Here we describe four novel op-

portunities: estimating spatial neighbor relationships, supporting place-based ensemble

models, simplifying spatial models, and on-line spatio-temporal data analytics.

2.2.1 Estimating Spatial Neighbor Relationships

The data inputs of SDM are complex because they include extended objects such as

points, lines, and polygons in vector representation and field data in raster data [71].

During data input, relationships among spatial objects are often implicit (e.g., over-

lap, intersect, etc.) and are often captured by models or techniques that incorporate

spatial information into the SDM process. One such technique is to model the spatial

relationship among locations in a spatial framework via a contiguity matrix which may

represent a neighborhood relationship defined using adjacency or Euclidean distances.

These neighborhood or W matrices are used in many SDM tasks such as spatial outlier

detection, co-location pattern discovery, spatial classification and regression modeling,

spatial clustering, and spatial hotspot analysis [72].

Table 2.1: Spatial Auto-Regression and the W -matrix

NAME MODEL

Classical Linear Regression y = xβ + ε

Spatial Auto-Regression y = ρWy + xβ + ε

The W matrix poses a significant burden to end users due to the fact that W is

quadratic in the number of locations and reliable estimation of W needs a very large

number of data samples. In spatial classification and regression modeling, for example,

the logistic spatial autoregressive model (SAR) includes the neighborhood relationship

contiguity matrix. Table 2.1 shows a comparison of the classical linear regression model

and the spatial auto-regression model where the spatial dependencies of the error term,

or the dependent variable, are directly modeled in the regression equation.

SBD Opportunity 1: Post-Markov Assumption. SDB may be large enough

18

to provide a reliable estimate of W. This may ultimately relieve user burden and may

improve model accuracy. Traditional assumptions might not have to be made such

as limited interaction length (e.g., the Markov assumption), spatially invariant neigh-

bor relationships (e.g., the eight-neighborhood contiguity matrix), and tele-connections

derived from short-distance relationships.

2.2.2 Supporting Place-based Ensemble Models

Spatial heterogeneity (or non-stationarity) is an important concept is not captured in

traditional data mining approaches. An important feature of spatial data sets is the

variability of observed processes over space. Spatial heterogeneity refers to the inherent

variation in measurements of relationships over space. In other words, no two places on

Earth are identical. The influence of spatial context on spatial relationships can be seen

in the variation of human behavior over space (e.g., differing cultures). Different juris-

dictions tend to produce different laws (e.g., speed limit differences between Minnesota

and Wisconsin). The term spatial heterogeneity is most often used interchangeably with

spatial nonstationarity, which is defined as the change in the parameters of a statistical

model or change in the ranking of candidate models over space [73].

Traditional physics-based models have been place-independent for the most part

with the notable exception of geographically weighted regression (GWR) [74, 75]. The

regression equation for GWR, shown by Eq. 2.1, has the same structure as standard

linear regression, with the exception that the parameters are spatially varying, where

β(s) and ε(s) represent the spatially varying parameters and the errors, respectively.

GWR provides an ensemble of linear regression models, one per place of interest.

y = Xβ(s) + ε(s) (2.1)

Opportunity 2: SBD may support a Place-based ensemble of models be-

yond GWR. Examples include place-based ensembles of decision trees for land-cover

classification and place-based ensembles of spatial auto-regression models. The com-

putational challenge stems from the fact that naive approaches may run a learning

algorithm for each place. Reducing the computation cost by exploiting spatial auto-

correlation is an interesting possibility that will need to be explored further.

19

2.2.3 Simplifying Spatial Models

Spatial models are usually computationally more expensive than traditional models.

For example, spatial auto-regression requires more computing power due to the fact

that W is quadratic in the number of locations (Table 2.1). Geographically weighted

regression has the same limitation as opposed to classical linear regression, also due to

the inclusion of the W matrix (Eq. 2.1). Colocation pattern mining, which finds the

subsets of features frequently located together is more computationally expensive that

traditional association rule mining [76] and confidence estimation adds more costs (e.g.,

M.C.M.C. simulations).

Opportunity 3: Bigger the SBD, Simpler the spatial models. SDB creates

an opportunity to simplify spatial models in traditional SDM. It may be the case that

some of the complexity from SDM is due to the paucity of data at individual places

which in turn forces one to leverage data at nearby places via spatial autocorrelation

and spatial joins. SBD may provide a large volume of data at each place which may

allow algorithmic techniques such as place-based divide and conquer. Consequently, it

may only be necessary to build one model per place using local data and simpler models.

There are, however, a few challenges that must be considered when comparing place-

based ensembles of simpler models with current spatial models. First, it is unclear when

bigger data leads to simpler models. Second, the definition of SBD from an analytics

perspective is also unclear (e.g., ratio of samples to number of parameters).

2.2.4 On-line Spatio-Temporal Data Analytics

A fundamental limitation of SDM is off-line batch processing where spatial models are

usually not learned in real time (e.g., spatial auto-regression, colocation pattern mining,

and hotspot detection). However, SBD includes streaming data such as event reports

and sensor measurements. Furthermore, the use cases for SBD include monitoring and

surveillance which requires on-line algorithms. Examples of such applications include

1) the timely detection of outbreak of disease, crime, unrest and adverse events, 2) the

displacement or spread of a hotspot to neighboring geographies, and 3) abrupt or rapid

change detection in land cover, forest-fire, etc. for quick response.

Opportunity 4: On-line Spatio-Temporal Data Analytics. Models that are

20

purely local may leverage time-series data analytics models but regional and global mod-

els are more challenging. For spatial interactions (e.g., colocations and tele-connections)

with time-lags, SBD may provide opportunities for precisely computing them in an on-

line manner. If precise on-line computation is not possible, SBD might be useful in

providing on-line approximations.

2.3 Spatial Big Data Infrastructure

The management of large volumes of spatial data is a big challenge for several appli-

cations, such as satellite monitoring systems, intelligent transportation systems, and

disaster management systems. These applications need to provide a solution to the

increasing data demands and offer a shared, distributed computing infrastructure as

well as reliable system. The complexity and nature of spatial datasets makes them

ideal for applying parallel processing. Recently, the concept of a cloud environment has

been introduced to provide a solution for these requirements. Existing approaches and

solutions provide a general framework for distributed file system (e.g., Google file [77]

system and HDFS [78]) and process these data sets based on replicas of data blocks

(e.g., map-reduce [79] and Hadoop [78]). Column-oriented database systems have also

been introduced to support OLAP or join processing (e.g., MongoDB and HBase).

However, it is hard to generalize the infrastructure to handle spatial problems. For

instance, cloud computing should divide big data sets and distribute in terms of load

balancing and support parallel processing with minimum communication cost [80]. Par-

ticularly, the overhead of synchronization for every process is challenging for heteroge-

neous spatial datasets (e.g., polygons and line-strings, spatio-temporal road networks).

Furthermore, fault-tolerance and reliability for big data sets is another challenge on

emergency management system (e.g. evacuation route planning).

2.3.1 Parallelization of Spatial Big Data

The assumption that learning samples are independently and identically distributed

(IID) has been traditionally made by many classical data mining algorithms such as

linear regression. However, the IID assumption is violated when dealing with spatial

data due to spatial auto-correlation [81] where models such as classical linear regression

21

yield both low prediction accuracy and residual error exhibiting spatial dependence [82].

The spatial auto-regression (SAR) model [83, 81] was proposed as a generalization of

the linear regression model to account for spatial auto-correlation. It was successfully

used to analyze spatial datasets in areas such as regional economics and ecology, and

it was shown to yield better classification and prediction accuracy for many spatial

datasets exhibiting strong spatial auto-correlation [84, 82]. However, estimating the

parameters of SAR was found to be computationally expensive, which relegated its

applicability to small problems, despite its promise to improve classification and predic-

tion accuracy [85]. This has created an opportunity for parallel processing to speed-up

sequential procedures such as the SAR model.

Map-reduce provides an adequate framework for computing spatial auto-regression

where large spatial data sets may be processed in a distributed environment. This works

well for applications such as multiscale multigranular image classification into land cover

categories.

2.3.2 Difficulties of Parallelization

The GIS-range-query problem has three main components: (i) approximate filtering

at the polygon level, (ii) intersection computation, and (iii) polygonization of the re-

sult [86]. A search structure is used to filter out many non-interesting polygons from

the set of input polygons. The query box is then intersected with each of the remaining

polygons, and the output is obtained as a set of polygons by polygonizing the results of

the intersection computation.

The GIS-range-query operation can be parallelized either by function-partitioning or

by data-partitioning [86]. Function-Partitioning uses specialized data structures and al-

gorithms which may be different from their sequential counterparts. A data-partitioning

technique divides the data among different processors and independently executes the

sequential algorithm on each processor. Data-partitioning is in turn achieved by declus-

tering the spatial data.

The goal of declustering is to partition the data so that each partition imposes

approximately the same load for any range query. Intuitively, the polygons close to

each other should be scattered among different processors such that for each range-

query, every processor has an equal amount of work. Polygonal maps can be declustered

22

at the polygonal level or at the sub-polygonal level. Optimal declustering of extended

spatial data like polygons is difficult to achieve due to the non-uniform distribution and

variable sizes of polygons. In addition, the load imposed by a polygon for each range

query depends on the size and location of the query. Since the location of the query is not

known a priori, it is hard to develop a declustering strategy that is optimal for all range

queries. As the declustering problem is NP-Hard [86], heuristic methods are used for

declustering spatial data. Random partitioning, local load-balance and similarity-graph-

based methods are three popular, algorithms for declustering spatial data. Intuitively,

a local load-balance method tries to balance the work-load at each processor for a given

range query. A similarity based declustering method tries to balance the work-load at

each processor over a representative set of multiple range queries.

2.3.3 Problems with Current Techniques

Another problem is the difficulty in applying existing iterative algorithms to cloud en-

vironments. For instance, because most spatial graph algorithms (e.g., breadth-first

search and shortest path) use previous information for the next iteration, it is hard

to perform parallel processing. Recently, several interesting and effective solutions and

prototype systems have been developed [87, 88, 89, 87] but they have limitations when

dealing with spatial data sets. Specifically, spatial networks (e.g., transportation net-

works) have higher diameters than complex networks (e.g., social networks), and as

such the large number of iterations becomes the main bottleneck in processing spatial

big data. Although processing one iteration is parallelizable, the synchronization over-

head for cloud environment is too enormous to handle large scale datasets. Future work

should include non-iterative algorithms or different parallel programming models.

2.4 Conclusion

Spatial Big Data has immense potential to benefit a number of societal applications.

By harnessing this increasingly large, varied and changing data, new opportunities to

solve worldwide problems are presented. To capitalize on these new datasets, inherent

challenges that come with spatial big data need to be addressed. Many spatial oper-

ations are iterative by nature, something that parallelization has not yet been able to

23

handle completely. By expanding our cyber-infrastructure, we can harness the power of

these massive spatial datasets. New forms of analytics using simpler models and richer

neighborhoods will enable solutions in a variety of disciplines.

Chapter 3

Analysis of GPS Trajectories for

Bicycle Corridor Identification

3.1 Introduction

To address the challenge of analysis of spatial big data, in this chapter we study the

problem of finding primary corridors in bicycle GPS datasets. Given a set of trajectories

on a road network, the goal of the All-Pair Network Trajectory Similarity (APNTS)

problem is to calculate the Network Hausdorff Distance (NHD) between all pairs of

input trajectories. The classical Hausdorff distance is defined as the “maximum distance

of a set (of points) to the nearest point in the other set [90].” For example, the Network

Hausdorff Distance from Trajectory B to Trajectory A in Figure 3.1 is 4 units (edge

traversals), as every node in Trajectory B is at least 4 units or less away from any node in

Trajectory A. Note that the Hausdorff distance is not symmetric. It is a commonly used

similarity measure in computer vision [91] and computational geometry [92], but recently

has been used to define similarity between trajectories, both in Euclidean space [29] and

recently on graphs [32]. As the Hausdorff distance is set-based, it has no notion of order

and therefore when applied to trajectories, traditionally time is ignored. Depending on

the application domain, this may be acceptable as it is the underlying route choices that

are of interest in our case study on urban bicycle corridor planning.

Motivation: Trajectory similarity measures are used in a number of important of

societal applications, such as summarizing population movement within a city, or to

24

25

Figure 3.1: Road network represented as an undirected graph with four trajectories
illustrated with bold dashed lines.

optimize bus route placement. Using network-based trajectories enforces topological

constraints that are inherently present in road networks. Let us consider the problem

of determining primary bicycle corridors through a city to facilitate safe and efficient

bicycle travel. GPS trajectory data shows us where in the city bicycle commuters travel,

allowing for data-driven decisions of bike corridor placement. By selecting representative

corridors for a given group of commuters, we can minimize the overall alteration to

their routes and encourage use of the bicycle corridors. Facilitating commuter bicycle

traffic has been shown in the past to have numerous societal benefits, such as reduced

greenhouse gas emissions and healthcare costs [93].

Challenges: The APNTS problem is challenging due to the computational cost of

computing the Network Hausdorff Distance (NHD) between all pairs of input trajecto-

ries, as it requires a large amount of node-to-node distance comparisons. In our previous

work [47], we proposed an exact but expensive baseline algorithm to compute the NHD,

requiring multiple invocations of common shortest-path algorithms (e.g., Dijkstra’s [94]).

For example, given two trajectories consisting of 100 nodes each, a baseline approach to

calculate NHD would need to compare the distances for all pairs of nodes within those

two trajectories (104), which over a large trajectory dataset (e.g., pair-wise comparison

of 10,000 trajectories) would require 1012 distance comparisons. This quickly becomes

computationally prohibitive without faster algorithms.

Related Work: Trajectory pattern mining is a popular field with a number of in-

teresting problems both in geometric (Euclidean) spaces [24] and networks (graphs) [25].

A key component to traditional data mining in these domains is the notion of a simi-

larity metric, the measure of sameness or closeness between a pair of objects. A variety

26

of trajectory similarity metrics, both geometric and network, have been proposed in

the literature [26]. One popular metric is Hausdorff distance, a commonly used mea-

sure to compare similarity between two geometric objects (e.g., polygons, lines, sets

of points) [27]. A number of methods have focused on applying Hausdorff distance to

trajectories in geometric space [28, 29, 30, 31].

Hausdorff distance has been shown to be a useful tool in geometric space for mea-

suring similarity between trajectories for applications that do not use the temporal

information of trajectories, but applying Hausdorff distance to network-based trajec-

tories is non-trivial. A number of papers have proposed heuristics to approximate the

Hausdorff distance on networks [32, 33, 34, 35, 36]. This is due to the large number

of graph-distance computations needed to compute the NHD. These approximations

allow for interesting and useful pattern discovery, but do not compute exact similarities

between trajectories and may alter results. In our previous work [47], we proposed a cor-

rect but computationally expensive algorithm for clustering network trajectories on road

networks using Network Hausdorff Distance to identify new bicycle corridors through

a city to facilitate safe and efficient bicycle travel. However, while the optimized algo-

rithm was a significant improvement over the baseline, it still remained computationally

prohibitive for large trajectory datasets. We illustrate a classification of related work in

Figure 3.2, highlighting the various approaches of Hausdorff distance computation for

trajectories. In this chapter, we propose a new algorithm that improves performance

by over an order of magnitude on synthetic and case study datasets.

Figure 3.2: Classifications of Hausdorff Trajectory Similarity Algorithms.

Proposed Approach: In this chapter, we formalize the Network Hausdorff Dis-

tance for weighted graphs and propose a novel approach that is orders of magnitude

27

faster than the baseline approach and our previous work, allowing for Network Hausdorff

Distance to be computed efficiently on large trajectory datasets. We propose a novel ap-

proach that computes the exact NHD while remaining computationally efficient. While

the baseline approach computes node-to-node distances, the Network Hausdorff Dis-

tance (NHD) essentially requires node-to-trajectory minimum distance values. We take

advantage of this insight to compute the NHD between nodes and trajectories directly

by modifying the underlying graph, inserting a super-source node [95] and computing

from a trajectory to an entire set of trajectories with a single shortest-paths distance

computation.

Contributions: This chapter proposes a number of key contributions:

• We formalize the All-Pair Network Trajectory Similarity (APNTS) problem for

computing similarities between a set of trajectories.

• We propose a fast and exact algorithm, ROW-TS, to solve the APNTS problem.

• We provide a case study on real-world GPS trajectory data of bicycle commuters

in Minneapolis, MN.

• We validate the ROW-TS algorithm with experimental analysis.

Scope This chapter focuses on network trajectory similarity computation, being

a crucial step for a number of trajectory pattern mining algorithms (e.g., trajectory

clustering algorithms), as illustrated in our previous work which focuses on clustering

for primary corridors in transportation [47]. A key component of the Network Haus-

dorff Distance is shortest-path distance computations and values. In this chapter, we

will discuss a Dijkstra-like [94] framework for computing these paths during trajectory

similarity computation. This assumes that the underlying network is too large to pre-

compute and store the all-pair shortest-path distance matrix (e.g., Floyd-Warshall [94]).

We ignore order-dependent trajectories (chronological ordering, etc.) for simplicity, but

the discussed techniques can be transferred to a spatio-temporal network if a relation

between space and time is needed.

Outline: The rest of the chapter is organized as follows. A brief description of

the basic concepts and problem formulation is presented in Section 3.2. A description

of the computational structure of the APNTS problem is presented in Section 3.3. In

28

Section 3.4 we propose the ROW-TS algorithm. We provide a case-study on a real-world

bicycle GPS trajectory dataset in Section 3.5 and experimental analysis on synthetic

datasets in Section 4.3. Finally, we conclude in Section 4.5 with a discussion of future

work.

3.2 Problem Formulation

In this section, we describe the basic concepts required to describe the All-Pair Network

Trajectory Similarity (APNTS) problem. We provide an example dataset and a formal

problem statement.

3.2.1 Basic Concepts

We begin with a review of trajectories, networks, and how they are used to calculate

the Hausdorff distance.

Definition 1 Road Network

A road network is defined in this chapter as an undirected, weighted graph G = {V,E}
illustrated in Figure 3.1 where V = (1, 2, 3, ..., 18, 19, 20) are the vertices or nodes in the

graph G and E = (1−2, 1−6, ..., 18−19, 14−19, 19−20...) are the edges connecting the

vertices (edge weights of 1 unit). This representation is commonly used for transporta-

tion networks, where intersections are modeled as nodes. Note that the graph could be

directed without a change to the proposed approach.

Definition 2 Network Trajectory

A spatial trajectory traditionally refers to a series of points (a trace) of a moving object

in geographic space [24]. In this chapter, we will be focusing on network trajectories, or,

trajectories that consist as a set of nodes and edges in a graph. A common operation

for GPS trajectory data on road networks involves map-matching the GPS points to the

network [24]. This allows describing the trajectory using graph notation (a set of nodes

and edges) and perform graph-based calculations, such as shortest-path distance. In this

chapter, we define network trajectories as a set of connected vertices: tx = [v1, ..., vn].

29

Figure 3.1 contains four network trajectories: tA = [16, 17, 18, 19, 20]; tB = [1, 2, 3, 4,

9, 10]; tC = [16, 17, 18, 19, 20, 15, 10]; tD = [6, 7, 8, 9, 10].

Definition 3 Shortest-Path Distance

To measure shortest-path distance on a network or graph, we sum of the length of edges

required to traverse the graph between two specific nodes. A number of well-known

algorithms compute shortest-paths (shortest path tree) on graphs [94]. In this chapter,

we will use the generic function dist(n,m) to indicate the shortest-path distance between

nodes n andm. The choice of algorithm used to calculate this value may vary (Dijkstra’s,

A*, Floyd-Warshall if network size is small). In our pseudocode and implementation,

we use Dijkstra’s single-source shortest-paths algorithm [94] taking a source node v and

a graph G as input: distMap[] = Dijkstra(G, v). It returns the shortest-path distance

to all other nodes in G. In Figure 3.1, an example dist(3, 8) would be a distance of 3,

traversing the shortest-path 3-2-7-8 or 3-4-9-8.

Definition 4 Network Hausdorff Distance

As discussed in the related work, there are a number of variations and approximations

of Hausdorff distance on networks [32, 33, 34, 35, 36]. Based on these and the original

Hausdorff distance in geometric space [96], we formulate Network Hausdorff Distance

(NHD) between two trajectories tx and ty in Equation 3.1. An example of NHD, and

its asymmetric distances is NHD(tA, tB) and NHD(tB, tA). NHD(tA, tB) = 3 as

the farthest node in tA from tB is 3 edges away and tied between a number of pairs:

(dist(16A, 1B) = 3), (dist(17A, 2B) = 3), (dist(18A, 9B) = 3). NHD(tB, tA) = 4 as the

farthest node in tB from tA is 4 edges away with: (dist(3B, 17A) = 4 and dist(3B, 19C) =

4.

NHD(ti, tj) = max
n∈ti

min
m∈tj

dist(nti ,mtj) (3.1)

Definition 5 Trajectory Similarity Matrix

A similarity matrix contains the values based on some measure comparing each pairwise

combination of objects in a dataset. They are input for a number of data mining

30

Table 3.1: Output for the All-Pair Network Trajectory Similarity problem: a Trajectory
Similarity Matrix for the input data in Figure 3.1 using Network Hausdorff Distance.

NHD(tx, ty) Track A Track B Track C Track D

Track A 0 3 0 2

Track B 4 0 3 2

Track C 2 3 0 2

Track D 2 1 2 0

problems (e.g., clustering, classification). In this chapter, our focus is to quickly and

efficiently produce a similarity matrix of input trajectories for use in popular trajectory

pattern mining algorithms [24]. Table 3.1 contains the trajectory similarity matrix for

the APNTS problem on the input data in Figure 3.1. Each cell value is the result of

the NHD(tx, ty) equation given the two corresponding tracks (row, column).

3.2.2 Problem Statement

The All-Pair Network Trajectory Similarity (APNTS) problem can be formulated as

follows:

Input:

• Road Network: G = {V ,E}
• Collection of Trajectories: T

Output:

• Trajectory Similarity Matrix: M : T × T → R
Objective:

• Minimize computation time

Constraints:

• M values are correct given Equation 3.1 (Network Hausdorff Distance)

• G is a undirected, weighted graph with nonnegative edge weights

• Trajectories in T are paths in G

Example: Given the input road network and four trajectories in Figure 3.1, the

corresponding trajectory similarity matrix is shown in Table 3.1. For each cell in the

31

matrix, the NHD value was calculated based on the two input trajectories.

3.3 Computational Structure

Network Hausdorff Distance is a recently popular topic in the literature [32, 33, 34, 35,

36, 97]. However, each of these papers cite performance issues with a network-based

Hausdorff distance computation, with [32] saying “the baseline algorithm requires a

large number of distance computations which significantly degrades performance...”.

This idea is echoed in the other papers, each proposing interesting and novel algorithms

to approximate a network-based Hausdorff distance computation. In this section, we will

discuss the underlying computational structure of this baseline algorithm and mention

a few of the approximation algorithms and their limitations.

Essentially, the related work provides algorithms to reduce the number of Net-

work Hausdorff Distance computations between trajectories using clustering techniques

(e.g., density-based [97] or k-nn [32]) or by converting network trajectories to geometric

space [98]. These clustering approaches degrade to the baseline brute-force approach

when threshold values (density and neighborhood) are not appropriately set. In addi-

tion, as some portion (depending on thresholds) of trajectories are not being compared

via the Network Hausdorff Distance, the resulting distance values are not exact and may

affect the quality of the results of any algorithm using such values. In this chapter, we

focus on an exact approach, ensuring each trajectory pair similarity is computed with

the exact Network Hausdorff Distance while retaining computational scalability.

Table 3.2: Network distance between node pairs; required for NHD(tB, tA) (Input:
Figure 3.1, Full trajectory similarity matrix shown in Table 3.1.

NHD(tB, tA) 16tA 17tA 18tA 19tA 20tA Min

1tB 3 4 5 6 7 3

2tB 4 3 4 5 7 3

3tB 5 4 5 4 5 4

4tB 6 5 4 3 4 3

9tB 5 4 3 2 3 2

10tB 6 5 4 3 2 2

Max - - - - - 4

32

3.3.1 Graph-Node Track Similarity Baseline (GNTS - B)

The baseline algorithm to compute the Network Hausdorff Distance Track Similarity

Matrix M computes the shortest-path distance between each pair of nodes within each

pair of trajectories, choosing the maximum of the values of this set. Due to this enu-

meration, the approach is given the name Graph-Node Track Similarity, as it focuses

on repeated graph computations between all pairs of nodes within the two trajecto-

ries being compared. For example, in Figure 3.1, to compute the similarity between

Trajectory tB and Trajectory tA, we need to find the minimum distance from each

node in Trajectory tB = [1tB , 2tB , 3tB , 4tB , 9tB , 10tB] to any node in Trajectory tA =

[16tA , 17tA , 18tA , 19tA , 20tA], as described in Equation 3.1. These necessary shortest-

path distances are shown in Table 3.2. These values can be computed via any number

of shortest-path algorithms, but for simplicity we will focus on the popular Dijkstra’s

single-source shortest-paths algorithm [94]. Computing Table 3.2 would require 6 (or

|tB|) invocations of Dijkstra’s algorithm to find the shortest-path distance from each

node in tB to each node in tA with a runtime of O(|V |log|V |+ |E|) [94]. That amount

of computation is necessary to find NHD(tB, tA), one cell in the trajectory similar-

ity matrix (TSM) shown in Table 3.1. Therefore, in the baseline case, a number of

shortest-path algorithm invocations are required for each cell in the TSM.

Execution trace of GNTS: This baseline Graph-Node Track Similarity (GNTS)

algorithm is shown as pseudocode in Algorithm 1, essentially invoking a shortest-path

computation for each combination of nodes within each trajectory pair. To compute

the TSM in Table 3.1, GNTS iterates through all pairs of input trajectories in Lines 1

& 2. Lines 3 and 4 test if we are computing the Network Hausdorff Distance from one

trajectory to itself, which is always zero. Starting in Line 6, we begin to look for the

maximum value of the minimum network distances from every node in Trajectory tx

to any node in Trajectory ty. We set the current maximum value at negative infinity,

and proceed to iterate over each node n in trajectory tx. From n in Line 8 and 9,

we set the current minimum value as infinity and run a undirected shortest path tree

algorithm (Dijkstra’s [94]) to find the shortest-path distance to all nodes in G from n.

In Lines 10-14, we iterate through all nodes m in trajectory ty, checking the distance

map returned by the Dijkstra’s computation in Line 9 to see if the distance from n to m

is the smallest so far, if so, setting that fact in Line 12. By Line 15, we have found the

33

minimum distance from node n from trajectory tx to any node in trajectory ty. We then

test to see if it is greater than our current maximum value for this pair of trajectories,

which once done looping over these two sets of nodes in Line 19, is the correct answer

for NHD(tx, ty), saving it in the trajectory similarity matrix M . This continues for all

other pair of trajectories in the dataset.

3.3.2 Graph-Node Track Similarity with Precomputed Distances (GNTS

- P)

While our earlier work used the GNTS - Baseline algorithm above for comparison,

there was interest in providing the baseline algorithm with all-pair node distance values

in a lookup table, as they can be precomputed using various algorithms (e.g., Floyd-

Warshall [94]). This is achieved by precomputing the all-pair node distance and replac-

ing line 9 in Algorithm 1 with the precomputed values (constant time lookup). While

this becomes prohibitive for large networks, we show in Section 4.3 that GNTS - P has

some interesting performance characteristics, but has trouble with trajectories of longer

length.

3.4 Proposed Approach

In this section we will describe our proposed approach to efficiently solve the APNTS

problem. We begin by proposing our novel row-wise trajectory similarity (ROW-TS)

algorithm. The ROW-TS algorithm calculates an entire row of the trajectory similarity

matrix described in the APNTS problem with a single shortest-path computation.

3.4.1 Matrix-Element Track Similarity (METS)

While the baseline GNTS approach produces the correct output, a quick examination

reveals a major computational bottleneck as summarized in Section 3.3 and directly

visible in Algorithm 1, Line 9: multiple invocations of shortest-path algorithms for

each element in the trajectory similarity matrix. Our previous work [47] highlighted an

approach to reduce the number of shortest-path invocations to one invocation for each

cell in the trajectory similarity matrix.

34

Figure 3.3: Inserting a virtual node (Avirtual) to represent Track A for efficient Network
Hausdorff Distance computation.

To compute the Network Hausdorff Distance NHD(tx, ty) between two trajectories,

we don’t actually need the shortest distance from all pairs of nodes in the two trajec-

tories. We need the minimum distance from each node in tx to any node in ty. We

propose a novel approach to find this distance, not the all-node-pair distance. This

significantly reduces the number of distance calculations and node iterations needed

to compute the NHD. To do this, we modify the underlying graph. Using Figure 3.3,

to calculate NHD(D,A), we begin by inserting a virtual node (Dvirtual) representing

Track D into the graph. This node will have edges with weights of 0 connecting it to

each other node in Track D. Now, we can run a shortest-path distance computation

from the virtual node as a source, with the destination being every node in Track A. We

then know the shortest distance from each node in Track A to the virtual node. Since

the virtual node is only connected to nodes in Track D, and all the edge weights are 0,

we actually have the shortest-path from each node in Track A to the closest node in

Track D, exactly what Network Hausdorff Distance requires for computation.

For example, when we want to find the Track Similarity between Track D and Track

A, we now start by creating a virtual node connected to all nodes in Track A. We

then run Dijkstra from the virtual node to nodes (13, 14, 15, 16, 18, 19), giving us

the shortest-paths from those nodes to the virtual node. At this point we have the

same distance information that is given in Table 3.2, and can compute the trajectory

similarity without multiple invocations of shortest-path algorithms for each element.

Execution Trace of METS: The pseudocode for METS is given in Algorithm 2.

To compute the TSM in Table 1, METS iterates through all pairs of input trajectories

tx and ty in Lines 1 and 2. Lines 3 and 4 test if network Hausdorff Distance is being

35

computed from one trajectory to itself, which is always zero. In Lines 6 - 10, a virtual

node is added to the graph and connected to each node tx by an edge of length zero. In

line 11, METS runs an undirected shortest path tree algorithm (Dijkstras [94]) to find

the shortest-path distance between tracks the virtual node and ty, which effectively finds

the distance between tx and ty because each node in ty is connected to v via the nearest

node in tx. At this point, the virtual node is removed from the graph (line 12). In lines

14 18, METS iterates through all nodes m in trajectory ty, checking the distance map

returned by the Dijkstras computation (involving the virtual node) in line 11 to see if

the distance from n to m is the largest so far (Network Hausdorff Distance). In line

19, METS updates the track similarity matrix M with the newly calculated Hausdorff

distance between tx and ty and returns M in line 23.

3.4.2 Row-Wise Track Similarity (ROW-TS)

Computing the Network Hausdorff Distance NHD(tx, ty) between two trajectories does

not require the shortest distance between all-pairs of nodes in tx and ty. Instead, it

requires the minimum distance from each node in tx to the closest node in ty. In

Figure 3.3, to calculate NHD(tB, tA), we begin by inserting a virtual node (Avirtual)

representing Trajectory tA into the graph. This node has edges with weights of 0

connecting it to each other node in Trajectory tA. We then run a shortest-path distance

computation from the virtual node as a source, with the destination being every node

in Trajectory tB. The result was the shortest distance from each node in Trajectory

tB to the virtual node Avirtual. Since the virtual node is only connected to nodes in

Trajectory tA, and all the edge weights are 0, we had the shortest-path from each node in

Trajectory tB to the closest node in Trajectory tA, exactly what NHD(tB, tA) requires

for computation. However, this focused on computing a single cell in the trajectory

similarity matrix per invocation of a single-source shortest-paths algorithm. That means

at least O(|T |2) shortest-path invocations to compute the TSM for the APNTS problem,

still quite expensive. We propose a new approach, ROW-TS, to compute an entire row

of the TSM with one invocation of a single-source shortest-paths algorithm. Using a

row-based approach, we can essentially calculate NHD(t ∈ T, tA) with one single-source

shortest-paths invocation from Avirtual. This approach reduces the overall number of

shortest-paths invocations to O(|T |) at the cost of additional bookkeeping, as we will

36

(a) Recorded GPS points from bicyclists in Min-
neapolis, MN. Intensity indicates number of points.

(b) Original, hand-crafted primary corridors
identified by our co-author and fellow geog-
raphers in [1]

Figure 3.4: Example input and output of the k-Primary Corridor problem.

show below.

The pseudocode for ROW-TS is given in Algorithm 3. To compute the TSM in

Table 1, ROW-TS iterates through each input trajectory tx. In Lines 2 - 6, a virtual

node is added to the graph and connected to each node tx by an edge of length zero.

In line 7, ROW-TS runs an undirected shortest path tree algorithm (Dijkstra’s [94])

to find the shortest-path distance between all tracks and the virtual node, updating a

distance map. In lines 9-10, ROW-TS iterates through all nodes m in trajectory ty and

tests if the network Hausdorff Distance from one trajectory to itself is being computed,

which is always zero. In lines 13-19 ROW-TS checks the distance map returned by the

shortest-path computation to get the Hausdorff distance. In line 19, ROW-TS updates

the track similarity matrix M with the newly calculated Network Hausdorff Distance

between tx and ty and returns M in line 23.

Execution Trace of ROW-TS: We begin by iterating through each trajectory

tx in T . Let’s use Trajectory tA in Figure 3.1 as an example trajectory through this

algorithm. In Line 2 we create a virtual node to represent Trajectory tA (Avirtual in

Figure 3.3). Connecting Avirtual to each node in Trajectory tA (16, 17, 18, 19, 20) with

0-length edges, we can compute the single-source shortest-paths distance from Avirtual

to every other node in the graph G in Line 7. Since the edges connected to Avirtual had

37

(a) 8-Primary Corridors using input GPS
trajectories as candidates.

(b) 8-Primary Corridors using single roads as
candidates (e.g., Park Ave)

Figure 3.5: Set of 8 -primary corridors identified from bicycle GPS trajectories and
candidate corridors with varying restrictions on number of street traversals.

a length (weight) of 0, we know that each node n distance returned in the distMap[]

on Line 7 is actually the shortest-path distance from n to some node in A. This set

of minimum distances is what we need to calculate the NHD from each trajectory t

in T , which we loop through in Line 9. For each node m in trajectory t, we already

have the minimum distance from m to any node in trajectory A in the distMap[],

and therefore need to find the maximum of those minimums as defined in Definition 4

for the NHD(t,tA). For an example, lets use Trajectory tB as t starting in Line 9. We

iterate through each node mB in tB (1tB , 2tB , 3tB , 4tB , 9tB , 10tB) and lookup the distance

from Avirtual to mB in distMap[] (1tB :3, 2tB :3, 3tB :4, 4tB :3, 9tB :2, 10tB :2) as shown in

Table 3.2. The maximum of those minimum distances is 4, which we set as the value of

NHD(tB, tA) in Line 19. This repeats for every other trajectory t in T to compute the

entire row corresponding to Trajectory tA in the trajectory similarity matrix M .

3.5 Case Study: k-Primary Corridors for Commuter Bi-

cyclists

In Summer 2006, University of Minnesota researchers collected a variety of data to help

gain a better understanding of commuter bicyclist behavior using GPS equipment and

personal surveys to record bicyclist movements and behaviors [1]. One possible issue

38

they looked at was identifying popular transportation corridors for the Minnesota De-

partment of Transportation to focus funds and repairs. At the time, they hand-crafted

the primary corridors. Shortly after this study, the U.S. Department of Transportation

began a four-year, $100 million pilot project in four communities (including Minneapo-

lis) aimed to determine whether investing in bike and pedestrian infrastructure encour-

aged significant increases in public use. As a direct result of this project, the US DoT

found that biking increased 50%, 7,700 fewer tons of carbon dioxide were emitted, 1.2

fewer gallons of gas was burned, and there was a $6.9 million/year reduction in health

care costs [93]. In our previous work [47], we proposed a data-driven approach (the

METS algorithm) to identify these primary bike corridors. While this approach identi-

fied interesting corridors, it remained computationally expensive as shown in Table 3.4.

We re-ran the case-study in [47] on the Minneapolis, MN bicycle GPS dataset using the

METS and ROW-TS algorithms in Table 3.4, given the input of the Hennepin County

road network (57,644 nodes), 819 trajectories (shown in Figure 3.4(a) and a k of 8.

As expected, the ROW-TS algorithm significantly outperformed the METS algorithm.

The faster execution allowed a modification to the case-study to help identify more

appropriate corridors.

Table 3.3: Descriptive statistics about the case study dataset from [1].

Dataset Nodes Trajectories Average Track Length Length σ

Bike Traces 57,644 819 72.9 nodes 23.9

Table 3.4: CPU Execution Time on Bicycle GPS trajectories in Minneapolis, MN

Dataset METS ROW-TS

57,644 Nodes, 819 Tracks 55,823 sec 353.9 sec

In the previous case-study, the chosen primary corridors where selected from the

input trajectories (a k-medoid approach). While this ensured that chosen corridors

were routes that had been biked in the real world and shared commonalities with the

hand-crafted corridors chosen in Figure 3.4(b), they had problems of being too long

or having too many turns and deviations. In Figure 3.5(a), we show the corridors

chosen from the input trajectories. For this case-study, we generated a set of candidate

39

corridors based on input from geographers and had the ROW-TS algorithm compute the

similarity between these candidates and the input GPS trajectory data. The candidate

corridors were generated with two restrictions: 1) the corridor was a shortest-path

between two nodes on the network, and 2) the corridor could only consist of n different

streets, defined by their street name (e.g., a corridor traversing Park Ave and Cedar Ave

would consist of 2 streets). This approximated the types of corridors our geographer

collaborators were looking for while retaining the data-driven approach by comparing

them to the actual GPS trajectory data. For this study, we generated 5,000 trajectories

using these two constraints (source and destination nodes chosen at random) to be

used as candidate corridors. The faster ROW-TS algorithm allowed us to generate a

large number of candidate corridors and compute the similarity for the clustering. In

Figure 3.5(b), we show the chosen clusters generated from single-road candidates (e.g.,

a subset of Park Ave would be a candidate).

3.6 Analytical Analysis

We show that the output of the proposed algorithm (ROW-TS) retain correctness com-

pared to the baseline GNTS algorithm output while showing significant computational

speedup.

Lemma 1 The proposed baseline GNTS algorithm is correct and complete.

PROOF. The GNTS algorithm is baseline in that it explicitly computes exactly what

Definition 4 defines, namely the network distance between every pair of nodes in two

given trajectories, selecting the minimum distances for each set of nodes. This algorithm

uses enumeration of all pairs of trajectories, and for each pair, the enumeration of all

pairs of nodes within the trajectories. Finally it sums the minimum distances between

each pair of nodes to create the distance matrix. As every possible pairing is examined

independently (separate distance calculations for each), and no modifications to the

graph are done, each returned similarity is both correct and complete.

Lemma 2 The proposed Matrix-Element Trajectory Similarity (METS) algorithm gives

the same solution as the baseline GNTS algorithm.

40

PROOF. Consider trajectories ti with nodes xi ... x|ti| and tj with nodes yi ... y|tj |.

A naive method calculates the minimum distance dnaive between ti and tj by selecting

the shortest path with minimum weight from the set of paths Pnaive between xi and yj ,

∀xi ∈ ti, ∀yj ∈ tj . Consider further that a virtual node v is connected to all xi ∈ ti by

edges of weight 0 and not connected to any other node. METS calculates the minimum

distance dMETS between ti and tj by selecting the shortest path with minimum weight

from the set of paths PMETS between v and yj , ∀yj ∈ ti. The correctness of dMETS

may be argued in a manner similar to Dijkstra’s algorithm [94] where each node yj ∈ tj
is connected to v via the nearest node xi ∈ ti. dMETS = dnaive because the shortest

path with minimum weight in Pnaive will have the same weight as the shortest path

with minimum weight in PMETS . This is because v is connected to all xi ∈ ti by edges

of weight 0 (all xi’s are considered) and all shortest paths between v and yj , ∀yj ∈ tj
are calculated. Thus, METS gives the same solution as GNTS.

The METS algorithm retains its correctness (matching exactly with the GNTS al-

gorithm’s solution) while improving computational scalability by taking advantage of

the proposed trajectory similarity metric. By definition, the metric is looking for the

shortest-path from each node in one trajectory (e.g., Track D) to any node in the other

trajectory (e.g., Track A). Therefore, the baseline solution computes Dijkstra from each

node in Track D to all the nodes in Track A, returning the smallest distance. However,

this can be improved by reversing the comparison. We insert a virtual node connected

with edges to every node in Track A. We then compute Dijkstra from the virtual node

connected to Track A to all the nodes in Track D, giving us, by the definition of Dijkstra

algorithm [94], the shortest distances from each node in the destination nodes (each of

the nodes in Track D), to the virtual (source) node. Since our source node is connected

to each node in Track A with a length of 0, the distance from Track D nodes to any

node in Track A is the same as the distance from Track D nodes to the virtual node.

This gives us the same distance values used in the baseline GNTS algorithm, retaining

correctness and completeness.

Lemma 3 The proposed Row-Vector Track Similarity (ROW-TS) algorithm is correct.

PROOF. By Definition 4, NHD(tB, tA) is correct and it uses the shortest-path

distances from each node in tB to the respective closest node in tA. When ROW-TS

41

groups all nodes in tA as a super-source node (Avirtual) with a cost of 0, a label-setting

shortest-path algorithm guarantees correctness of the shortest-distance labels from all

nodes in tB to the super-source node Avirtual [94].

Table 3.5: Notation used in this chapter.

Notation Explanation

V Set of all Vertices in the Graph

T Set of all Trajectories

n Average number of nodes in a trajectory (V in worst-case)

S or V lg V Runtime of chosen shortest path algorithm

M Track Similarity Matrix

3.6.1 Cost Analysis

Using the notation in Table 3.5, we show the costs of each trajectory similarity algorithm

in Table 3.6. The baseline algorithm, GNTS, and METS require a polynomial number

of distance computations, whereas the ROW-TS algorithm requires a linear amount in

the number of input trajectories, resulting in a massive computational savings. It is

this repeated expense of this network distance computation that we are reducing in this

chapter. The algorithm METS results in O(|T |2) shortest path distance computations

to calculate the Track Similarity Matrix, whereas GNTS does a distance calculation

for each node in a given trajectory O(|T |2v). With our restructured algorithm, we

reduce the number of distance calculations to O(|T |) in the ROW-TS algorithm, which

significantly reduces computation time, as we will see in the experimental validation

section.

Table 3.6: Asymptotic Complexity of Track Similarity Algorithms

GNTS-B GNTS-P METS ROW-TS

Complexity T 2n2S T 2n2 T 2S + T 2n TS + T 2n

We differentiate between average case complexity and worst-case complexity in Ta-

ble 3.6. In the average case, we use v to represent the average length (number of

nodes) in any given trajectory in the dataset. In most cases, this number is quite small

42

compared to the total number of vertices V in the graph G. In the worst-case, each tra-

jectory could consist of every vertices (or close to) in the graph, in which case we use V

in place of v. In addition, note that the notation in Table 3.5 assumes the shortest-paths

distance computation has a overall complexity of |V 2|, which we use in the worst-case

complexity. While this is algorithm dependent, it provides a guide to the number of

times this explicit cost D is invoked as shown in the average-case complexity.

3.7 Experimental Evaluation

In this section, we explain our experimental design for investigating a number of com-

putational questions related to the APNTS problem and our proposed solution. We

begin with the overall experimental design, followed by an explanation of the explored

parameters, and finally the experimental validation.

3.7.1 Experimental Goals

We explored a number of computational questions related to the scalability of the algo-

rithms we proposed. Our intention was to examine how varying certain key parameters

would affect the runtime of the GNTS, METS, and ROW-TS algorithms. Each question

was run on a small dataset and a large dataset for each algorithm. The questions we

explored were:

• How does the number of trajectories affect the computational cost of each algo-

rithm?

• What is the impact of the number of nodes in the road network on the computa-

tional cost of the various trajectory similarity algorithms?

• Does the trajectory length significantly affect the runtime of each algorithm?

Figure 3.6: Experiment Design

43

3.7.2 Experimental Design

The experiments in this section were performed on synthetic datasets. We generated the

underlying roadmap (graph), along with suitable trajectories. To generate the roadmap,

we created a generator that required a number of nodes as input, and then generated

a grid-like planar graph, similar to urban road networks. For the trajectories, we chose

two random nodes on the graph and found the shortest-path, using that as a trajectory.

We did not attempt to simulate how bikers would move about our networks, as we have

real data (in the previous section) to test on. Here we are simply testing for scalability.

These experiments were carried out on a Quad-core 2.4 Ghz Intel Core Duo 2 Ubuntu

Linux machine with 8 GB of RAM. All of the algorithms were coded and run with

Java SE 1.6. Each test measured CPU execution time and was run 10 times for each

parameter value, then averaged for a final score shown in the plots. Our intention with

these experiments was to vary key input parameters to measure how they affect the

performance of our proposed work ROW-TS using the experiment design in Figure 3.6.

We will be comparing against related work with the following algorithms:

Graph-Node Track Similarity (GNTS - Baseline): The baseline algorithm

to compute the Network Hausdorff Distance Track Similarity Matrix M computes the

shortest-path distance between each pair of nodes within each pair of trajectories, choos-

ing the maximum of the values of this set.

Matrix-Element Track Similarity (METS [47]): In our previous work [47],

we proposed a correct but computationally expensive algorithm for clustering network

trajectories on road networks using Network Hausdorff Distance for identifying new

bicycle corridors through a city to facilitate safe and efficient bicycle travel. This algo-

rithm used a virtual node to reduce the number of shortest-path invocations to one per

cell in the trajectory similarity matrix. It proved to be faster than the baseline, but

remained computationally prohibitive for large datasets.

3.7.3 Experimental Results

How does the number of trajectories affect the computational cost of each

algorithm? In the first experiment, shown in Figure 3.7(a), we created a road network

with 500 nodes, an average trajectory length of 50 nodes. The x-axis shows the number

44

of trajectories given as input, the y-axis shows the runtime in seconds on a logarith-

mic scale. The figure shows all three algorithms varying over the given numbers of

trajectories, and as is clear, GNTS and METS quickly become prohibitive even with

this small dataset size. ROW-TS grows slowly and appears to run at least two orders

of magnitude faster. In Figure 3.7(d) we increased the number of trajectories to be

tested, withdrawing GNTS due to prohibitive computation time. METS was also com-

putationally prohibitive after an input of 4,000 trajectories, while ROW-TS continued

to be reasonable (under 100 seconds) past 10,000 input trajectories.

Does the trajectory length significantly affect the runtime of each algo-

rithm? We ran this experiment with 500 nodes and 500 trajectories at a trajectory

length shown on the x axis. METS and ROW-TS are not significantly affected by the

smaller dataset. Moving to the larger dataset in Figure 3.7(f) of 1,000 nodes and 500

tracks with longer trajectory lengths on the x axis, METS is not significantly affected,

as expected because the main cost is still the repeated shortest-path computations.

ROW-TS grows more quickly due to the extra bookkeeping in the algorithm (see the

pseudocode in Algorithm 3).

What is the impact of the number of nodes in the road network on the

computational cost of the various trajectory similarity algorithms? In Fig-

ure 3.7(b), it is clear that the size of the underlying graph (number of nodes as plotted

on the x axis) is relevant to the runtime of each algorithm as shortest-path algorithms

make up a large portion of the computational cost in each. We ran this experiment with

100 trajectories and an average trajectory length of 10. Figure 3.7(e) shows a larger

dataset with the number of nodes in the network going up to 10,000. Due to the reduced

number of distance calculations in ROW-TS, not only is the overall runtime differing

by orders of magnitude, the growth of ROW-TS compared to GNTS is also significantly

slower.

3.8 Conclusion

In this chapter, we formalized the All-Pair Network Trajectory Similarity (APNTS)

problem. We proposed a novel algorithm (ROW-TS) for quickly solving this problem

45

and compared it to previous and related work (METS, GNTS). Calculating similar-

ity between network trajectories has shown to be important in a number of societal

applications, such as bike corridor planning and transportation management. Related

work in the field have repeatedly used the Network Hausdorff Distance (NHD) measure

to compute similarities, but have proposed approximation-based approaches to reduce

computation time. Our previous work introduced an algorithm to compute NHD ex-

actly and scaled to a medium-sized dataset. Our novel row-wise approach in this chapter

allowed us to scale to spatial big data and compute the NHD between tens of thousands

of trajectories in a relatively short time. We demonstrated the scalability of ROW-TS

with experimental validation.

46

Algorithm 1 Graph-Node Track Similarity (GNTS - Baseline)

Input:
• Road Network G = {V,E}
• Tracks T : Set of trajectories

Output:
• Track Similarity Matrix: MT×T

1: for tx in T do
2: for ty in T do
3: if tx == ty then
4: M [tx][ty] = 0
5: else
6: max = −∞
7: for nodes n in tx do
8: min =∞
9: distMap[] = Dijkstra(G,n)

10: for nodes m in ty do
11: if distMap[m] ≤ min then
12: min = distMap[m]
13: end if
14: end for
15: if max ≤ min then
16: max = min
17: end if
18: end for
19: M [tx][ty] = max
20: end if
21: end for
22: end for
23: return M

47

Algorithm 2 Matrix-Element Track Similarity (METS)

Input:
• Road Network G = {V,E}
• Tracks T : Set of trajectories

Output:
• Track Similarity Matrix MT×T

1: for tx in T do
2: for ty in T do
3: if tx == ty then
4: M [ty][tx] = 0
5: else
6: vTrack = newNode()
7: G.add(vTrack)
8: for nodes n in tx do
9: Create 0-length edge from vTrack to n

10: end for
11: distMap[] = Dijkstra(G, vTrack)
12: G.remove(vTrack)
13: max = −∞
14: for nodes m in ty do
15: if distMap[m] ≥ max then
16: max = distMap[m]
17: end if
18: end for
19: M [ty][tx] = max
20: end if
21: end for
22: end for
23: return M

48

Algorithm 3 Row-Wise Track Similarity (ROW-TS)

Input:
• Road Network G = {V,E}
• Tracks T : Set of trajectories

Output:
• Track Similarity Matrix M

1: for tx in T do
2: vTrack = newNode()
3: G.add(vTrack)
4: for nodes n in tx do
5: Create 0-length edge from vTrack to n
6: end for
7: distMap[] = Dijkstra(G, vTrack)
8: G.remove(vTrack)
9: for ty in T do

10: if tx == ty then
11: M [ty][tx] = 0
12: else
13: max = −∞
14: for nodes m in ty do
15: if distMap[m] ≥ max then
16: max = distMap[m]
17: end if
18: end for
19: M [ty][tx] = max
20: end if
21: end for
22: end for
23: return M

49

 1

 10

 100

 1000

 10000

 100000

 200 300 400 500 600 700 800 900 1000R
u
n
ti
m

e
 i
n
 S

e
c
o
n
d
s
 (

L
o
g
a
ri
th

m
ic

 S
c
a
le

)

Number of Trajectories

Varying Number of Tracks, 1000 Nodes, Trajectory Length of 50

GNTS-B
METS (GIS 2012)

GNTS-P
ROW-TS

(a) Tracks (Small Dataset)

 1

 10

 100

 1000

 10000

 1000 1500 2000 2500 3000 3500 4000 4500 5000R
u
n
ti
m

e
 i
n
 S

e
c
o
n
d
s
 (

L
o
g
a
ri
th

m
ic

 S
c
a
le

)

Number of Nodes in Spatial Network

Varying Network Size, 500 Tracks, Trajectory Length of 50

METS (GIS 2012)
GNTS-P
ROW-TS

(b) Nodes (Small Dataset)

 1

 10

 100

 1000

 10000

 10 20 30 40 50 60 70 80 90 100R
u
n
ti
m

e
 i
n
 S

e
c
o
n
d
s
 (

L
o
g
a
ri
th

m
ic

 S
c
a
le

)

Length of Trajectory

Varying Length of Trajectory, 1000 Nodes, 500 Tracks

GNTS-B
METS (GIS 2012)

GNTS-P
ROW-TS

(c) Track Length (Small Dataset)

 1

 10

 100

 1000

 10000

 100000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000R
u
n
ti
m

e
 i
n
 S

e
c
o
n
d
s
 (

L
o
g
a
ri
th

m
ic

 S
c
a
le

)

Number of Trajectories

Varying Number of Trajectories, 500 Nodes, Trajectory Length of 50

METS (GIS 2012)
ROW-TS

(d) Tracks (Large Dataset)

 1

 10

 100

 1000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000R
u
n
ti
m

e
 i
n
 S

e
c
o
n
d
s
 (

L
o
g
a
ri
th

m
ic

 S
c
a
le

)

Number of Nodes in Spatial Network

Varying Network Size, 100 Tracks, Trajectory Length of 10

METS (GIS 2012)
ROW-TS

(e) Nodes (Large Dataset)

 10

 100

 1000

 10000

 100 200 300 400 500 600 700 800 900 1000R
u
n
ti
m

e
 i
n
 S

e
c
o
n
d
s
 (

L
o
g
a
ri
th

m
ic

 S
c
a
le

)

Length of Trajectory

Varying Length of Trajectory, 1,000 Nodes, 500 Tracks

METS (GIS 2012)
ROW-TS

(f) Track Length (Large Dataset)

Figure 3.7: Experimental results on synthetic data. Note the y-axis is in logarithmic
scale.

Chapter 4

Storage of Spatio-Temporal

Networks for Advanced Routing

4.1 Introduction

To address the challenge of storage of spatial big data, we studied the problem of storing

spatio-temporal networks in spatial database systems. Given a set of operators and

a spatio-temporal network, the goal of the Storing Spatio-Temporal Networks (SSTN)

problem is to produce an efficient data storage method that minimizes disk I/O ac-

cess costs. Storing and accessing spatio-temporal networks is increasingly important in

many societal applications such as transportation management and emergency planning.

This problem is challenging due to strains on traditional adjacency list representations

when storing temporal attribute values from the sizable increase in length of the time-

series. Current approaches for the SSTN problem focus on orthogonal partitioning (e.g.,

snapshot, longitudinal, etc.), which may produce excessive I/O costs when performing

traversal-based spatio-temporal network queries (e.g., route evaluation, arrival time pre-

diction, etc) due to the desired nodes not being allocated to a common page. We propose

a Lagrangian-Connectivity Partitioning (LCP) technique to efficiently store and access

spatio-temporal networks that utilizes the interaction between nodes and edges in a net-

work. Experimental evaluation using the Minneapolis, MN road network showed that

LCP outperforms traditional orthogonal approaches.

This paper proposes a new data storage method for storing spatio-temporal networks

50

51

into data files for use in database systems. Our work is motivated by the growing number

and size of real-world spatio-temporal networks.

4.1.1 Motivation

Analyzing movement in spatio-temporal networks is important in many societal appli-

cations such as transportation, distribution of electricity and gas, and evacuation route

planning. The ability to efficiently store, process and analyze spatio-temporal networks

with large time series data would provide benefit to a wide variety of applications.

Airlines connect thousands of destinations across the world through various ‘routes’

between airports. Maintaining accurate records of route performance is key to evaluating

and ensuring timely airline service, along with analyzing potential effects from various

delays. Figure 4.1 (a) shows the various routes available from MSP airport to other

cities in the United States. In order to measure route characteristics, such as average

delay, each flight along the route is recorded with parameters such as flight time, delay,

causes, etc. This flight information creates a spatio-temporal network from these airline

routes, allowing for historical average queries, such as the one shown in Figure 4.1 (b)

to be answered. Other, more complexed queries, such as how delay on a particular

route affects connecting flights, can also be analyzed with this data. These large spatio-

temporal networks, with a high number of temporal attribute data (flight instances),

can benefit from efficient secondary storage techniques.

(a) Delta Airline Routes from MSP. Courtesy:
www.airlineroutemaps.com

(b) Example Route Statistics. Courtesy:
www.flightstats.com

Figure 4.1: Airline travel information as a spatio-temporal network.

52

The U.S. natural gas pipeline network, shown in Figure 4.2 is a transmission and

distribution grid for transporting natural gas across the continental United States. Un-

derground storage is used for efficient and reliable delivery across this network. The

transmission of natural gas through the network and its various storage tanks (edges

and nodes with dynamic gas levels) is monitored to ensure adequate support for short-

term peaking and volatile swing demands for gas that occur on a daily and even hourly

basis. Storing and optimizing the transport of natural gas is a large business and can

benefit from the analysis of large spatio-temporal networks [5, 99].

Figure 4.2: The U.S. natural gas pipeline network. [5]

The Federal Highway Administration [3] is recording traffic data of major roads and

highways using sensors such as Loop Detectors, among others, across the United States.

Depending on the type of sensor, traffic levels are recorded every minute, as shown in

Figure 4.3. The Mobility Monitoring Program (MMP), started in 2000 by the Texas

Transportation Institute, aimed to evaluate the use of sensors for traffic information

around the United States. By 2003, MMP was receiving traffic sensor data from over

30 cities and 3,000 miles of highway, with sensor readings occurring roughly every 30

seconds. This data is then recorded 24 hours a day, 365 days a year, resulting in

millions of time steps per year for each sensor. MMP published a report citing the

need for processing and storage of historical traffic data, and how it may benefit traffic

management [37].

In this paper, we consider storage and access of STN data used by traversal-based

road transportation applications. These applications pose queries on STNs such as

shortest path and route evaluation based on traffic levels. A route evaluation query

53

Figure 4.3: Traffic speed measurements over 30 days on a portion of highway. Cour-
tesy: [3]

calculates travel time along a given route and start time, motivated by ‘commuter’

movement where a person headed to work at 8:00 am has a few different known routes

and is looking for the shortest travel time. Companies such as NAVTEQ [70] are

beginning to provide traffic information for road networks where travel-time for an

edge is specified for all distinct five minute time-intervals of a week. However, industry

is relying on an aggregation of these spatio-temporal network datasets, specifically using

lossy compression, turning the recorded traffic information into “speed profiles”, in order

to reduce the magnitude of the data. These profiles then are used to represent a subset

of road segments. Interesting events (e.g., interesting or anomalous traffic patterns)

may be missed due to this lossy compression and while useful for some applications, it

may be desirable to capture and utilize the full granularity of the data as it is recorded.

4.1.2 Spatio-Temporal Networks (STN)

A spatio-temporal network (STN) can be represented as a spatial graph with temporal

attributes. Spatial elements of the graph are a finite set of nodes and a finite set of

edges connecting nodes. Temporal attributes are represented by discrete time steps,

as shown as a snapshot series in Figure 4.4. In the figure, time steps 1, 2, 3, and 4

illustrate the progression of time in the network, and the corresponding effect on edge

attribute values. For example, at Time=1, edge AC has a value of 2. In the next time

step, Time=2, the edge value decreases to 1, indicating a reduced travel cost for the

edge. Consider a car traveling from node A to node D starting at time step 1. As

54

the car traverses across AC, it takes 2 time steps to reach C. Once time progresses,

travel time edge attributes may change, note that the travel time edge attribute of AC

changes from time step 1 to 2.

Table 4.1 lists the operators defined for spatio-temporal networks as described in [2].

This paper mainly focuses on Lagrangian movement queries, such as route evaluation.

Table 4.1: Access Operators for Spatio-Temporal Networks from [2]

atTime atAllTime =

Node getNode(node,time) getNode(node)

Edge getEdge(node1,node2,time) getEdge(node1,node2)

Route getRoute(node1,node2,time) getRoute(node1,node2)

Evaluate Route evalRoute(route,time) evalRoute(route)

Graph getGraph(time) getGraph()

Figure 4.4: Snapshot model of a spatio-temporal network

Node Retrieval: In Figure 4.4, every node in every time step has a boolean at-

tribute representing whether the car is currently at that node. Calling getNode(C) will

return a series of 4 booleans indicating whether the car is present at the corresponding

time step, e.g., (False, False, True, False). Calling getNode(C, 1), thereby indicating a

specific time instant, returning a boolean with the attribute at that moment, in this

case, False.

Edge Retrieval: In Figure 4.4, each edge has a series of scalar attribute values

representing traversal time corresponding to each time instant. Calling getEdge(A,C)

returns the traversal attribute series of edge AC, e.g., (2,1,1,1). Calling getEdge(A,C, 1)

returns the traversal attribute of edge AC at time instant 1, e.g., (2).

55

Route Evaluation Operation: As mentioned above, industry is beginning to of-

fer route evaluation services motivated by commuter’s desire to check morning traf-

fic along favorite routes. Given a route A → C → D, starting at time step 1,

evalRoute(ACD, 1), this operation will retrieve traversal time based on the tempo-

ral edge properties from A → C at time 1, and C → D at time step 3. If no starting

time is given, evalRoute(ACD) returns a series of traversal times for which each time

instant is the starting time, e.g., (3,2,2,2).

Since we use the route evaluation query extensively in our experiments, we provide

the pseudocode in Algorithm 4. Line (1) sets the original starting time, which is useful

when calculating total trip time. Line (2) iterates through each node in the given route,

Line (3) gets the desired edge with the getEdge operator, defined as the connection

between a node and its next connection in route N . Finally, the current time value is

updated with the travel time taken when moving across edge E in Line (4) and finally

the total travel time is calculated in Line (6).

Algorithm 4 Pseudocode for Route Evaluation
Inputs:

• R: A sequence of nodes and edges
• time: Departure time

Outputs:
• Travel Time

evalRoute(R,time)

1: startTime = time
2: for each edge in R do
3: E = getEdge(edge.srcNode, edge.sinkNode, time)
4: time = time + travel time of E
5: end for
6: return time - startTime

Route Retrieval: This operation represents the shortest path traversed between

nodes, ignoring travel time if no start time is given. However, if a start time is given,

a time dependent shortest path will be found. The details of these and other routing

queries, which are out of the scope of this paper, can be found in [2].

4.1.3 Problem Statement

The problem of storing spatio-temporal networks (SSTN) can be formalized as follows:

Given a spatio-temporal network and a set of spatio-temporal operations– find a storage

56

scheme that minimizes the I/O costs of operations. The input to this problem is a spatio-

temporal network, (e.g., Figure 4.4) and a set of operations, listed in Table 4.1. We

formally define the Storage of Spatio-Temporal Network (SSTN) problem as follows:

Input:

•A spatio-temporal network S

•A set of operations O

Output:

•Data file containing S stored across data pages

Objective:

•Minimize data page access for operations in O

Constraints:

•S is too large for storage in main memory.

•Preserve temporal edge attribute information.

Due to the increasing size of spatio-temporal network datasets, potentially contain-

ing hundreds of thousands of nodes and millions of time steps, we assume that main

memory cannot handle these networks. Therefore we focus on secondary storage tech-

niques of STNs for database systems. A secondary storage method for database systems

is composed of a data file (consisting of data pages) and an indexing method. A data

file, the output of a storage method, consists of a partitioned STN across a set of data

pages. For example, a storage scheme may assign each snapshot in Figure 4.4 to a

different data page. A secondary index can be built on the data file. For example, an

unclustered B+tree [100] can be used to identify the data record needed for a query

given keys like (node-id, time) or (edge-id, time). Once a data page is retrieved, the

page may be reused on subsequent data record retrievals if they happen to collocate that

data page. An efficient output of the SSTN problem should reduce data page retrieval

for the operations in Table 4.1 through this collocation of relevant data.

In a database environment, the I/O cost to answer queries is determined by the

number of pages which are transferred between disks and main memory. If topologically

related nodes can be stored physically into the same data page, the retrieval of data

pages is reduced resulting in lower disk I/O. Thus, data partitioning plays a crucial role

57

in decreasing the I/O cost of an access method. An important observation is that as

the storage space decreases, the I/O cost is also reduced due to fewer numbers of pages

with the same data.

Challenges: Storing spatio-temporal network datasets is not a straightforward task

due to the complexity of incorporating temporal data into the network and the careful

analysis required to reduce the disk I/O. In spatio-temporal network database systems,

the accessibility of data records is constrained by network topology as well as temporal

access patterns. One of the keys to improving storage methods for spatio-temporal

network datasets is understanding and capturing the space-time interaction that occurs

between nodes and edges in a network. Developing partitioning strategies that account

for this interaction is crucial for improving the efficiency of storing and accessing spatio-

temporal networks.

4.1.4 Related Work and Limitations

Current methods for storing spatio-temporal data have focused on orthogonal parti-

tioning, e.g., snapshot and longitudinal partitioning. In essence, the data is segmented

based on some temporal aspect. For example, snapshot partitioning stores data based on

grouping data of the same time step together, whereas longitudinal partitioning groups

data based on the object (e.g., a node) and it’s entire time series. Spatio-temporal op-

erators such as route evaluation do not follow orthogonal partitions and therefore may

benefit from a different kind of partitioning for storage.

Disk Page 1 Disk Page 2

1 2

1 1

A

B C

D

Time = 1

1 1

2 1

A

B C

D

Time = 2

1 1

2 1

A

B C

D

Time = 3

1 1

2 1

A

B C

D

Time = 4

Secondary Index

Data File (Disk Pages)

Figure 4.5: Snapshot storage of a STN

58

Snapshot Partitioning for spatio-temporal network storage can be represented

by a snapshot graph, such as Figure 4.4. Snapshot storage techniques partition data

into pages using geometry [101, 102] or connectivity [103] methods. Figure 4.5 shows a

snapshot storage approximation, with the data page partitioning visualized with dashed

lines and page numbering, using a small graph where multiple snapshots fit inside a data

page. However producing a time stamped static graph at each time step leads to great

I/O cost when executing queries such as evalRoute(route, time) in Table 4.1 due to the

need to frequently access data pages as the STN is traversed. In this Snapshot example,

calling evalRoute(ACD, 1) requires first accessing the traversal time attribute of edge

AC at t = 1, stored on Data Page 1. Next, edge CD at t = 3 is needed to complete the

route evaluation, stored on Data Page 2. Thus, under snapshot partitioning, the route

evaluation operation has to access two different data pages.

Longitudinal Partitioning for a spatio-temporal network is based on the adjacency-

list main memory storage structure used by [104, 2]. Each node is stored with its

attribute information and all outgoing edges and their attribute information. This

orthogonal storage solution, as shown in Figure 4.6, also suffers from the increas-

ing disk I/O to evaluate routes in spatio-temporal networks using operators such as

evalRoute(route, time) in Table 4.1. This example network has a short time series

compared to its graph size, allowing multiple node records (with adjacency list) to fit

inside a data page. However, if the time-series length was larger, then the node record

may not fit into one data page, and be split into multiple pages. This is due to the

long time series being stored with each node, resulting in a small number of nodes to

be stored on each data page.

As with Snapshot partitioning, when using the Longitudinal method, calling evalRoute(ACD, 1)

requires first accessing the traversal time attribute of edge AC at t = 1, stored on Data

Page 1 and then accessing edge CD at t = 3 is needed to complete the route eval-

uation, stored on Data Page 2. Again, the route evaluation operation had to access

two different data pages due to the node-based orthogonal partitioning. CCAM [103]

did not consider STNs, however, it uses node-centric storage techniques. Therefore, if

CCAM was applied to a spatio-temporal network, it may end up with a storage method

resembling Longitudinal Partitioning due to the long time series characteristic of STNs

causing node-centric storage to fill entire data pages with a single node’s information.

59

The limitations of orthogonal approaches such as Snapshot and Longitudinal stem

from their inability to capture spatio-temporal movement access patterns. In other sci-

ences, spatio-temporal movement is formalized via a Lagrangian frame of reference [105]

attached to a user moving through space over time. For example, evaluation of route

ACD at different start times will retrieve the following subsets of edges: (AC at t = 1,

CD at t = 3), (AC at t = 2, CD at t = 3), (AC at t = 3, CD at t = 4), etc. Either

orthogonal approach will require a new data page access for each edge as they group

entirely by either time or space. Our proposed use of a Lagrangian frame of reference

in our approach intends to move toward capturing such non-orthogonal access patterns.

Node

A

Node

B

Node

C

Node

D

D

1

1

1

D

B C

1 1 1 2 1 1 1

2 2 2

1 1 1

Secondary Index

Data File (Disk Pages)

Figure 4.6: Longitudinal storage of a STN

4.1.5 Contribution

In this paper, we propose a novel storage and accessing method called Lagrangian-

Connectivity Partitioning (LCP) using the following key concepts: non-orthogonal STN

partitioning, a sub-node database record format and Lagrangian use of time-expanded

networks for storage. Non-orthogonal STN partitioning groups temporally connected

information for storage. The new sub-node database record format allows this tempo-

rally connected information, with variable time information, to be stored on a single

data page. Lastly, LCP partitions data using a Lagrangian point of reference using a

time-expanded graph representation of data, allowing graph partitioning to divide the

60

network into spatio-temporal groups and therefore attempts to capture “movement”

through a spatio-temporal network. The result is a stored STN in a data file that

requires less disk I/O needed for the spatio-temporal operators listed in Table 4.1.

In summary, our contributions are as follows:

• Proposed a Lagrangian-based storage and access method for spatio-temporal net-

works.

• Proposed a cost model to estimate data I/O cost for Lagrangian queries on stored

spatio-temporal networks.

• Experimentally evaluated proposed storage method and cost model against tradi-

tional approaches.

4.1.6 Scope and Outline

We propose a new method for storing spatio-temporal networks into a data file with

efficient data clustering for spatio-temporal operators. Secondary indexing techniques

are not considered, as they can be applied on top of the data file.

This paper focuses on route evaluation operations on spatio-temporal networks. For

simplicity of discussion, it does not examine compression techniques (e.g., sharing time-

series among edges, aggregation of time-series, etc), workload related to shortest-path

computations, choice of graph partitioning algorithms, and the infinite nature of time.

Industry is examining and implementing approaches for storing spatio-temporal net-

works based on orthogonal partitioning and sharing of time-series between edges and

other compression techniques. These “speed profiles” are not examined in this paper,

as we focus on full data storage as it is recorded from sensors. In addition, the intent

of our work is not to evaluate industry choices but to explore conceptual ideas relevant

to storage of spatio-temporal networks.

The paper is organized as follows. In Section 4.2 we introduce our proposed ap-

proach, followed by our cost model. Section 4.3 gives our experimental evaluation

followed by related work in Section 4.4. Our concluding remarks are in Section 4.5.

61

4.2 Proposed Approach

We use a Lagrangian representation of a STN through a model called a time-expanded

network [106] (TEN). A TEN is a spatio-temporal network model that replicates each

node along the time set such that a time varying attribute is represented between repli-

cated nodes. Figure 4.7 illustrates the spatio-temporal network displayed in Figure 4.4

as a time-expanded network.

The TEN is used as a representation of spatio-temporal connectivity of the data.

It allows for partitioning of the temporal attribute data (travel time values of edges)

based on Lagrangian connectivity. It also helps illustrate how orthogonal approaches

to partitioning temporal attribute data inefficiently for Lagrangian queries. The time-

expanded network used for the partitioning decisions is not stored on disk, only the

node, edge and temporal attribute data coming from the input STN are stored.

Figure 4.7: STN as a time-expanded network

Our approach, Lagrangian-Connectivity Partitioning (LCP), utilizes a time-expanded

graph to capture non-orthogonal access patterns of route evaluation operations along

with a novel data record based on sub − nodes. This section details each of our main

contributions and provides a cost model for estimating disk I/O based on STN operators

(e.g., Table 4.1).

We propose an asynchronous time series record format for storing our temporal

attribute data. Data can be stored based on either synchronous or asynchronous time

series. Synchronous time grouping, or clustering data within a set time series, stores

some number of nodes and edges with a set time interval, see Figure 4.8. Each page in

62

both approaches, Snapshot and Longitudinal, represents a synchronous time interval,

either one time step or the entire time series in this example. For example, a page in both

approaches, Snapshot or Longitudinal, represents a synchronous time interval where

the Snapshot method stores its all data relating to a single time step in a record. The

Longitudinal storage method stores an entire temporal attribute’s time series (broken

into multiple records if needed). Asynchronous time data grouping allows for storing

data disjoint time intervals and yet be grouped and stored on the same data page. This

model, which we refer to as sub-nodes, allows for storage of disjoint temporal attribute

data in the same record. This is useful as, for route evaluation queries, it is seldom that

temporal data is accessed orthogonally.

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

A

B

C

D

1 2 3 4Time Step

Page 1

Page 2

Page 3

Page 4

Disk:

(a) Snapshot Partitioning

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

A

B

C

D

1 2 3 4Time Step

Page 1

Page 2

Page 3

Page 4

Disk:

(b) Longitudinal Partitioning

Figure 4.8: Orthogonal partitioning of Spatio-Temporal Networks.

63

4.2.1 Lagrangian-Connectivity Partitioning

The Lagrangian-Connectivity Partitioning (LCP) method optimizes disk storage based

upon traversal across spatio-temporal networks. Data is stored using the sub-node

record design, allowing for non-orthogonal temporal information to be stored on a data

page.

By representing a spatio-temporal network as a modified time-expanded graph, fo-

cusing on Lagrangian connections between nodes (movement edges), a min-cut graph

partitioning [107] algorithm creates partitions clustering nodes by minimizing the cuts

of these movement edges. This results in LCP collocating connected spatio-temporal

nodes together on data pages, stored as sub-node records. We propose LCP will result

in more efficient I/O when using STN operators from Table 4.1 or queries composed of

them.

To illustrate, we call the route evaluation operation evalRoute(ACD,1) on each of the

partitioning methods. With orthogonal partitioning, Snapshot or Longitudinal, when-

ever an edge is traversed, (e.g., A1 to C3 and C3 to D4), a disk I/O is needed to retrieve

the data page containing the record for the next node. However, with Lagrangian-

Connectivity Partitioning, traversing from node A1 to C3 and then C3 to D4 requires

only one data page as all relevant sub-node records are collocated on the same data

page. The pseudocode shown in Algorithm 5.

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

A

B

C

D

1 2 3 4Time Step

Page 1

Page 2

Page 3

Page 4

Disk:

Figure 4.9: Lagrangian-Connectivity Partitioning

The input for the pseudocode is a spatio-temporal network consisting of nodes, edges

and time values for each edge along with the physical page size for storage on disk.

The output is a data file consisting of the data pages, containing records of node and

64

Algorithm 5 Pseudocode for the LCP Method
Inputs:

• A set of nodes V
• A set of edges E
• A set of travel times T
• P: size of data page

Outputs:
• Data Pages written to disk

LCP

1: numPages = estimate num of pages using V,E,T and P
2: TEN[] = create time-expanded network from V,E,T
3: Part[] = run graph partitioning on edges in TEN using numPages
4: for each partition in Part[] do
5: SN[] = create sub-nodes from partition
6: for each sub-node in SN do
7: RID = write sub-node to a data page
8: end for
9: end for

edge information. The min-cut graph partitioning algorithm used requires a predefined

number of partitions; therefore Line (1) estimates the number of pages needed based on

the size of the spatio-temporal network and the size of the data page. Line (2) expands

the spatio-temporal network into a time-expanded network for the min-cut partitioning

in Line (3). The result of the partitioning method is an array of partitions of the time-

expanded network which are then converted to sub-nodes in Line (5). Iterating through

these partitions with Lines (4-9), each partition is converted into a set of sub-nodes in

Line (6) and written to disk in Line (8).

Figure 4.9 illustrates the results of LCP applied to the same input STN as in the

other orthogonal partitioning methods. A min-cut partitioning was run on the modified

time-expanded graph (wait edges are removed to emphasize Lagrangian connectivity)

and then stored as sub-nodes on four data pages. For efficiency, we used a bulk load

operation, which sorts these statements along the block number and inserts them into

data pages. Physically, sub-node data records are stored in data pages and a B+tree

index is created to support retrieve operations.

4.2.2 Cost Model

Traditional spatial networks use a connectivity ratio to measure predicted disk I/O [103].

We extend this connectivity ratio to formulate a spatio-temporal measurement we call

65

LRatio (Lagrangian connectivity Ratio). LRatio measures the connectivity along time

and space in a STN. In Equation 4.1, Lagrangian edges refer to edges connecting nodes

through time, such as the edges displayed in a time-expanded network. This metric

ignores the ‘wait’ edges in a time-expanded network, maximizing LRatio minimize disk

I/O for STN Lagrangian operators.

LRatio =
Total number of unsplit Lagrangian edges

Total number of Lagrangian edges
(4.1)

Intuitively, the average number of disk accesses (DA) in Equation 4.2 according to

a STN route can be expressed as a function of the LRatio and the number of accessed

nodes:

DA(route) = 1 + (1− LRatio) ∗ (Route Length− 1) (4.2)

where RouteLength is the number of edges traversed in the route. To be specific,

for a route with n edges, the first edge is accessed by one disk I/O. The remaining

n − 1 edges, are accessed by (n − 1) ∗ (1 − LRatio) disk I/O because each edge has

a (1 − LRatio) chance to cause additional disk I/O. This approximation is reasonable

because, in a time-expanded network, 1) accessing nodes causes a page fault only when

the access method meets a split edge and 2) all nodes are always accessed in increasing

temporal order.

4.3 Experimental Evaluation

In this section we evaluate our proposed method against traditional approaches using

route evaluation queries and relevant STN operators from Table 4.1. All experiments

were performed on an Intel Core 2 Duo CPU machine running Microsoft Windows XP

with 4GB of RAM.

4.3.1 Experiment Setup:

Figure 4.11 gives our experimental setup. Using a Minneapolis, MN roadmap from

the Minnesota Department of Transportation [6], we created and stored three data files,

one generated by LCP, and the other two using orthogonal partitioning methods. These

66

Figure 4.10: Minneapolis, MN road network [6]

Traffic Generation

Clustering Methods

 3. Lagrangian−Connectivity

 2. Longitudinal

 1. Snapshot

Route Evaluation

Disk block size

Minneapolis Road Network

with Traffic Data

Time Series Length

Traffic distribution

Generate Route

Route Length

Data Pages Data Pages

Routes Page Access Analysis

LCR, I/O Cost

Buffers

Minneapolis Road Network

Figure 4.11: Experimental Setup

stored networks were then evaluated with a route evaluation workload, specific to each

experiment, and sent for analysis.

The dataset consisted of 1,140 nodes and 3,764 edges. The edge data were classified

into three types: highways, county roads, and side streets. The travel time attribute

series was synthetically generated based on various Gaussian distributions for each road

type and took into account activity levels over a day, e.g., rush hour. We set the

length of time steps for the STN to 288 instants (5 minute slots) and generated the

time-expanded network based on replicated nodes and travel times.

Route Evaluation: In our study, we focused on a popular query distinct to spatio-

temporal networks. This query is an encapsulation of the operator first mentioned in

Table 4.1 and returns the travel time between two nodes given a set route and start

67

time. This query represents real-world queries calculating estimated travel time for a

given route at a given start time.

4.3.2 LCP Approximation: ATSS

We performed experiments using three different STN storage candidates. The first

two, the orthogonal Spatial and Longitudinal methods are compared against the LCP

method. A fourth candidate, the aggregated time-stamped snapshot (ATSS) method, is

presented here as a simple alternative to LCP, attempting non-orthogonal partitioning

without the need to create a time-expanded graph.

ATSS partitions the network based on static network connectivity using CCAM [103]

and then the time-series information is divided into temporal chunks, similar to the

Snapshot method, only with multiple sequential time instants instead of one time in-

stant. The temporal information for each node is segmented based on this time interval

length and the proposed non-orthogonal record format is used to store the nodes with

their temporal subsets.

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

A

B

C

D

1 2 3 4Time Step

Page 1

Page 2

Page 3

Page 4

Disk:

Figure 4.12: Aggregated Time-Stamped Snapshot

The ATSS method can be seen as a trade-off between Snapshot and Longitudinal

partitioning. Since the network is sliced with respect to time intervals, we need to define

a parameter as time intervals to slice the graph, see Figure 4.12 where the time interval

parameter is 2 time steps. It is difficult to determine an adequate value for the time

length parameter. The strength of the aggregated time-stamped snapshot model is that

it is relatively practical when the travel time is fairly uniform. The main disadvantage

is that it is not possible to determine the appropriate time interval parameter value to

68

yield a better performance.

4.3.3 Experimental Results

In our experiments, we compare the LCP storage method against the Snapshot and

Longitudinal approaches, and discuss results. Lastly, we compare LCP and ATSS in

Experiment 4 as the only non-orthogonal partitioning methods.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 15 20 25 30 35 40

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
p

a
g

e
s
 a

c
c
e

s
s
e

d

Route Length

SnapShot
Longitudinal

LCP

Figure 4.13: Experiment 1 - The effect of the route length. Note that Snapshot and
Longitudinal are overlapping.

Experiment 1: Effect of Route Length.

To evaluate query performance, we varied route length in terms of nodes traversed

along the route, and compared the number of data pages accessed by the three storage

methods, Snapshot, Longitudinal and LCP. We used 1,500 randomly generated simple-

path routes over the STN and varied the route length from 10 to 40 edges traversed.

We used 4KB block size and one buffer cache. The number of buffers showed no effect

on performance due to the progression of time and the properties of simple-paths, in

that neither time steps nor nodes can be revisited.

Figure 4.13 shows the performance comparison using all three models or different

route lengths. For all methods, the number of data page accesses for route evaluation

queries increases along with the increase in the route length. However, Snapshot and

Longitudinal partitioning perform worse in this experiment at every step. This is due to

the orthogonal partitioning of data which requires accessing a new data page for every

next node accessed in a path. Snapshot accesses a new data page for every node because

it stores each time instant on separate pages. Longitudinal does this due to the long

69

time series used, therefore filling entire disk pages with a single node’s attribute data.

Only LCP requires less data pages accessed than nodes accessed.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

2 4 8 16

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
p
a
g
e
s
 a

c
c
e
s
s
e
d

Block Size(K)

SnapShot
Longitudinal

LCP

(a) Data Page Access

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

2 4 8 16

L
a
g
ra

n
g
ia

n
 C

o
n
n
e
c
ti
v
it
y
 R

a
ti
o

Block Size(K)

LCP
Longitudinal

SnapShot

(b) LRatio

Figure 4.14: Experiment 2 - Effects of varying the size of data pages

Experiment 2: Size of Data Page.

This experiment evaluates the effect of varying the size of the data page on data page

access. If more information can stored on each data page, this potentially increases

the disk access efficiency of the orthogonal storage methods if temporally connected

information can be collocated on a single page, as LCP is designed to do. Figure 4.14

shows average I/O costs and the LRatio as we varied the block size from 2 KB to 16

KB. We observed an improvement in disk I/O efficiency for LCP, as expected, due to

storing more temporally connected information on a data page. With the Longitudinal

partitioning model, increasing the size of the disk block allowed more than one partition

to fit on a data page, resulting in an improvement in data page access and LRatio

measurement.

Experiment 3: Cost Model Evaluation.

We measured the accuracy of the LRatio cost model from Section 4.2.2. To measure

LRatio, we read all data pages stored in a data file for each storage method and count

split and unsplit movement edges. Our experimental results matched the predicted I/O

cost from LRatio within 10% (Figure 4.15). This gives some credence to the LRatio met-

ric as a cost-estimator for STN operators and we therefore use the LRatio measurement

70

 8

 9

 10

 11

 12

 13

 14

 15

 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
p

a
g

e
s
 a

c
c
e

s
s
e

d

Lagrangian Connectivity Ratio

measured page accesses
predicted cost model

Figure 4.15: Experiment 3 - Accuracy of the cost model in a Lagrangian path evaluation

as a performance metric in our experiments.

Experiment 4: Evaluating ATSS.

This experiment compares the LCP and ATSS methods. The intent of this experiment

is to evaluate the effects of different kinds of non-orthogonal partitioning. Figure 4.16(a)

shows the ATSS method compared to the LCP method. ATSS was run with six different

time interval parameter values, which range from a interval length of 2 time steps to

20. Note how if the time window is too long or too short, performance degrades.

Also note that LCP consistently outperforms ATSS without any need of ‘parameter

tuning’. The result is also visualized in Figure 4.16(b) using the LRatio cost model.

The LRatio metric varies depending on the time interval parameter selected for the

ATSS partitioning. This demonstrates how ATSS is sensitive to parameter tuning and

the composition of the dataset.

Experiment 5: Changing the Spatio-Temporal Network.

In this experiment, the spatial connectivity and temporal length were varied on a syn-

thetic dataset in order to gauge robustness. The effect of the length of time steps on

I/O costs is shown in Figure 4.17(b). We used different time series lengths and therefore

changed the number of pages used based on the increased data. As can be seen, the

time series length does not affect performance. This property is desirable when a user

stores large time steps incremental. That is, we can slice large time steps and store each

section individually. In Figure 4.17(a), we varied the number of connections between

each node, referred to as the edge/node ratio or connectivity ratio. A typical road net-

work has low connectivity, between 2 and 3 edges per node. Preliminary experiments

71

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 10 15 20 25 30 35 40

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
p
a
g
e
s
 a

c
c
e
s
s
e
d

Route Length

ATSS_02
ATSS_04
ATSS_06
ATSS_08
ATSS_10
ATSS_20

LCP

(a) LCP vs ATSS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20

L
a
g
ra

n
g
ia

n
 C

o
n
n
e
c
ti
v
it
y
 R

a
ti
o

length of time slots

LCP
ATSS

(b) LRatio of ATSS

Figure 4.16: Experiment 4 - Comparison of Non-Orthogonal Methods

show LRatio may suffer as the connectivity ratio increases.

4.4 Related Work

A broader set of related work for the SSTN problem is summarized by Table 4.2. Much

work has been done in the geometric space, indexes for both space and space-time have

been popular for years [108, 102, 101, 104, 109, 110]. However, geometrical approaches,

(e.g., Euclidean distance), may not be ideal for spatial networks. CCAM [103] demon-

strated that geometric partitioning less efficient when dealing with networks and that

topological connectivity may be better. In connectivity based partitioning, orthogonal

partitioning methods, such as the Longitudinal or Snapshot method, could capture net-

work connectivity based on either space or time independently. For instance, CCAM

considered only spatial connectivity when partitioning and storing spatial networks, and

therefore would likely emulate the Longitudinal method when given a spatio-temporal

network, especially one with large time series such as the ones mentioned in this paper.

Both Longitudinal and Snapshot method store data as synchronous mode, that is,

either space or time is fixed and data are arranged sequentially. In CCAM [103], tempo-

ral information is not considered as it is a node-based partitioning and a naive extension

would be to use synchronous time grouping for each node, either with some time interval

72

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 2 2.5 3 3.5 4 4.5

L
a
g
ra

n
g
ia

n
 C

o
n
n
e
c
ti
v
it
y
 R

a
ti
o

Edge/Node ratio

Lagrangian

(a) edge/node ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 200 400 600 800 1000 1200 1400 1600

L
a
g
ra

n
g
ia

n
 C

o
n
n
e
c
ti
v
it
y
 R

a
ti
o

number of time slots

Lagrangian

(b) time steps length

Figure 4.17: Experiment 5 - Changing the Spatio-Temporal Network

Table 4.2: Related work for Spatio-Temporal Network

Spatial Spatio-
Temporal

Geometric R-Tree [101],
Quad
Tree [102]

MVR-Tree,
TPR-Tree
[108]

Topological CCAM [103] LCP, Snap-
shot, Longitu-
dinal

or the entire time series (see Figure 4.18). The synchronous data structure, however,

could not store the spatial temporal connectivity, such as Lagrangian-connectivity. Our

sub-node storage design focuses on non-orthogonal spatio-temporal node storage based

on Lagrangian-connectivity. This allows multiple nodes, connected through Lagrangian

edges, to be on the same data page and reduce I/O cost.

Topological ordering, traversal partitioning, and graph partitioning have been used

to optimize access methods of graphs [111, 112, 113, 114]. Topological ordering and

traversal partitioning, however, need preprocessing to layout the graph and is slower

73

(CCAM, Long. Part.)

Asynchronous

(LCP)

Partial History

(ATSS)

Data Grouping

Synchronous

Full History

Figure 4.18: Related work in Record Formats for Time Series Storage

than graph partitioning. In graph partitioning literature [115, 116], a multi-level par-

titioning algorithm which balance cluster size and minimize the min-cut, is one of the

more efficient methods and we used Metis [107] as multi-level partitioning way to group

the Lagrangian connectivity.

4.5 Conclusions and Future Work

Spatio-temporal networks are becoming increasingly popular for a variety of important

societal applications such as transportation management, fuel distribution, airline man-

agement, electrical grid usage analysis, etc. Traditional approaches for the SSTN prob-

lem have focused on orthogonal partitioning (e.g., snapshot, longitudinal, etc.) of the

network, which produces significant I/O costs when performing Lagrangian movement

queries (e.g., route evaluation). We proposed a Lagrangian-Connectivity Partitioning

(LCP) method to efficiently store and access spatio-temporal networks that utilizes the

interaction between nodes and edges in a network. We introduced a sub-node record

format for storing STN data based on non-orthogonal spatio-temporal network parti-

tioning. Experimental evaluation of LCP demonstrated significant improvements over

previous work.

Our immediate future work is to expand our experiments to a real world dataset, with

hundreds of thousands of nodes, edges and time steps. Another interesting experiment

would evaluate the lossy compression (speed profiles) approach. Interesting comparisons

would look for travel time accuracy along with evaluating interesting events in the data

that may be lost through compression. Other future intentions for this work include

exploring more complex queries, such as time-dependent shortest path computation, etc.

Lastly, the chosen min-cut graph partitioning method was used due to its simplicity and

available implementation. Other, more complex graph partitioning algorithms may be

74

more efficient at capturing unique characteristics of spatio-temporal networks.

Chapter 5

Conclusion and Future Work

The main contributions of this thesis addressed the challenges of defining, storing, pro-

cessing, and analyzing spatial big data. In Table 5.1 we show our published works

related to these topics and First, we defined spatial big data and discussed the chal-

lenges and opportunities SBD brings to spatial computing, elaborating on work we did

in [11]. Second, we addressed the challenge of analyzing spatial big data with GPS tra-

jectories, motivated by the societal application of finding bicycle corridors from urban

cyclists [47, 48]. Third, we addressed the challenge of storing spatial big data in spa-

tial database systems, specifically storing spatio-temporal networks for use in advanced

routing services [45, 46]. In this chapter, we will present our preliminary work on the

challenge of processing spatial big data in the future work section of the thesis.

5.1 Key Results

This section presents a summary of the major results that were produced as a part of

this thesis.

• Spatial Big Data [11, 117, 118]: Increasingly, location-aware datasets are of

a volume, variety, and velocity that exceed the capability of spatial computing

technologies. Spatial Big Data examples include trajectories of cell-phones and

GPS devices, vehicle engine measurements, temporally detailed road maps, etc.

Spatial Big Data poses an enormous set of challenges in terms of analytics, data

processing, capacity, and validation. Work in this thesis defined spatial big data

and the challenges it presents for traditional computing technologies.

75

76

Table 5.1: Thesis Contributions: Spatial Big Data Analytics for Urban Informatics

Spatial Big Data Urban Informatics

Strategic Tactical Operational

Long-term Forecasts
(climate, demo-
graphics, economy)

SBD for Urban
Planning [11, 117,
118]

Location Traces
(GPS, UAV, WAMI)

Bicycle Corridor
Selection [48, 47]

Spatio-Temporal
Networks

Commuter In-
formation Sys-
tems [46, 45, 119]

• Network Trajectory Similarity [48]: Given a set of trajectories on a road net-

work, the goal of the All-Pair Network Trajectory Similarity (APNTS) problem

is to calculate the similarity between all trajectories using the Network Hausdorff

Distance. This problem is important for a variety of societal applications, such as

facilitating greener travel via bicycle corridor identification. The APNTS problem

is challenging due to the high cost of computing the exact Network Hausdorff Dis-

tance between trajectories in spatial big datasets. Previous work on the APNTS

problem takes over 16 hours of computation time on a real-world dataset of bicycle

GPS trajectories in Minneapolis, MN. In contrast, this paper focuses on a scalable

method for the APNTS problem using the idea of row-wise computation, resulting

in a computation time of less than 6 minutes on the same datasets. We provide

a case study for transportation services using a data-driven approach to identify

primary bicycle corridors for public transportation by leveraging emerging GPS

trajectory datasets.

• GPS Trajectory Analysis [47]: The k-Primary Corridor problem is important

due to a number of societal applications, such as city-wide bus route modifica-

tion or bicycle corridor selection, among other urban development applications.

For example, to plan a new bus route, one may analyze commuter trajectories

to summarize primary corridors of travel, suggesting new bus routes which may

minimize the aggregate walking distance of commuters. Let us consider the prob-

lem of determining primary bicycle corridors through a city to facilitate safe and

77

efficient bicycle travel. By selecting representative trajectories for a given group of

commuters, the overall alteration to commuters routes is minimized, encouraging

use. Facilitating commuter bicycle traffic has shown in the past to have numer-

ous societal benefits, such as reduced greenhouse gas emissions and healthcare

costs [93].

• Spatio-Temporal Networks [46, 45, 119]: Given a spatial network and its

variations over time (e.g., time-varying travel times on road networks) this chapter

discusses how to model, query and store spatio-temporal networks. This problem

has application in several domains such as transportation networks, emergency

planning, knowledge discovery from sensor data, and crime analysis. Adequately

representing the temporal nature of spatial networks would potentially allow us to

raise interesting questions (e.g., eco-routing, non-FIFO behavior) and find efficient

solutions. In transportation networks, travelers are often interested in finding

the best time to start so that they spend the least time on the road. Crime

data analysts may be interested in finding temporal patterns of crimes at certain

locations or the routes in the network that show significantly high crime rates.

Modeling the time dependence of sensor network data would certainly improve the

process of discovering patterns such as hot spots. In these application domains,

it is often necessary to develop a model that captures both the time dependence

of the data and the underlying connectivity of the locations. There are significant

challenges in developing a model for spatio-temporal networks. The model needs

to balance storage efficiency and expressive power and provide adequate support

for the algorithms that process the data.

5.2 Future Directions

We organize the future directions of this thesis into two categories: (a) short-term

directions and (b) long-term directions.

5.2.1 Short-term Directions

The component of handling spatial big data we did not touch upon in this thesis so

far is the processing step. Recently cloud computing has become quite popular and

78

computation platforms such as MapReduce/Hadoop have reached mainstream business

audiences. In this thesis we presented work on both the storage and the analysis layers

of spatial big data, and we are currently working on work related to the processing layer.

As GPS trajectories become more numerous (our case-study had only 819 trajectories,

but new datasets are now available with tens and hundreds of thousands), more efficient

and scalable processing methods are needed. We are developing a MapReduce-based

version of our similarity algorithm to run on the Hadoop distributed computing system.

We hope to greatly increase the number of trajectories we can use in our analysis but will

need to solve key challenges related to data partitioning and algorithm parallelization.

5.2.2 Long-term Directions

Spatio-temporal networks provide a true conversion between space and time, something

difficult to achieve in geometric dimensional space. Given this, we hope to move our

trajectory analysis to spatio-temporal networks, where temporal information can truly

be integrated with the underlying road network. This will pose significant challenges as

the size of real-world spatio-temporal networks provided by companies such as NAVTEQ

have millions of nodes. It will likely need to be combined with advanced processing

platforms, although MapReduce has been shown to be less than ideal for graph-based

iterative algorithms. Spatial Big Data offers the opportunity to address the traditional

routing query using a data driven paradigm. Specifically, the ever increasing availability

of GPS traces give us the opportunity to add a new dimension to route recommendation

systems by using information from personal or popular favorite routes.

One difficulty with many potential route solutions is merging and grouping routes

into something coherent. It is possible that many routes found by the algorithmic

portfolio may be similar, with only minor deviations, as illustrated in Figure 1.1(b).

Clustering can be done to find similar routes, either in terms of path chosen, or some

attribute of the path, such as road type (e.g., highways, side-streets, etc). Merging and

ranking the paths of routes is a difficult problem that we intend to explore. Ideally,

after merging the routes, some subset of that would be merged to reduce the risk of

information overload on the end-users.

We propose to leverage our work on trajectory similarity measures and trajectory

clustering to return k dissimilar routes. Next we discuss a preliminary approach for

79

(a) Collection of potential routes between two
points.

(b) Sample grouped and merged answers to
provide coherent feedback and suggestions to
users.

Figure 5.1: Many potential route solutions will require merging and grouping of routes,
similar to trajectory similarity.

grouping routes that may be produced from a set of routing algorithms including sum-

marization of GPS trajectories. The K-Median for Route-Collection (KMRC) problem

that our proposed algorithm addresses is defined as follows: Given a spatial roadmap

graph, a desired number of routes, k, and a collection of routes, R (e.g., GPS trajecto-

ries), find a subset of k routes in R that minimizes route similarity. Route similarity is

defined as the number of nodes and edges that two routes r1 and r2 have in common.

If r1 and r2 have no nodes or edges in common, then they would have a route simi-

larity of zero; whereas if they had all edges in common and they were of equal length,

they would have a route similarity of |r1|, or the length of r1 or r2. Figures 5.1(a)

and 5.1(b) illustrate an input and output example of KMRC respectively. The input

consists of thirteen nodes, fifteen edges (with edge weights of 1 for simplicity), k = 2,

indicating that two routes are desired, and the collection of routes (shown in the table

in Figure 5.1(a)). The output contains two routes from the given collection of routes

that minimize route similarity, 〈S, 1, 2, 3, 4, D〉 and 〈S, 8, 9, 11, D〉. Additionally, merg-

ing and grouping route candidate answers may be done for all start times. We propose

to investigate novel algorithmic refinements such as seeding each subsequent time in-

stant after the first time instant with the results of previous time instants to improve

computational savings without reducing result quality. The idea is to minimize itera-

tions by providing the algorithm with an answer that is close to the final answer and

avoid redundant calculations for each time instant as would be done in a näıve algorithm.

References

[1] F.J. Harvey and K.J. Krizek. Commuter Bicyclist Behavior and Facility Disrup-

tion. Technical Report Report no. MnDOT 2007-15, University of Minnesota,

2007.

[2] Betsy George, Sangho Kim, and Shashi Shekhar. Spatio-temporal network

databases and routing algorithms: A summary of results. In SSTD, pages 460–477,

2007.

[3] Federal High Administration, www.fhwa.dot.gov.

[4] G. Capps, O. Franzese, B. Knee, MB Lascurain, and P. Otaduy. Class-8 heavy

truck duty cycle project final report. ORNL/TM-2008/122, 2008.

[5] EIA. “U.S. Natural Gas Pipelines”. http://goo.gl/hprcU.

[6] Minnesota Department of Transportation, www.dot.state.mn.us/.

[7] Business Week. Spain’s Santander, the City That Runs on

Sensors. http://www.businessweek.com/articles/2013-05-16/

spains-santander-the-city-that-runs-on-sensors, 2013.

[8] Y.F. Thomas, D. Richardson, and I. Cheung. Geography and drug addiction.

Springer Verlag, 2009.

[9] P.J. Lioy and S.M. Rappaport. Exposure science and the exposome: an oppor-

tunity for coherence in the environmental health sciences. Environmental health

perspectives, 119(11):a466, 2011.

80

http://goo.gl/hprcU
http://www.businessweek.com/articles/2013-05-16/spains-santander-the-city-that-runs-on-sensors
http://www.businessweek.com/articles/2013-05-16/spains-santander-the-city-that-runs-on-sensors

81

[10] S.M. Rappaport. Implications of the exposome for exposure science. Journal of

Exposure Science and Environmental Epidemiology, 21(1):5–9, 2010.

[11] Shashi Shekhar, Michael R Evans, Viswanath Gunturi, and KwangSoo Yang. Spa-

tial big-data challenges intersecting mobility and cloud computing. NSF Workshop

on Social Networks and Mobility in the Cloud, page 35, 2012.

[12] The Independent. New Songdo City: Atlantis of the Far

East. http://www.independent.co.uk/news/world/asia/

new-songdo-city-atlantis-of-the-far-east-1712252.html, 2009.

[13] Popular Science. Planned Portuguese Eco-City Is Controlled By A Central

Computer Brain. http://www.popsci.com/technology/article/2010-10/

portuguese-smart-city-emulates-biology-using-computer-brain-centralized-control,

2010.

[14] Marcus Foth, Jaz Hee-jeong Choi, and Christine Satchell. Urban informatics. In

Proceedings of the ACM 2011 conference on Computer supported cooperative work,

pages 1–8. ACM, 2011.

[15] Eric Paulos, RJ Honicky, and Ben Hooker. Citizen science: Enabling participatory

urbanism. Handbook of Research on Urban Informatics, pages 414–436, 2008.

[16] Tim Kindberg, Matthew Chalmers, and Eric Paulos. Guest editors’ introduction:

Urban computing. Pervasive Computing, IEEE, 6(3):18–20, 2007.

[17] Mark Weiser. Hot topics-ubiquitous computing. Computer, 26(10):71–72, 1993.

[18] Marcus Foth. Handbook of research on urban informatics: The practice and

promise of the real-time city. Information Science Reference, IGI Global, 2009.

[19] J. Manyika et al. Big data: The next frontier for innovation, competition and

productivity. McKinsey Global Institute, May, 2011.

[20] Garmin. http://www.garmin.com/us/.

[21] Wikipedia. Usage-based insurance — wikipedia, the free encyclope-

dia. http://en.wikipedia.org/w/index.php?title=Usage-based_

insurance&oldid=464698702, 2011. [Online; accessed 15-December-2011].

http://www.independent.co.uk/news/world/asia/new-songdo-city-atlantis-of-the-far-east-1712252.html
http://www.independent.co.uk/news/world/asia/new-songdo-city-atlantis-of-the-far-east-1712252.html
http://www.popsci.com/technology/article/2010-10/portuguese-smart-city-emulates-biology-using-computer-brain-centralized-control
http://www.popsci.com/technology/article/2010-10/portuguese-smart-city-emulates-biology-using-computer-brain-centralized-control
http://www.garmin.com/us/
http://en.wikipedia.org/w/index.php?title=Usage-based_insurance&oldid=464698702
http://en.wikipedia.org/w/index.php?title=Usage-based_insurance&oldid=464698702

82

[22] TomTom. TomTom GPS Navigation. http://www.tomtom.com/, 2011.

[23] Google Maps. http://maps.google.com.

[24] Yu Zheng and Xiaofang Zhou. Computing with Spatial Trajectories. Springer

Publishing Company, Incorporated, 1st edition, 2011.

[25] Ralf Hartmut Güting, Victor Teixeira De Almeida, and Zhiming Ding. Modeling

and querying moving objects in networks. The VLDB Journal, 15(2):165–190,

2006.

[26] Brendan Morris and Mohan Trivedi. Learning trajectory patterns by clustering:

Experimental studies and comparative evaluation. In Computer Vision and Pat-

tern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 312–319. IEEE,

2009.

[27] Daniel P Huttenlocher, Klara Kedem, and Jon M Kleinberg. On dynamic voronoi

diagrams and the minimum hausdorff distance for point sets under euclidean mo-

tion in the plane. In Proceedings of the eighth annual symposium on Computational

geometry, pages 110–119. ACM, 1992.

[28] Jeff Henrikson. Completeness and total boundedness of the hausdorff metric. MIT

Undergraduate Journal of Mathematics, 1:69–79, 1999.

[29] Sarana Nutanong, Edwin H Jacox, and Hanan Samet. An incremental hausdorff

distance calculation algorithm. Proceedings of the VLDB Endowment, 4(8):506–

517, 2011.

[30] Jinyang Chen, Rangding Wang, Liangxu Liu, and Jiatao Song. Clustering of

trajectories based on hausdorff distance. In Electronics, Communications and

Control (ICECC), 2011 International Conference on, pages 1940–1944. IEEE,

2011.

[31] Hu Cao and Ouri Wolfson. Nonmaterialized motion information in transport

networks. Database Theory-ICDT 2005, pages 173–188, 2005.

http://www.tomtom.com/
http://maps.google.com

83

[32] G.P. Roh and S. Hwang. Nncluster: An efficient clustering algorithm for road

network trajectories. In Database Systems for Advanced Applications, pages 47–

61. Springer, 2010.

[33] Jung-Rae Hwang, Hye-Young Kang, and Ki-Joune Li. Spatio-temporal similarity

analysis between trajectories on road networks. In Proceedings of the 24th interna-

tional conference on Perspectives in Conceptual Modeling, ER’05, pages 280–289,

Berlin, Heidelberg, 2005. Springer-Verlag.

[34] Jung-Rae Hwang, Hye-Young Kang, and Ki-Joune Li. Searching for similar trajec-

tories on road networks using spatio-temporal similarity. In Advances in Databases

and Information Systems, pages 282–295. Springer, 2006.

[35] E. Tiakas, A. N. Papadopoulos, A. Nanopoulos, Y. Manolopoulos, Dragan Sto-

janovic, and Slobodanka Djordjevic-Kajan. Searching for similar trajectories in

spatial networks. J. Syst. Softw., 82(5):772–788, May 2009.

[36] Eleftherios Tiakas, Apostolos N Papadopoulos, Alexandros Nanopoulos, Yannis

Manolopoulos, Dragan Stojanovic, and Slobodanka Djordjevic-Kajan. Trajectory

similarity search in spatial networks. In IDEAS’06. 10th International, pages

185–192. IEEE, 2006.

[37] S. Turner, R. Margiotta, and T. Lomax. Lessons learned: monitoring highway

congestion and reliability using archived traffic detector data. US Department of

Transportation, Federal Highway Administration, 2004.

[38] Betsy George, Sangho Kim, and Shashi Shekhar. Spatio-temporal network

databases and routing algorithms: A summary of results. In SSTD, pages 460–477,

2007.

[39] D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering route planning

algorithms. Algorithmics of large and complex networks, pages 117–139, 2009.

[40] Ugur Demiryurek, Farnoush Banaei Kashani, and Cyrus Shahabi. Efficient k-

nearest neighbor search in time-dependent spatial networks. In DEXA (1), pages

432–449, 2010.

84

[41] Venkata M. V. Gunturi, Ernesto Nunes, KwangSoo Yang, and Shashi Shekhar. A

critical-time-point approach to all-start-time lagrangian shortest paths: A sum-

mary of results. In SSTD, pages 74–91, 2011.

[42] Ugur Demiryurek, Farnoush Banaei Kashani, Cyrus Shahabi, and Anand Ran-

ganathan. Online computation of fastest path in time-dependent spatial networks.

In SSTD, pages 92–111, 2011.

[43] Ĺıvia A Cruz, Mario A Nascimento, and José AF de Macêdo. k-nearest neigh-

bors queries in time-dependent road networks. Journal of Information and Data

Management, 3(3):211, 2012.

[44] M.F. Mokbel, T.M. Ghanem, and W.G. Aref. Spatio-temporal access methods.

IEEE Data Engineering Bulletin, 26(2):40–49, 2003.

[45] Michael R. Evans, KwangSoo Yang, James M. Kang, and Shashi Shekhar. A

lagrangian approach for storage of spatio-temporal network datasets: a summary

of results. In GIS, pages 212–221, 2010.

[46] KwangSoo Yang, Michael R Evans, Gunturi Venkata M.V., and Shashi Shekhar.

Lagrangian Approaches to Storage of Spatio-temporal Network Datasets. IEEE

Transactions on Knowledge and Data Engineering (TKDE), 2013 (accepted).

[47] Michael R. Evans, Dev Oliver, Shashi Shekhar, and Francis Harvey. Summarizing

trajectories into k-primary corridors: a summary of results. In Proceedings of the

20th International Conference on Advances in Geographic Information Systems,

SIGSPATIAL ’12, pages 454–457, New York, NY, USA, 2012. ACM.

[48] Michael R Evans, Dev Oliver, Shashi Shekhar, and Francis Harvey. Fast and Exact

Network Trajectory Similarity Computation: A Case-Study on Bicycle Corridor

Planning. In UrbComp 2013 (submitted), 2013.

[49] New York Times, 7/12/2007. http://www.nytimes.com/2007/07/12/business/12ups.html.

[50] U.S. Energy Information Adminstration. Monthly Energy Review June 2011.

http://www.eia.gov/totalenergy/data/monthly/.

http://www.eia.gov/totalenergy/data/monthly/

85

[51] Davis, S.C. and Diegel, S.W. and Boundy, R.G. Transportation energy data book:

Edition 28. Technical report, Oak Ridge National Laboratory, 2010.

[52] Austin Brown. Transportation Energy Futures: Addressing Key Gaps and Pro-

viding Tools for Decision Makers. Technical report, National Renewable Energy

Laboratory, 2011.

[53] US Congress. Energy independence and security act of 2007. Public Law,

(110-140), 2007. http://en.wikipedia.org/wiki/Energy_Independence_and_

Security_Act_of_2007.

[54] InformationWeek. Red Cross Unveils Social Media Monitoring Operation.

http://www.informationweek.com/government/information-management/

red-cross-unveils-social-media-monitorin/232602219, 2012.

[55] G. Levchuk, A. Bobick, and E. Jones. Activity and function recognition for moving

and static objects in urban environments from wide-area persistent surveillance

inputs. In Proceedings of SPIE, volume 7704, page 77040P, 2010.

[56] New York Times. Military Is Awash in Data From Drones. http://www.nytimes.

com/2010/01/11/business/11drone.html?pagewanted=all, 2010.

[57] New York Times. Mapping Ancient Civilization, in a Matter of Days. http:

//www.nytimes.com/2010/05/11/science/11maya.html, 2010.

[58] H. Kargupta, J. Gama, and W. Fan. The next generation of transportation sys-

tems, greenhouse emissions, and data mining. In Proceedings of the 16th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

1209–1212. ACM, 2010.

[59] H. Kargupta, V. Puttagunta, M. Klein, and K. Sarkar. On-board vehicle data

stream monitoring using minefleet and fast resource constrained monitoring of

correlation matrices. New Generation Computing, 25(1):5–32, 2006. Springer.

[60] Lynx GIS. http://www.lynxgis.com/.

[61] MasterNaut. Green Solutions. http://www.masternaut.co.uk/

carbon-calculator/.

http://en.wikipedia.org/wiki/Energy_Independence_and_Security_Act_of_2007
http://en.wikipedia.org/wiki/Energy_Independence_and_Security_Act_of_2007
http://www.informationweek.com/government/information-management/red-cross-unveils-social-media-monitorin/232602219
http://www.informationweek.com/government/information-management/red-cross-unveils-social-media-monitorin/232602219
http://www.nytimes.com/2010/01/11/business/11drone.html?pagewanted=all
http://www.nytimes.com/2010/01/11/business/11drone.html?pagewanted=all
http://www.nytimes.com/2010/05/11/science/11maya.html
http://www.nytimes.com/2010/05/11/science/11maya.html
http://www.lynxgis.com/
http://www.masternaut.co.uk/carbon-calculator/
http://www.masternaut.co.uk/carbon-calculator/

86

[62] TeleNav. http://www.telenav.com/.

[63] TeloGIS. http://www.telogis.com/.

[64] American Transportation Research Institute (ATRI). Fpm congestion monitor-

ing at 250 freight significant highway location: Final results of the 2010 per-

formance assessment. http://www.atri-online.org/index.php?option=com_

content&view=article&id=303:250-freight-significant-locations, 2010.

[65] American Transportation Research Institute (ATRI). Atri and fhwa re-

lease bottleneck analysis of 100 freight significant highway locations.

http://www.atri-online.org/index.php?option=com_content&view=

article&id=248&Itemid=75, 2010.

[66] Daniel. Sperling and D. Gordon. Two billion cars. Oxford University Press, 2009.

[67] Federal Highway Administration. Highway Statistics. HM-63, HM-64, 2008.

[68] Betsy George and Shashi Shekhar. Road maps, digital. In Encyclopedia of GIS,

pages 967–972. Springer, 2008.

[69] S. Shekhar and H. Xiong. Encyclopedia of GIS. Springer, New York, 2008.

[70] NAVTEQ, www.navteq.com.

[71] P. Bolstad. GIS Fundamentals: A first text on geographic information systems.

Eider Pr, 2005.

[72] Shashi Shekhar, Michael R Evans, James M Kang, and Pradeep Mohan. Identify-

ing patterns in spatial information: a survey of methods. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, 1(3):193–214, 2011. Wiley On-

line Library.

[73] T.C. Bailey and A.C. Gatrell. Interactive spatial data analysis, volume 413. Long-

man Scientific & Technical Essex, 1995.

[74] C. Brunsdon, A.S. Fotheringham, and M.E. Charlton. Geographically weighted

regression: a method for exploring spatial nonstationarity. Geographical analysis,

28(4):281–298, 1996.

http://www.telenav.com/
http://www.telogis.com/
http://www.atri-online.org/index.php?option=com_content&view=article&id=303:250-freight-significant-locations
http://www.atri-online.org/index.php?option=com_content&view=article&id=303:250-freight-significant-locations
http://www.atri-online.org/index.php?option=com_content&view=article&id=248&Itemid=75
http://www.atri-online.org/index.php?option=com_content&view=article&id=248&Itemid=75
www.navteq.com

87

[75] A.S. Fotheringham, C. Brunsdon, and M. Charlton. Geographically weighted re-

gression: the analysis of spatially varying relationships. John Wiley & Sons Inc,

2002.

[76] R. Agrawal, R. Srikant, et al. Fast algorithms for mining association rules. In

Proc. 20th Int. Conf. Very Large Data Bases, VLDB, volume 1215, pages 487–499,

1994.

[77] S. Ghemawat, H. Gobioff, and S.T. Leung. The google file system. In ACM

SIGOPS Operating Systems Review, volume 37, pages 29–43. ACM, 2003.

[78] D. Borthakur. The hadoop distributed file system: Architecture and design.

Hadoop Project Website, 11:21, 2007.

[79] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clus-

ters. Communications of the ACM, 51(1):107–113, 2008.

[80] S. Shekhar, S. Ravada, D. Chubb, and G. Turner. Declustering and load-balancing

methods for parallelizing geographic information systems. Knowledge and Data

Engineering, IEEE Transactions on, 10(4):632–655, 1998.

[81] Shashi Shekhar and Sanjay Chawla. Spatial databases - a tour. Prentice Hall,

2003.

[82] S. Shekhar, P.R. Schrater, R.R. Vatsavai, W. Wu, and S. Chawla. Spatial contex-

tual classification and prediction models for mining geospatial data. Multimedia,

IEEE Transactions on, 4(2):174–188, 2002. IEEE Computer Society.

[83] N. Cressie. Statistics for spatial data. Terra Nova, 4(5):613–617, 1992.

[84] S. Chawla, S. Shekhar, W.L. Wu, Army High Performance Computing Research

Center, and University of Minnesota. Modeling spatial dependencies for mining

geospatial data: An introduction. Army High Performance Computing Research

Center, 2000.

88

[85] B.M. Kazar, S. Shekhar, D.J. Lilja, and D. Boley. A parallel formulation of the

spatial auto-regression model for mining large geo-spatial datasets. In SIAM Inter-

national Conf. on Data Mining Workshop on High Performance and Distributed

Mining (HPDM2004). Citeseer, 2004.

[86] S. Shekhar, S. Ravada, V. Kumar, D. Chubb, and G. Turner. Parallelizing a gis

on a shared address space architecture. Computer, 29(12):42–48, 1996.

[87] G. Malewicz, M.H. Austern, A.J.C. Bik, J.C. Dehnert, I. Horn, N. Leiser, and

G. Czajkowski. Pregel: a system for large-scale graph processing. In Proceedings of

the 2010 international conference on Management of data, pages 135–146. ACM,

2010.

[88] U. Kang, C.E. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph mining

system implementation and observations. In Data Mining, 2009. ICDM’09. Ninth

IEEE International Conference on, pages 229–238. IEEE, 2009.

[89] J. Cohen. Graph twiddling in a mapreduce world. Computing in Science &

Engineering, 11(4):29–41, 2009.

[90] Günter Rote. Computing the minimum hausdorff distance between two point sets

on a line under translation. Information Processing Letters, 38(3):123–127, 1991.

[91] Daniel P. Huttenlocher, Gregory A. Klanderman, and William J Rucklidge. Com-

paring images using the hausdorff distance. Pattern Analysis and Machine Intel-

ligence, IEEE Transactions on, 15(9):850–863, 1993.

[92] Daniel P Huttenlocher and Klara Kedem. Computing the minimum hausdorff

distance for point sets under translation. In Proceedings of the sixth annual sym-

posium on Computational geometry, pages 340–349. ACM, 1990.

[93] Josephine Marcotty. Federal Funding for Bike Routes Pays Off in Twin Cities.

http://www.startribune.com/local/minneapolis/150105625.html.

[94] T.H. Cormen. Introduction to algorithms. The MIT press, 2001.

[95] L.R. Ford and DR Fulkerson. Flows in networks. Princeton University Press,

1962.

http://www.startribune.com/local/minneapolis/150105625.html

89

[96] Helmut Alt and Leonidas J Guibas. Discrete geometric shapes: Matching, inter-

polation, and approximation. Handbook of computational geometry, 1:121–153,

1999.

[97] Yalin Wang, Qilong Han, and Haiwei Pan. A clustering scheme for trajectories in

road networks. In Advanced Technology in Teaching-Proceedings of the 2009 3rd

International Conference on Teaching and Computational Science (WTCS 2009),

pages 11–18. Springer, 2012.

[98] Hongbin Zhao, Qilong Han, Haiwei Pan, and Guisheng Yin. Spatio-temporal sim-

ilarity measure for trajectories on road networks. In Internet Computing for Sci-

ence and Engineering, Fourth International Conference on, pages 189–193. IEEE,

2009.

[99] Michael R. Evans, KwangSoo Yang, James M. Kang, and Shashi Shekhar. A

lagrangian approach for storage of spatio-temporal network datasets: a summary

of results. In Proceedings of the 18th SIGSPATIAL International Conference on

Advances in Geographic Information Systems, GIS ’10, pages 212–221, New York,

NY, USA, 2010. ACM.

[100] S. Shekhar and S. Chawla. Spatial Databases: A Tour. Prentice Hall. ISBN

013-017480-7., 2003.

[101] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Pro-

ceedings of the 1984 ACM SIGMOD international conference on Management of

data, pages 47–57. ACM, 1984.

[102] H. Samet. Spatital data structures. In ACM SIGGRAPH 2007 courses, page 1.

ACM, 2007.

[103] Shashi Shekhar and Duen-Ren Liu. CCAM: A connectivity-clustered access

method for networks and network computations. IEEE Trans. Knowl. Data Eng.,

9(1):102–119, 1997.

[104] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows.

Englewood Cliffs, New Jersey, 1993. Prentice Hall, Inc.

90

[105] J.C. Herrera and A.M. Bayen. Incorporation of Lagrangian measurements in

freeway traffic state estimation. Transportation Research Part B: Methodological,

2009.

[106] L. R Ford and D. R Fulkerson. Constructing maximal dynamic flows from static

flows. In OPERATIONS RESEARCH Vol. 6, No. 3, May-June 1958, pp. 419-433

DOI: 10.1287/opre.6.3.419, 1958.

[107] A. Abou-Rjeili and G. Karypis. Multilevel algorithms for partitioning power-law

graphs. In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.

20th International, page 10, 2006.

[108] Long-Van Nguyen-Dinh, Walid G. Aref, and Mohamed F. Mokbel. Spatio-

temporal access methods: Part 2 (2003 - 2010). IEEE Data Eng. Bull., 33(2):46–

55, 2010.

[109] A.U. Frank, S. Grumbach, R.H. Gueting, C.S. Jensen, M. Koubarakis, N.A.

Lorentzos, Y. Manolopoulos, E. Nardelli, B. Pernici, H.J. Schek, et al.

Chorochronos: A research network for spatiotemporal database systems. SIG-

MOD Record, 28(3):12–21, 1999.

[110] B. George and S. Shekhar. Time-aggregated graphs for modeling spatio-temporal

networks. Journal on Data Semantics XI, pages 191–212, 2008.

[111] J. Banerjee, W. Kim, S. J. Kim, and J. F. Garza. Clustering a DAG for CAD

databases. volume 14, page 1684, November 1988.

[112] Erik G. Hoel, Wee-Liang Heng, and Dale Honeycutt. High performance multi-

modal networks. In SSTD, pages 308–327, 2005.

[113] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spatial

network databases. In Proceedings of the 29th international conference on Very

large data bases-Volume 29, page 813. VLDB Endowment, 2003.

[114] H. Samet. Foundations of multidimensional and metric data structures. Morgan

Kaufmann, 2006.

91

[115] C.J. Alpert and A.B. Kahng. Multiway partitioning via geometric embeddings,

orderings, and dynamic programming. IEEE Transactions on Computer-aided

Design of Integrated Circuits and Systems, 14(11):1342–1358, 1995.

[116] S.E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

[117] Michael R Evans, Dev Oliver, KwangSoo Yang, and Shashi Shekhar. Enabling

Spatial Big Data via CyberGIS: Challenges and Opportunities. In CyberGIS:

Fostering a New Wave of Geospatial Innovation and Discovery. Springer Book,

2013 (accepted).

[118] Michael R Evans, Dev Oliver, Viswanath Gunturi, and Shashi Shekhar. Spatial

Big Data: Case Studies on Volume, Velocity, and Variety. In Big Data: Techniques

and Technologies in Geoinformatics. CRC Press, 2014 (accepted).

[119] Michael R Evans, KwangSoo Yang, Viswanath Gunturi, Betsy George, and

Shashi Shekhar. Spatio-Temporal Networks: Modeling, Storing, and Querying

Temporally-Detailed Roadmaps. In Space-Time Integration in Geography and

GIScience: Research Frontiers in the US and China. Springer Book, 2013 (ac-

cepted).

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Introduction
	Urban Informatics
	Spatial Big Data
	Analysis of GPS Trajectories
	Storage of Spatio-Temporal Networks

	Thesis Contributions
	Thesis Overview
	Outline

	Enabling Urban Informatics with Spatial Big Data
	Defining Spatial Big Data
	Spatial Big Data Opportunities
	Estimating Spatial Neighbor Relationships
	Supporting Place-based Ensemble Models
	Simplifying Spatial Models
	On-line Spatio-Temporal Data Analytics

	Spatial Big Data Infrastructure
	Parallelization of Spatial Big Data
	Difficulties of Parallelization
	Problems with Current Techniques

	Conclusion

	Analysis of GPS Trajectories for Bicycle Corridor Identification
	Introduction
	Problem Formulation
	Basic Concepts
	Problem Statement

	Computational Structure
	Graph-Node Track Similarity Baseline (GNTS - B)
	Graph-Node Track Similarity with Precomputed Distances (GNTS - P)

	Proposed Approach
	Matrix-Element Track Similarity (METS)
	Row-Wise Track Similarity (ROW-TS)

	Case Study: k-Primary Corridors for Commuter Bicyclists
	Analytical Analysis
	Cost Analysis

	Experimental Evaluation
	Experimental Goals
	Experimental Design
	Experimental Results

	Conclusion

	Storage of Spatio-Temporal Networks for Advanced Routing
	Introduction
	Motivation
	Spatio-Temporal Networks (STN)
	Problem Statement
	Related Work and Limitations
	Contribution
	Scope and Outline

	Proposed Approach
	Lagrangian-Connectivity Partitioning
	Cost Model

	Experimental Evaluation
	Experiment Setup:
	LCP Approximation: ATSS
	Experimental Results

	Related Work
	Conclusions and Future Work

	Conclusion and Future Work
	Key Results
	Future Directions
	Short-term Directions
	Long-term Directions

	References

