
Munich Personal RePEc Archive

Spatial scale of agglomeration and

dispersion: Theoretical foundations and

empirical implications

Akamatsu, Takashi and Mori, Tomoya and Osawa, Minoru

and Takayama, Yuki

Tohoku University, Kyoto University, Kanazawa University

8 August 2017

Online at https://mpra.ub.uni-muenchen.de/80689/

MPRA Paper No. 80689, posted 09 Aug 2017 23:25 UTC



Spatial Scale of Agglomeration and Dispersion:

Theoretical Foundations and Empirical Implications∗

Takashi Akamatsu†, Tomoya Mori‡ ,§, Minoru Osawa¶ and Yuki Takayama‖

August 8, 2017

Abstract

This paper revisits a wide variety of existing economic geography models in a many-region
setup. It investigates the spatial scale of agglomeration and dispersion intrinsic to each model.
In our unified analytical framework, these models reduce to two canonical classes: one with
a global dispersion force and the other with a local dispersion force. Their formal distinction is
that the former is dependent, whereas the latter is independent of the distance structure of
the model. These classes exhibit two stark differences. The first difference concerns their
response to transport costs: Global and local dispersion forces are triggered by higher and lower
transport costs, respectively. Consequently, in a realistic model with both types of dispersion
forces, a decrease in transport costs simultaneously causes both agglomeration at the global
scale and dispersion at the local scale. The second difference concerns the agglomeration
pattern: multiple agglomerations emerge and spread globally over the regions in the former,
whereas agglomeration always takes the form of a unimodal regional distribution of mobile
agents in the latter. Endogenous agglomeration mechanisms generally do not isolate the
locations at which agglomerations grow or decline for a given change in transport costs.
However, they offer predictions for the global spatial distribution of agglomerations as well
as the local spatial extent of an individual agglomeration. This knowledge provides a con-
sistent explanation for the set of seemingly unrelated empirical results from reduced-form
regressions on regional agglomerations (e.g., Baum-Snow, 2007; Baum-Snow, Brandt, Hen-
derson, Turner and Zhang, 2017; Duranton and Turner, 2012; Faber, 2014); it provides a new
set of testable hypotheses. Moreover, our analytical framework provides formal predictions
of treatment effects in the structural model-based approaches for regional agglomeration.
Applications to the most standard formulations (e.g., Allen and Arkolakis, 2014; Redding
and Sturm, 2008) are discussed.
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1 Introduction

Empirical studies over the past few decades have let to the accumulation of ample evi-

dence that agglomeration externalities are the major source of lumpy spatial distributions

of economic activities (see, e.g., Rosenthal and Strange, 2004, for a survey). A wide variety

of formal models have been proposed to investigate the underlying mechanisms (see, e.g.,

Duranton and Puga, 2004; Behrens and Robert-Nicoud, 2015, for surveys). For analytical

tractability, most existing models rely on a location space that abstracts from the diversity of

interregional distances inherent in the actual regional economies, where a typical approach

assumes a location space comprising of just two regions.1 Summarizing the spatial effects

in a single interregional distance simplifies the analysis. However, this benefit comes at the

cost of losing information on the spatial scale of agglomeration and dispersion.2

To see this, consider a model with any agglomeration force but without a dispersion

force. In such a model, all the mobile agents will concentrate in one region. If some

dispersion forces were added to the model, a fraction of mobile agents will deviate from

the concentration. In a two-region economy, there is only one alternative region to head for.

Hence, there is no variation in the spatial scale of dispersion. However, in a many-region

economy wherein interregional distances are heterogeneous, the spatial scale of dispersion

can vary depending on the nature of the dispersion force. Dispersion may occur locally to

avoid crowding inside the agglomeration as in the case of an urban congestion externality,

or it may occur globally through attraction from outside the agglomeration in the case of a

distant, less crowded market.

This paper revisits a wide variety of existing economic geography models in a many-

region setup with diverse interregional distances.3 Characterizing their bifurcation behaviors

behind the spontaneous formation of agglomerations in a unified analytical framework, we

show that these models reduce to two canonical classes: (i) one with a global dispersion force4

and (ii) the other with local dispersion force.5 Formally, the two dispersion forces differ in that

1Another typical approach allows for the presence of many regions that are equidistant (often zero distance)
from one another as in the system of cities model by Henderson (1974). See Tabuchi, Thisse and Zeng (2005)
for a recent such application.

2Many extant empirical studies have abstracted from the space between locations and have focused on the
local interactions between agglomeration size and location-specific factors (see, e.g., Combes and Gobillon, 2015,
for a survey). The empirical studies discussed in Section 6 belong to the other strand of literature that account
for global factors (such as interregional transport accessibility) on regional agglomerations.

3More specifically, we cover static many-region models with a single type of mobile agents (refer to footnotes
4, 5 and 6). We do not cover models with multiple types of mobile agents (e.g., urban models of Fujita and
Ogawa, 1982; Ota and Fujita, 1993; Lucas and Rossi-Hansberg, 2002; Ahlfeldt, Redding, Sturm and Wolf, 2015;
Owens, Rossi-Hansberg and Sarte, 2017), or dynamic models (e.g., Desmet and Rossi-Hansberg, 2009, 2014,
2015; Desmet, Nagy and Rossi-Hansberg, 2017; Nagy, 2017).

4For example, Krugman (1991); Puga (1999); Ottaviano, Tabuchi and Thisse (2002); Forslid and Ottaviano
(2003); Pflüger (2004); Harris and Wilson (1978).

5For example, Beckmann (1976); Mossay and Picard (2011); Blanchet, Mossay and Santambrogio (2016);
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the former is dependent, whereas the latter is independent of the distance structure of the

model. The most realistic formulations incorporate both the forces.6 Table 1 presents the

classification of the existing models.

These classes exhibit two stark differences. The first difference is with regard to the

response to transport costs. Global dispersion (i.e., an increase in the number of agglom-

erations, a decrease in the spacing of agglomerations, and a decrease in the size of each

individual agglomeration) is triggered by higher costs. In contrast, local dispersion (i.e., an

enlargement of the spatial extent of an agglomeration) is triggered by lower costs. In a realistic

model with both types of dispersion forces, a decrease in transport costs simultaneously causes

both agglomeration at the global scale and dispersion at the local scale. The second difference is in

terms of agglomeration patterns. In the former, multiple agglomerations emerge and spread

globally over the regions; in the latter, the agglomeration always takes the form of a unimodal

regional distribution of mobile agents. The typical location pattern can thus be described as

locally concentrated and globally dispersed for the former and as globally concentrated and locally

dispersed for the latter.

The notion of spatial scale of agglomeration and dispersion is not pervasive in the em-

pirical literature of regional agglomeration. However, it is indispensable to understand the

evolution of agglomeration patterns in reality. Consider the case of Japan from 1970 to date.

The development of highways and high-speed railway networks in Japan was triggered by

the Tokyo Olympics held in 1964. Between 1970 and 2010, the total highway (high-speed rail-

way) length increased from 1,124 km (516 km) by more than 10 (4) times to 12,068 km (2,388

km). The 359 urban agglomerations that have survived throughout the forty-year period

experienced a 34% increase in population size on average (controlling for the national popu-

lation growth). This means that there was a selective concentration from all over the country,

i.e., at the global scale.7,
8 However, this concentration at the global scale was associated with

a dispersion at the local scale: there was a 107% increase in areal size on average with a 34%

decrease in population density for individual agglomerations on average. These seemingly

paradoxical evolutions of urban agglomerations in Japan turn out to be a standard outcome

of a realistic model that combines both types of dispersion force (see Section 5.3).

Accordingly, our results provide novel perspectives for the three major strands of em-

Helpman (1998); Redding and Sturm (2008); Murata and Thisse (2005); Allen and Arkolakis (2014).
6These models are called class (iii), where, for example, the studies by Tabuchi (1998); Pflüger and Südekum

(2008); Takayama and Akamatsu (2011) are included.
7Each urban agglomeration is identified as the set of contiguous 1km-by-1km cells with population density

at least 1000/km2 and total population at least 10,000. Population count data is obtained from Statistics Bureau,
Ministry of Internal Affairs and Communications of Japan (1970, 2010). The transport network data can be
obtained from the National Land Numerical Information Download Service of Japan at http://nlftp.mlit.
go.jp/ksj-e/gml/gml_datalist.html. See Appendix A for deitals.

8The population size of each agglomeration is computed in terms of its share of national total population,
and thus, the growth of the national population size is controlled.
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pirical literature on regional agglomeration. One is on the measure of agglomeration (e.g.,

Ellison and Glaeser, 1997; Duranton and Overman, 2005; Brülhart and Traeger, 2005; Mori,

Nishikimi and Smith, 2005). The other two are on the reduced-form regression approaches

(see, e.g., Redding and Turner, 2015, §20.4, for a survey) and structural model-based ap-

proaches (see, e.g., Redding and Rossi-Hansberg, 2017, for a survey) to evaluate the impacts

of exogenous changes, particularly, those of interregional transport access on regional ag-

glomeration. Here, we highlight the basic issue in each context.

A scalar index has long been a natural choice for measuring agglomeration, reflecting

that abstraction from interregional distances has been the rule in the formal analyses of

agglomeration. On the premise of our theoretical results, when the dispersion force is

effective at both global and local scales as in reality, agglomeration proceeds at the global

scale when dispersion proceeds at the local scale and vice versa. Thus, the meaning of the

net effect summarized by a scalar index is unclear. In Section 6.1, we argue for the necessity

and utility of more disaggregated measures of agglomeration.

For the reduced-form regression exercises, consider, for example, a pair of contrasting

studies on regional agglomeration (i.e., at a global scale) by Duranton and Turner (2012) and

Faber (2014). The former focused on the growth of large metro areas in the US, while the

latter focused on the growth of peripheral counties in China.9 The former (latter) revealed a

positive (negative) correlation between the size of agglomeration and interregional transport

access in a given region. Notably, endogenous agglomeration mechanisms generally do not

isolate which existing agglomerations grow or decline given an improvement in interregional

transport access although the theory has a clear prediction on the overall spatial pattern of

agglomerations in terms of their number and spacing. In light of class (i) models, these

opposite responses may simply reflect the different sides of the same coin. That is, both

the results may indicate the tendency of agglomeration at the global scale (toward larger

regions) under the treatment, i.e., an improvement in interregional transport access (as in the

case of Japan discussed above). Thus, one must carefully interpret the estimated treatment

effect, since it is simply an average effect for the selected regions where the selections are not

necessarily systematic. For the excluded but treated regions, the sign of the impacts may well

be opposite. Section 6.2 provides a unified interpretation for a wider variety of empirical

evidence on regional agglomeration in terms of our theoretical results. We propose a set

of testable hypotheses on the spatial patterns of agglomerations and discuss the context in

which these can actually be tested.

Finally, regarding structural model-based approaches for regional agglomeration, the two

9The amount of interregional highway linkages (e.g., the number and total length) within a given region
is often interpreted as a measure of intra-urban transport infrastructure (e.g., Baum-Snow, 2007; Duranton
and Turner, 2012). But, we suggest that it can also be interpreted as a measure of interregional transport
infrastructure.
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representative models by Redding and Sturm (2008) and Allen and Arkolakis (2014) belong

to class (ii), i.e., they cannot explain endogenous formation of multiple agglomerations by

construction. In other words, their basic premise is that the primary source of regional

variation in agglomeration size is the heterogeneity in exogenous (or first-nature) regional

advantages and that agglomeration externalities play only a secondary role. However, we

demonstrate that even in this case, the comparative static outcome is still governed by

agglomeration externalities and is specific to the model class. In fact, the signs of treatment

effects on agglomeration typically reverse if multiple agglomerations are allowed to form

endogenously, i.e., class (i) models were adopted instead.10

The remainder of the paper is organized as follows. Section 2 develops a general modeling

framework for analyzing agglomeration patterns in a many-region economy and defines

equilibria and their stability. Section 3 characterizes the nature of the dispersion force

and provides a formal classification of the spatial patterns of agglomeration in terms of the

spatial scale of dispersion force. Section 4 presents a mapping of existing models of economic

geography to the classification. Section 5 outlines the impact of changes in transport costs on

the stable equilibrium patterns of agglomeration under the representative models. Section

6 discusses the implications of our theoretical results to the empirical literature on regional

agglomeration. Finally, Section 7 concludes and discusses future research agendas regarding

models with richer and more realistic structures that are not treated in this paper.

2 A general modeling framework for spatial agglomerations

This section introduces a generic format of many-region spatial economic models, which

we refer to as economic geography models, with agglomeration externalities and endogenous

formation of spatial concentration. As essential preliminaries, technical aspects (stability

and bifurcation of equilibria) and their economic interpretations are discussed.

Throughout our analyses, the term “region” indicates a discrete spatial unit wherein a

mobile agent can locate. Whether the model is interpreted to be intraurban, interregional,

or international is not essential for our results. A “region” may alternatively be termed as an

urban zone, a municipality, a country, and so forth.11

2.1 General format of economic geography models

The economy compromises K discrete regions indexed from 0 as i � 0, 1, . . . , K − 1, and K ≡
{0, 1, . . . , K − 1} denotes the set of regions. There is a continuum of mobile agents of a single

10Refer to the discussions in Section 6.3 and the formal analysis in Appendix D.
11On assuming discrete space, also noted is that there are intrinsic difficulties with employing a continuous

space in empirical analyses due to the discrete nature of the data as well as numerical computations.
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type; an agent chooses a single region to locate within. We denote the spatial distribution of

agents by h ≡ (hi)i∈K , where its ith element hi ≥ 0 is the mass of agents located in the region

i. The total mass of mobile agents is exogenous constant H, i.e.,
∑

i∈K hi � H. In concrete,

the set of all possible spatial patterns is given by D ≡ {h ∈ RK | ∑k∈K hk � H, hk ≥ 0}.
Given the spatial distribution h of agents, the payoff of choosing each region is deter-

mined. The payoff function is denoted by v(h) ≡ (vi(h))i∈K , where vi(h) denotes the payoff

for an agent located in region i ∈ K . Agents are mobile and are free to choose their locations

to possibly improve their own payoffs. Thus, the equilibrium condition for the spatial dis-

tribution of agents is formulated as follows: v∗
� vi(h) for all regions i such that hi > 0, and

v∗ ≥ vi(h) for any region i such that hi � 0. Here, v∗ is an equilibrium payoff level.

The indispensable feature of economic geography models is the presence of space: trans-

portation costs are incurred by, e.g., shipment of goods between different regions or social

interactions among agents in different locations. Therefore, there is a fundamental trade-off

between transportation costs and scale economies associated with the spatial concentration of

economic activities (Fujita and Thisse, 2013). Payoff functions of economic geography mod-

els include agglomeration and dispersion forces so that spatial equilibria are determined by

a tense balance of the two opposing forces that depend on the interregional transportation

costs. We assume that the spatial frictions between regions is summarized by a single friction

matrixD � [di j], where di j ∈ [0, 1) denotes the freeness of transport between the regions i , j.

Given the friction matrix D that encapsulates the role of the underlying geography, the

microfoundations for the payoff function v(h) are typically provided by modeling the short-

run equilibrium relating to spatial frictions between locations. Assuming that relocation of

agents is sufficiently slow compared with that through market reactions, the short-run equi-

librium conditions (e.g., factor and product markets clearing and trade balance) determine

the payoff (utility or profit) in each region as a function of the spatial pattern of agents h. We

thus assume that the payoff function v(h) includesD as a parameter.

In sum, our analysis adheres to the most canonical form of spatial economic models: static

models with a single type of mobile agent. In particular, the setup covers single-industry

new economic geography (NEG) models because location incentives of firms and workers

coincide. Thus, more involved models with multiple types of mobile agents,12 sector-wise

differentiated spatial frictions,13 multiple types of increasing returns,14 and dynamic models15

are not covered. These directions are discussed in Section 7.

12For example, urban models of Fujita and Ogawa (1982); Ota and Fujita (1993); Lucas and Rossi-Hansberg
(2002) as well as their recent applications, e.g., Ahlfeldt et al. (2015); Owens et al. (2017).

13For example, Fujita and Krugman (1995) and Mori (1997).
14For example, Fujita, Krugman and Mori (1999b); Tabuchi and Thisse (2011), and also Hsu (2012).
15Most notably, Desmet and Rossi-Hansberg (2009, 2014, 2015); Desmet et al. (2017); Nagy (2017).
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2.2 Stability and bifurcation of equilibria

With positive externalities of spatial agglomeration, economic geography models often face

a multiplicity of equilibria. A standard approach in the literature is to introduce equilibrium

refinement based on local stability under myopic evolutionary dynamics, where the rate

of change in the number of residents hi in region i is modeled on the basis the spatial

pattern of agents h and that of payoff v(h).16 We denote the deterministic dynamic by

Ûh � F (h, v(h)), where the dot over h represents the time derivative. We assume (i) F

satisfies differentiability with respect to both arguments in D, (ii) agents relocate toward

the direction of an increased aggregate payoff under F , and (iii) the total mass of agents is

preserved under F .17 Furthermore, we assume that any spatial equilibrium is a rest point of

the dynamic.18 Given an adjustment dynamic F , the stability of an equilibrium is defined in

terms of asymptotic stability under F .

Stability of a given spatial equilibrium is parameter dependent. As emphasized by the

NEG literature, changes in transportation technologies can trigger endogenous emergence of

regional inequality. The basic core–periphery story after Krugman (1991) is that “Consider

an economy with two regions that are ex-ante symmetric, where the regions have exactly

same characteristics and mobile agents are uniformly distributed. When interregional trans-

portation costs are high, the uniform distribution of mobile agents is a stable equilibrium. If

the transportation cost falls below a certain threshold value, the pattern is no longer stable;

the agglomeration toward one of the regions occurs, and the core–periphery pattern emerges

by self-organization.”

Although the intuitive story of the two-region economy backed by the rich interactions

of economic forces has its own right, corresponding many-region studies are scarce in the

literature. In particular, what spatial patterns emerge after an encountered destabilization

in a many-region economy is far from obvious. One needs better methods to examine the

stability of equilibrium patterns in a many-region economy.

Such an abrupt change in spatial patterns due to destabilization is an instance of bifurca-

tion. Thus, bifurcation theory in general provides the canonical tools to tackle our problem.

This paper builds on the following formal facts on stability and bifurcation of equilibria to

examine the formation of spatial patterns in a many-region economy:19

16Another approach is global stability analysis based on perfect foresight dynamics (Oyama, 2009a,b).
17For (i), we assume differentiability of F (h, v(h)) as a whole on the tangent space of D. The second, (ii),

is called positive correlation (Sandholm, 2010) which is defined by
∑

i∈K vi(h) · Ûhi > 0 for all h ∈ D. The last,
(iii), requires that F (h, v(h)) live in the tangent cone of D for all h ∈ D. Furthermore, even though this
paper focuses on homogeneous payoffs, one can analyze stability of spatial equilibria with idiosyncratic taste
heterogeneity (e.g., Murata, 2003; Redding, 2016; Behrens, Mion, Murata and Südekum, 2017; Monte, Redding
and Rossi-Hansberg, 2016) by perturbed best response dynamics.

18That is, if h∗ is a spatial equilibrium, we have Ûh � F (h∗ , v(h∗)) � 0.
19For the rest of the paper, we had to sacrifice mathematical accuracy to reduce unnecessary burden for

general readers. For rigorous and general textbook treatment of stability analysis of dynamical systems and
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Fact 1. Consider a spatial equilibrium h∗. Let J ≡ [∂Fi(h∗, v(h∗))/∂h j] be the Jacobian

matrix of the dynamic F evaluated at h∗. Let the eigenvalues of J be g � (gk)k∈K .20

Then, h∗ is stable if all the K eigenvalues have strictly negative real parts; it is

unstable if any of the eigenvalues has a strictly positive real part.

Fact 2. Let h∗ be a stable spatial equilibrium, i.e., an equilibrium at which every eigenvalue

of J(h∗) has strictly negative real parts. Suppose that any of the eigenvalues, say

gk , switches its sign because of a change in the value of an underlying model

parameter. Then, a bifurcation occurs: h∗ becomes unstable, and the spatial pattern

moves toward the direction of ηk � (ηk ,i)i∈K , which is the eigenvector associated to

gk ; given a real number ϵ, a pattern that can be expressed as h∗
+ ϵηk emerges.

Note that when we employ Fact 2, we can focus on ηk with
∑

i∈K ηk ,i � 0 because we assume

that the total number of mobile agents is preserved under F .21

The two-region story is related to Facts 1 and 2 in the following way. Consider a two-region

economy that comprises two regions 0 and 1 with completely homogeneous characteristics.

The uniform pattern h̄ ≡ (h , h) is obviously a spatial equilibrium. The (two) eigenvectors

of J are given by η0 � (1, 1) and η1 � (1,−1) with the associated eigenvalues g0 and g1,

respectively. The former, η0, induces change in the total mass of mobile agents and is

irrelevant in a closed economy. The latter, η1, expresses agglomeration of mobile agents

toward one of the regions, say 0. The associated eigenvalue, g1, then coincides with the

differential of the payoff difference between the two regions ∆v(h) ≡ v0(h) − v1(h) up to a

positive constant. If g1 < 0, then a marginal increase in the population share of region 0

induces a relative decrease in payoff in region 0. Hence, no mobile agent hopes to leave region

1. If a decrease in transportation costs changes the sign of g1 from negative to positive, then

relocation becomes strictly beneficial for agents in region 1, i.e., h̄ become unstable, and

agglomeration emerges.

2.3 Interpreting eigenvalues: Net agglomeration forces

By virtue of Facts 1 and 2, analyzing the eigenpairs (i.e., eigenvalues g and eigenvectors {ηk})
of J(h∗), one can examine when destabilization of a given equilibrium h∗ occurs and what

spatial pattern(s) emerge thereafter. Though seemingly mechanical, as one would expect

from the above example of the two-region setup, g and {ηk} have rich economic meanings.

bifurcation theory, see, for example, Guckenheimer and Holmes (1983) and Kuznetsov (2004). An earlier
attempt to apply bifurcation theory to spatial structural evolution can be found in Wilson (1981).

20Allowing a notational abuse, K denotes the K-dimensional index sets for the regions and the eigenvalues
and eigenvectors of J .

21To be precise, to examine the stability of a given (interior) equilibriumh∗ it suffices to analyze the eigenvalues
of the restricted linear map J(h∗) : TD → TD where TD ≡ {η ∈ RK | η · 1 � 0} is the tangent space of D (see
Appendix B.4).
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The sign of an eigenvalue gk dictates whetherh∗ is stable in the direction of the associated

eigenvector ηk . We provide some intuitions. Given an interior equilibrium h∗, consider a

small variation in spatial pattern such that h � h∗
+ ηk , where ηk ≡ (ηk ,i)i∈K is one of the

eigenvectors of J(h∗), whose associated eigenvalue is gk . Then, under our assumptions on

F , one can show that22

sgn[gk] � sgn[δV(ηk)], (2.1)

where δV(ηk) and δVi(ηk) are respectively defined by

δV(ηk) ≡
∑

i∈K
δVi(ηk)ηk ,i and δVi(ηk) ≡

∑

j∈K

∂vi(h∗)
∂h j

ηk , j . (2.2)

Note that ηk ,i � hi − h∗
i

is either positive or negative. Observe that δVi(ηk) is the marginal

increase in payoff in region i when the spatial pattern changed to h � h∗
+ ηk . Accordingly,

δV(ηk) is the weighted sum of the marginal increase in payoffs all over the regions.

If gk is strictly negative (positive), δV(ηk) is strictly negative (positive). This implies that,

if gk < 0, the collateral deviation toward ηk direction is strictly undesirable for relocated

agents. To see this, rewrite δV(ηk) as follows:

δV(ηk) �
∑

ηk ,i>0

δVi(ηk)
��ηk ,i

�� −
∑

ηk ,i<0

δVi(ηk)
��ηk ,i

�� . (2.3)

The first (second) term in the right hand side is the average payoff increase in the destination

(origin) regions of migration; thus, the weighted sum δV(ηk) is the net increase of payoff

experienced by the relocated agents. If all {gk} are strictly negative, for any direction there

is no incentive to relocate and thus the equilibrium is stable. It is also intuitive to consider

a single hypothetical agent who may want to relocate from region i to j; her payoff gain is

given by δV � δVj − δVi . If all {gk} are strictly negative, it follows that δV < 0 and there is

no incentive for such relocation. Conversely, if any of {gk} is positive, a collateral deviation

toward the ηk direction is beneficial for any relocated agents and a snowball effect will kick

the spatial pattern out of the equilibrium; that is, the equilibrium is unstable.

In the context of economic geography models, one can interpret each eigenvalue gk as

the net force in its associated direction of deviation ηk in the sense that gk reflects the net

effect of agglomeration and dispersion forces at work in the ηk direction. Depending on its

sign, gk expresses net agglomeration force (if positive) or net dispersion force (if negative).

In particular, if only one of them happens to be positive, then the spatial pattern is unstable

22See Appendix B.4. The discussion here assumes that gk and ηk are both real, as this property holds true
throughout our analyses below.
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Figure 1: A racetrack economy (K � 16)

Note: The thin lines represent the transportation network and the black points represent the discrete
regions where mobile agents can locate. The regions are sequentially numbered.

and agglomeration occurs in the direction of the associated eigenvector.

3 Spatial scale of endogenous agglomeration and dispersion

Although the general facts on local stability and bifurcation of equilibria are in principle

applicable for any situation, in general geographical setups (i.e., assumed structures of D),

analytical results are difficult to obtain; thus, formal implications are limited. This sec-

tion introduces a minimal and ideal geographical setup, namely, a racetrack economy that

considerably simplifies local stability analysis of spatial equilibria in general economic ge-

ography models. Despite the technical simplification, the setup preserves heterogeneities

in interregional distances—an indispensable feature to express spatial scale of agglomeration

and dispersion patterns. Employing desirable properties of the geographical setup, we re-

veal the two distinct spatial scales of dispersion force that determine the spatial pattern of

agglomerations. Concrete examples are discussed in Section 4.

3.1 Racetrack economy: Desired testbed

We assume a racetrack economy à la Krugman (1993) (Figure 1).23 The K regions are equidis-

tantly spread on a circle and are sequentially numbered from zero, with transportation pos-

sible only around the circumference. The circumferential length is normalized to unity. Fur-

thermore, we assume that there are no region-fixed advantages in terms of, for instance, local

amenities or productivity differences. The geographical setup provides an ideal “testbed” to

analyze intrinsic properties of a many-region economic geography model for two reasons.

23Our approach to local stability analysis that utilizes a racetrack economy was developed by Akamatsu,
Takayama and Ikeda (2012), and an application can be found in Osawa, Akamatsu and Takayama (2017); see
Appendix B for a summary. As the approach focuses on local bifurcations from a given equilibrium, group-
theoretic bifurcation theory combined with numerical analysis provide complementary insights into the global
bifurcation behavior of equilibria. See Ikeda, Akamatsu and Kono (2012); Ikeda, Murota, Akamatsu, Kono and
Takayama (2014); Ikeda, Murota and Takayama (2017a), as well as Ikeda and Murota (2014).
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First, it allows us to focus on spatial patterns due to agglomeration externalities in a pure

form. In particular, it abstracts from location-fixed advantages induced by the shape of the

underlying transportation network. For instance, in a long narrow economy (e.g., Solow and

Vickrey, 1971; Beckmann, 1976), the regions near the boundaries have fewer opportunities

to access the other regions; the central portion is advantageous due to the shape of space. In

our setup, in contrast, every region has the same level of accessibility to the other regions.24

Second, despite its simplicity, the setup incorporates heterogeneities in interregional

distances. Let ℓi j denote the shortest path length from region i to j on the circumference;

then, we have for example ℓ0,1 � ℓ1,0 � 1/K and ℓK−1,1 � ℓ1,K−1 � 2/K.25 The heterogeneity

in interregional distances makes relative location in space matter, which is not the case for

the common two-region setup. Furthermore, the symmetric racetrack economy reduces to

the two-region setup if K � 2; the former is thus a natural generalization of the latter.

In addition, in line with Krugman (1993), we assume that the spatial friction between

each pair of two regions takes Samuelson’s iceberg form, a standard choice for general

equilibrium models.26 In concrete terms, di j is given by di j � exp[−τℓi j] with a transport

technology parameter τ ∈ (0,∞). D is thus symmetric because ℓi j � ℓ ji . Moreover, each di j

is decreasing in τ. When we consider a steady improvement in transportation technology—

that is, continued decrease of τ—the spatial frictions between the regions gradually vanish

(di j → 1 for all i and j as τ → 0).

3.2 Local and global forces and the basic roles of space

The first virtue of assuming a racetrack structure is that the uniform distribution is always

an equilibrium when the payoff function is symmetric across the regions. For this reason,

one can follow the extant theories where the spatial distribution of mobile agents is assumed

to be initially uniform and study endogenous formation of spatial patterns due to pure

economic forces. We denote the flat-earth equilibrium on the racetrack by h̄ ≡ (h , h , . . . , h)
with h ≡ H/K. Furthermore, it is typical that at the flat-earth equilibrium J and ∇v(h̄) are

closely related. If we let ek(τ) be the eigenvalues of ∇v(h̄), we often have gk(τ) � cek(τ) with

a positive constant c.27 Thus, not only the sign but also the magnitude of gk(τ) matters—in

fact, the relative magnitude of gk(τ) represents that of agglomeration and dispersion force

24In this sense, our setup has an intrinsic complementarity with the many-region analyses by Matsuyama
(1999), who abstracted from endogenous positive feedbacks and focused on the role of geography itself.

25In concrete terms, ℓi j � min
{
|i − j |, K − |i − j |

}
.

26Some models, e.g., those by Ottaviano et al. (2002), Tabuchi et al. (2005), and Picard and Tabuchi (2013),
have assumed noniceberg transport technology. In principle, our analytical approach is effective with respect
to these models, albeit the analysis is far more tedious compared to the iceberg case; the models can be fit to
either of classes (i) or (ii) [or (iii)] discussed in Section 1 and to be introduced below. We shall refrain from
analyzing non-iceberg models to simplify our presentation.

27For instance, the replicator dynamic (Taylor and Jonker, 1978) satisfy c � h (see Appendix B.4).
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fk(τ)

1

0 τ

f1
f2

f3

fK/2

Figure 2: Eigenvalues of the friction matrixD for a racetrack economy with K � 16

Note: Every fk(τ) for 1 ≤ k ≤ K is an increasing function of τ. Those for 1 ≤ k ≤ K/2 are shown in
the figure, because we have fk(τ) � fK−k(τ) for K/2 + 1 ≤ k ≤ K − 1. Also, for each given level of τ,
fk(τ) is basically decreasing in k for 1 ≤ k ≤ K/2 (see Appendix B).

toward the ηk direction.

The second and the most important utility of imposing a racetrack structure is that the role

of transport cost in the net agglomeration force becomes transparent. To see this, the notion

of spatial scales of agglomeration and dispersion forces is useful. Throughout this paper, we

call an agglomeration or dispersion force global if it depends on the distance between regions

(i.e., the friction structureD), while that do not depend on the distance between regions are

termed local agglomeration or dispersion force.

Below, we consider a toy model that reveals the intrinsic workings of a global force.

Consider the following simplest reduced-form payoff specification that implements only a

black-box positive externality of agglomeration but no dispersion force

v(h) �Dh, (3.1)

or, in the element-wise form, vi(h) �
∑

j∈K di j h j . This simple model is a canonical example of

models with global agglomeration force—an agglomeration force that depends on interregional

distances. It is evident that we have ∇v(h) �D at the flat-earth equilibrium.

The net agglomeration forces {gk(τ)}, or the eigenvalues of J , are thus given by gk(τ) �
hd(τ) fk(τ) with { fk(τ)} being the eigenvalues of the row-normalized version of the friction

matrix D̄ ≡ D/d(τ), where d(τ) � ∑
j∈K di j(τ) > 0 is the row-sum of D.28 In a racetrack

economy, we have analytical expressions of the eigenvalues { fk(τ)} as well as those of their

associated eigenvectors {ηk} (see Appendix B). Consequently, the eigenvectors of J are

also given by {ηk}. The eigenvector associated with gk(τ) is ηk � (ηk ,i) � (cos[θki]) with

θ ≡ 2π/K; we ignore g0 in the following because η0 � (1, 1, . . . , 1) violates the conservation

of the total mass of agents.

28We assume the replicator dynamic as the underlying dynamic F for illustration (see Example B.3 in
Appendix B.4). Note also that the row-sum ofD is row-independent in a racetrack economy.
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η1,i

Panel A: η1 (monocentric)

0 Region i

η2,i

0

Panel B: η2 (duocentric)

η3,i

0

Panel C: η3 (tricentric)

ηK/2,i

0

Panel D: ηK/2 (alternative agglomeration)

Figure 3: Illustrations of the eigenvectors ηk (K � 16; k � 1, 2, 3, K/2)

Note: The negative (positive) elements of an eigenvector ηk indicate that if the flat-earth pattern is
perturbed into the direction, so that the new spatial pattern is h � h̄ + ϵηk with ϵ > 0, such regions
experience decrease (increase) in their population.

Figure 2 illustrates { fk(τ)}k≥1 for K � 16. Each fk(τ) ranges from 0 to 1 and decreases if τ

decreases. When interregional transportation costs decline, the effects of the friction matrix

vanish. Thus, we see that gk(τ) > 0 for all k ≥ 1, and hence, h̄ is never stable (Fact 1). Because

there is no dispersion force that can stabilize the flat-earth equilibrium, it is also natural that

h̄ is unstable for any value of τ.

The relative magnitude of the net agglomeration forces {gk(τ)} is of interest. To this end,

for the toy model, one can see that fk(τ) determines the relative strength between {gk(τ)}.
Note that fk(τ) is decreasing in k (see Figure 2), with the maximal f1(τ) for all τ. Thus, the

maximal among gk(τ) is also g1(τ). But why does this occur?

Looking at the eigenvectors {ηk} provides intuitions. Some examples ofηk with K � 16 are

illustrated in Figure 3 for k � 1, 2, 3, K/2.29 A negative (positive) element ηk ,i in ηk indicates

that if the spatial pattern slightly changed toward the ηk direction so that h � h̄ + ϵηk with

ϵ > 0, the number of mobile agents decreases (increases) in the region. In a symmetric

racetrack economy, the possible directions of change are characterized by the number of

peaks, k, or, in other words, by the number of population concentrations (i.e., agglomerations).

η1 (Panel A of Figure 3) is directed to a monopolar pattern with a single peak and hence

expresses the emergence of a global concentration of mobile agents; η2 (Panel B) expresses

the emergence of two major concentrations, while η3 (Panel C) expresses the emergence of

three major concentrations; ηK/2 (Panel D) expresses the emergence of the smallest possible

29To simplify the presentation, we assume that the number of regions K is a multiple of four. Qualitatively,
the exact number of regions is inconsequential if it is sufficiently large.
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agglomerations. In other words, η1 immediately pushes the flat-earth equilibrium to a

unimodal agglomeration, while η2, η3, and ηK/2 (as well as other ηk except for η1) pushes

the flat-earth equilibrium to other multimodal patterns. As we assume a featureless space,

the peaks are equidistantly spaced.

Given the knowledge of {ηk}, the maximality of g1(τ) now has clear economic meaning.

We understand that the associated eigenvector η1 for g1(τ) is a unimodal, monocentric

agglomeration (Panel B of Figure 3). Since there are no negative effects of agglomeration in

the model, a monocentric concentration is the most beneficial outcome for every agent. As

the number of peaks in ηk increases, the size of a single agglomeration becomes smaller. It

obviously reduces the magnitude of positive externalities and is less favorable. Also, fk(τ)
decreases as τ decreases because when the level of interregional transport costs is low there

is less incentive toward agglomeration.

3.3 Endogenous formation of agglomeration out of uniformity

For canonical economic geography models in the literature, at the flat-earth equilibrium, J

is related to the row-normalized version of the friction matrix, D̄(τ) � D(τ)/d(τ), in the

following form (see Appendices B and C):30

J ≃ c0I + c1D̄(τ) + c2{D̄(τ)}2, (3.2)

where c0, c1, and c2 are model-dependent (positive or negative) coefficients. Given the

relation, the eigenvalues g � (gk)k∈K\{0} of J satisfy (see Appendix B)

sgn[gk(τ)] � sgn
[
G
(

fk(τ)
) ]
, (3.3)

G
(

f
)
� c0 + c1 f + c2 f 2, (3.4)

where ( fk(τ))k∈K\{0} are the eigenvalues of D̄(τ) (Figure 2). The eigenvector associated with

each gk(τ) is again ηk � (ηk ,i) � (cos[θki]) with θ ≡ 2π/K (Figure 3). Recall that one can

ignore g0 provided that the underlying dynamicF preserves the total mass of mobile agents.

Employing our definition of local and global forces, we see that c0 summarizes the local

agglomeration and dispersion forces in the model and c1 and c2 summarize the global ones.

Usually, we have c0 < 0, c1 > 0, and c2 < 0. For example, a crowding-out effect inside a region

due to congestion or point-wise scarcity of land produces a local dispersion force, resulting

in a negative constant term (c0 < 0); a global social interaction (e.g., Beckmann, 1976) is

30The notation≃ for matrices means that the LHS coincides with the RHS multiplied by some real, symmetric,
and circulant matrixJ0 which is positive definite relative to TD. For our purpose in this paper (i.e., local stability
analysis of h̄), we can practically “ignore” J0 in our discussion. Also noted is that the convention is just for
simplicity of presentation.
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c0 τ∗∗ τ∗
τ

fk(τ)

gk(τ) � G( fk(τ))

c0

0

1

0 τ
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f

f ∗∗

f ∗ f1
fK/2

g1(τ)
✁
✁✕

gK/2(τ)
✁
✁☛

Figure 4: Net agglomeration forces and their model-dependent and -independent components

Note: Top: The net agglomeration forces {gk(τ)}. We consider the simplest case: gk(τ) � G( fk(τ)).
Bottom left: An example of the model-dependent function G( f ). Bottom right: The eigenvalues
{ fk(τ)} of D̄, which are model-independent. h̄ is stable in the dark gray regions of τ or f .

suggested by a positive first-order term (c1 > 0); and goods demand from spatially dispersed

consumers in other regions (e.g., Krugman, 1991) is indicated by a negative second-order

term (c2 < 0).31

In the following, we assume the most general case of G( f ) in the literature: G( f ) is given

by G( f ) � c0 + c1 f + c2 f 2 with c0 < 0, c1 > 0, and c2 < 0, with two roots f ∗ and f ∗∗ for

G( f ) � 0 in (0, 1) such that f ∗∗ < f ∗. The shape of G( f ) under the assumptions is shown in

the bottom left panel of Figure 4. The functional form of G( f ) corresponds to a model with

a local dispersion force, global agglomeration force, and global dispersion force.

The properties of { fk(τ)} are completely model independent; because { fk(τ)} are merely the

eigenvalues of the (normalized version of) friction matrix D̄(τ), they are invariant regardless

of the economic geography model (i.e., the payoff function v(h)) one may assume. Instead,

the function G( f ) in (3.4), or equivalently the matrix relation (3.2), encapsulates the net effects

of economic interactions in the model and provides insights into the process of endogenous

formation of spatial patterns.

The question posed is as follows: given such G( f ), what spatial pattern emerges after an

encountered bifurcation? In particular, will it be a unimodal pattern or a multipolar pattern?

31In Appendix C, we present detailed analyses of how economic geography models are mapped to the
coefficients {ci} taking models in the literature as concrete examples.
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Panel A: h̄ + ϵηK/2 Panel B: h̄ + ϵη1

Figure 5: Schematic illustrations of the spatial patterns at τ∗ and τ∗∗ (K � 16)

Note: The size of a small white circle represents the number of mobile agent at the region. Panel A:
bifurcation at τ∗ (a locally concentrated and globally dispersed pattern); Panel B: bifurcation at τ∗∗

(a globally concentrated and locally dispersed pattern).

Choose an appropriate value of τ so that h̄ is stable; that is, the net agglomeration

forces {gk(τ)} are strictly negative so that any deviation is strictly nonbeneficial. Consider a

gradual change in τ. When any of the net agglomeration forces becomes positive, the flat-

earth equilibrium stops being stable and agglomerations emerge. What one should observe

here is the first gk(τ) that changes its sign from negative to positive. Let τ⋆ be a critical

value at which this occurs. It is evident that τ⋆, or the so-called break point, is a solution

to the equation maxk∈K
{

gk(τ⋆)
}
� 0. Denote the index of the critical eigenvalue such that

gk(τ⋆) � maxk gk(τ⋆) by kcrit
⋆ . Then, the spatial pattern at τ⋆ is expressed in terms of the

kcrit
⋆ th eigenvector as h � h̄+ ϵηkcrit

⋆
where ϵ is a real number. Under our assumption of G( f ),

the curves of {gk(τ)} behave as in the top panel of Figure 4; the upper envelope of the curves

represents maxk∈K
{

gk(τ⋆)
}
, and the critical points are found where the curve crosses the

horizontal axis. There are two solutions, τ∗ and τ∗∗, and we have kcrit
∗ � K/2 and kcrit

∗∗ � 1.

See Figure 5 for the spatial patterns that emerge at τ∗ (Panel A) and τ∗∗ (Panel B).

The stability of the flat-earth equilibrium for the higher level of τ is attributed to the

global dispersion force, while that for the lower level of τ is attributed to the local dispersion

force. As transport costs decline from high level, the flat-earth equilibrium collapses at

τ∗ because the global dispersion force declines (recall that fk(τ) decreases as τ decreases).

When τ decreases below another threshold, τ∗∗, it brings about a situation where the flat-

earth equilibrium becomes stable again because the local dispersion force, which is always

existent regardless of τ, overcomes the agglomeration force.

3.4 Rethinking redispersion

Panels A and B of Figure 5 illustrate the two mutually distinct spatial patterns that emerge

at τ∗ and τ∗∗, respectively. Panel A illustrates the spatial pattern that emerges at τ∗, which

is interpreted as a locally concentrated and globally dispersed pattern. It is characterized by the

formation of many small agglomerations spread over the circumference. In the pattern,

mobile agents are locally concentrated but the location of agglomerations are equidistantly
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spaced or globally dispersed.32 Panel B illustrates the pattern at τ∗∗, which is interpreted

as a globally concentrated and locally dispersed pattern. In this pattern, agents are globally

concentrated to shape a unimodal distribution (a single agglomeration with a large spatial

extent).

The two critical points τ∗ and τ∗∗ are customarily termed in the literature as “emergence

of core and periphery” and “redispersion (revival of the periphery),” respectively, and the

process as a whole is denoted as “bell-shaped development” (Fujita and Thisse, 2013). When

transportation costs are very high (τ > τ∗), the symmetric equilibrium is stable. An the first

stage of the decline of transportation costs, the destabilization of the symmetric equilibrium

results in spatial inequality. In the later stage, once established, agglomeration is no longer

sustainable and the symmetric configuration is stable again (τ < τ∗∗).

The redispersion process is considered to be just the reverse process of agglomeration.

For any model with a single type of mobile agent, it is supposed that there is no essential

difference in the spatial patterns at the two stages (around τ∗ or τ∗∗).33 Indeed, this is true

in the two-region setup where the two relevant eigenvectors coincide: ηK/2 � η1 � (1,−1).
However, our analysis so far has shown that it is not the case in a many-region economy. The

two bifurcations at τ∗ and τ∗∗ are of quite distinct nature: each represents the emergence of

mutually distinct spatial patterns and are attributed to dispersion forces at different spatial

scale, i.e., global and local.

4 Classification of models by the spatial scale of dispersion

The distinction between global and local dispersion forces allows one to reduce economic

geography models to two canonical classes: (i) those with only a global dispersion force

and (ii) those with only a local dispersion force. This section provides concrete examples

of global and local dispersion forces employing selected models in the literature. For every

model discussed in this section, J is expressed by up to the second-order term of D̄ as in

(3.2) so that G( f ) is (at most) a quadratic of f as in (3.4). Table 1 is the resultant classification.

Detailed analyses of models in the table are relegated to Appendix C.

32Observe that the spatial pattern resembles those obtained by the numerical simulations by Krugman (1993)
for K � 12. The spatial pattern is also similar to the pre-assumed spatial patterns in the study by Tabuchi and
Thisse (2011).

33Takatsuka and Zeng (2009) analyzed redispersion behavior in the two-region economy new economic
geography model with multiple industries with distinct returns to scale and indicated an asymmetry in the two
processes: industrial composition at each region is different in the redispersion phase.
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Figure 6: G( f ) for the models by Krugman (1991) and Harris and Wilson (1978)

4.1 Class (i): Models with global dispersion force

Global dispersion forces are those that arise outside of a given agglomeration, typically

implemented as spatially dispersed demand. Usually, a global dispersion force appears

in J as a negative (second-order) term with respect to D. For instance, the NEG models

by Krugman (1991), Puga (1999), Forslid and Ottaviano (2003), and Pflüger (2004) satisfy

c0 � 0 and we have G( f ) � c1 f + c2 f 2 with c1 > 0 and c2 < 0. Furthermore, the model by

Harris and Wilson (1978), a vintage model of spatial self-organization proposed in the field

of geography, satisfies G( f ) � c0 + c2 f 2 with c0 > 0 and c2 < 0.34

Figure 6 illustrates G( f ) for Krugman (1991) and Harris and Wilson (1978). Because G( f )
is a concave quadratic with G(0) ≥ 0, G( f ) has at most a single solution f ∗ in (0, 1); it implies

that a single critical value (break point) of transportation cost τ∗ can exist.35 As discussed in

the previous section, at τ∗, the emergent pattern is locally concentrated and globally dispersed (or

a multimodal pattern) in which multiple distinct agglomerations are endogenously formed

(Panel A of Figure 5).

The seminal model of Krugman (1991) is considered as an example. Appendix C provides

the omitted derivations of the indirect utility function and other formulae of this model, as

well as the results under the other models discussed below. The payoff function (i.e., indirect

utility function of mobile workers) is given by

vi(h) � wiP
−µ
i

(4.1)

34For the drawn cases, the underlying parameters satisfy the so-called “no-blackhole condition” that ensures
the stability of the flat-earth pattern in the higher extreme of τ. Otherwise, we have G(1) > 0 and the flat-earth
pattern is always unstable.

35One can show that an influential model by Ottaviano et al. (2002) also endogenously produces globally
dispersed patterns; hence, this is a class (i) model. As the model assumes non-iceberg transportation technology,
we do not discuss the model here to simplify our presentation (see also Footnote 26).
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where wi denotes the nominal wage of mobile workers and

Pi ≡
(∑

j∈K
h jw

1−σ
j d ji

)1/(1−σ)
(4.2)

denotes the price index in region i. The parameters µ and σ are the expenditure share on

the manufactured good and the elasticity of substitution between varieties, respectively. The

wage is obtained as the (unique) solution of the so-called wage equation that reflects the

short-run utility maximization of consumers, trade balance, and zero-profit condition for

firms. In each region, there is an exogenous endowment of immobile workers.

For the model, one has

J ≃ µ
(

1

σ − 1
+

1

σ

)
D̄ −

(
µ2

σ − 1
+

1

σ

)
D̄2. (4.3)

The exact mappings to the coefficients c1 > 0 and c2 < 0 are thus given by c1 � µ(κ̄ + κ)
and c2 � −(µ2κ̄ + κ), where we let κ̄ ≡ 1/(σ − 1) and κ ≡ 1/σ. The coefficients c1 and c2

captures the net effects of agglomeration and dispersion forces in the Krugman (1991) model,

respectively. In particular, µκ̄ in c1 represents the so-called price-index effect, whereas µκ

represents a home-market effect. On the other hand, c2 is the market-crowding effect: µ2κ̄

in c2 is due to firms’ competition over demand from mobile agents and in κ is due to that

from immobile agents. For more detailed discussions on interpretations of coefficients, refer

to Remark C.2 in Appendix C.1.

4.2 Class (ii): Models with a local dispersion force

A local dispersion force acts inside each region and does not explicitly depend on the spatial

distribution of mobile agents. Urban costs induced within each region (e.g., housing cost,

congestion externality) are typical. Examples include the frameworks of Helpman (1998),

Redding and Sturm (2008), Murata and Thisse (2005), as well as the perfectly competitive

framework of Allen and Arkolakis (2014).36 Furthermore, the model by Beckmann (1976)

focusing on the internal structure of cities (Mossay and Picard, 2011; Blanchet et al., 2016) is

another representative example.37 At the flat-earth pattern, a local dispersion force appears

36Without exogenous location-fixed factors, the model of Redding and Rossi-Hansberg (2017) (§3) is equiv-
alent to Redding and Sturm (2008). The model of Monte et al. (2016) also belongs to class (ii), albeit it adds
an extra urban cost as well as taste heterogeneity; we note that an idiosyncratic utility shock is equivalent to a
local dispersion force (see Appendix B for a brief discussion). It is also evident that Picard and Tabuchi (2013)
is a class (ii) model.

37We here consider a discrete-space version of the Beckmann model as formulated in the study by Aka-
matsu, Fujishima and Takayama (2017). Akamatsu et al. (2017) showed that a discrete-space Beckmann model
asymptotically converges to the continuous variant as the number of region increases.
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Figure 7: G( f ) for the models by Allen and Arkolakis (2014) and Helpman (1998)

in J as a negative constant term with respect toD (i.e., c0 < 0).

Figure 7 illustrates G( f ) for the models by Allen and Arkolakis (2014) and Helpman (1998).

For these models, there exists at most a single critical point of f ∗∗. If the model parameters are

set such that there is an endogenous formation of agglomeration, the flat-earth equilibrium

is stable for the lower level of transport cost. At the only bifurcation point τ∗∗, a globally

concentrated and locally dispersed pattern (or a unimodal pattern) with a single agglomeration

is endogenously formed (Panel B of Figure 5). In this class of models, without location-

fixed factors, the only possible spatial pattern associated with agglomeration is a globally

concentrated and locally dispersed pattern.

The model by Allen and Arkolakis (2014) is a recent example. The indirect utility function

of mobile workers is given by

vi(h) � h
β

i
wiP

−1
i , (4.4)

where Pi denotes the price index for the model

Pi ≡
(∑

j∈K
h
α(σ−1)
j

w1−σ
j d ji

)1/(1−σ)
(4.5)

The parameters α > 0 and β < 0 are exponents for a reduced-form Marshallian externality

and for a local congestion externality in amenities, respectively, and wi(h) is the market wage

in the region i. For this model, the source of agglomeration is the reduced-form local positive

externality represented by the parameter α. One has

J ≃ −(α + β − γ0)I + (α + β + γ1)D̄, (4.6)

with γ0 ≡ (1+ α)/σ and γ1 ≡ (1− β)/σ. We thus have G( f ) � c0 + c1 f with c0 � −(α+ β− γ0)
and c1 � α + β + γ1. If α + β ≤ 0, there is no agglomeration force and the flat-earth equilibrium

is stable for any value of τ. If α + β > 0, there is a local positive agglomeration force; we
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have c0 < 0 and c1 > 0, as well as G(1) > 0. If the agglomeration force is strong (0 < α + β),

the model can express endogenous agglomeration. In the net form, as indicated in (4.6),

the model does not have any global dispersion force. Thus, we conclude that the model

produces only unimodal patterns. In fact, Figure VIII in the study by Allen and Arkolakis

(2014) confirms this result. In the other contexts, the model by Beckmann (1976) (Mossay and

Picard, 2011; Blanchet et al., 2016; Akamatsu et al., 2017) yields a similar linear functional

form of G( f ) since the model incorporates a first-order global agglomeration force and a

local dispersion force.

As discussed by Allen and Arkolakis (2014), their model is isomorphic to the Helpman

(1998) model with local landownership (i.e., Redding and Sturm, 2008). One can show that

the assumptions concerning landownership do not alter the above conclusion. For Helpman’s

original model, with public landownership, under appropriate normalizations, one obtains

J ≃ c0I + c1D̄ + c2D̄
2 so that G( f ) � c0 + c1 f + c2 f 2 with c0 � −(1 − µ), c1 � µ(κ̄ + κ), and

c2 � −(κ+ µ2κ̄)+ (1− µ). Again, κ̄ � 1/(σ− 1) and κ � 1/σ where µ is the expenditure share

on manufactured goods, and σ is the elasticity of substitution between manufactured goods.

We have c0 < 0, c1 > 0, and c2 < 0; for the model, the agglomeration force is derived from

the second term in J , whereas dispersion forces are derived from the others. Observe that

c1 is as per the model by Krugman (1991), meaning that the agglomeration force of the latter

is isomorphic to that of the former. Panel B of Figure 7 illustrates the shape of G( f ) for the

model. It follows that whenever there is an endogenous agglomeration, we have G(1) > 0;

thus, f ∗ does not exist; although c2 < 0 and there seemingly exists a global dispersion force,

it is not effective. The main dispersion force of the model is derived from the consumption

of non-tradable housing stock that produces a negative pecuniary externality through the

local housing market.

4.3 Classification of representative economic geography models

Table 1 classifies representative economic geography models in the literature according to

the nature of their dispersion forces and resulting stable spatial patterns (including our toy

model discussed in Section 3.2). The exact mapping to the coefficients of G( f ) is provided by

Table 2 at the end of Appendix C. As discussed, at the flat-earth equilibrium of a given model,

one can characterize the fundamental trade-off between the centripetal and centrifugal forces

by the coefficients {ci} or the shape of G( f ). In particular, one can clearly distinguish the

spatial scale of the model’s effective dispersion force.

There are two canonical model classes (i) and (ii). The former includes models with only

a global dispersion force, while the latter includes models with only local dispersion force.

The second column of Table 1 summarizes characteristic spatial patterns for each of the

two model classes. Although our analysis basically concerns the endogenous formation of
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Table 1: Classification of economic geography models in the literature

Dispersion force Spatial patterns Economic geography models

None

Concentration
to a single region

(unimodal patterns)
The toy model defined by (3.1)

Only global
[class (i)]

Locally concentrated
and globally dispersed
(multimodal patterns)

Krugman (1991)
Puga (1999)
Forslid and Ottaviano (2003)
Pflüger (2004)
Harris and Wilson (1978)

Only local
[class (ii)]

Globally concentrated
and locally dispersed
(unimodal patterns)

Helpman (1998)
Murata and Thisse (2005)
Redding and Sturm (2008)
Allen and Arkolakis (2014)
Redding and Rossi-Hansberg (2017) (§3)
Beckmann (1976)
Mossay and Picard (2011)
Blanchet et al. (2016)

Both
[class (iii)]

Mixed characteristics
of the classes (i) and (ii)
(multimodal patterns)

Tabuchi (1998)
Pflüger and Südekum (2008)
Takayama and Akamatsu (2011)

Note: Appendix C provides detailed analyses of the models, with Table 2 summarizing the exact
mappings of each model to the coefficients of the corresponding model-dependent function G( f ) �
c0 + c1 f + c2 f 2.

spatial patterns under a multiplicity of equilibria, class (i) and (ii) models have qualitatively

different behavior and can yield mutually contradicting implications when employed for

counterfactual exercises. This point is discussed in Section 6.3, and a formal analysis is

provided in Appendix D.

In addition, there are a few models in the literature that have the two dispersion forces

effectively at work. For instance, Tabuchi (1998), Pflüger and Südekum (2008), and Takayama

and Akamatsu (2011) presented both local and global dispersion forces. We refer to them as

class (iii) models. The models produce spatial patterns with mixed characteristics of global

and local dispersion, which we discuss below by employing a numerical example. For this

model class, G( f ) is a concave quadratic that has two roots in the (0, 1) interval as in the

bottom left panel of Figure 4. As we discussed in Section 3, the flat-earth equilibrium is

stable for both high and low transport costs.

Notably, our classification seems to be backed by a more general principle. There is a

large body of studies outside economics focused on spatial pattern formation, typically on

the basis of reaction–diffusion systems (Kondo and Miura, 2010). In that literature, it is

now widely accepted that the basic requirement to form multiple peaks in stationary spatial

patterns (i.e., in our context, stable locally concentrated and globally dispersed patterns)
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is a short-range positive feedback combined with a long-range negative feedback with respect to

a concentration of mobile factors (Meinhardt and Gierer, 2000). One would notice that a

negative term (global dispersion force) of D̄ in J can be interpreted as a long-range negative

feedback.

5 Numerical examples

In the many-region setup, the first bifurcation, or emergence of agglomeration, may not be

the end of the story. The overall evolutionary path of spatial structure in line with monotonic

change (e.g., decline) of transportation costs is of interest. Fortunately, intrinsic properties of

the whole evolutionary process of the agglomeration patterns can be qualitatively predicted

by the above results on the stability of the flat-earth pattern. This section provides some

numerical illustrations. The models of Krugman (1991), Helpman (1998), and Pflüger and

Südekum (2008) are chosen as representative examples for the models with only global

dispersion force [class (i)], those with only local dispersion force [class (ii)], and those with

both dispersion forces [class (iii)], respectively. The numerical examples in this section are

conducted in an eight-region (K � 8) symmetric racetrack economy. Following the literature,

the replicator dynamic (Taylor and Jonker, 1978) is employed as the underlying dynamic F .

The chosen parameters are described in Appendix C.

5.1 Class (i): Models with a global dispersion force

Figure 8 reports an evolutionary path of stable equilibrium patterns in the course of decreas-

ing τ for the Krugman (1991) model. The black solid (dashed) curves depict stable (unstable)

equilibrium values of population share λ � (λi) at each τ, where λi ≡ hi/H. Consider a

gradual decrease in τ from a sufficiently high level at which the flat-earth equilibrium is

stable. The uniform distribution with no agglomerations is initially stable until τ reaches the

break point τ∗. As discussed in the previous section, the bifurcation at τ∗ pushes the spatial

pattern toward the direction of ηK/2 � (1,−1, 1,−1, 1,−1, 1,−1). It results in the formation

of a globally dispersed pattern with four disjoint and equidistantly separated point-wise ag-

glomerations. Further decrease in τ triggers the second and third bifurcations at τ∗∗ and τ∗∗∗,

respectively.38 Observe that the bifurcations at τ∗∗ and τ∗∗∗ sequentially double the spacing

between agglomerated regions, reducing their number as 4 → 2 → 1. At the lower extreme

of τ, a monopolar pattern emerges. Note that each agglomeration has no spatial extent at

any level of transportation cost, since local dispersion force is absent. In the model, better

interregional access (a smaller τ) makes the size of each agglomeration larger. Such effect

38In fact, one can analytically derive these critical values τ∗∗, τ∗∗∗ (see Akamatsu et al., 2012; Osawa et al.,
2017) and characterize spatial patterns that emerge at these points.
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Figure 8: Bifurcation diagram of a class (i) model

Note: Krugman (1991) is taken as the underlying example model.

is, however, limited to the selected regions. Depending on the stage of spatial structural

evolution, the impact of improvement of transportation on the size of each agglomeration

can be either positive (for the selected regions) or negative (for the others). In this sense,

there are no monotonic relationships between the level of transportation costs and the size

of each agglomeration. In fact, this point is already apparent in the two-region models that

explicitly incorporate agglomeration economies combined with interregional distance.

In our many-region setup, however, there comes another indeterminacy. As the spatial

structure evolves, once selected regions may decline to form the hinterland of the currently

selected ones—the agglomeration shadow.39 Consider the fourth region at the six o’clock

position in Figure 8 as an example. The region is selected at the transitions at τ∗ and τ∗∗

so that the impact of a decrease in τ is positive. After τ∗∗∗ is encountered, however, it

immediately loses its population. For the region, a monotonic decrease in τ implies a win

situation followed by a lose situation. It indicates that if empirical realities resemble this

class of model, whether the impact of a further decline in transportation costs on a specific

region is positive or negative is indeterminate even when a monotonic relation for the region

is supported by historical data. At least in a symmetric racetrack economy, we do not have

any clear implication for models in this class regarding the impact of a uniform reduction

of transport cost on the population (or output) size of an individual region since whether

the population share of a region grows or declines is in principle indeterminate a priori.

Instead, possible predictions are focused on the global spatial distribution of agglomerations:

the number of concentrations and the spacing between them which monotonically decreases

and increases, respectively.

39The concept of agglomeration shadow was first introduced by Arthur (1994) and is formalized in the
context of a general equilibrium model by Fujita and Krugman (1995).
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Figure 9: Bifurcation diagram of a class (ii) model

Note: Allen and Arkolakis (2014) is taken as the underlying example model.

5.2 Class (ii): Models with local dispersion force

Figure 9 is similar to Figure 8 for the model by Allen and Arkolakis (2014). The model

incorporates only a local dispersion force; the flat-earth equilibrium is stable for lower values

of τ. At τ∗∗ in Figure 7, a bifurcation in the direction of η1 leads to the emergence of a

unimodal pattern. This is the bifurcation in the model; after the emergence of the unimodal

pattern at τ∗∗, when τ increases further, the spatial pattern monotonically and smoothly

converges to a monopolar pattern (i.e., the complete concentration of mobile agents at a

single region) as τ approaches to infinity. Thus, if we define the number of agglomerations

for the model by that of peaks (i.e., local maxima) in h, it is at most one. The model does not

allow locally concentrated and globally dispersed patterns to emerge; such models would

be interpreted as expressing the evolution of the spatial extent of a single agglomeration.

Quantitative spatial models that employ class (ii) models (e.g., Redding and Sturm,

2008; Allen and Arkolakis, 2014) emphasize the uniqueness of equilibrium, through which

calibrations and counterfactual analyses have determinate implications. The studies are

conducted under parameter settings that ensure uniqueness of equilibrium regardless of the

level of interregional transportation costs (Redding and Rossi-Hansberg, 2017). This is made

possible because the local dispersion force in class (ii) models does not depend on the level

of accessibility to the other regions; consequently, if a sufficiently strong local dispersion

force is imposed, there is no endogenous agglomeration due to a decline in transportation

costs. Notably, in our setup, since the uniform distribution of mobile agents across regions

is always an equilibrium on a symmetric racetrack, uniqueness of equilibrium automatically

implies that the flat-earth pattern h̄ is the only equilibrium and is stable. Figure 10 indicates

our classification of possible spatial patterns and their stability for the model by Allen and

Arkolakis (2014) in a racetrack economy with arbitrary K. Their uniqueness condition is
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Figure 10: Classification of uniqueness and stability of equilibria for Allen and Arkolakis (2014)

Note: We let α � 0.6 and σ � 4 for illustration. h̄ is stable in the dark gray region, while not in the
light gray region. At τ∗∗ such that g1(τ∗∗) � 0, a unimodal pattern emerges. α + β ≤ 0 is a sufficient
condition for the stability of h̄ regardless of τ. A comparison with Figure I of Allen and Arkolakis
(2014), where their classification corresponds to Ranges I, II, and III above, would be interesting.

β ≤ −α (i.e., Range III in the figure).40 One will observe that uniqueness directly implies that

the uniform distribution is stable regardless of the level of τ.

5.3 Class (iii): Models with both dispersion forces

Tabuchi (1998), Pflüger and Südekum (2008), and Takayama and Akamatsu (2011) con-

sidered both local and global dispersion forces. In effect, these models exhibit rich and

meaningful interplay between the number and spacing of agglomerations and spatial extent of

each agglomeration without any location-fixed factors but only with pure economic forces.

One would expect that in these models, the evolutionary process of spatial agglomeration

patterns in the course of monotonic change in τ is in some sense a combination of the two

examples presented above. This is indeed the case. Figure 11 depicts the evolution of

the number of agglomerations in the course of decreasing τ for the model by Pflüger and

Südekum (2008) in a symmetric eight-region racetrack economy. We define the number of

agglomerations in a spatial distribution of mobile agents, h, by that of the local maxima

therein.41 Comparing Figure 11 with Figure 8 and Figure 9, we observe that the former is

basically a combination of the latter two, as expected. When τ gradually decreases from a

very high level, the number of agglomerations evolves as 0 → 4 → 2 → 1 as in the class (i)

models (Figure 8), while in the later stage 1 → 0 as per the class (ii) models (Figure 9).42 The

initial stage is governed by a decline of the global dispersion force, while the later stage is

40For the model by Helpman (1998), the condition for the uniqueness of equilibrium is given by (1− µ)σ > 1.
41For example, for Pattern I in Figure 12, we evenly split the population of the region in the middle of the

two peaks. Also, if two consecutive regions have the same population as in Pattern K in Figure 12, it is counted
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Figure 11: Evolution of the number of agglomerations in a class-(iii) model

Note: Pflüger and Südekum (2008) is taken as the underlying example model.

A B C D E F G

H I J K L M N

Figure 12: Evolution of the spatial pattern in Figure 11

Note: The alphabets below the spatial patterns correspond to those in Figure 11.

governed by a relative rise of the local dispersion force. As the importance of distance declines

given improvements in transportation access, local congestion overcomes the agglomeration

force and the so-called redispersion occurs.

The evolution of spatial patterns provides richer intuitions. Figure 12 illustrates the

spatial patterns associated with Figure 11 (see also Section 3.2 to understand the figure).

The flat-earth pattern is initially stable (Pattern A); the first bifurcation leads to a four-

centric global dispersion (C), whereas the dispersion associated with the second bifurcation

as a single agglomeration.
42At this point, there is good reason to suspect that, even though seemingly identical, the flat-earth patterns

at the higher and lower levels of τ are very distinct nature. Specifically, one would argue that the number of
agglomerations must be eight (one), instead of zero, at large (low) τ. We shall refrain from these arguments,
however, because the two stages of dispersion are indistinguishable by a mere observation of h.
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is two-centric (E). These transitions are wholly in line with those of Krugman (1991); they

are governed by the gradual decline of the global dispersion force in the model. After

these transitions, evolutionary behavior becomes more interesting; the decline of the global

dispersion force increases the relative importance of the local dispersion force. The two-

centric agglomerations formed in (E) gradually increase their spatial extent (F, G) due to local

dispersion effects combined with relative decline of the global agglomeration force. Further

decline in τ implies a triumph of the global agglomeration force against the global dispersion

force since the latter declines faster than the former. Consequently, the two agglomerations

gradually merge (H, I) to form a monopolar agglomeration (J, K), while maintaining their

spatial extent due to the strong local dispersion force. As relative importance of the local

dispersion force increases further, the gradual expansion of the single agglomeration occurs

(L, M) followed by complete redispersion (N). The rich and intuitive interplay of global and

local scales of agglomeration and dispersion can be studied only in many-region setups.

6 Implications for empirical studies

In the previous sections, we have argued that the explicit consideration of the presence

of many regions, more specifically the diversity in interregional distances, is the key to

explaining the actual spatial pattern of agglomeration. The understanding of agglomeration

and dispersion mechanisms at different spatial scales helps us find an appropriate way to

quantify the spatial patterns of agglomeration. It helps develop appropriate specifications

for regression models as well as structural models to identify the causal mechanisms of

regional agglomeration. This section highlights these points by reviewing selected empirical

studies on the relation between transport costs and regional agglomerations.

6.1 Measures of agglomeration

There is a strand of literature concerning the measurement of industrial agglomeration.

Unlike population agglomerations that have been identified in terms of distinct metropolitan

areas or population clusters (e.g., Baum-Snow, 2007; Duranton and Turner, 2012; Rozenfeld,

Rybski, Gabaix and Makse, 2011), industrial agglomerations have typically been measured

by an aggregated scalar index (e.g., Ellison and Glaeser, 1997; Duranton and Overman, 2005;

Brülhart and Traeger, 2005; Mori et al., 2005).

Of the two pioneering indices of industrial agglomeration, that proposed by Ellison and

Glaeser (1997) controlled for the spatial concentration of employment that accrued from

the distribution of employment among establishments, while the other by Duranton and

Overman (2005) resolved spatial aggregation biases that arose from regional data by utilizing

geo-coded micro data of establishments.
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While these refinements may be reasonable, a major reservation about these scalar indices

is that by construction they do not distinguish spatial scales of agglomeration and dispersion.

With respect to cross-sectional comparisons among industries, this means that there is no

way to distinguish spatial scales at which variations in the index value arise although the

underlying agglomeration mechanisms qualitatively differ at each scale.43 A consequence

of the abstraction from spatial scales is that these indices inevitably neutralize the opposing

responses of agglomeration at global and local scales to a given change in transport costs.

Distinguishing individual agglomerations on a map just like the case of population ag-

glomerations is necessary to separate the effects at different spatial scales. Kerr and Komin-

ers (2015) and Mori and Smith (2014) proposed clustering methods designed for economic

agglomerations. Pelleg and Moore (2000), Ishioka (2000) and Brendan and Dueck (2007)

proposed heuristic clustering techniques for general purposes. Our theory suggests that

agglomeration at the global scale is reflected on a smaller number of agglomerations (as

well as a larger spacing between agglomerations), whereas that at the local scale is reflected

on a smaller spatial extent of each individual agglomeration. These spatial properties of

agglomeration can be quantified using the identified clusters.

An advantage of such a clustering approach for industrial agglomerations is that unlike

the case of population agglomeration, one can obtain variations in agglomeration patterns

across industries. Using the clustering method proposed by Mori and Smith (2014), Mori and

Smith (2015) indicated a wide variation in the the degrees of agglomeration both at global

and local scales across three-digit manufacturing industries in Japan. The variations across

industries in turn can be utilized to test the theoretical implications on the spatial patterns of

agglomeration, for example, the causal relation among the number, size, and spatial extent

of agglomerations and transport costs. One such application by Mori, Mun and Sakaguchi

(2017) is discussed in the next section.

6.2 Reduced-form regression approaches

We have shown that endogenous agglomeration mechanisms generally do not isolate which

existing agglomerations to grow or decline given an improvement in interregional transport

access. This indeterminacy is due to the underlying second-nature advantage. Nonetheless,

the theory offers a clear prediction regarding the global and local spatial pattern of agglom-

erations. The former prediction is that there is agglomeration at the global scale: the number

of agglomerations decreases, the distance between neighboring agglomerations increases

(reflecting the growing agglomeration shadow), and the sizes of the surviving individual

agglomerations increase (refer to Sections 5.1 and 5.3). The latter prediction is that there is

43Duranton and Overman (2005) distinguished distances between establishments; however, they did not
distinguish between intra- and inter-agglomeration distances.
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dispersion at the local scale: The spatial extent of each individual agglomeration increases, for

example, in the form of suburbanization (refer to Sections 5.2 and 5.3).

In Sections 6.2.1 and 6.2.2 below, we argue that these theoretical predictions are useful

to understand the diverse results from extant empirical studies based on reduced-form

regressions on regional agglomerations. Further, in Section 6.2.3, we discuss the context in

which these predictions can be actually tested.

6.2.1 On the size of an agglomeration

A typical regression model to evaluate the impact of a new transport network on regional

growth has the following form (see, e.g., Redding and Turner, 2015, §20.4, for a survey) :

SIZEit � C0 + C1ACCESSit + C2xi + γit + ηt + ϵit , (6.1)

where SIZEit and ACCESSit represent a measure of agglomeration size and a measure of

interregional transport access, respectively, in region i at year t; xi denotes the region-specific

and year-invariant covariates, γit denotes the region- and year-specific unobserved effect, ηt

denotes the year-specific unobserved effect, ϵit denotes the region- and year-specific error,

and C0, C1 and C2 are coefficients to be estimated, where C1 is of interest here.

The existing literature concerning the relation between agglomeration size and interre-

gional transport access in an individual region shows mixed results. We start from two

studies drawing contrasting conclusions. Faber (2014) investigated the impact of the con-

struction of the nation-wide highway network in China on the agglomerations in peripheral

counties during 1997–2006. Duranton and Turner (2012) studied a similar situation in the

US during 1983–2003; however, they focused on the impact on agglomerations in relatively

large metro areas instead of peripheral alternatives. SIZEit represents the changes in out-

put measures such as the gross domestic product and gross value added as well as that of

population size in a county in the former, while it is the change in metro-area population or

employment in the latter. ACCESSit represents the change in interregional highway accessi-

bility in both cases.44 Their results exhibited a stark difference: the former (latter) generally

found a significantly negative (positive) estimate of C1 in (6.1), even after controlling for the

initial size of each region.

Yet there are other studies reporting indefinite results. For the Chinese data similar to

that used by Faber (2014), Baum-Snow, Henderson, Turner, Zhang and Brandt (2016, Tables

44In the baseline specification of (6.1) in the study by Faber (2014), ACCESSit represents a binary variable
that takes the value 1 if a given region i is connected by the newly constructed highway at time t, while it is
set to the initial sum of interstate highway length within a metro area (i.e., in 1983) in the study by Duranton
and Turner (2012). In particular, Duranton and Turner (2012) considered ACCESSit as the level of intra-urban
(rather than inter-urban) transport infrastructure. But, we believe that the stock of interstate highways within
a given metro area certainly reflects the level of inter-urban connectivity.
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4 & 5) found insignificant estimates of C1 when both large and small regions along the

network were included in the regression. For the US data similar to that used by Duranton

and Turner (2012), Baum-Snow (2017, Table 5) ran a variant of (6.1) to estimate the impact of

interregional transport access on industry-specific employment in a metro area. However,

the estimated coefficient of C1 was insignificant for all but manufacturing employment; it

was negatively significant for manufacturing employment.45 Thus, the estimated impacts of

interregional transport access on the size of an individual agglomeration vary widely, and

there is no consensus even on the sign of the impacts.

From the knowledge of endogenous agglomeration mechanisms obtained in this paper,

behind the incoherent regression results, we suspect the ignorance of the effects of interre-

gional transport costs on the spatial distribution of agglomerations. What happened appears

to be an agglomeration at the global scale toward a smaller number of larger regions. In

the study by Faber (2014), the decline of peripheral regions is a mirror image of the growth

of core regions excluded in his regression.46 It is similarly expected that in the study by

Duranton and Turner (2012), the growth of large metro areas is a mirror image of the decline

in the peripheral areas excluded in their regression, although there is no explicit discussion

on this aspect in their paper.

Although the regional variation in interregional transport access would certainly influ-

ence that in agglomeration size, this relation could be correctly identified only after control-

ling for the economy-wide effects of improved transport access on the overall spatial distri-

bution of agglomerations. In class (i) models, an improvement of interregional accessibility

at a given location does not necessarily result in a size growth or decline of agglomeration

at that location (refer to Section 5.1). It is thus natural to obtain an insignificant average

effect of improved transport access for both large and small regions along the new transport

network as in Baum-Snow et al. (2016, Tables 4 & 5). Moreover, both Faber (2014, Table 6)

and Duranton and Turner (2012, Table E2) found evidence for the agglomeration shadow,

i.e., larger distance from the nearest major agglomeration tends to promote the growth of a

region, which further suggests the relevance of class-(i) mechanisms.47

45Similar studies by Storeygard (2016) and Yamasaki (2017) established a positive relation between interre-
gional transport access and regional agglomeration in the case of Sub-Saharan Africa for the 2002–2008 period
and Japan for the 1885–1920 period, respectively. Since the the focus of these studies is the early stage of
economic development, their results may not be directly comparable to those of Faber (2014) and Duranton and
Turner (2012), as well as to our theoretical results. For example, the latter paper investigated the situation in
which industrialization took place along with the introduction of railways in response to the spread of steam
power in Japan. But, the decomposition of the causal relationship among industrialization, improvement in
interregional transport access and urbanization is not obvious.

46It is also pointed out by Baum-Snow et al. (2016, Tables 4 & 5) that there was a significant increase in
agglomeration size in large regions in the China case.

47In the study by Duranton and Turner (2012), the monotonic relationship between the size of a metro area and
the level of inter-urban transport infrastructure in (6.1) is rationalized by assuming an open-city specification
in the underlying theoretical model. But, the significant urban shadow effect among the included metro areas
casts doubt on this justification.
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If our reasoning were correct, the discrepancy between the actual SIZEit and the estimated
�SIZEit in these regressions is likely to be systematic. In this case, the “clear” estimated impacts

of interregional transport development based on a selected set of regions (e.g., relatively large

or small regions or metro areas) could result in misleading policy implications.48

6.2.2 On the spatial extent of an agglomeration

The same specification (6.1) makes perfect sense when it comes to evaluating local dispersion.

Baum-Snow (2007) and Baum-Snow et al. (2017) presented evidence for local dispersion as

a consequence of improved interregional transport access in the cases of US metro areas

for 1950–1990 and Chinese prefectures during 1990–2010, respectively.49 In these studies,

SIZEit denotes the change in the population/production size of the central area within a

larger region i (the metro area for the US and the province for China). They both reported

a significantly negative estimated coefficient of C1 given an improvement of interregional

access after controlling for the growth of each region.50,
51 Their findings are consistent with

our results on local dispersion (in sections 5.2 and 5.3).52

Recall the population agglomeration at the global scale and dispersion at the local scale in

response to the development of the nation-wide highway and high-speed railway networks

in Japan after 1970 discussed in Section 1 (and Appendix A). Empirical evidence suggests

that China and the US experienced essentially the same phenomena.

6.2.3 On the spatial patterns of agglomeration

Finally, we explore the possibility of testing our theoretical predictions on the spatial pat-

terns of agglomerations mentioned above rather than testing hypotheses about an individual

agglomeration using the regression models of type (6.1). For population agglomerations,

we typically have only a single set of agglomerations at a given point in time so that hy-

48It may be also important to include more extensive regional variations in interregional transport access to
pin down the regions in which agglomerations grow. Among the possible asymmetries, those of particular
importance are the locations of major terminals and modal intersections as well as their historical order of
development that arise often from policy intensions rather than from geographical advantages. An explicit
consideration of such exogenous evolution of transport network will make it possible to evaluate the causality
between transport network development and population agglomeration.

49Garcia-López (2012) and Garcia-López, Holl and Viladecans-Marsal (2015) conducted similar studies using
Spanish data.

50As discussed in these studies, their results of local dispersion can also be interpreted as suburbanization
in response to improved intra-urban transport infrastructure in classical urban economic theory (e.g., Alonso,
1964).

51Faber (2014, Table 5 and Figure 4) showed a related evidence that agglomeration relatively proceeds in
regions at a certain distance (around 100–150km) from the highways rather than those along the highways.

52Baum-Snow (2017) extended the work of Baum-Snow (2007) by replacing the outcome variable in (6.1) with
the local dispersion (or suburbanization) of employment in each industry instead of population and showed
that there are variations in the extent of local dispersion across industries.
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potheses concerning their spatial distribution are not testable. However, such tests become

possible by considering an individual industry as a unit of observation. If a distinct set of

agglomerations can be identified for each industry, we have variations in the spatial patterns

of agglomerations across industries at a given point in time. As a recent attempt, Mori et

al. (2017) adopted the clustering framework developed by Mori and Smith (2014) and used

the data on Japanese manufacturing three-digit industries during 1995–2015. Through this,

they have shown that the number of agglomerations decreases (i.e., agglomeration at the

global scale proceeds) and the average areal size of individual agglomerations increases

(i.e., dispersion at the local scale proceeds) in response to a decrease in the industry-specific

sensitivity to transport costs: the transport cost per unit distance and unit value of output.53

In their study, by setting a unit of observation to an individual industry, the variation across

industries made it possible to directly test the two predictions from our theoretical results

mentioned above on the spatial patterns of agglomerations.

To sum up, knowledge of the behavior of general economic geography models brings

together the seemingly unrelated pieces of empirical evidence on agglomeration patterns.

Our interpretation of the results from the existing literature seems to suggest a strong rel-

evance of endogenous agglomeration mechanisms to the observed regional variations in

agglomeration size.

6.3 Structural model-based approaches

We now turn to the structural model-based approach to evaluate the causal effects of regional

agglomerations summarized by Redding and Rossi-Hansberg (2017, §3). In this approach,

perhaps one of the most popular approaches in quantitative spatial economics, the basic

premise is that the primary source of the regional variation in agglomeration size is the

heterogeneity in exogenous (or first-nature) regional advantages rather than endogenous (or

second-nature) advantages considered in this paper. Thus, given the exogenous productivity

or residential amenity difference across regions, a larger population of a given region is

always associated with higher exogenous productivity or amenity in that region.

Redding and Sturm (2008) and Allen and Arkolakis (2014) employed the first nature-

based approach to study regional agglomerations. A remarkable feature of these models

is that they not only rely on exogenous advantages in explaining agglomeration patterns

but also incorporate agglomeration externalities to the extent that the unique equilibrium is

53This definition of the sensitivity to transport costs is an empirical counterpart of the iceberg transport costs
in our theoretical models.
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guaranteed (so that the tractability of the model is preserved).54,
55 This subtle situation has

been realized by adopting class (ii) models. As shown in Section 5.2, these models have a

parameter range in which agglomeration diseconomies dominate agglomeration economies

independently of the level of transport costs. This special property of class (ii) models is

due to the independence of local dispersion forces on the distance structure of the model. In

this context, the model parameters are calibrated to replicate the relevant regional variations

(such as regional population sizes) in the absence (or presence) of a given treatment such

as transport development; then the counterfactual regional variations are derived in the

presence (or absence) of the treatment given these calibrated parameter values.

There are two caveats in understanding the implications obtained from the results of this

approach.

First, although agglomeration externalities account for a part of the regional variations,

most variations appear to be absorbed by the structural residuals. Consider the study by

Redding and Sturm (2008) for example. Using a many-region extension of the Helpman

(1998) model, they quantified the impact of the change in market accessibility in Germany

before and after the division/reunification of the country after the war. To determine the

time invariant set of parameter values, their model was calibrated to fit city size distributions

in the prewar 1939 Germany. If the log of actual city size is regressed on the log of the

unobserved amenity, i.e., the structural residuals, one can immediately find that most of the

variation in city size is explained by these residuals, as shown in Figure 13, in which the

dashed line indicates the fitted line by OLS:

log(Li/L) � −7.191
(0.210)

+ 1.587
(0.050)

log(Âi) , adj. R2
� 0.896 , (6.2)

where Li and L denote the population size of city i and the average city size in 1939 Ger-

many, respectively, and Âi denotes the estimated unobserved amenity (i.e., the variation

unexplained by the model) in city i. Standard errors are in the parentheses.56 Thus, 90% of

the variation in city size is unexplained by the model and fixed exogenously in their counter-

factual exercises. While it is not surprising given that there is no possibility of endogenous

agglomeration in this setup, this result indicates that the structure of their model itself plays

only a small role (10% at maximum) in explaining the treatment effect.

Second, their predictions of treatment effects crucially depend on specific feature of the

underlying economic geography models. In particular, in the class (ii) models, the reduction

54Redding (2016) and Monte et al. (2016) extended the work of Redding and Sturm (2008) by adding different
sources of exogenous location-fixed factors.

55The majority of the structural model-based studies for a regional economy involve no agglomeration
externalities (see, e.g., Donaldson and Hornbeck, 2016; Baum-Snow et al., 2016; Alder, 2016; Caliendo, Parro,
Rossi-Hansberg and Sarte, 2016).

56The data for the regression are available from the online appendix for Redding and Sturm (2008).
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Figure 13: The relationship between city sizes and the estimated unobserved amenities in Redding
and Sturm (2008)

of interregional transport costs reduces each regional agglomeration caused by the first-

nature advantage of the region and promotes local dispersion. This causal relation has

been demonstrated by a numerical counterfactual exercise in the study by Redding and

Rossi-Hansberg (2017, §3.9). In fact, it can be formally shown (see Appendix D) that this

scale-down effect is a general property of class (ii) models, although there are certain cases

in which local landownership mitigates the effect by counteracting congestion externalities.

But, if class (i) models were used instead, even in the parameter range in which no

endogenous agglomeration occurs (as in Redding and Rossi-Hansberg, 2017, §3), the sign

of the treatment effect will reverse, i.e., agglomeration externalities would scale up the first-

nature advantage (see Appendix D for a formal proof). The resulting implications thus

become opposite depending on the choice of dispersion force to be included in the model.

Thus, even in the context in which first-nature heterogeneity plays a primary role, the

knowledge of endogenous agglomeration and dispersion mechanisms is crucial to under-

stand the logic and direction of the treatment effect. For that purpose, our stylized analytical

framework appears to be useful.

More recent structural approaches have shifted to accommodate multiple equilibria with

endogenous agglomerations (e.g., Ahlfeldt et al., 2015; Owens et al., 2017; Nagy, 2017). In

that case, class (ii) models are no longer useful as they can endogenously generate at most a

unimodal agglomeration. To explain both multiple agglomerations and local dispersion by

endogenous mechanisms, one needs a model of either class (iii) or of a more general class

that was not treated in this paper. We briefly touch on these issues in Section 7 in delineating

future directions for research.
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7 Concluding remarks

In this paper, we established a formal classification of economic geography models in terms

of model-specific spatial patterns of agglomeration. By allowing for the presence of many

regions, the spatial scale of agglomeration and dispersion is made explicit unlike the two-

region setup or many-region setup without interregional space. In particular, two dispersions

at high and low transport costs that look identical in a two-region setup turned out to differ

and take place at global and local spatial scales, respectively. In fact, when dispersion

proceeds at the local scale, typically, agglomeration proceeds at the same time but at the

global scale and vice versa.

Our theoretical results indicated a new direction for future empirical research based on

endogenous agglomerations. First, the contrasting agglomeration and dispersion behaviors

at different spatial scales suggest the need for distinguishing individual agglomerations

rather than measuring agglomeration by a scalar index. Second, endogenous agglomeration

and dispersion mechanisms generally do not isolate the growth and decline of individual

agglomerations and can only provide insights on their spatial patterns. Our new results

regarding the impact of transport development on the spatial patterns of agglomeration

could provide a unified interpretation of a variety of existing results from reduced-form

regressions on regional agglomerations. Furthermore, we have shown that our analytical

framework is useful for obtaining formal predictions of treatment effects in structural model-

based analyses that aim to explain the agglomeration patterns.

But, the relatively simple classification of the spatial scale of agglomeration and dispersion

in our paper owes to the simple structure of the models considered. Below, we discuss

possible future directions of theoretical research to account for richer more realistic variations

in agglomeration and dispersion across different spatial scales.

There are at least three major directions of research that could be pursued. The first possi-

ble extension is to distinguish location incentives between firms and consumers/workers as

is traditionally done in the urban economics literature (e.g., Fujita and Ogawa, 1982; Ota and

Fujita, 1993; Lucas and Rossi-Hansberg, 2002). In all the models considered in this paper, the

location incentive of firms and that of consumers/workers coincide. This simplification may

be justifiable when the global pattern of agglomeration (in particular, sizes and locations

of cities) is the subject of the study. But, their distinction becomes crucial for explaining

the location patterns within a city. There are recent attempts, for example, by Ahlfeldt et

al. (2015) and Owens et al. (2017) in this direction. These models typically abstract from

the inter-city/regional interactions in an open-city setup. But, possible equilibrium patterns

and their stability properties in this class of models are still not well known and could thus

represent a fruitful avenue for future research.

The second possibility is to consider different transport cost structures by industries.
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For instance, Fujita and Krugman (1995) introduced transport costs for land-intensive rural

(agricultural) goods along with that of urban goods. In the presence of rural goods that are

costly to transport, the delivered price for such goods is lower in regions farther away from

the agglomerations, which generates dispersion force. This is similar to the local dispersion

force in that even a small deviation from an urban agglomeration will decrease the price of

rural goods and increase the payoff of the deviant. But, the advantage of dispersion persists

outside the agglomeration, i.e., it depends on the distance structure of the model. This type of

dispersion force will lead to the formation of an industrial belt, a continuum of agglomeration

associated with multiple atoms of agglomeration as demonstrated by simulations in the

studies by Mori (1997) and Ikeda, Murota, Akamatsu and Takayama (2017b). But, the formal

characterization of industrial belts remains to be done.

Finally, another possible extension is to incorporate diversity in increasing returns, lead-

ing to the diversity in spatial scale of agglomeration and dispersion and to the diversity

in the size of agglomeration. In all the models with global dispersion force considered in

this paper, the sizes of agglomerations in equilibrium are basically the same (refer to the

simulation exercises in Section 5.1) since each model has only one type of increasing re-

turns. This is counterfactual as actual city size distributions are quite diverse and are well

known to roughly follow the power law.57 Initial attempts to account for the diversity in

increasing returns by introducing multiple increasing-returns industries have been made in

the context of the NEG models by, e.g., Fujita et al. (1999b), Tabuchi and Thisse (2011), and

Hsu (2012)’s spatial competition model. Alternatively, Desmet and Rossi-Hansberg (2009),

Desmet and Rossi-Hansberg (2014), Desmet and Rossi-Hansberg (2015), Desmet et al. (2017),

and Nagy (2017) incorporated dynamic externalities through endogenous innovation and

spillover effects.

57The models considered in this paper are consistent with heterogeneously sized agglomerations in equilib-
rium; but, it is not possible to replicate the high diversity of city sizes seen in reality.
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A The development of transport network and urban agglom-

eration patterns in Japan for 1970-2010

To compare the urban agglomeration patterns in Japan, we define an urban agglomeration (UA) as

the set of contiguous 1km-by-1km cells with population density at least 1000/km2 and the total

population at least 10000.58 (Basic results below remain the same for alternative threshold densities

and population.) For the part of Japan that are contiguous by roads to at least one of the four major

islands (Hokkaido, Honshu, Shikoku and Kyushu), 538 and 521 UAs are identified, and are depicted

in Panels (a) and (b) of Figure 14 for years 1970 and 2010, respectively, where the warmer color

indicates a larger population. They together account for 64% and 77% of the total population in 1970

and 2010, respectively. Thus, there is substantial 20% increase in the urban concentration in these

forty years. Of the 538 UAs that existed in 1970, 359 have survived, while 59 disappeared and 120

have been integrated to other UAs by 2010. Of the 521 UAs that existed in 2010, 162 were newly

formed after 1970 (including those split from the existing UAs).59

Panels (c) and (d) of Figure 14 show the highway and high-speed railway network in use as of 1970

and 2010, respectively. The comparison of these panels indicates an obvious substantial expansion of

these networks during these forty years as mentioned in the text.

Panels (a), (b) and (c) of Figure 15 show the distributions of the rates of population growth, areal

size growth and population density growth of individual UAs for the set of the 359 UAs that have

survived throughout the forty year period. A UA experienced on average 34% (111%) of population

growth, 107% (131%) of areal size growth and−36% (18%) of population density growth, respectively,

where the numbers in parentheses are the standard deviations.

As a larger share of population have concentrated in a smaller number of UAs in 2010 than in

1970, the spatial size of an individual UA has doubled on average. But, these spatial expansions

are not simply due to the shortage of available land in UAs. Note that the population density (after

controlling for the growth of total population) decreased by one-third on average. We take this as

an evidence of global concentration with local dispersion under the improvement of interregional

transport access.

58Population count data are obtained from Statistics Bureau, Ministry of Internal Affairs and Communications
of Japan (1970, 2010).

59A pair of UAs in two different time points are considered to be the same UA if the most populated cell of one
of the UAs is contained in the other UA, and vice versa. If the most populated cell of a UA in 1970 is contained
in a UA in 2010, but not vice versa, then the former UA is taken to be integrated into the latter UA. If the most
populated cell of a UA in 2010 is contained in a UA in 1970, but not vice versa, then the former UA is taken to
have split from the latter UA. If the most populated cell of a UA in 1970 is not contained in any UA in 2010, the
former UA is taken to have disappeared. Similarly, if the most populated cell of a UA in 2010 is not contained in
any UA in 1970, then the former UA is taken to be newly formed.
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(a) Urban agglomerations in 1970 (b) Urban agglomerations in 2010

(c) Highway and high-speed railway network in 1970 (d) Highway and high-speed railway network in 2010
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Figure 14: Urban agglomerations and transport network in Japan
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Figure 15: Growth rates of the sizes of urban agglomerations in Japan
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B Racetrack economy and simplification of stability analysis

The friction matrix D for a racetrack economy is a circulant matrix. In this appendix, we first review

some useful properties of circulant matrices. Then, we see how stability analysis of the flat-earth

pattern on a symmetric racetrack economy is simplified by these properties.

B.1 Facts on properties of circulant matrices

A circulant matrix C of dimension K is defined as a K-by-K square matrix of the form

C ≡



c0 c1 c2 · · · cK−2 cK−1

cK−1 c0 c1 c2 · · · cK−2

cK−2
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . c2

c2 · · · cK−2 cK−1 c0 c1

c1 c2 · · · cK−2 cK−1 c0



. (B.1.1)

The elements of each row of C are identical to those of the previous row, but are moved one position

to the right and wrapped around. The whole circulant is evidently determined by the first row vector

c � (ci)K−1
i�0

. Circulant matrices are known to satisfy the following properties (see, e.g., Horn and

Johnson, 2012):

Lemma B.1. LetC1 andC2 be circulant matrices. Then, their sumC1+C2 and productC1C2 also are

circulants. Also, they are commutative, i.e., C1C2 � C2C1. Let C3 be a nonsingular circulant matrix.

Then, its inverse C−1
3

also is a circulant.

Lemma B.2. Let C be a K-by-K circulant matrix. Let Z � [z jk] be the discrete Fourier transformation

(DFT) matrix where z jk � K−1/2 exp[iθ jk] with θ ≡ 2π/K and i ≡
√
−1. Then, C is diagonalized by

the similarity transformation by Z as Z∗CZ � diag[λ] where ∗ denotes the conjugate transpose.

λ � (λi) are the eigenvalues of C. The kth eigenvalue and the associated eigenvector of C are λk and

the kth row of the DFT matrix Z, respectively. Furthermore, λ is given by the DFT of the first row

vector c of C as λ � K1/2Zc⊤.

Remark B.1. It follows that all K-by-K circulant matrices share the same eigenvectors.

Consider a matrix A that is defined by a matrix polynomial of a nonsingular circulant matrix C:

A � c0I + c1C + c2C
2
+ · · · . (B.1.2)

Thanks to Lemma B.1 and B.2, one has that (i) A is a circulant matrix (note that I is also a circulant)

and thus that (ii) its eigenvalues µ ≡ (µi) is given by those of C, λ, by the relation

diag[µ] � Z∗AZ � Z∗(c0I + c1C + c2C
2
+ · · · )Z � c0I + c1 diag[λ] + c2 diag[λ]2 + · · · , (B.1.3)
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or, in the element-wise manner,

µk � c0 + c1λk + c2λ
2

k + · · · . (B.1.4)

Remark B.2. If C is in addition symmetric, A is also symmetric. It implies that the eigenvalues

λ � (λk) and µ � (µk) as well as their associated eigenvectors are all real.

B.2 Eigenvalues and eigenvectors of the friction matrix

We derive eigenvalues and eigenvectors of the friction matrix for later use. To simplify notation,

we define r ∈ (0, 1) that represents the freeness of transport between two consecutive regions on the

racetrack: r(τ) ≡ exp[−τ/K] where we rescale τ so that the circumferential length of the economy is

fixed. From the definition of r, it is a monotonically decreasing function of the transportation cost

(technology) parameter τ and hence r and τ are mutually interchangeable. We shall use r as the

transport technology parameter in the present appendix. Using r, one has di j � rℓi j .

For analyzing specific models, it is useful to derive the eigenvalues of the row-normalized friction

matrix D̄ ≡ D/d with d ≡ ∑
j∈K d0, j . We note that every row has exactly the same row sum

because D is circulant. It turns out that on a racetrack economy, D is a circulant matrix since

di j � rℓi j � rℓi+1, j+1 � di+1, j+1 for all i , j (mod K for indices). Furthermore,D is symmetric and real and

hence all the eigenvalues and eigenvectors are real. The analytical expressions of the eigenvalues and

eigenvectors of D̄ are available (Akamatsu et al., 2012):

Lemma B.3. Let fk(r) be the kth eigenvalue of the row-normalized friction matrix D̄ for a racetrack

economy with K regions. Assume that K is a multiple of four. DefineΨk(r) > 0 and Ψ̄(r) > 0 by

Ψk(r) ≡
1 − r2

1 − 2{cos[θk]}r + r2
, Ψ̄(r) ≡ 1 + rK/2

1 − rK/2 (B.2.1)

with θ � 2π/K. Then, { fk(r)} is given by

fk(r) �



Ψk(r)ΨK/2(r) (k: even)
Ψk(r)ΨK/2(r)Ψ̄(r) (k: odd)

k � 0, 1, 2, . . . , K/2, (B.2.2)

where k � 1, 2, . . . , K/2 − 1 are of multiplicity two. The associated eigenvectors are

η0 � K1/2 cos[0]) � K1/2(1, 1, . . . , 1), (B.2.3)

η+k � K1/2(cos[θki]), η−k � K1/2(sin[θki]) k � 1, 2, . . . , K/2 − 1, (B.2.4)

ηK/2 � K1/2 cos[πi]) � K1/2(1,−1, 1,−1, . . . , 1,−1) (B.2.5)

where η+
k

and η−
k

are the two eigenvectors associated to fk(r) (k � 1, 2, . . . , K/2 − 1).

Remark B.3. For each k with 1 ≤ k ≤ K/2 − 1, we can focus on a single eigenvector of the form

ηk � η+
k

� K1/2(cos[θki]) since we do not distinguish rotationally symmetric patterns; any linear
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combination of η+
k

and η−
k

reduces to a single trigonometric curve with the same wave length as them.

See Figure 2 and Figure 3 for illustration. Note that we drop the constant K1/2 in the main text

for slight simplification. In particular, f0(r) � 1, f1(r) � (1− r)/(1+ r) and fK/2(r) � {(1− r)/(1+ r)}2.
Furthermore, employing the analytical expression of { fk(r)} in Lemma B.3, one shows:

Corollary B.1. { fk(r)} satisfy the following properties if K is a multiple of four.

1. Every fk(r) is a monotonically decreasing function of r except for f0(r) � 1.

2. For all r, { fk(r)} with k � 0, 1, 2, . . . , K/2 are ordered as




1 � f0 > f2 > · · · > f2k > · · · > fK/2 ,

1 > f1 > f3 > · · · > f2k+1 > · · · > fK/2−1.
(B.2.6)

with f1(r) > f2(r) and fK/2−1(r) > fK/2(r).

The second property yields that mink{ fk(r)} � fK/2(r) and maxk≥1{ fk(r)} � f1(r) for all r. We note

that every fk(r(τ)) (k ≥ 1) as a function of τ is monotonically increasing.

Example B.1. In a racetrack economy with K � 4, the friction matrixD is given by

D �



1 r r2 r

1 r r2

1 r
Sym.

1



. (B.2.7)

Its row sum is d � 1+ r + r2 + r � (1+ r)2 and thus D̄ � D/(1+ r)2. The eigenvalues of D̄ are given by

f0 � 1, f1 �
1 − r

1 + r
, f2 �

(
1 − r

1 + r

)2
. (B.2.8)

The associated eigenvectors are η0 � 2−1(1, 1, 1, 1), η+
1

� 2−1(1, 0,−1, 0), η−
1

� 2−1(0, 1, 0,−1), and

η2 � 2−1(1,−1, 1,−1).

B.3 Representing the eigenvalues of ∇v(h̄) by those of D̄

We assume that the payoff function v is differentiable. For simplicity we assume that v is defined for

the nonnegative orthant RK
+

.

Assumption B.1. The payoff function v : RK
+
→ RK is continuously differentiable.

Given v, we define a spatial equilibrium by the following variational inequality problem (VIP):

[VIP] Find h∗ ∈ D such that v(h∗) · (h − h∗) ≤ 0 for all h ∈ D . (B.3.1)

Definition B.1. A spatial equilibrium is a solution to [VIP].
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Alternative equivalent definition of long-run equilibria is found in the main text.

The flat-earth equilibrium h̄ ≡ (h , h , . . . , h) with h ≡ H/K is obviously a spatial equilibrium;

because v(h̄) � v̄1with the uniform level of payoff v̄, we have v(h̄)·(h−h̄) � v̄1 ·(h−h̄) � v̄(H−H) � 0

for all h ∈ D. In preparation for Appendix B.4 below, we discuss the eigenvalues of the Jacobian

matrix of the payoff function at the flat-earth equilibrium. Appendix C demonstrates that, at the flat-

earth equilibrium in a racetrack economy, we can express the Jacobian matrix of the payoff function

in the following way

∇v(h̄) � G0(D̄)G(D̄), (B.3.2)

G(D̄) ≡ c0I + c1D̄ + c2D̄
2 , (B.3.3)

where G0(·) and G(·) are interpreted as matrix polynomials. G0(D̄) is a positive definite matrix

defined by D̄. Since D̄ is circulant, ∇v(h̄) also is circulant. Thus, as discussed, we can express the kth

eigenvalues of ∇v(h̄), ek , by that of D̄, fk , in terms of a model-dependent functions G0( f ) and G( f )

ek � G0( fk)G( fk) (B.3.4)

where G0( fk) and G( fk) are the kth eigenvalue of G0(D̄) and G(D̄), respectively. The associated

eigenvectors are the same as those of D̄. As we have G0( fk) > 0, for the purpose of examining the

sign of ek , we only need to check that of G( fk).

B.4 Stability analysis of the flat-earth equilibrium

Employing the above results, this section derives the results presented in Sections 2.3 and 3.

Notations. Let D ≡ {h ∈ RK | h · 1 � H, hi ≥ 0} denote the set of possible spatial patterns. Also,

in relation to D, let TD(h) ≡ {z ∈ RK | z � α(y − h) for some y ∈ D and α ≥ 0} denote the tangent

cone of D at h ∈ D, and TD ≡ {z ∈ RK | z · 1 � 0} denote the tangent space of D. Note that for any

h ∈ intD, we have TD(h) � TD because D is a convex subset of a hyperplane.

B.4.1 Derivations for Section 2.3

We summarize our assumptions on the dynamic F as follows, where with a notational abuse we let

F (h) � F (h, v(h)). We assume that F is defined for the nonnegative orthant RK
+

.

Assumption B.2. The dynamic F : RK
+
→ RK satisfies the following properties.

1. (conservation) the total mass of mobile agents is invariant, i.e., F (h) ∈ TD(h) for all h ∈ D.

2. (differentiability) F (h) is continuously differentiable with respect to h and v(h) in D.

3. (stationarity at spatial equilibria) if h∗ is a spatial equilibrium, then F (h∗) � 0.

4. (positive correlation) v(h) · F (h) > 0 for all h ∈ D such that F (h) , 0.
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Example B.2. The set of dynamics that satisfy Assumption B.2 includes the replicator dynamic (Taylor

and Jonker, 1978), which is the leading instance of the general class of imitative dynamics, the Brown–

von Neumann–Nash dynamic (Brown and von Neumann, 1950; Nash, 1951), which is an instance of

excess payoff dynamics, and, for interior equilibria, the projection dynamic (Dupuis and Nagurney, 1993).

For more examples, refer to Sandholm (2010).

Consider a small deviation η ∈ TD(h∗) � TD at an interior equilibrium h∗ ∈ intD. By conserva-

tion we must have F (h∗
+ η) ∈ TD for such η; it follows that

F (h∗
+ η) � F (h∗) + ∇F (h∗)η + o(∥η∥) � ∇F (h∗)η + o(∥η∥) ∈ TD . (B.4.1)

Since J ≡ ∇F (h∗) maps all η ∈ TD into TD, J defines a linear map from TD to TD. Thus, the

stability analysis of an interior equilibrium h∗ reduces to examining the eigenvalues of the restricted

linear map J : TD → TD. We thus focus on deviations η that live in TD (i.e., η such that η · 1 � 0).

In effect, we can ignore g0, which is the associated eigenvalue for η0 ≡ (1, 1, . . . , 1) because η0 is the

basis for TD⊥ (the orthogonal space of TD, which is one-dimensional).

For general isolated interior equilibria h∗ ∈ intD, we have v(h∗) � v̄1 with the uniform level of

payoff v̄ and F (h∗) � 0, implying that v(h∗) ·F (h∗) � 0. Because h∗ is an isolated interior equilibrium,

the positive correlation property of F requires that there is a neighborhood O ⊂ D of h∗ such that

v(h) ·F (h) > 0 for all h ∈ O \ {h∗}. Also, by differentiability of v and F in intD, we can expand v and

F in the vicinity of the equilibrium; that is, for sufficiently small η such that h∗
+η ∈ D (i.e., η ∈ TD),

the positive correlation property is equivalent to the condition

(v̄1 + ∇v(h∗)η) · (F (h∗) + Jη) � (∇v(h∗)η) · (Jη) > 0. (B.4.2)

Note that (Jη) · 1 � 0 because Jη ∈ TD for all η ∈ TD.

In (B.4.2), suppose that η � ηk , where ηk (k ≥ 1) is the kth eigenvector of the restricted linear map

J with associated eigenvalue being gk . Then, with h � h∗
+ ηk we have

(Jηk) · (∇v(h∗)ηk) � (gkηk) · (∇v(h∗)ηk) � gk(η⊤k ∇v(h
∗)ηk) > 0. (B.4.3)

which shows that if gk and ηk are real (in particular, if J is symmetric)

sgn[gk] � sgn[η⊤k ∇v(h
∗)ηk] � sgn

[∑

i∈K
δVi zi

]
where δVi ≡

∑

j∈K

∂vi(h∗)
∂h j

z j (B.4.4)

as in (2.1), where for simplicity we let zi ≡ ηk ,i .

B.4.2 Derivations for Section 3

At the flat-earth equilibrium in a racetrack economy, we have stronger results. First, because J and

∇v(h̄) are both symmetric and circulant, the eigenvectors for the two matrices are both real and are

the same (refer to Appendix B.1). Thus, letting ek be the kth eigenvalue of ∇v(h̄) which is associated
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to the eigenvector ηk � (ηk ,i) � (K1/2 cos[θki]) (see Lemma B.3), (B.4.3) further implies that

gk

(
η⊤k ∇v(h

∗)ηk

)
� gk

(
ekη

⊤
k ηk

)
� gk ek ∥ηk ∥2 � gk ek > 0. (B.4.5)

Noting that gk and ek are real, at the flat-earth equilibrium in a racetrack economy, we have

sgn[gk] � sgn[ek] (B.4.6)

for all k ≥ 1. For convenience, we introduce a notation to describe the above situation.

Definition B.2. LetA andB be two K-by-K symmetric circulant matrices. ByA ≃ B, we denote that

A � CB with a symmetric circulant matrix C that is positive definite relative to TD.

Observe that if we have J ≃ B for some symmetric circulant matrix B, we may study eigenvalues

of B instead of those of J to examine the stability of h̄. Because J � CB and J , C, and B are

circulant, employing the properties of circulant matrices we have gk � ck bk with ck and bk being the

eigenvalues ofC andB, respectively; also, because J ,B, andC are symmetric, gk , bk , and ck are real

(Appendix B.1). Since C is symmetric, circulant, and positive definite relative to TD, we have ck > 0

for k ≥ 1. In sum, it follows that sgn[gk] � sgn[bk] for k ≥ 1. We summarize as follows.

Lemma B.4. Assume that the dynamic F satisfy Assumption B.2 and consider the flat-earth equi-

librium h̄ on a racetrack economy. Then, J ≡ ∇F (h̄) and ∇v(h̄) are both symmetric and circulant.

Furthermore, we have J ≃ ∇v(h̄).

Thus, for the stability analysis of h̄, we may study the signs of the eigenvalues ek (k ≥ 1) of ∇v(h̄)
because we have sgn[gk] � sgn[ek]. In particular, using our notation, J satisfies

J ≃ c0I + c1D̄ + c2D̄
2 (B.4.7)

at the flat-earth equilibrium (see Appendix B.3). Thus, the stability of h̄ is governed by the model-

dependent function G(·) in (B.3.3) because (B.4.7) implies

sgn[gk] � sgn[G( fk)], (B.4.8)

G( fk) ≡ c0 + c1 fk + c2 f 2k . (B.4.9)

Furthermore, not only the signs but also the magnitudes of the eigenvalues {gk} and {ek} of J

and ∇v(h̄) are often related in a much stronger way.

Observation B.1. For canonical evolutionary dynamics in the literature, it often follows that gk � c̄ek

for k ≥ 1 with a common, positive constant c̄.

Example B.3. The replicator dynamic, which is the de facto standard dynamic in the NEG literature, is

defined by

Fi(h) ≡ hi{vi(h) − v̄(h)}, (B.4.10)
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where v̄(h) ≡ (1/H)∑ j∈K v j(h)h j is the average payoff all over the regions. One has

∇F (h) � ψ0(h) + ψ1(h)∇v(h) (B.4.11)

with ψ0(h) and ψ1(h) defined by ψ0(h) ≡ diag[v(h) − v̄(h)1] − (1/H)hv(h)⊤ and ψ1(h) ≡ diag[h](I −
(1/H)1h⊤), respectively. It follows that, at the flat-earth equilibrium, ψ0(h̄) � −v̄E and ψ1(h̄) �

h (I −E), where E ≡ (1/K)11⊤ is a K-by-K matrix whose elements are all 1/K. It implies that

gk �




−v̄ < 0 if k � 0,

hek if 1 ≤ k ≤ K − 1.
(B.4.12)

where {ek} are the eigenvalues of ∇v(h̄). Therefore, J ≃ ∇v(h̄) as well as c̄ � h.

B.4.3 Extension: Taste heterogeneities

Local stability of equilibria in models with idiosyncratic taste heterogeneity á la Murata (2003) and

Redding (2016) can be analyzed by employing the associated perturbed best response dynamics as is

done by Akamatsu et al. (2012) for logit equilibrium under the logit dynamic. To be precise, for

models with randomized preference ṽ(h) and the associated perturbed best response dynamic F̃ ,

we have J � ∇F̃ (h̄, ṽ(h̄)) ≃ Φ∇v(h̄) − ηI where η is a positive constant that reflects magnitude of

heterogeneity and Φ is the projection matrix onto TD. v(h) is interpreted to be the homogeneous

part of the underlying payoff function ṽ(h) (see Sandholm, 2010). Assuming idiosyncratic taste

heterogeneity is thus mathematically equivalent to incorporating an extra local dispersion force.60

Example B.4 (Logit equilibrium). Consider a logit equilibrium (an equivalent of an equilibrium under

idiosyncratic multiplicative Fréchet shock in the payoff function) with the noise parameter η. It is

standard that the equilibrium condition is

hi � Pi(h)H, where Pi(h) ≡
exp[−vi(h)/η]∑

j∈K exp[−v j(h)/η]
. (B.4.13)

The logit dynamic is defiled by

Fi(h) � HPi(h) − hi . (B.4.14)

At h̄, for finite values of η we have

J � η−1Φ∇v(h̄) − I ≃Φ∇v(h̄) − ηI . (B.4.15)

Observe that η→ ∞ implies J � −I, which indicates that h̄ is always stable; it is intuitive that under

sufficient heterogeneity on the side of the preference of mobile agent, the equilibrium is unique.

60Interested readers should consult Chapter 8 of Sandholm (2010) for local stability analysis via linearization
of evolutionary dynamics in population games as well as the consequences of assuming random utility models
on the Jacobian matrix of the dynamic J at an equilibrium.
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C Analyses of economic geography models

In this appendix, we derive the Jacobian matrix of the payoff function at the flat-earth equilibrium,

∇v(h̄), for the models included in Table 1. As discussed in the main text and as in Appendix B above,

this suffices for our purpose. Table 2 at the end of this appendix summarizes the exact mappings

from each model to the coefficients of a model-dependent function G( f ) � c0 + c1 f + c2 f 2. We note

that as soon as one has analytical expression of G( f ), she will be able to derive break points with

respect to relevant parameters and study implications of the model.

C.1 Krugman (1991) (Km) model

Following Fujita, Krugman and Venables (1999a), this section introduces a many-region version of

Krugman (1991)’s seminal model in line with our context.

Assumptions. There are K discrete regions whose set is denoted by K . There are two types

of workers: unskilled and skilled. Each worker inelastically supplies one unit of labor. The total

endowments of skilled and unskilled workers are H and L, respectively. The skilled workers are

mobile across regions; hi ≥ 0 denotes their population in region i, whence h ≡ (hi)i∈K is the spatial

pattern of them across the regions. Throughout Appendix C, D ≡ {h ∈ RK | h · 1 � H, hi ≥ 0}
denotes the set of all possible spatial distributions of mobile (skilled) workers. The unskilled workers

are immobile; their population in region i is denoted by li .

There are two industrial sectors: agriculture (abbreviated as A) and manufacturing (abbreviated

as M). The A-sector is perfectly competitive and a unit input of unskilled labor is required to produce

one unit of goods. We choose A-sector goods as the numéraire. The M-sector is modeled by the Dixit–

Stiglitz monopolistic competition. The M-sector goods are horizontally differentiated and produced

under increasing returns to scale using skilled labor as input.

The goods of both sectors are transported. Transportation of A-sector goods is frictionless, while

transportation of M-sector goods is of iceberg form. For each unit of M-sector goods transported from

region i to j, only a fraction 1/τi j arrives where τi j > 1 for i , j and τii � 1.

Preference. All workers share an identical preference over both M- and A-sector goods. The

utility function U of a worker in region i is given by a two-tier form. The upper-tier is the following

Cobb–Douglas function:

U(CM

i , C
A

i ) � µ ln CM

i + (1 − µ) ln CA

i (0 < µ < 1), (C.1.1)

where CA

i
is the consumption of A-sector goods in region i, CM

i
the lower-tier manufacturing aggregate

in region i, and µ the constant expenditure share of manufactured goods. The lower tier, CM

i
, is defined

by the following constant-elasticity-of-substitution (CES) aggregate:

CM

i ≡
(∑

j∈K

∫ n j

0

q ji(ξ)(σ−1)/σdξ
)σ/(σ−1)

, (C.1.2)
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where n j is the number of varieties produced in region j, q ji(ξ) is the consumption of variety

ξ ∈ [0, n j], and σ is the constant elasticity of substitution between any two varieties. As we take

A-sector goods as the numéraire, the budget constraint of a worker in region i is given by

CA

i +

∑

j∈K

∫ n j

0

p ji(ξ)q ji(ξ)dξ � yi , (C.1.3)

where p ji(ξ) denotes the delivered price in region i of the M-sector goods produced in region j and

yi denotes the income of the worker. The incomes (wages) of the skilled and the unskilled workers

are represented by wi and wu

i
, respectively.

Demand. Utility maximization yields the following demand:

CM

i � µ
yi

Pi
, CA

i � (1 − µ)yi , q ji(ξ) �
{p ji(ξ)}−σ

P−σ
i

CM

i , (C.1.4)

where Pi denotes the price index of the differentiated product in region i:

Pi ≡
(∑

j∈K

∫ n j

0

p ji(ξ)1−σdξ
)1/(1−σ)

. (C.1.5)

Since the total income in region i is given by Yi � wi hi + wu

i
li , we have the following total demand

Q ji(ξ) for the variety ξ produced in j:

Q ji(ξ) �
µ{p ji(ξ)}−σ

P1−σ
i

(wi hi + wu

i li). (C.1.6)

The total supply xi(ξ) of the differentiated variety ξ in region i should meet the total demand from

all regions including transport costs incurred by shipments:

xi(ξ) �
∑

j∈K
τi jQi j(ξ). (C.1.7)

Firm behavior. With free trade in the A-sector, the wage of the unskilled worker wu

i
is equalized. As

A-sector goods is the numéraire, we have wu

i
� 1. In the M-sector, to produce xi unit of differentiated

product a firm requires α + βxi unit of skilled labor. With increasing returns, every firm specializes

to a single variety. The cost function of a firm in region i producing the variety ξ is thus given by

Ci(xi(ξ)) ≡ wi{α + βxi(ξ)}. (C.1.8)

Therefore, a M-sector firm located in region i specialized to the variety ξ faces the following profit:

Πi(ξ) �
∑

j∈K
pi j(ξ)Qi j(ξ) − Ci(xi(ξ)). (C.1.9)

Since we have a continuum of firms, each one is negligible in the sense that its action has no impact
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on the market (i.e., the price indices). It is standard that profit maximization of firms yields

pi j(ξ) �
σβ

σ − 1
wiτi j (C.1.10)

and that pi j(ξ) is independent of ξ. This fact in turn implies that Qi j(ξ) and xi(ξ) also do not depend

on ξ. We thus omit ξ in the following.

Short-run equilibrium. In the short run, the spatial distribution h � (hi)i∈K of skilled workers is

fixed. Given h, we determine the short-run equilibrium wage w ≡ (wi)i∈K by the M-sector product

market clearing condition (PMCC), the zero-profit condition (ZPC), the skilled labor market clearing

condition (LMCC). First, the ZPC for every M-sector firm dictates that xi � α(σ − 1)/β, so that the

required skilled-labor input being ασ. Then, the skilled labor-market clearing yields ασni � hi . We

note that using ni � hi/(ασ), we have

Pi �
σβ

σ − 1

(
1

ασ

∑

j∈K
h j(w jτ ji)1−σ

)1/(1−σ)
, (C.1.11)

with di j ≡ τ1−σ
i j

; D � [di j] � [τ1−σ
i j

] is the friction matrix. Employing the formula up to here, the

M-sector PMCC (C.1.7) implies that

wi hi � µ
∑

j∈K

hi w
1−σ
i

di j∑
k∈K hk w1−σ

k
dk j

(w j h j + l j), (C.1.12)

which is the so-called wage equation. Adding up (C.1.12), we obtain

∑

i∈K
wi hi �

µ

1 − µL (C.1.13)

which constrains w at any configuration h. The existence and uniqueness of solution for the wage

equation under a fixed h and the normalization constraint (C.1.13) follows by a standard nonlinear-

complementarity-problem arguments (Facchinei and Pang, 2007) and thus we shall omit. Given the

solution w(h) of (C.1.12), we have the following indirect utility function of skilled workers:

vi(h) � κ̄ ln[∆i] + ln[wi] (C.1.14)

where κ̄ ≡ µ/(σ − 1) and ∆i ≡
∑

k∈K hk w1−σ
k

dki . Note that we omitted the constant terms as they do

not affect properties of equilibrium spatial patterns. We shall follow this convention for the rest of

Appendix C. Long-run equilibria are defined by [VIP] in Appendix B.3 based on the payoff function

(C.1.14).

Jacobian matrix at the flat-earth equilibrium. Assume a racetrack economy (i.e., di j � τ
1−σ
i j

� exp[−τℓi j]
with τ > 0; see Section 3.1) with uniform unskilled labor endowment (i.e., li � l ≡ L/K for all i ∈ K ).

Then, it is trivial that the flat-earth pattern is a long-run equilibrium. As we must evaluate ∇v(h̄), we
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shall first derive ∇v(h) � [∂vi(h)/∂h j] at any interior solution h. We have

∂vi(h)
∂h j

�
κ̄

∆i

(
∂∆i

∂h j
+

∑

k∈K

∂∆i

∂wk

∂wk

∂h j

)
+

1

wi

∂wi

∂h j
(C.1.15)

� κ̄

(
1

∆i
w1−σ

j d ji + (1 − σ)
∑

k∈K

1

∆i
hk w−σ

k
dki
∂wk

∂h j

)
+

1

wi

∂wi

∂h j
(C.1.16)

� κ̄

(
1

h j
m ji + (1 − σ)

∑

k∈K
mki

1

wk

∂wk

∂h j

)
+

1

wi

∂wi

∂h j
(C.1.17)

where mi j ≡ hi w
1−σ
i

di j/∆ j , or in the vector–matrix formM � [mi j] � diag[w1−σ ◦h]D(diag[∆])−1 with

∆ � [∆i] � D⊤ diag[w]1−σh. We let xa ≡ [xa
i
] and x ◦ y ≡ [xi yi]. Noting that κ̄(1 − σ) � −µ, we have

∇v(h) � κ̄M⊤ diag[h]−1 − µM⊤ diag[w]−1∇w(h) + diag[w]−1∇w(h) (C.1.18)

� κ̄M⊤ diag[h]−1 + (I − µM⊤) diag[w]−1∇w(h) (C.1.19)

where ∇w(h) ≡ [∂wi(h)/∂h j] is yet to be known. Letting

Wi(h,w) ≡ wi hi − µ
∑

k∈K
mik(wk hk + l), (C.1.20)

the wage equation is equivalent to W (h,w) � 0. Thanks to the implicit function theorem, it can be

shown that ∇w(h) � −(∇wW )−1(∇W ) where ∇wW ≡ [∂Wi/∂w j] and ∇W ≡ [∂Wi/∂h j] are given by

∂Wi

∂w j
� δi j hi − µ

∑

k∈K

∂mik

∂w j
(wk hk + l) − µmi j h j (C.1.21)

� δi j hi − µ(1 − σ)
1

w j

(
δi j

∑

k∈K
mik(wk hk + l) −

∑

k∈K
mik m jk(wk hk + l)

)
− µmi j h j , (C.1.22)

∂Wi

∂h j
� δi j wi − µ

∑

k∈K

∂mik

∂h j
(wk hk + l) − µmi j w j (C.1.23)

� δi j wi − µ
1

h j

(
δi j

∑

k∈K
mik(w j h j + l) −

∑

k∈K
mik m jk(wk hk + l)

)
− µmi j w j , (C.1.24)

with δi j being the Kronecker’s delta. In the vector–matrix form, we have

∇wW � diag[h] − µ(1 − σ)(diag[MY ] −M diag[Y ]M⊤) diag[w]−1 − µM diag[h] (C.1.25)

∇W � diag[w] − µ(diag[MY ] −MYM⊤) diag[h]−1 − µM diag[w] (C.1.26)

where Y � [Yi] ≡ [wi hi + l] is the vector of the regional total income.

Assume the flat-earth equilibrium where h � h1 with h ≡ H/K. Then, we know that the (uniform

level of) equilibrium wage is given by w̄ ≡ µ/(1 − µ) · L/H and the (uniform level of) total income of

a region Ȳ ≡ l/(1 − µ) � 1/(1 − µ) · L/K, whence we have Ȳ/w̄ � h/µ and Ȳ/h � w̄/µ. We also have
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M � D̄ � D/d where d is the row sum ofD. It then follows that

∇w(h̄) � w̄

h

[
σI − µD̄ − (σ − 1)D̄2

]−1
D̄
(
µI − D̄

)
(C.1.27)

and thus that

∇v(h̄) � 1

h

[
I − κD̄ − ρD̄2

]−1[(κ + κ̄)D̄ − (µκ̄ + σ−1)D̄2] (C.1.28)

where κ ≡ µ/σ and ρ ≡ (σ − 1)/σ ∈ (0, 1). We recall that circulant matrices commute (Lemma B.1). It

thus follows that for the Km model, we have ∇v(h̄) ≃ c1D̄+c2D̄
2 with c1 � κ+ κ̄ and c2 � −(µκ̄+σ−1).

Remark C.1. A comparison with the literature would be useful for providing some insights. Letting

{ek} be the eigenvalues of ∇v(h̄), we have

ek �
1

h
fk

(κ + κ̄) − (µκ̄ + σ−1) fk

1 − κ fk − ρ f 2
k

�
K

H

(
1 − ρ
ρ

)
fk

[
µ(1 + ρ) − (µ2

+ ρ) fk

1 − µ(1 − ρ) fk − ρ f 2
k

]
. (C.1.29)

But then one will immediately notice that this expression is a generalized version of the equation (5.27)

of Fujita et al. (1999a) for the Km model in the symmetric two-region setting (with a rearrangement):

1

P
−µ
0

dω

dλ
�

2

λ + (1 − λ)

(
1 − ρ
ρ

)
Z

[
µ(1 + ρ) − (µ2

+ ρ)Z
1 − µ(1 − ρ)Z − ρZ2

]
(C.1.30)

which expresses the change in the real wage ω ≡ w0P
−µ
0

at region 0 when its share of skilled worker

λ slightly increased. Here, Z is “an index of trade barriers” defined by the equation (5.25), ibid:

Z ≡ 1 − T1−σ

1 + T1−σ (C.1.31)

where T > 1 is the iceberg transport cost parameter between the regions. We thus see that the “real wage

differential” exercise often conducted in the literature is a special case of our approach. In fact, if we assume

K � 2, the only possible deviation direction is η1 � (1,−1), which corresponds to agglomeration

toward one of the regions. Given the freeness of transport r between the two regions, its associated

eigenvalue of D̄ is given by

f1 �
1 − r

1 + r
, (C.1.32)

which precisely coincides with the above Z—since r � T1−σ for this case. In the two-region economy,

there is only a single possible deviation direction: agglomeration. We thus only have to investigate the

sign of dω/dλ. In a many-region racetrack economy, however, there are multiple possible deviation

directions and thus stability of the flat-earth pattern depends on the signs of all (ek)K−1
k�1

.

Remark C.2. As emphasized by the literature, the coefficients of G( f ) have clear economic interpre-

tations. The first, c1, represents demand externality through price index (κ̄) and a home-market effect

(κ). For the former, κ̄, observe that 1/(σ − 1) in κ̄ is the markup of firms or the magnitude of product
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differentiation; an agglomeration, by improving proximity of mobile agents to production location of

firms, increases payoff of agglomerated regions. The latter, κ, is a home market effect. Note that 1/σ in

κ is the share of fixed cost (wage of a mobile agent which is required to operate) in a firm’s production

cost. The second, c2, on the other hand, represents the dispersion force. The centrifugal force of the

model is due to increased market competition caused by concentration of firms (the so-called “market

crowding effect”). Since there is spatially dispersed demand (immobile agents), firms in a region

of agglomeration may hope to relocate to other, less crowded regions (σ−1 in c2). In addition, the

price-index effect by reducing firm’s market share and hence wage of mobile agents produces another

global dispersion force (µκ̄ in c2). The effect produces a dispersion force from outside of a region.

Numerical simulation. Figure 8 assumes the Km model. Parameters are set as µ � 0.4, σ � 10,

L � 8, and H � 1.

C.2 Forslid and Ottaviano (2003) (FO) model

The FO model is a slightly simplified version of Krugman (1991)’s NEG model. The model is

sometimes called the footloose-entrepreneur model, since a unit of skilled (mobile) labor is required as

the fixed input of a manufacturing firm. The only difference is that variable input of M-sector firms

in the Km model is now replaced by unskilled labor. Specifically, in order to produce xi(ξ) unit of

product ξ, a M-sector firm now requires α unit of skilled labor and βxi(ξ) unit of unskilled labor.

Therefore, for the FO model, the total cost of production for a firm in region i is

Ci(x(ξ)) � αwi + βxi(ξ)wu

i . (C.2.1)

Wage equalization of the A-sector (wu

i
� 1 for all i ∈ K ) then implies that

pi j(ξ) �
σβ

σ − 1
τi j (C.2.2)

provided that A-sector goods are produced at every region (we assume βxi ni < li for all i ∈ K ).

Again, we drop ξ in what it follows.

Short-run equilibrium. The short-run equilibrium conditions are again the PMCC, the LMCC, and

the ZPC. First, since a firm requires α unit of skilled labor, the LMCC implies that αni � hi , which in

turn yields the price index Pi for the FO model:

Pi �
σβ

σ − 1

(
1

α

∑

j∈K
h j d ji

)1/(1−σ)
(C.2.3)

where d ji ≡ τ1−σ
ji

is the trade friction between the regions i and j. Note that, unlike the Km model,

Pi does not depend on the wage w � (wi)i∈K . The ZPC implies that the operating profit of a firm is
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entirely absorbed by the wage bills:

wi �

(∑

j∈K
pi jQi j − βxi

)
. (C.2.4)

Together with the PMCC, we have the following wage equation for the model:

wi �
µ

σ

∑

j∈K

di j∑
k∈K dk j hk

(w j h j + l j) (C.2.5)

The equation is analytically solvable. Specifically, in the vector–matrix form, we have

w � κ [I − κM diag[h]]−1Ml (C.2.6)

where κ ≡ µ/σ, l ≡ (li), and M ≡ [mi j] � [di j/∆ j] � D{diag[∆]}−1 with ∆i �

∑
j∈K d ji h j so that

∆ � [∆i] � D⊤h. The indirect utility v(h) of each of the many-region FO model is expressed as

vi(h) � κ̄ ln[∆i] + ln[wi] (C.2.7)

where κ̄ ≡ µ/(σ − 1). We again ignore the constant terms. Long-run equilibria are defined by (B.3.1)

with respect to the above (C.2.7).

Jacobian matrix at the flat-earth equilibrium. In a racetrack economy, following completely the same

line of logic as in the Km model, we obtain

∇v(h̄) � 1

h
[I − κD̄]−1

[
(κ̄ + κ)D̄ − (κ̄κ + 1)D̄2

]
(C.2.8)

where D̄ ≡ D/d. We thus conclude that ∇v(h̄) ≃ c1D̄ + c2D̄
2 with c1 � κ̄ + κ and c2 � −(κ̄κ + 1).

C.3 Pflüger (2004) (Pf) model

The Pf model is a further simplified version of the FO model (and hence the Km model) in which we

assume a quasi-linear utility function for the upper-tier as follows:

U(CM

i , C
A

i ) � CA

i + µ ln CM

i . (C.3.1)

Taking the A-sector goods as numéraire, it is standard that utility maximization yields the following

demand, where the income effect in CM

i
is lost compared to the Km and FO models:

CA

i � yi − µ, CM

i � µ
1

Pi
. (C.3.2)
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where the price index Pi is the same as the FO model. Thus, replacing the total income of a region

Yi � wi hi + li in (C.2.5) by the total number of workers hi + li , we obtain the following “wage equation”

wi �
µ

σ

∑

j∈K

di j∑
k∈K dk j hk

(h j + l j) (C.3.3)

which is, actually, already solved. The indirect utility is given by

vi(h) � κ̄ ln[∆i] + wi (C.3.4)

where ∆i ≡
∑

j∈K d ji h j . Long-run equilibria are defined by (B.3.1) with respect to the above (C.2.7).

Jacobian matrix at the flat-earth equilibrium. We show

∇v(h) � κ̄M⊤
+ κ

(
M −M diag[H]M⊤) (C.3.5)

withH � [Hi] ≡ [hi + li] andM � [mi j] ≡ [di j/∆ j] and thus that

∇v(h̄) � 1

h

[
(κ̄ + κ)D̄ − κ(1 + ϵ)D̄2

]
(C.3.6)

with ϵ � L/H being the ratio of the number of unskilled worker to that of skilled. We thus see that

∇v(h̄) ≃ c1D̄ + c2D̄
2 with c1 � κ̄ + κ and c2 � −κ(1 + ϵ).

C.4 Helpman (1998) (Hm) model

Helpman (1998) removed the A-sector in Krugman (1991) and thereby assumes that all workers are

mobile. Instead of the A-sector, the Hm model introduces the housing (abbreviated as H) sector and

each region i is endowed with a fixed stock Ai of housing.

Preference. The utility function of a worker in region i is given by

U(CM

i , C
H

i ) � µ ln CM

i + γ ln CH

i (C.4.1)

where CH

i
is the consumption of H-sector goods in region i and γ is the constant expenditure share

on it (γ + µ � 1). The budget constraint of a worker located at i is represented by

pH

i CH

i +

∑

j

∫ n j

0

p ji(ξ)q ji(ξ)dξ � yi , (C.4.2)

where pH

i
is the price of H-sector goods in region i. Utility maximization leads to the following

demand for the H-sector goods:

CH

i � γ
yi

pH

i

. (C.4.3)

Housing market clearing. In the H-sector, the total demand hiC
H

i
in region i cannot be greater than
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the maximum supply Ai . If the demand in region i is less than the supply, the price pH
i

should be the

lower boundary (i.e., zero), otherwise positive. Thus, we have the following housing market clearing

condition:




hiC
H

i
� Ai if pH

i
> 0,

hiC
H

i
≤ Ai if pH

i
� 0,

∀i. (C.4.4)

From (C.4.3), pH

i
, 0 for any long-run equilibrium; because CA

i
→ ∞ and thus U → ∞ as pH

i
→ 0 and

such a spatial pattern is never sustainable. We thus conclude that

CH

i �
Ai

hi
, pH

i � γ
yi hi

Ai
(C.4.5)

and that hi > 0 at any long-run equilibrium.

Landownership. We here consider two types of assumptions on landownership: public landownership

(abbreviated as PL) and local landownership (LL). In the original formulation, the housing stocks are

equally owned by all workers (i.e., PL). In this way, the income of a worker in region i is the sum of

wage and devident of rental revenue, yi � wi + w̄H, where

w̄H
�

1

H

∑

i∈K
pH

i CH

i hi �
γ

H

∑

i∈K
yi hi (C.4.6)

so that rearrangement yields

w̄H
�

γ

(1 − γ)H
∑

i∈K
wi hi . (C.4.7)

We shall set w̄H
� 1 so that we can normalize wi to satisfy

∑
i∈K wi hi � (µ/γ)H. On the other hand,

Ottaviano et al. (2002), Murata and Thisse (2005), and Redding and Sturm (2008) assume that the

housing stocks are locally owned (i.e., LL). It is, yi � wi + wH

i
where w̄i � pH

i
CH

i
� γyi , which in

turn yields that yi � wi/µ. Also for this case, analogous to the public landownership case, we shall

constrain w by the condition
∑

i∈K wi hi � (µ/γ)H for normalization.

Short-run equilibrium. Regarding the short-run equilibrium conditions, the only difference from

the Km model is the total expenditure at each region, which is now

Yi �




(wi + 1)hi , (for PL),

wi hi/µ, (for LL).
(C.4.8)

The short-run equilibrium wage equation is thus given by:

[PL] wi hi � µ
∑

j∈K

di j w
1−σ
i

hi∑
k∈K dk j w

1−σ
k

hk

(w j + 1)h j , (C.4.9)
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[LL] wi hi �

∑

j∈K

di j w
1−σ
i

hi∑
k∈K dk j w

1−σ
k

hk

w j h j . (C.4.10)

Given the solution w for (C.4.9) or (C.4.9), the indirect utility v(h) is expressed as

vi(h) �



κ̄ ln[∆i] + µ ln[wi + 1] − γ
(
ln[hi] − ln[Ai]

)
, (for PL),

κ̄ ln[∆i] + µ ln[wi] − γ
(
ln[hi] − ln[Ai]

)
, (for LL)

(C.4.11)

where ∆i ≡
∑

j∈K h j w
1−σ
j

d ji .

Jacobian matrix at the flat-earth equilibrium. Let Ai � A for all regions to abstract from location-fixed

exogenous effects. For the PL case, one can show that

∇v(h̄) � 1

h

{
κ̄D̄ + µ(µI − D̄)

[
σI − µD̄ − (σ − 1)D̄2

]−1
D̄(I − D̄) − γI

}
(C.4.12)

�
σ

h

[
σI − µD̄ − (σ − 1)D̄2

]−1 {−γI + (κ̄ + κ)D̄ +

{
γ −

(
µκ̄ +

1

σ

)}
D̄2

}
(C.4.13)

so that ∇v(h̄) ≃ c0I + c1D̄ + c2D̄
2 with c0 � −γ, c1 � µ

(
1

σ−1 +
1

σ

)
, and c2 � γ − 1

σ −
µ2

σ−1 . We recall that

γ is the expenditure share on housing good, whence one can understand that the dispersion force

expressed by c0 < 0 solely arises from local housing. For the LL case one can show that

∇v(h̄) � 1

h

{
κ̄D̄ + µ(I − D̄) [σI + (σ − 1)D̄]−1 D̄ − γI

}
(C.4.14)

�
σ

h
[σI + (σ − 1)D̄]−1

{
−γI +

(
µ

σ − 1
+

µ

σ
− γσ − 1

σ

)
D̄

}
. (C.4.15)

From this, we conclude that for the LL case ∇v(h̄) ≃ c0I + c1D̄ with c0 � −γ and c1 �
µ
σ−1 +

µ
σ − γ σ−1σ .

Remark C.3. For the model, the condition for the uniqueness of equilibrium is given by γσ � (1−µ)σ >
1 (Redding and Sturm, 2008). One can show that if γσ > 1 is satisfied, regardless of the assumption

on landownership, the flat-earth eqilibrium is stable.

Remark C.4. The regional model formulated in §3 of Redding and Rossi-Hansberg (2017) is an

enhanced version of the Hm model with local landownership, in which variable input of skilled labor

is allowed to depend on region i (i.e., productivity differs across regions). That is, the cost function

of firms in region i becomes

Ci(xi(ξ)) � wi(α + βi xi(ξ)). (C.4.16)

It then implies that the short-run equilibrium price and price index in region i becomes

pi j(ξ) �
σβi

σ − 1
τi j wi , (C.4.17)

Pi �
σ

σ − 1

(
1

ασ

∑

j∈K
h j(β j w jτ ji)1−σ

)1/(1−σ)
, (C.4.18)

63



respectively. As the model assumes local landownership, the wage equation for the model is

wi hi �

∑

j∈K

hiAi w
1−σ
i

di j∑
k∈K hkAk w1−σ

k
dk j

w j h j , (C.4.19)

where we define Ai ≡ β1−σi
. Thus, abstracting from first natures by setting Ai � Ā, the model reduces

to the Hm model under LL.

C.5 Puga (1999) (Pg) model

Puga (1999) generalized the Km model in two directions: namely, (i) intersector mobility of workers

between agriculture (A) and manufacture (M) (without immobile workers but land) and (ii) interme-

diate inputs in the M-sector, both as in Krugman and Venables (1995).

Assumptions. There are only a mass H of mobile workers, with hi denoting the number of workers

located in region i. We denote by hM

i
and hA

i
the number of workers engaged in the M- and A-sectors,

respectively (hi � hM

i
+hA

i
). The homogeneous preference of consumers is the same as Km model, with

the expenditure share on M-sector good µ and the elasticity of substitution between manufactured

varieties σ. Each region is endowed with Ai unit of land, which is owned by immobile landlords that

have the same preference as the workers. We assume that, if a worker should relocate, then she enters

in the M-sector of the destination region in the first place. The stability of the spatial pattern h is then

reduced to the study of hM ≡ [hM

i
].

A-sector. The A-sector is perfectly competitive and produces a homogeneous output using labor

and land under constant returns to scale. The A-sector goods are costless to trade and are set to the

numéraire. Let XA

i
be the gross regional product of the A-sector. In line with the original paper,

we shall specify a Cobb–Douglas production function with labor share µ̄; in concrete terms, we have

XA

i
� (hA

i
)µ̄A

1−µ̄
i

. It implies that the total cost of A-sector firms on labor is given by µ̄XA

i
� wi h

A

i
as

well as that on land (� the total rental revenue of landlords) by (1 − µ̄)XA

i
�

1−µ̄
µ̄ wi h

A

i
. In particular,

the labor demand in this sector is given by a function of the wage hA

i
� Ai(wi/µ̄)1/(µ̄−1), because

wi � µ̄(hA

i
/Ai)µ̄−1. Let hA

i
� ϵi h

M

i
, so that hi � (1 + ϵi)hM

i
; we here consider the case hM

i
, 0, because

we are interested in the stability of complete dispersion. We also have ϵi ≡ (Ai/hM

i
)(wi/µ̄)1/(µ̄−1). The

regional rental revenue from land, Ri in terms of hM

i
is:

Ri ≡
1 − µ̄
µ̄

ϵi wi h
M

i . (C.5.1)

We also note that, employing the above formulae, the elasticity νi of a region’s labor supply to the

M-sector with respect to wage is

νi ≡
wi

hM

i

∂hM

i

∂wi
�

hA

i

hM

i

1

1 − µ̄ � ϵi
1

1 − µ̄ . (C.5.2)

It is also noted that if µ̄ � 0, we have XA

i
� Ai as well as Ri � Ai and ϵi � 0.
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M-sector. Considering the simplest possible model of intermediate inputs as in Krugman and

Venables (1995), the minimum cost function of the M-sector is replaced by

C(xi(ξ)) � P
µ̂

i
w

1−µ̂
i

(α + βxi(ξ)) (C.5.3)

where Pi is the price index of M-sector goods in region i and µ̂ the share of intermediates in firms’

costs. The profit-maximizing price is given by

pi j(ξ) �
σβ

σ − 1
P
µ̂

i
w

1−µ̂
i

τi j , (C.5.4)

which, together with the definition of Pi , implies that we should solve a system of nonlinear equations

to obtain Pi . In concrete terms, the price indices {Pi} should satisfy

Pi �
σβ

σ − 1

(∑

j∈K
n j

(
P
µ̂

j
w

1−µ̂
j

)1−σ
d ji

)1/(1−σ)
(C.5.5)

where di j ≡ τ1−σi j
. We must solve (C.5.5) along with the wage equation to be defined below.

In line of the Km model, the ZPC of firms implies xi(ξ) � α(σ−1)/β. Firms’ minimized production

cost in region i is then given by Ci � (ασ)P µ̂
i

w
1−µ̂
i

, so that labor demand in the M-sector of region i is

hM

i � (1 − µ̂)Ci

wi
ni � ασ(1 − µ̂)P µ̂i w

−µ̂
i

ni . (C.5.6)

The mass of varieties produced in region i is thus given as follows:

ni �
1

ασ(1 − µ̂)P
−µ̂
i

w
µ̂

i
hM

i . (C.5.7)

For simplicity, in the following, as in the original paper we shall normalize constants such that α � 1/σ
and β � (σ − 1)/σ. Then, plugging (C.5.7) to (C.5.5), we have

P1−σ
i �

1

1 − µ̂
∑

j∈K
hM

j P
−µ̂σ
j

w
1−σ+µ̂σ
j

d ji . (C.5.8)

Land is locally owned by immobile landlords that share the same preference as mobile workers; the

regional expenditure on M-sector goods from them is given by µRi . Also, the regional expenditure

of firms on intermediates is given by

µ̂Ci ni �
µ̂

1 − µ̂wi h
M

i . (C.5.9)

The total expenditure in region i on M-sector goods is Yi � µwi hi +µRi + µ̂Ci ni . Using (C.5.1) as well
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as hi � (1 + ϵi)hM

i
, it is simplified to

Yi � µ(1 + ϵi)wi h
M

i + µRi +
µ̂

1 − µ̂wi h
M

i �

[
µ

(
1 +

ϵi

µ̄

)
+

µ̂

1 − µ̂

]
wi h

M

i . (C.5.10)

From the ZPC of firms, the wage equation for the model is given by61

1

1 − µ̂wi h
M

i

︸        ︷︷        ︸
M-sector firms’ total cost

�

∑

j∈K

hM

i
P
−µ̂σ
i

w
1−σ+µ̂σ
i

di j

∑
k∈K hM

k
P
−µ̂σ
k

w
1−σ+µ̂σ
k

dk j

[
µ

(
1 +

ϵ j

µ̄

)
+

µ̂

1 − µ̂

]
w j h

M

j

︸                                                                       ︷︷                                                                       ︸
M-sector firms’ total revenue

. (C.5.11)

The short-run wage w � (wi) and price index P � (Pi) are obtained as the solution for the system of

nonlinear equations (C.5.8) and (C.5.11). It is noted that we must require µ̂ < σ−1
σ so that P andw are

uniquely determined for any value of transportation cost.

Given P and w, the indirect utility function is

vi(h) �
µ

σ − 1
ln[∆i] + ln[wi] (C.5.12)

with ∆i �
∑

j∈K hM

j
P
−µ̂σ
j

w
1−σ+µ̂σ
j

d ji .

Jacobian matrix of the payoff function at the flat-earth equilibrium. Let Ai � A for all i and consider the

flat-earth equilibrium. Let h ≡ H/K be the uniform number of mobile agents; let also hM and hA be

the number of mobile agents engaged in the M- and A-sector, respectively. Also, let Ȳ, P̄, w̄, Ω̄ and ϵ̄

be the uniform level of regional expenditure, the price index, the wage, Ωi , and the ratio ϵi of hA

i
to

hM

i
, at the flat-earth equilibrium, respectively. Adding up the wage equations (C.5.11) at the flat-earth

equilibrium, we show

ϵ̄ �
hA

hM
� µ̄

1 − µ
µ

. (C.5.13)

A larger µ̄ (µ) implies a larger (smaller) ϵ̄ � hA/hM, which is intuitive. The explicit formula of ϵ̄ yields

Ȳ �
w̄

1 − µ̂
ϵ̄

1 + ϵ̄
h , w̄ � µ̄

(
h

A

ϵ̄

1 + ϵ̄

) µ̄−1
. (C.5.14)

Observe that, together with the fact ϵ̄/µ̄ �
µ

1−µ , µ̄ does not affect stability of h̄ but scales the total

amount of the world income. We also have P̄ � ρw̄ where ρ ≡ {(hMd)(1 − µ̂)}1/(1−σ+µ̂σ) with d being

the row-sum ofD and that ∆i � ∆̄ ≡ (1 − µ̂)P̄1−σ. Note that at the equilibrium, we have

1

µ̄

∂ϵi

∂hM

i

� − 1

µ̄

ϵ̄

hM
� − 1

hM

1 − µ
µ

(C.5.15)

61The original analyses in Puga (1999) allow possibilities of positive profit of firms. In this appendix, we
shall adhere to zero-profit so that comparisons with the other models become possible.
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Also, with ν̄ ≡ µ̄
1−µ̄

1−µ
µ being the elasticity of labor supply from A- to the M-sector with respect to wi ,

∂hM

i

∂wi
� ν̄

hM

wi
,
1

µ̄

∂ϵi

∂wi
�

1

µ̄

∂ϵi

∂hM

∂hM

i

∂wi
� −ν̄ 1

wi

1 − µ
µ

(C.5.16)

Also, we assume that ∂hi/∂hM

i
� ∂hM

i
/∂hi � 1 as discussed. It follows that, at h̄,

∂Yi

∂hM

i

�

(
µ̂

1 − µ̂ + µ

)
w̄ ,

∂Yi

∂wi
�

(
1

1 − µ̂ + (1 − µ)ν̄
)

hM. (C.5.17)

The Jacobian matrix of the payoff function is computed as

∂vi

∂h j
�

µ

σ − 1

1

∆i

(
∂∆i

∂h j
+

∑

k∈K

∂∆i

∂Pk

∂Pk

∂h j
+

∑

k∈K

∂∆i

∂wk

∂wk

∂h j

)
+ δi , j

1

wi

∂wi

∂h j
, (C.5.18)

where δi , j is Kronecker’s delta; below, we shall evaluate ∇∆ ≡ [∂∆i/∂h j], ∇P∆ ≡ [∂∆i/∂P j], ∇w∆ ≡
[∂∆i/∂w j], ∇P ≡ [∂Pi/∂h j], and ∇w ≡ [∂wi/∂h j].

For ∇∆, ∇P∆, and ∇w∆, we compute as follows: ∇∆ � ∆̄(hM)−1D̄, ∇w∆ � ∆̄w̄−1aD̄, as well as

∇P∆ � ∆̄P̄−1bD̄, with a ≡ 1 − σ + µ̂σ and b ≡ −µ̂σ. Thus, at the flat-earth pattern, ∇v(h̄) is

∇v(h̄) �
µ

σ − 1

(
1

hM
D̄ +

1

P̄
bD̄∇P

)
+

1

w̄

(
I +

µa

σ − 1
D̄

)
∇w (C.5.19)

The remaining task is to evaluate ∇P and ∇w. First, totally differentiating the definition of price

index (C.5.8), we have ∇QdhM
+ ∇wQdw + ∇PQdP � 0 with

∇PQ ≡ [(σ − 1)I + bD̄] , ∇hQ ≡ P̄

hM
D̄, ∇wQ ≡ a

P̄

w̄
D̄. (C.5.20)

Also, total differentiation of the wage equation implies ∇WdhM
+ ∇wWdw + ∇PWdP � 0 with

∇wW ≡ hMI − (1 − µ̂)
[
a
1

w̄
Ȳ(I − D̄2) + ∂Ȳ

∂w
D̄

]
, (C.5.21)

∇hW ≡ w̄I − (1 − µ̂)
[
1

hM
Ȳ(I − D̄2) + ∂Ȳ

∂hM
D̄

]
, (C.5.22)

∇PW ≡ −(1 − µ̂)b 1

P̄
Ȳ(I − D̄2)∇P . (C.5.23)

We already computed Ȳ, ∂Ȳ/∂w, and ∂Ȳ/∂hM. These relations yields the analytical expressions for

the Jacobian matrices ∇P and ∇w:

∇P � −[∇wQ∇PW − ∇PQ∇wW ]−1[∇wQ∇hW − ∇hQ∇wW ], (C.5.24)

∇w � [∇wQ∇PW − ∇PQ∇wW ]−1[∇PQ∇hW − ∇hQ∇PW ]. (C.5.25)
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Summing up the computations up to here, a patient computation yields

∇v(h̄) � J−1
0

[
µ̌

(
1

σ − 1
+

1

σ

)
D̄ −

(
µ̌2

σ − 1
+

1

σ
+ ω

)
D̄2

]
(C.5.26)

where J0 is a positive definite matrix defined by D̄, µ̌ ≡ µ̂+µ(1− µ̂)which is loosely interpreted as the

aggregate expenditure share on M-sector goods, and ω ≡ µ(1−µ̌)
σ(σ−1) (1 − ν̄) is a constant that summarizes

the effects of labor mobility between A- and M-sectors at h̄. Thus, ∇v(h̄) ≃ c1D̄ + c2D̄
2 with

c1 � µ̌
(

1

σ − 1
+

1

σ

)
> 0, (C.5.27)

c2 � −
(
µ̌2

σ − 1
+

1

σ
+ ω

)
< 0. (C.5.28)

C.6 Tabuchi (1998) (Tb) model

The Tb model introduces internal structure of regions to the Km model. The main thrust of the model

is, unlike majority of regional models, the city boundary in each region is endogenously determined

by a full-fledged monocentric city model of Alonso–Muth–Mills. This produces a rich structure of

urban costs, because the trade-off between commuting cost and land rent is made explicit.

In this model, there are all of the three sectors of M, H, A in the Km and Hm models. Internal

structure of each region is featureless, except that it is endowed with a single central business district

(CBD) with negligible spatial extent. In each region, locations are indexed by the distance from the

CBD, x ≥ 0. At any point, the land endowment density is assumed to be unity. The total numbers

of skilled and unskilled workers are given by H and L, respectively. The number of skilled workers

in region i is denoted by hi , whereas the spatial distribution (density) in that region is, allowing a

notational abuse, denoted by hi(x). Thus, we have

∫ x̄i

0

hi(x)dx � hi (C.6.1)

where x̄i ≥ 0 is the city boundary in region i that is endogenously determined. Unskilled workers

are employed by the A-sector and do not commute to the CBD, whereas those skilled do. A skilled

worker at distance x from the CBD incur generalized cost of commuting T(x) which is measured by

the numéraire.

Preference. The utility of a representative worker living in region i and located at x is given by

U(CM

i , C
H

i , C
A

i ) � µ ln CM

i + γ ln CH

i + (1 − µ − γ) ln CA

i (C.6.2)

where µ and γ with µ + γ < 1 are the constant expenditure shares for manufactured goods and

housing goods, respectively; CM

i
is the CES aggregate of the M-sector goods defined by (C.1.2), CH

i

the consumption of housing space (the H-sector goods), CA

i
the consumption of agricultural products

(the A-sector goods) in region i. The M-sector goods are subject to iceberg transport cost, whereas

those of the A-sector not for both intra- and interregional transportation. The H-sector goods are local
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and nontradable. Choosing the A-sector goods as the numéraire, the budget constraint of a skilled

worker at location x in region i is

CA

i + ri(x)CH

i (x) +
∑

j∈K

∫ n j

0

p ji(ξ)q ji(ξ)dξ + Ti(x) � yi , (C.6.3)

where ri(x) is the land rent prevailing at location x in the region i, T(x) the generalized cost of

commuting from location x to the CBD, and yi the income of the worker. We assume that T(x) is

differentiable and increasing in x with T(0) � 0. Note that T(x) is independent of its population

and is homogeneous among the regions. Given price including land rent profile {ri(x)}, utility

maximization yields

CM

i (x) � µ yi(x)
Pi

, CH

i (x) � γ
yi(x)
ri(x)

, CA

i (x) � (1 − µ − γ)yi(x), q ji(ξ) �
{p ji(ξ)}−σ

P−σ
i

CM

i (C.6.4)

where yi(x) � yi −T(x) is the net income of a worker residing at x in region i. Following the tradition

of urban economics, the model assumes absentee landowners who keep the rental revenue of housing

so that we have yi � wi for every skilled worker. Unskilled workers live outside the city and does not

commute to the CBD. Thus, they face the agricultural land rent rA > 0 and zero commuting cost, as

well as yi � 1. For simplicity, we assume that rA is the same across the regions. We also assume that

intracity transportation of M-sector products is costless, so that both unskilled and skilled workers

face the same M-sector product price.

Internal structure of each region. As discussed, the difference compared to the Km model is that

the internal structure of each region is now explicitly modeled by a monocentric city model. The

standard first-order condition for equilibrium spatial pattern is that

CH

i (x)
dri(x)
dx

+

dT(x)
dx

� 0 (C.6.5)

for 0 ≤ x ≤ x̄ with the boundary condition being ri(x̄) � rA. In the following, we focus on a single

region given fixed values of wi and hi . For simplicity, we omit index i unless otherwise noted.

Combining CH

i
(x) in (C.6.4), we obtain the land rent profile r(x) given w:

r(x) � r̂{1 − T(x)/w}1/γ (C.6.6)

with r(x̄) � rA at the city boundary x̄ of the region. Thus, r̂, the land rent at the CBD (x � 0) when

the city boundary is at x̄ and wage rate is w, is determined as

r̂(x̄ , w) � rA

{1 − T(x̄)/w}1/γ
. (C.6.7)

We observe that r̂ � rA when hi � 0 because x̄ � 0 and T(0) � 0. With a notational abuse, the
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population density function h(x) in the region for given x̄ and w becomes

h(x) � a(x)
CH(x) �

a(x)r(x)
γy(x) �

r̂(x̄ , w)
γw

a(x){1 − T(x)/w}1/γ−1 (C.6.8)

where a(x) is land endowment at distance x. We here note that as r(x̄) � rA,

h(x̄) � a(x̄)rA
γ(w − T(x̄)) . (C.6.9)

In Tabuchi (1998), it is assumed that a(x) � 2πx so that the city is disk-shaped.

Comparative statistics for the internal structure of a region. Before studying stability of the flat-earth

equilibrium in the regional scale, we shall first investigate how changes in hi and wi affect the internal

structure of a single region. We note that the population density function h(x) satisfies

∂h(x)
∂x̄

�

T′(x̄)
γ(w − T(x̄))h(x) > 0 (C.6.10)

∂h(x)
∂w

�

(
1 − γ

γ(w − T(x)) −
1

γ(w − T(x̄))

)
h(x) < 0 (C.6.11)

provided that w − T(x̄) > 0, which must be the case because otherwise the utility of an agent at x̄

becomes negative infinity. The latter inequality says that, as it is standard in the literature, population

density decreases as the income increases. Define a function H(x̄ , w) that returns the population in

the interval [0, x̄) by

H(x̄ , w) �
∫ x̄

0

h(x)dx. (C.6.12)

Then, the location of the city boundary x̄ for given h and w is determined by the equation

h � H(x̄ , w), (C.6.13)

whence x̄ becomes a function of h and w. For later use, we shall investigate the effects of h and w on

x̄. Applying the implicit function theorem to the equation H(x̄ , w) − h � 0, we have

∂x̄

∂h
�

1

h(x̄) and
∂x̄

∂w
� − 1

h(x̄)
∂H

∂w
, (C.6.14)

where we assume that w is determined in the region-scale trade balance so that w and h are the

independent variables. Note that ∂H/∂x̄ � h(x̄). From (C.6.11), we have

∂H

∂w
�

∫ x̄

0

∂h(x)
∂w

dx < 0 (C.6.15)

which says that the population in the interval [0, x̄) decreases when the income increases. Then, from

(C.6.14) we conclude that (i) the city boundary x̄ is increasing in wi , (ii) x̄ is increasing in hi . Thus,
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we see that x̄ is increasing in both hi and wi , which is standard. Also, define the total (generalized)

costs incurred by commuting in the region by

Ti �

∫ x̄

0

T(x)h(x)dx. (C.6.16)

Then, one can show that

∂Ti

∂h
� T(x̄) + υ

h(x̄)Ti > 0,
∂Ti

∂w
� −∂Ti

∂h

∂H

∂w
> 0 (C.6.17)

where υ is the elasticity of land rent at the city boundary x̄:

υ ≡ − r′(x̄)
r(x̄) �

T′(x̄)
γ(w − T(x̄)) . (C.6.18)

Thus, the total commuting cost increases in both hi and wi ceteris paribus, which is also standard.

Short-run equilibrium. Consider the regional scale and recover region indices. Given x̄i , the total

expenditure in region i net of commuting cost is given by Yi � wi hi − Ti + li . The wage equation for

the model is given by

wi hi � µ
∑

j∈K

hi w
1−σ
i

di j∑
k∈K hk w1−σ

k
dk j

(w j h j − T j + l j). (C.6.19)

We impose the following constraint on w for normalization

∑

i∈K
(wi hi − Ti) �

µ

1 − µL, (C.6.20)

where we note that Ti depends on both hi and wi . Given the short-run wage, the indirect utility for

region i is obtained by evaluating it at the CBD (x � 0) since utility is equalized in each region:

vi(h) � κ̄ ln[∆i] + ln[yi(x̄i)] (C.6.21)

where ∆i �
∑

j∈K h j w
1−σ
j

d ji and yi(x̄i) � wi − T(x̄i).
Jacobian matrix at the flat-earth equilibrium. We compute as follows:

∇v(h) � κ̄M⊤ diag[h]−1 − µM⊤∇w(h) diag[w]−1 + diag[yi(x̄i)]−1∇[yi(x̄i)] (C.6.22)

withM defined in line with the Km model and ∇[yi(x̄i)] � ∇w(h)−∇ diag[T(x̄i)], where we note that

∇ diag[T(x̄i)] � diag[T′(x̄i)]∇[x̄i(hi , wi)] � diag[T′(x̄i)]
{
diag[∂x̄i/∂hi] + diag[∂x̄i/∂wi]∇w(h)

}
.

Thus, lettingΨ0 ≡ diag[T′(x̄i)∂x̄i/∂hi] andΨ1 ≡ diag[T′(x̄i)∂x̄i/∂wi], we have

∇[yi(x̄i)] � ∇w(h) − (Ψ0 +Ψ1∇w(h)) � −Ψ0 + (I −Ψ1)∇w(h) (C.6.23)
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As in the Km model, ∇w � [∂/∂wi]. For ∇w(h), we have ∇w(h) � −(∇wW )−1(∇W ) with

∇wW � diag[h] + µ(σ − 1)(diag[MY ] −M diag[Y ]M⊤) diag[w]−1 − µM∇wY , (C.6.24)

∇W � diag[w] − µ(diag[MY ] −MYM⊤) diag[h]−1 − µM∇Y (C.6.25)

where Y � [Yi] � [wi hi − Ti + li], ∇wY � diag[h] − ∇wT , and ∇Y � diag[w] − ∇T .

Consider the flat-earth equilibrium in a symmetric racetrack economy with li � l. Let w̄ and T̄ be

the uniform level of nominal wage rate and the total commuting cost in each region. Note that T̄ is a

function of w̄ and x̄. Given the commuting cost function T(x) and the location of city boundary and

the wage (x̄ , w̄), at the flat-earth equilibrium we shall require

w̄h − T̄(x̄ , w̄) �
µ

1 − µ l (C.6.26)

so that wage is normalized. Then, one can show that there exists a unique positive solution (x̄∗ , w̄∗)
such that w̄∗ − T(x̄∗) > 0 for the system of nonlinear equations defined by (C.6.13) and (C.6.26) for

given h. Employing the solution (x̄∗ , w̄∗), the total income in Y is given by Ȳ � l/(1 − µ). Define

the ratios ϕ of the regional total of disposable wage of skilled worker, and ϕ̂ of the regional total

expenditure to the total nominal wage:

ϕ ≡ w̄h − T̄

w̄h
, ϕ̂ ≡ Ȳ

w̄h
. (C.6.27)

The latter implies that Ȳ/w̄ � ϕ̂h and Ȳ/h � ϕ̂w̄. Given (x̄∗ , w∗), we define T(x)-dependent positive

constants ψ0, ψ1, ρ0, and ρ1 such that Ψ0 � ψ0I, Ψ1 � ψ1I, ∇Y � ρ0w̄I, and ∇wY � ρ1hI. Then,

we can calculate the Jacobian matrix of the payoff function at the flat-earth equilibrium as follows:

∇v(h̄) � h−1κ̄D̄ − w̄−1µD̄∇w(h̄) − ȳ−1ψ0I + ȳ−1(1 − ψ1)∇w(h̄), (C.6.28)

� h−1κ̄D̄ − ȳ−1ψ0I + { ȳ−1(1 − ψ1)I − w̄−1µD̄}∇w(h̄) (C.6.29)

where ȳ ≡ y(x̄∗) � w̄∗ − T(x̄∗) is the net wage at x̄∗ and ∇w(h̄) � −(∇wW )−1(∇W ) with

∇W � −w̄
[
− (1 − ϕ̂µ)I + ρ0µD̄ − ϕ̂µD̄2

]
, , (C.6.30)

∇wW � h
[{
ϕ̂µ(σ − 1) + 1

}
I − ρ1µD̄ − ϕ̂µ(σ − 1)D̄2

]
. (C.6.31)

Illustration. Following Tabuchi (1998), we shall investigate the simplest case where the commuting

cost function is linear with respect to distance: T(x) � tx. We shall also simplify the analysis by

assuming the internal structure of each region is one-dimensional and extends symmetrically about

the CBD over the interval [−x̄ , x̄] á la Murata and Thisse (2005). Although this change strengthens

the role of urban costs in each region, it does not affect intrinsic properties of the model. For this case,

letting a(x) � 1, we obtain

x̄ �
1

t
(1 − ϵγ)w̄. (C.6.32)
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where the non-dimensional constant ϵ ∈ (0, 1) is defined by ϵ ≡ (1+ t̂h)−1. The parameter t̂ ≡ (t/2)/rA

is interpreted as a measure of relative magnitude of commuting cost to land rent. As expected, x̄ is

decreasing in the generalized commuting cost per distance t. Then, solving (C.6.26) implies that

w̄ �
1

ϕ
·

µ

1 − µ · L

H
and ϕ �

1

1 + γ
· 1 − ϵ

1+γ

1 − ϵ (C.6.33)

as well as ȳ � ϵγw̄, Ȳ � l/(1 − µ), and ϕ̂ � ϕ/µ. Then, we also have

ψ0 � T′(x̄)∂x̄

∂h
� h−1 ȳγ(1 − ϵ), ψ1 � T′(x̄) ∂x̄

∂w
� 1 − ϵγ , (C.6.34)

ρ0 �
1

w̄

∂Yi

∂hi
�

1

w̄

(
wi −

∂Ti

∂hi

)
� 1 − γ(1 − ϵ)ϕ, ρ1 �

1

h

∂Yi

∂wi
�

1

h

(
hi −

∂Ti

∂wi

)
� ϕ. (C.6.35)

Summarizing computations up to here yields analytical expression of ∇v(h̄) as follows

∇v(h̄) � h−1κ̄D̄ + (I − µD̄)w̄−1∇w(h̄) − h−1γ̂I , (C.6.36)

∇w(h̄) � w̄h−1 [ĉ0I + ĉ1D̄ + ĉ2D̄
2
]−1 [

c̄0I + c̄1D̄ + c̄2D̄
2
]

(C.6.37)

with the coefficients being




ĉ0 ≡ 1 + (σ − 1)ϕ > 0,

ĉ1 ≡ −µϕ < 0,

ĉ2 ≡ −(σ − 1)ϕ < 0,




c̄0 ≡ −(1 − ϕ) < 0,

c̄1 ≡ µ(1 − γ̂ϕ) > 0,

c̄2 ≡ −ϕ < 0

(C.6.38)

where γ̂ ≡ γ(1 − ϵ). Note that ϕ and γ̂ toghether summarize the net effects of the two types of urban

costs; ϕ and γ̂ would represent those from commuting and nontradable land, respectively. As a

consequence, we have ∇v(h̄) ≃ c0I + c1D̄ + c2D̄
2 with

c0 � −γ̂
(
1

σ
+
σ − 1

σ
ϕ

)
< 0, (C.6.39)

c1 � µ

(
1

σ − 1
+

1

σ

)
> 0, (C.6.40)

c2 � −
[
µ2

σ − 1

(
ϕ

σ
+
σ − 1

σ
(1 − γ̂ϕ)

)

︸                     ︷︷                     ︸
�:ω0

+
1

σ
ϕ − γ̂ϕ σ − 1

σ︸             ︷︷             ︸
�:ω1/σ

]
≡ −

(
µ2

σ − 1
ω0 +

1

σ
ω1

)
(C.6.41)

Remark C.5. Observe that if t̂ and γ are both infinitesimally small so that there are virtually no urban

costs, we have γ̂ � γ(1 − ϵ) ≈ 0(1 − 1) � 0 and ϕ ≈ (1 + γ)−1 ≈ 1. Then, the coefficients c0, c1, and c2

reduces to those of the Km model, which is intuitive. We note that for general cases, the sign of c2 is

ambiguous. In particular, if γ is large relative to µ and in addition 1− ϵ is small (t̂ or h is small), c2 can

be positive. It is because while housing is important relative to manufactured goods, commuting cost

is quite low; this implies that a concentration of skilled workers is beneficial despite higher market

73



competition on the side of firms.

C.7 Pflüger and Südekum (2008) (PS) model

The PS model builds on Pflüger (2004), with only difference being that it introduces housing sector

(denoted by H) which prodece a local dispersion force.

Preference. The homogeneous preference of skilled workers is given by the following quasilinear

form with respect to the A-sector good (numéraire):

U(CM

i , C
H

i , C
A

i ) � µ ln CA

i + γ ln CH

i + CA

i (C.7.1)

where CM

i
, CH

i
, and CA

i
are again consumption of manufacturing aggregate, CH

i
the consumption of

housing good, and CA

i
the agricultural good, respectively. Then, indirect utility of a skilled worker in

region i is obtained as

vi(h) � κ̄ ln[∆i] − γ(ln[hi + li] − lnAi) + wi (C.7.2)

where ∆i �

∑
j∈K d ji h j and li and Ai denote the number of unskilled worker and the amount of

housing stock in region i, respectively, and the nominal wage in region i is given by

wi �
µ

σ

∑

j∈K

di j

∆ j
(h j + l j) (C.7.3)

as in the Pf model.

Jacobian matrix. At the flat-earth equilibrium with li � l and Ai � A for all i, we can show

∇v(h̄) � h−1 [−γ(1 + ϵ)−1I + (κ̄ + κ)D̄ − κ(1 + ϵ)D̄2
]

(C.7.4)

where ϵ ≡ L/H being the ratio of the total number unskilled worker to that of skilled. We thus

conclude that c0 � −γ(1 + ϵ)−1 < 0, c1 � κ̄ + κ > 0, and c2 � −κ(1 + ϵ) < 0.

Numerical simulation. Figure 11 and Figure 12 assumes Pflüger and Südekum (2008)’s model. The

parameters are set to µ � 0.4, σ � 2.5, L � 4, H � 1, γ � 0.5, and A � 1.

C.8 Murata and Thisse (2005) (MT) model

Similar to the Tb model, Murata and Thisse (2005) studies the interplay between commuting costs

and interregional transport costs employing a simplified yet reasonable specification. The internal

structure of each region is assumed to be one-dimensional and featureless except that there is a given

CBD; the city expands symmetrically about the origin. There are only skilled and mobile workers

that choose their own residential region i and location x ≥ 0 in that region, where the CBD is located

at x � 0. The total number of skilled workers is fixed and assumed to be H.

The internal structure of a region. Land endowment equals unity at everywhere in a region and
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the workers are assumed to inelastically consume one unit of land. The opportunity cost of land

is normalized to zero in every region. Then, the city is spread in the interval Xi ≡ [−x̄i , x̄i] where

x̄i ≡ hi/2 denotes the city boundary. Commuting cost takes an iceberg form. Specifically, a worker

located at x supplies

s(x) � 1 − 4θ |x | x ∈ Xi (C.8.1)

unit of labor where we require θ ∈ [0, 1/(2H)) so that we have s(x) ≥ 0 for all x ∈ X and for all region

i at any configuration. Then, the total effective labor supply at the CBD of region i is given by

Si �

∫

Xi

s(x)dx � hi(1 − θhi). (C.8.2)

Note that in particular Si � hi when commuting is costless: θ � 0. Letting ri(x) the land rent profile,

at an equilibrium it must satisfy

s(x)wi − ri(x) � w̄i , ∀x ∈ Xi , (C.8.3)

where w̄i ≡ s(x̄i)wi − ri(x̄i) � s(x̄i)wi � s(−x̄i)wi � (1 − 2θhi)wi is the disposable wage level of an

worker located at the boundary of the city. We thus have

ri(x) � 2θ(hi − 2|x |)wi , ∀x ∈ Xi (C.8.4)

so that the aggregate land rent in region i is

Ri ≡
∫

Xi

ri(x)dx � θwi h
2

i . (C.8.5)

Land is locally owned, so that the income of a worker in region i and any location x is

yi � s(x)wi − ri(x) +
Ri

hi
� w̄i + θwi hi � (1 − θhi)wi . (C.8.6)

Preference. The homogeneous preference of skilled workers in region i is given by

U(CM

i ) � ln CM

i (C.8.7)

where, as usual, CM

i
is the consumption of the CES aggregate defined by (C.1.2). The budget constraint

of a mobile worker becomes

∑

j∈K

∫ n j

0

p ji(ξ)q ji(ξ)dξ � yi , (C.8.8)
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where yi denotes income of the worker. It is immediate that given yi , utility maximization yields

CM

i �

yi

Pi
, q ji(ξ) �

{p ji(ξ)}−σ
P−σ

i

CM

i (C.8.9)

where Pi is the price index in region i.

Firms. Manufacturing firms are assumed to the same as in the Km model. Specifically, to produce

xi units of good a firm requires α + βxi unit of skilled labor. Thus, the cost function that a firm in

region i faces is given by Ci(xi) � wi(α + βxi). Profit maximization yields pi j(ξ) as in the Km model

(C.1.10), which of course does not depend on ξ. Noting that the number of firms ni in region i is

given by ni � Si/x∗
i
� (ασ)−1Si , the price index in region i is given as

Pi �
ασ

σ − 1

(
1

ασ

∑

j∈K
S j w

1−σ
j d ji

)1/(1−σ)
(C.8.10)

with di j � τ
1−σ
i j

and Si � (1 − θhi)hi .

Short-run equilibrium. Noting that the aggregate income in region i is given by Yi � wiSi , the wage

equation for the MT model becomes

wiSi �

∑

j∈K

Si w
1−σ
i

di j∑
k∈K Sk w1−σ

k
dk j

w jS j . (C.8.11)

To normalize w we shall assume that
∑

i∈K wiSi � W > 0. Given the solution w to the equation, the

indirect utility of workers in region i is obtained as

vi(h) � κ̄ ln[∆i] + ln[wi] + ln[1 − θhi] (C.8.12)

where κ̄ � 1/(σ − 1) and ∆i ≡
∑

k∈K hi(1 − θhi)w1−σ
k

dki .

Jacobian matrix at the flat-earth equilibrium. We compute as follows:

∇v(h) � κ̄M⊤ diag[S]−1 diag[1 − 2θhi] + (I −M ) diag[w]−1∇w(h) − θ diag[1 − θhi]−1 (C.8.13)

where ∇w(h) � −(∇wW )−1(∇W ) with

∇wW � diag[S] + (σ − 1)(diag[MY ] −M diag[Y ]M⊤) diag[w]−1 −M diag[S] (C.8.14)

∇W �

[
diag[w] − (diag[MY ] −MYM⊤) diag[S]−1 −M diag[w]

]
diag[1 − 2θhi] (C.8.15)

with Y � [Yi] � [wi(1−θhi)hi] andS � [Si] � [(1−θhi)hi]. Note that Yi � wiSi . Assume a symmetric

racetrack economy. We have

∇wW � (1 − θh)h
[
σI + (σ − 1)D̄

] [
I − D̄

]
, (C.8.16)

∇W � −w̄(1 − 2θh)D̄
[
I − D̄

]
, (C.8.17)
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which in turn yield

∇v(h) � 1 − 2θh

(1 − θh)h

( [
σI + (σ − 1)D̄]−1

(
1

σ − 1
+

1

σ

)
D̄ − θh

1 − 2θh
I

)
(C.8.18)

As a consequence, we obtain ∇v(h̄) ≃ c0I + c1D̄ where, with θ̂ ≡ (θh)/(1 − 2θh),

c0 � −θ̂, c1 � (1 − θ̂)
(

1

σ − 1
+

1

σ

)
− θ̂ σ − 1

σ
. (C.8.19)

Remark C.6. We must require that 0 ≤ θ̂ < 1/{2(K−1)} < 1 to ensure that Si is positive for all region i.

In particular, when H � 1 and K � 2 so that h � 1/2 as in the original paper, we have θ̂ � θ/{2(1− θ)}
and θ̂ ∈ (0, 1/2). Also, by letting γ ≡ θ̂ and µ ≡ 1 − θ̂, the model is isomorphic to Helpman (1998)

model with local landownership, albeit there is a restriction on γ.

C.9 Harris and Wilson (1978) (HW) model

The HW model is an archetypal economic geography model formulated in the field of geography well

before mainstream economists Krugman start to emphasize self-organization of spatial allocation of

ecnomic activity. The model has fruitful applications in urban planning. Detailed analysis of the

model can be found in Osawa et al. (2017). The model can be also interpreted to be a spatial conpetition

model with discrete locations but continuum of firms.

Assumptions. We consider a city that is discretized into K zones and associated centroids. There

is a continuum of retailing firms in each zone that operates a shop. The number of firms at zone i is

denoted by hi ≥ 0; h denotes the spatial distribution of retailers. There is a fixed portion of consumers

residing at each zone. Consumers are assumed to inelastically buy retail goods from some shop

located in the city. The total per capita consumer demand for shopping activity at zone i is a constant

Oi . The consumers’ shopping behavior is captured by a set of origin-constrained gravity equations.

For any given h, consumer demand Si j(h) from zone i to j, measured as a cash flow, is given by

Si j(h) �
hα

j
exp[−βti j]

∑
k∈K hα

k
exp[−βtik]

Oi (C.9.1)

where ti j is the travel cost from zone i to j. The parameters α, β > 0 are exogenous constants. The

term hα
i

is the attractiveness of the retailers in the zone i where α determines the economy of scale.

We assume α > 1 and hence there is an increasing return to scale. β dictates how fast the demand

decreases with travel cost ti j (respecting the original formulation, this section uses β instead of τ).

Note that one may recast the demand function into the context of spatial competition by interpreting

α−1 as the magnitude of product differentiation.

Payoff. The payoff (profit) of a retailer at zone i is defined as follows:

Πi(h) �
∑

j∈K S ji(h)
hi

− κi , (C.9.2)
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where κi is the fixed cost of entry. Assume that Oi � 1 and that κi � κ for all i. Then, we have

Π(h) �M⊤ − κ1 (C.9.3)

whereM ≡ diag[D diag[h]α1]−1D diag[h]α−1 with di j ≡ exp[−βti j].
Long-run equilibrium. The HW model is an open-city model. The total number of retailers at an

equilibrium is thus determined from the following equilibrium condition itself: hiΠi(h) � 0, hi ≥
0, Πi(h) ≤ 0. However, at any equilibrium we have

∑
i∈K κi hi �

∑
i∈K Oi ; the set D ≡ {h ∈ RK |

∑
i∈K κi hi �

∑
i∈K Oi , hi ≥ 0} is globally attracting.

Dynamics. Harris and Wilson (1978) assumes that the spatial pattern h gradually evolves in

proportion to the profit Π(h) and the state h. Specifically, we define Ûh � F (h) ≡ diag[h] · Π(h) �
[Si(h) − κi hi]

Jacobian matrix at the flat-earth equilibrium. It is immediate that J � ∇F (h̄) is given by

J � κ
{
(α − 1)I − αD̄2

}
(C.9.4)

where I is the identity matrix and D̄ ≡ D/d with d ≡ ∑
j∈K d0, j . We see that J ≃ c0I + c2D̄

2 with

c0 � 1 − 1

α
, c2 � −1. (C.9.5)

It is clear that c0 reflects magnitude of local increasing return. c0 is positive as long as α > 1; α < 1

yields that the flat-earth equilibrium is always stable. c2 � −1 represents, analogous to the FO model,

firms’ competition over demand from immobile consumers.

C.10 Beckmann (1976) (Bm) model

We formulate a discrete-space version of Beckmann (1976)’s spatial model of social interactions. Since

the original formulation of Beckmann (1976) uses linear communication cost, we shall introduce

suitable modifications. Yet, as long as every consumer communicate with every other consumers,

our modification does not alter the intrinsic properties of agglomeration and dispersion. In particuar,

whether possible equilibria are of unimodal or multimodal does not change. We shall also avoid

unnecessary complication and stick to the simplest possible specification.

Assumptions. Consider a city that is discretized into K areas. Each area i is endowed with fixed

amount Ai of housing stock. Housing stocks are owned by absentee landlords. The city is endowed

with H homogeneous consumers that can choose his/hers residential location and consumes land

and composite good. The income of consumers is a fixed constant Y, which is sufficiently large.

Preference. In addition to land and composite good, every consumer draws a social utility due to

communication with others. Specifically, everyone at area i draws the following social utility

Si(h) � log[∆i], (C.10.1)

where ∆i ≡
∑

j∈K di j h j with di j ≡ exp[−τℓi j]. Note that ∆i is exponential accessibility function à la
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Fujita and Ogawa (1982). Given the spatial distribution of consumers h, the utility of residing area i

takes the following quasilinear form

Ui(zi , si ;h) � zi + γ log[si] + Si(h) (C.10.2)

where zi and si is the consumption of the composite and housing goods, respectively, and γ is an

exogenous constant. We set the composite good to the numéraire and the budget constraint of a

worker in area i is

Y � zi + ri si , (C.10.3)

whence utility maximization yields si � Ai/hi , ri � αhi/Ai , and zi � Y − γ. Then, assuming Ai � 1

at every area and removing constants, the indirect utility at area i is given by

vi(h) � log[∆i] − γ log[hi]. (C.10.4)

Jacobian matrix at the flat-earth equilibrium. Assuming a racetrack economy, it is immediate that the

Jacobian matrix at the flat-earth equilibrium is given by

∇v(h̄) � h−1 [ − γI + D̄
]
. (C.10.5)

We thus see that c0 � −γ and c1 � 1 for the model. Without any location-fixed factors, Mossay and

Picard (2011) and Blanchet et al. (2016) are essentially the same model as the one presented here.

C.11 Takayama and Akamatsu (2011) (TA) model

Takayama and Akamatsu (2011) is a reduced-form partial equilibrium model that introduce a spatial

competition effect à la Harris and Wilson (1978) into the Bm model. Specifically, in essence, they

introduced firms that sell goods at a fixed price to spatially immobile consumers. The consumers in

the Bm model are now workers; each worker inelastically provides a single unit of labor.

Immobile consumers. In each area, there are li immobile consumers with
∑

i li � L that demand a

single unit of goods produced by firms; the immobile consumers are assumed to engage in jobs in

other industries. Given spatial distribution n � (ni)i∈K of firms, the demand from area j to i is given

by the following origin-constrained gravity equation

q ji �
d̂ ji

∑
k∈K d̂ jk nk

l j (C.11.1)

with d̂i j ≡ exp[−τ̂ℓi j], whose microfoundation can be found at, of course, a CES preference or

alternatively some taste heterogeneity.

Firms. A manufacturing firm produces a single unit of manufactured good with fixed price µ

using a single unit of labor of mobile consumers. Thus, we must have ni � hi . The profit function of
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firm at i is given by

Πi(h) � µ
∑

j∈K

d̂ ji
∑

k∈K d̂ jk hk

l j − wi . (C.11.2)

For simplicity, we force zero profit for firms and abstract from commuting between different areas.

Then, wage of a mobile worker at area i equals

wi(h) � µ
∑

j∈K

d̂ ji
∑

k∈K d̂ jk hk

l j (C.11.3)

so that the indirect utility of the worker becomes

vi(h) � wi(h) + log[∆i] − γ log[hi]. (C.11.4)

Jacobian matrix at the flat-earth equilibrium. Let li � L/K for all i and assume that di j � d̂i j for all i

and j (i.e., τ � τ̂). Then, we compute as follows:

∇v(h̄) � h−1 [ − γI + D̄ − µϵD̄2
]

(C.11.5)

where ϵ ≡ L/H, whence we see that c0 � −γ, c1 � 1, and c2 � −µϵ.

C.12 Allen and Arkolakis (2014) (AA) model

The AA model is formulated as a perfectly competitive Armington (1969)-based framework with

positive (production) and negative (congestion) reduced-form local agglomeration externalities. We

introduce a discrete-space version of the AA model, instead of the continuous-space version of the

original paper, to fit it in our context.

Assumptions. There are fixed number H of mobile consumers that choose residents. We denote

the spatial pattern of consumers by h. At each region i, a unique differentiated variety of good is

produced as Armington (1969). Production is assumed to be perfectly competitive and labor is the

only factor of production. Each mobile consumer inelastically supplies a single unit of labor. As

usual, we do not consider commuting of workers between two different regions. We denote the wage

of workers byw. The transportation of goods between regions takes iceberg form; the firms at i must

export τi j > 0 unit of good to meet a single unit of demand at region j.

At each region, total factor productivities (TFP) and amenity at each region are directly affected by

the number of its inhabitants, hi . These externalities are local in the sense that it does not depend on

distance between regions. The number of consumers at different region does not affect neither of TFP

or amenity at a region; it is exclusively enjoyed by the agents located at each region. As the analysis in

the present section will demonstrate, such assumption turns out to be insufficient for endogenously

producing polycentricity of spatial agglomeration patterns.
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Preference. The utility function of a consumer in region i is defined as the following CES function:

ui({q ji}) � ai ·
(∑

j∈K
q
(σ−1)/σ
ji

)σ/(σ−1)
, (C.12.1)

where q ji is the quantity of the good variety that is produced at region j ∈ K and consumed in region

i. The constant σ > 1 is the elasticity of substitution between varieties, and ai(hi) is the local amenity.

The local amenity deteriorates as population hi at i increase; it is defined by the following power

function that produces a congestion effect:

ai(hi) � āi h
−β
i
, (C.12.2)

where āi > 0, β ≥ 0 is exogenously given constants. In particular, āi represents the unobserved amenity

in region i. When β � 0, there is no congestion effect and the local amenity is exogenous constant āi .

The income of consumers comes only from the wage from production firms. We denote the price

of the variety that is produced at j and consumed at i is denoted by p ji . The wage in region i is

denoted by wi ≥ 0. Then, the budget constraint of a consumer who locates at i is given by the

following equation:

wi �

∑

j∈K
p ji q ji . (C.12.3)

To normalize wage, we impose a constraint
∑

i∈K wi hi � W , which means that the total income in the

economy always equals to the fixed constant W .

Utility maximization of consumers under a given price system p yields

q ji �

p−σ
ji

P1−σ
i

wi , (C.12.4)

where Pi is the price index of the good in region i

Pi ≡
(∑

k∈K
p1−σ

ki

)1/(1−σ)
. (C.12.5)

Production. Firms at region i ∈ K produce goods under perfect competition. As a result, the final

price of the good that is produced at i and sold at j, which we denote pi j , equals to

pi j �
wi

mi
τi j . (C.12.6)

where mi denotes the TFP in region i. To model Marshallian agglomeration economy (Marshall, 1989)

in a reduced-form, the TFP in region i is assumed to be an increasing power function of its population

mi(hi) � m̄i h
α
i (C.12.7)
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with m̄i > 0, α ≥ 0 being exogenous constants. If α � 0, the TFP in region i is a given constant m̄i .

Short-run equilibrium. In the following, we set m̄i � 1, āi � 1 for all i to abstract from any first-

nature advantages. In the short run, consumers are immobile across regions. We determine the

short-run indirect utility as a function of h by general equilibrium conditions, which consist of the

product market clearing and the zero-profit condition of firms. First, plugging (C.12.6) and (C.12.7)

into (C.12.5), with dki ≡ τ1−σki
we obtain

Pi �

(∑

k∈K
w1−σ

k
h
α(σ−1)
k

dki

)1/(1−σ)
. (C.12.8)

The zero-profit condition of firms requires that the total revenue in region i is exhausted. This yields

the wage equation for the model:

wi hi �

∑

j∈K

w1−σ
i

h
α(σ−1)
i

di j

∑
k∈K w1−σ

k
h
α(σ−1)
k

dk j

w j h j . (C.12.9)

Given the short-run equilibrium wage w, the indirect utility function is given by

vi(h) �
h
−β
i

wi

Pi
. (C.12.10)

Jacobian matrix at the flat-earth equilibrium. A direct computation shows that the Jacobian matrix of

the payoff function ∇v(h̄) is given by

∇v(h̄) �
[
σI − D̄ − (σ − 1)D̄2

]−1 [ − (α + β − γ0)I + (α + β + γ1)D̄
]

(C.12.11)

where γ0 ≡ 1+α
σ and γ1 ≡ 1−β

σ . Thus, one concludes that

∇v(h̄) ≃ c0I + c1D̄, (C.12.12)

with c0 � −(α + β − γ0) and c1 � α + β + γ1.

Numerical example. Figure 9 assumes Allen and Arkolakis (2014)’s model. The parameters are set

to α � 0.5, β � 0.3, σ � 6, and H � 10.
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Table 2: Exact mappings of economic geography models to the coefficients of G( f ) � c0 + c1 f + c2 f 2

Model class Specific model
Local force Global forces

c0 c1 c2

Class (i) Krugman (1991) 0 µ
(

1

σ−1 +
1

σ

)
−
(
µ2

σ−1 +
1

σ

)

Puga (1999) 0 µ̌
(

1

σ−1 +
1

σ

)
−
(
µ̌2

σ−1 +
1

σ + ω
)

Forslid and Ottaviano (2003) 0 µ
(

1

σ−1 +
1

σ

)
−
(

µ2

σ(σ−1) + 1

)

Pflüger (2004) 0 µ
(

1

σ−1 +
1

σ

)
− µ
σ

L+H
H

Harris and Wilson (1978) 1 − 1

α 0 −1

Class (ii) Helpman (1998) −γ µ
(

1

σ−1 +
1

σ

)
−
(
µ2

σ−1 +
1

σ

)
+ γ

Redding and Sturm (2008) −γ µ
(

1

σ−1 +
1

σ

)
− γ σ−1σ 0

Murata and Thisse (2005) −θ̂ (1 − θ̂)
(

1

σ−1 +
1

σ

)
− θ̂ σ−1σ 0

Allen and Arkolakis (2014) −(α + β) + 1+α
σ (α + β) + 1−β

σ 0

Beckmann (1976) −γ 1 0

Class (iii) Tabuchi (1998) −γ̂
(
1

σ +
σ−1
σ ϕ

)
µ
(

1

σ−1 +
1

σ

)
−
(
µ2

σ−1ω0 +
1

σω1

)

Pflüger and Südekum (2008) −γ H
L+H µ

(
1

σ−1 +
1

σ

)
− µ
σ

L+H
H

Takayama and Akamatsu (2011) −γ 1 −µ L
H

Note: The positive (negative) coefficients indicate agglomeration (dispersion) forces. Observe that the class (i) models incorporate global
dispersion force, the class-(ii) local one, and the class-(iii) both ones. Refer to the analyses above for the derivations and the definitions of
the parameters. The model of Mossay and Picard (2011) (and hence Blanchet et al. (2016)) is an equivalent to that of Beckmann (1976).
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D Comparative statics: Role of local factors

The majority of structural exercises in the current stream of quantitative spatial economics employs

local unobserved factors (i.e., heterogeneities in local amenities or productivity of firms) in replicating

the actual data, often under conditions where the uniqueness of equilibrium is ensured (Redding and

Rossi-Hansberg, 2017). For example, in the simplest form, structural residuals under fixed values of

the main exogenous parameters of the model (e.g., the expenditure share on manufactured goods µ

or the elasticity of substitution σ) are given broad interpretations such as recovered “local amenities”

and then utilized as exogenous parameters to conduct counterfactual analyses. In this section, we

explore implications of such approaches by simple comparative static analyses.

D.1 Structure of equilibrium spatial pattern with location-fixed factors

The payoff function of an economic geography model would be written as vi(h,A), whereA ≡ (Ai)i∈K

is the vector of location-fixed factors. There are two canonical examples of how location-fixed factors

are modeled in the literature.

The first and perhaps the simplest example is a location-fixed factor in the payoff function

vi(h,Ai) � v̂i(h) + Ai (D.1.1)

where v̂i(h) is theA-independent component of vi(h,Ai), which we term a local heterogeneity. We note

that the specification (D.1.1) includes many models with location-fixed factors that directly affect the

(indirect) utility of mobile workers. For instance, one will show that, by taking logarithm, the indirect

utility function of Allen and Arkolakis (2014)’s model that incorporates location-fixed amenities

reduces to (D.1.1). Such effects also arise from local nontradable goods, where a representative

example being Helpman (1998). As it is evident from (C.4.11), when we let Ai :� (1 − µ) log[Ai], the

model reduces to (D.1.1).

The second and more involved example is location-fixed factors that affect interregional trade

flows, which we term a global heterogeneity. The regional model of Redding and Rossi-Hansberg

(2017), §3, is an example. Due to heterogeneities in local productivity of firms Ai , prices of manufac-

tured goods differ across regions; then, trade balance implies that the wage in region i depends on

the whole pattern of A. Thus, vi(h,A) is (with slight notational abuse)

vi(h,A) � vi(h,w(h,A)) (D.1.2)

where w(h,A) � (wi(h,A)) denotes the wage vector. Krugman (1991)’s model also is an exam-

ple, where one may interpret that Ai represents the number of immobile workers in region i or,

alternatively, the region-specific productivity (as in Redding and Rossi-Hansberg (2017), §3).

We have seen that, assuming a racetrack economy and abstracting from first-nature advantages

by letting A � Ā ≡ Ā1, the flat-earth equilibrium h̄ ≡ h1 is always an equilibrium. The question

asked in the present appendix is that: What happens when we consider variation in the spatial pattern of
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location-fixed factors? Does our classification obtained under no heterogeneities still matter?

Suppose that h̄ is the unique stable equilibrium. Then, we may view that the equilibrium spatial

pattern is a function of A so that h � h(A). In the vicinity of h̄, we have

h(A) � h(Ā + δ) ≈ h̄ + JAδ, (D.1.3)

where δ � (δi) ≡ A − Ā � (Ai − Ā) is variation in A and JA ≡ [∂hi/∂A j] is the Jacobian matrix of the

spatial pattern of mobile agents with respect toA evaluated at Ā. Also, we define ϵ by

ϵ ≡ δ⊤(h − h̄) � δ⊤JAδ. (D.1.4)

Observe that if ϵ �
∑

i∈K δi(hi − h̄) ≥ 0 for any imposed nonzero variation δ in location-fixed factors,

we have δi(hi − h̄) � (Ai − Ā)(hi − h̄) ≥ 0 for all i ∈ K . The fact implies the following lemma:

Lemma D.1. Assume that JA
� [∂hi/∂Ai] is positive definite atA � Ā and consider a small variation

δ � (δi) , 0 in A such that A � Ā + δ. Then, the sign of the variation in the location-fixed factor of

region i, δi � Ai − Ā, and that of the marginal increase in its population, hi − h, coincides.

The above lemma provides a sufficient condition for any economic geography model under which an

increase of location-fixed factor Ai implies population growth in region i and vice versa.

To employ Lemma D.1, we should evaluate JA. Below, we shall show that it is represented by the

Jacobian matrix of the payoff function. First, we recall that an interior equilibrium with hi > 0 for all

i must be a solution to the following system of nonlinear equations:

v(h,A) − v̄(h,A)1 � 0, (D.1.5)

where v̄(h,A) ≡ H−1∑
i∈K vi(h,A)hi denotes the average payoff. The implicit function theorem

regarding the equilibrium equation (D.1.5) implies that, at (h̄, Ā), JA is evaluated as follows

JA
� [cE − (I −E)J]−1[I −E]Ĵ (D.1.6)

where c ≡ h−1 v̄,E ≡ K−1
11

⊤ is a matrix whose elements are all 1/K, J ≡ [∂vi/∂hi], and Ĵ ≡ [∂vi/∂Ai].
All matrices are evaluated at the flat-earth pattern (h̄, Ā).

Since JA is symmetric at the flat-earth equilibrium, it is positive definite if and only if its eigenval-

ues are all positive. But, because JA is circulant, its eigenvalues is computable by the same procedure

as our stability analysis (Lemma B.2). We conclude that the eigenvalues ak of JA are given by62

ak �




0, k � 0,

−e−1
k

êk , k � 1, 2, . . . , K − 1,
(D.1.7)

62We note that I −E andE represent the projections onto the subspace of RK defined by
∑

i∈K xi � 0 and its
orthogonal subspace, respectively, and their eigenvalues are (0, 1, 1, . . . , 1) and (1, 0, 0, . . . , 0).
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with ek and êk being the kth eigenvalue of J and Ĵ , respectively, where we assume that ek , 0.

Moreover, the eigenvectors of JA are again {ηk} with ηk � (cos[θki]) with k � 0, 1, . . . , K − 1. Note

that we have a0 � 0. It is intuitive because it says that a uniform increase of Ai across the regions does

not affect the spatial pattern—in other words, what matters is the relative variation in location-fixed

factors. Thus, without loss of generality, we shall rewrite δ �

∑
k∈K Ckηk and assume C0 � 0 so that

δ · 1 � 0. We then have h − h̄ �

∑
k∈K Ck akηk and

ϵ � δ⊤(h − h̄) �
∑

k∈K
C2

k ak , . (D.1.8)

If ak > 0 for all k ≥ 1, we have ϵ > 0. Each ak is an amplifying factor in the direction of ηk in the sense

that if δ � ηk we obtain h − h̄ � akηk .

That said, we have two questions regarding the properties of ak . The first is obvious:

Question 1. Is ak > 0 for all k ≥ 1?

If true, from Lemma D.1, it implies that a relative advantage of a region implies a relative increase of

its population and vice versa. As we will see below, generally this is the case.

The second is of importance: What happens on {ak} if we face change (in particular, a decrease) in

transportation costs? Put another way, does an increase of the trade freeness r (see Section B.2) imply

a strengthened role of first natures—or converse? In concrete terms:

Question 2. Is dak/dr positive (or negative) for all k ≥ 1?

We see that, because

dϵ

dr
�

∑

i∈K
C2

k

dak

dr
, (D.1.9)

if dak/dr happened to be positive for all k ≥ 1, it means that as r increases (τ decreases), the location-

fixed factors matters more; converse is also true.

D.2 Role of location-fixed factors: Model class matters

For simplicity, consider the simplest case (local heterogeneity), as in (D.1.1). We note that for (D.1.1),

we have Ĵ � I and thus êk � 1, which in turn implies that ak � −e−1
k

. Recalling that if the flat-earth

equilibrium is stable, we have ek < 0 for all k, we see that ak > 0. Thus, it must be that ϵ > 0 for

any relative variation δ in A. Thus, the answer to the first question is “yes”: any relative first-nature

(dis)advantage in terms of location-fixed amenities increases (decreases) local population when the

flat-earth equilibrium is stable—it is, of course, hardly a surprise.

We shall turn our attention to the second question. As we will see, asking the question reveals a

major watershed between the model classes (i) and (ii): when the economy faces a decrease in transportation

costs, the effects of location-fixed advantages are typically in the opposite direction for class-(i) and (ii).

For class (i) models in the literature, there is a determinate implication regarding the effects of a

decline in interregional transport costs on first-nature advantages. So long as the flat-earth pattern is
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stable, we have63

dak

dr
> 0. (D.2.1)

Thus, the positive effects of relative location-fixed advantages increase according to the decrease of interregional

transportation costs. Under the stability of the flat-earth equilibrium, a decrease in interregional

transportation cost fosters more agglomeration at the regions with relative advantages in amenity.

In fact, this leads to instability of the flat-earth equilibrium because at the first break point we have

ek � 0 for some k and hence ak � ∞ for that k. Thus, the model leads to regional divergence, even in

the range of transportation costs where the flat-earth equilibrium is stable.

For class (ii) models, a decrease in transportation costs has the opposite implication compared with

class (i) models. We illustrate it using Helpman (1998)’s model. For the original model with public

landownership, we have

dak

dr
< 0 (D.2.2)

whenever stability of the flat-earth equilibrium is ensured regardless of the level of r, by the condition

σ(1 − µ) > 1. Thus, the regions once flourished by first-nature advantages due to larger endowments

of housing space will decline if interregional transportation cost decrease. Assuming different speci-

fication of local factors as in (D.1.2) does not alter the result. In fact, as we will see, if we consider a

variant model whereA is interpreted to heterogeneities in local productivity as in the regional model

of Redding and Rossi-Hansberg (2017), §3 (see Section C.4), we have the same result: ak > 0 and that

dak/dr < 0; the result also is consistent with the numerical exercise conducted by the paper. In short,

in class (ii) models, the role of initial heterogeneity declines in line with decreasing transportation

costs.

The interpretation of the behavior of class (ii) models is straightforward. As the role of interre-

gional transportation costs declines, local dispersion force dominates. Then, an agglomeration that

is formed solely by its local advantages must face relative second-nature disadvantage due to local

congestion compared to those formerly behind, leading to a relative decline of such a region.

In light of this, assumptions on landownership can have impacts on the sign of dak/dr. In par-

ticular, local landownership, by redistribution of local rental revenue, can relax the magnitude of the

second-nature disadvantage at the regions where housing rent is high. If expenditure share on hous-

ing good is sufficiently high, via redistribution, it can overcome relative second-nature disadvantage,

so that dak/dr > 0. If we assume local landownership in Helpman (1998) as in Redding and Sturm

63For all class (i) models in the literature, we have ek � G( fk(r))/ϕ( fk(r)) with strictly positive and decreasing
function ϕ( f ) (see Appendix C). Noting that d fk/dr < 0, it then implies that

dak

dr
� −

de−1
k

dr
� − d

dr

(
ϕ( fk(r))
G( fk(r))

)
� −

ϕ′( fk)G( fk) − ϕ( fk)G′( fk)
{G( fk)}2

d fk

dr
> 0

where we note that ϕ′( fk)G( fk) − ϕ( fk)G′( fk) is strictly positive since ϕ′( fk) < 0, ϕ( fk) > 0, and because the
flat-earth equilibrium is stable G( fk) < 0 and G′( fk) < 0.
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(2008), we obtain

dak

dr




< 0, if µ̄ < µ < 1,

> 0, if 0 < µ < µ̄,
(D.2.3)

with µ̄ ≡ 2(σ−1)2
2σ2−2σ+1 <

σ−1
σ , which confirms the above speculation. The result illustrates the basic role

of a local dispersion force and typically less featured assumptions on landownership.

Thus, whether the second-nature causation of an economic geography model boosts first-nature

advantages in line of decreasing transportation costs or not depends on the model class it belongs.

Below, in addition to the simplest case (D.1.1), we provide examples of global heterogeneity where

the payoff is given by (D.1.2). For this case, we have ∇Av � ∇wv∇Aw. Because ak (k ≥ 1) is the kth

eigenvalue of (∇hv)−1(∇Av), we first evaluate the two matrices and then their product. We note that,

given any wage equation W (h,w,A) � 0 that incorporates local factors A, we have the following

computation:

∇hv � {ϕ(D̄)}−1GH(D̄), ∇Av � {ϕ(D̄)}−1GA(D̄), (D.2.4)

where we define matrix polynomials ϕ, GH, and GA of D̄ by

ϕ(D̄) ≡ (∇wW )−1 , GH(D̄) ≡ ∇hv∇wW − ∇wv∇hW , GA(D̄) ≡ ∇Av∇wW − ∇wv∇AW . (D.2.5)

Employing these formula, we see ek � GH( fk)/ϕ( fk) and êk � GA( fk)/ϕ( fk), so that we have a0 � 0,

and, for k ≥ 1,

ak � −GA( fk)
GH( fk)

. (D.2.6)

This in turn implies

dak

dr
� −

G′
A
( fk)GH( fk) − GA( fk)G′

H
( fk)

{GH( fk)}2
d fk

dr
. (D.2.7)

But, since we have d fk/dr < 0, we conclude

sgn
dak

dr
� sgn

[
G′

A
( fk)GH( fk) − GA( fk)G′

H
( fk)

]
. (D.2.8)

Basically, location-fixed factors that affect trade flows can be modeled by employing either of

the two form in the following examples. The following two examples demonstrates that the above

implication, namely model class matters even when uniqueness is the case, holds true for the cases where

the level of location-fixed factor in a region affects the nominal wages in the other regions.

Example D.1 (Heterogeneous local productivity (Redding and Rossi-Hansberg, 2017, §3)). Produc-

tivity of firms differ across regions and thus affect the regional share in trade flows. The wage equation
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for the model is defined by (C.4.19):

Wi(h,w,A) � wi hi −
∑

j∈K

hiAi w
1−σ
i

di j∑
k∈K hkAk w1−σ

k
dk j

w j h j � 0. (D.2.9)

Without heterogeneities in the per capita housing space, the indirect utility function is

vi �
µ

σ − 1
ln[∆i] + µ ln[wi] − (1 − µ) ln[hi] (D.2.10)

with ∆i ≡
∑

k∈K h jAi w
1−σ
j

d ji . Employing these formulae, we compute as follows:

∇hv �
1

h

(
µ

σ − 1
D̄ − (1 − µ)I

)
, ∇wv �

1

w̄
µ(I − D̄), ∇Av �

1

A

µ

σ − 1
D̄, (D.2.11)

∇hW � −w̄D̄(I − D̄), ∇wW � h{σI − (σ − 1)D̄}(I + D̄), ∇AW � − 1

A
w̄h(I − D̄)(I + D̄). (D.2.12)

These formulae implies that, without heterogeneities in the per capita housing space, we have:

GH( f ) � 1

σ
(1 − f )

[
− (1 − µ) +

( µσ
σ − 1

− σ − 1

σ

)
f

]
(D.2.13)

GA( f ) � − h

A

µ

σ − 1
(1 − f )

[
(σ − 1) + σ f

]
< 0 (D.2.14)

Employing the formulae, one can show that, whenever equilibrium is unique (σ(1 − µ) > 1), we have

GH( f ) < 0 and thus ak ≥ 0 for all k. Also, it follows that dak/dr < 0 for all k ≥ 1. We also note

that GH( f ) < 0 implies stability of h̄. We note that, if there are no exogenous heterogeneities in

A, the model is isomorphic to Redding and Sturm (2008) and Allen and Arkolakis (2014) regarding

second-nature mechanism.

Example D.2 (Heterogeneous local market size (Krugman, 1991)). Consider Krugman (1991)’s model.

Assuming there are first-nature heterogeneities in local endowments of immobile agents, one can

model heterogeneities in market size. For the model, the wage equation is

Wi(h,w,A) � wi hi − µ
∑

j∈K

hi w
1−σ
i

di j∑
k∈K hk w1−σ

k
dk j

(wi hi + Ai) � 0 (D.2.15)

where Ai as the number of immobile workers in region i. We compute as follows:

∇hv �
1

h

µ

σ − 1
D̄, ∇wv �

1

w̄
(I − µD̄), ∇Av � 0, (D.2.16)

∇hW � −w̄D̄(µI − D̄), ∇wW � h{σI − µD̄ − (σ − 1)D̄2}, ∇AW � −µD̄. (D.2.17)

Then, we have

GH( f ) � 1

σ

[ ( µ

σ − 1
+

µ

σ

)
f −

(
µ2

σ − 1
+

1

σ

)
f 2
]
, (D.2.18)
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GA( f ) �
µ

w̄
f (1 − µ f ) > 0. (D.2.19)

Employing these formulae, one can show that ak ≥ 0 for all k and that dak/dr > 0 for all k ≥ 1

whenever the flat-earth equilibrium is stable (i.e., GH( f ) < 0).

Remark D.1. There are models, e.g., Redding and Turner (2015), §20.3, that employ both local and

global heterogeneities such that

vi(h,A,B) � vi(h,w(h,A)) + Bi (D.2.20)

where A � (Ai) and B � (Bi) are exogenous constants that reflect global and local heterogeneities,

respectively. Since A and B are not related to each other, the Jacobian matrix with respect to these

two heterogeneities is given by a block-diagonal form and the effects of each heterogeneity can be

studied separately.

D.3 Numerical examples

This section provides numerical examples to complement the above formal analysis which is focused

on infinitesimally small variations inA. Below, focusing on the most canonical form of location-fixed

factors as in (D.1.1), we add an extra positive constant term A0 to the indirect utility of region 0, so

that the region has an exogenous advantage. Our numerical results suggest that the drawn formal

conclusions correctly predict tendency in agglomeration patterns even when a strong location-fixed

effect is imposed.

Figure 16 and Figure 17 report the results of our numerical experiments under three representative

setting, namely, a class (ii) model under uniqueness of equilibrium, class-(i) and (ii) models under

a multiplicity of equilibria. In line with the numerical examples discussed in Section 5 (Figure 8

and Figure 9), Krugman (1991) and Allen and Arkolakis (2014) are employed for the examples for

class (i) and (ii), respectively. We note that the latter is isomorphic to Helpman (1998) with local

landownership (i.e., Redding and Sturm, 2008; Redding and Rossi-Hansberg, 2017).

The figures show the population share of region 0 at stable equilibria, λ0 ≡ hi/H, against τ for

four different settings of A0 in {0, 0.001, 0.005, 0.01}. A0 � 0 is the baseline case with no location-fixed

advantage. Under our parameter setting, A0 accounts for 0.5∼100% of the indirect utility of region 0

and hence has significant effects on equilibrium patterns.

Figure 16 reports evolutionary paths of λ0 for the model by Allen and Arkolakis (2014) [class (ii)]

under uniqueness of equilibrium. The parameters are the same as Figure 9 except that we let β � 0.6.

This implies α + β ≤ 0 and hence equilibrium is unique regardless of the level of transportation

costs (refer to Section 5.2). Compared to the baseline case A0 � 0, λ0 is larger for the other cases

(A0 � 0.001, 0.005, 0.01); this corresponds to the condition ak > 0. Also, λ0 is increasing in A0, which

is intuitive. Furthermore, λ0 decreases in line with τ, which is consistent with dak/dr < 0.

Figure 17 reports evolutionary paths of λ0 for the models by Krugman (1991) [class (i)] and Allen

and Arkolakis (2014) [class (ii)] under a multiplicity of equilibria. The basic model parameters other
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Figure 17: Population share of region 0 and under multiplicity of equilibria

than A0 are the same as Figure 8 and Figure 9. One confirms that the figures also exhibit consistency

with our predictions: that (a) ak > 0 and that (b) dak/dr > 0 for class-(i) and dak/dr < 0 for class (ii)

model, provided that the h̄ is stable. For all A0 � 0.001, 0.005, 0.01, λ0 is greater than that for A0 � 0,

which confirms ak > 0. Also, focusing on the ranges τ ∈ (τ∗ ,∞) (for Panel A) and τ ∈ (0, τ∗∗) (for

Panel B), the curves confirms (b). It is interesting to observe that, even though our predictions do not

cover τ ∈ (0, τ∗) for Panel A, a similar relation robustly holds true: so long as the global structure

of the spatial pattern is unchanged (i.e., bifurcation is not encountered), a monotonic decrease of τ

imply a greater role of location-fixed advantage of region 0.

91


