

SPDK, PMDK ＆ Vtune™ Submit 2

 Redis Overview

 Intel® Optane™ DC Persistent Memory (DCPMM) Introduction

 DCPMM Operational Model

 SNIA program model and PMDK library.

 Redis Volatile- Migrate Data to DCPMM

 Redis Data Migration Strategy

 Redis Data Structure Update

 Redis Persistence on DCPMM

 Redis RDB Snapshot

 Redis Pointer Based AOF

 Redis Persistence With libpmemobj (POC)

 Summary

Agenda

3

SPDK, PMDK ＆ Vtune™ Submit

Redis Overview

Redis is an in-memory remote database
that offers high performance, replication,
and a unique data model to produce a
platform for solving problems.

High level illustration on how content is stored in Redis

4

SPDK, PMDK ＆ Vtune™ Submit

Intel® Optane™ DC Persistent Memory (DCPMM) -
Operational Modes

App Direct Mode memory Mode
Persistent

High availability /
less downtime

High capacity

Affordable

Significantly faster
storage

Ease of
adoption†

Memory mode is volatile and App Direct mode support persistent
capability

5

SPDK, PMDK ＆ Vtune™ Submit 6

DCPMM Program on APP Direct

Legacy Storage API

• No code changes required

• Operates in blocks like SSD/HDD

• Block atomicity

Persistent Memory

• Code changes is required, byte-
addressable

• Bypasses FS page cache

• Requires DAX enabled file system
“XFS, EXT4, NTFS”

• Fastest I/O path possible

Legacy Storage API

Block Atomicity

Persistent Memory

persistent memory

u
se

r sp
a

ce
k

e
rn

e
l sp

a
ce

Standard
File API

Generic NVDIMM Driver

Application

File System

Standard
Raw Device

Access

mmap

Load/
Store

Standard
File API

pmem-
Aware

File System

MMU
MappingsBTT

DevDAX

PMDK

mmap

h
a

rd
w

a
re

App Direct “Persistent Memory” is the fastest I/O path

SPDK, PMDK ＆ Vtune™ Submit 7

Persistent Library PMDK Introduction

PMDK is a series of persistent libraries for applications

SPDK, PMDK ＆ Vtune™ Submit 8

PMDK Usage Scenarios

PMDK Libraries Description Use When
Persistence

Need Attention

Libpmem/librpm
em

Low-level library with
primitives persistent
APIs

Only need low-level
optimized primitives API
(memcpy, etc.)

Application need manage data consistence
(power fail atomic) and recovery
For example, power fail during function
pmem_memcpy_persist (pmem, “Hello,
World!”); pmem may not “Hello, World!”

libmemkind
Explicitly manage
allocations from PMEM

1. Different tiers of objects
(hot, cold) can be identified
2. Persistence is not required

PMEM allocation, not persistent

Libpmemobj/li
bpmemblk/libp
melog

Transactional object
store, memory
allocation, transactions

1. Direct byte-level access to
objects is needed
2. Persistence is required

Maintain persistent meta data, redo log and
undo log, performance may be lower. But it
can make sure data power fail atomic and
can recovery data after power fail.

1. Application can use libmemkind+libpmem and consider data consistence and recovery
mechanism from application.

2. Application can use libpmemobj and focus on optimize persistent performance.

9

SPDK, PMDK ＆ Vtune™ Submit 10

Redis Data Migration to DCPMM

• Design option #1 - Store all heap data in PMEM, less code change:

• Big and sequential data access pattern has better performance than small
and random data access pattern in PMEM

• Management data structures are small and usually be accessed randomly

• Design option #2 - Store large heap data in PMEM, close performance with
DRAM

• Only store large value in PMEM (eg. >=64 byte by default)

• Keep Redis management data structures in DRAM, need customized and
optimized data placement strategy for each data type

SPDK, PMDK ＆ Vtune™ Submit 11

Redis Data migration strategy

Note *: value >= threshold will move to DCPMM, Keys keep in DRAM
(metadata: data structures to manage key-value keep in DRAM)

*

DCPMM

SPDK, PMDK ＆ Vtune™ Submit 12

Redis typical data structures Update
Type
OBJ_

Encoding
OBJ_ENCODING_

Value *ptr

STRING RAW SDS, length >= threshold move
to DCPMM.

INT No change

EMBSTR No change

HASH HT DICT, field/value >= threshold,
move to DCPMM

ZIPLIST Data structure changed

SET INTSET No change

HT DICT, field/value >= threshold,
move to DCPMM

ZSET SKIPLIST field >= threshold move to
DCPMM.

ZIPLIST Data structure changed

LIST QUICKLIST No Change. Quicklist node
contain ziplist data structure.

Note: With 2-2-1, 40*2 Gbps network, 1k data and SLA<99% latency 1ms; Redis volatile performance with DCPMM is quite close to the DRAM with redis-
benchmark. 100% write > 85% performance and 100% read ~100% performance of opensource with DRAM.

SPDK, PMDK ＆ Vtune™ Submit 13

Leverage clflush for Cached Sequential Writes*

• LLC WB evictions lead to near
random behavior (lower BW). SW
recommendation: Do CLFLUSH
often enough to avoid LLC
evictions.

• DCPMM Redis depend on
pmem_memcpy_persistent to call
CLFLUSH to reduce the LLC WB
evictions.

Note*: Intenal Tuning guide with BKMs in bi-weekly
PnP report. (link: CLX_AEP PnP Tuning Guide)

https://sharepoint.amr.ith.intel.com/sites/CrystalRidge/CR Perf/CLX_AEP PnP Tuning Guide.pptx

SPDK, PMDK ＆ Vtune™ Submit 14

Redis Volatile Performance with DCPMM

• Redis with DCPMM write
TPS > 85% DRAM TPS
@1024 data size within
SLA (128 instances)

• Redis with DCPMM read
QPS ~100% DRAM QPS
@1024 data size within
SLA

Note * SLA is 99% latency <1ms

15

SPDK, PMDK ＆ Vtune™ Submit 16

Redis Persistence Introduction

Redis Persistence: RDB used for the disaster recovery

Redis Persistence: AOF is more durable than RDB, recover slower

Redis Server Main
Process

Child ProcessFork Child process Dump memory

Redis Client
Redis Server Main

Process
Send Command

Record Command
With fsync option

AOF File In SSD

RDB file in SSD

Replay AOF command to restore DB

RDB restore DB of a pointer-of-time quickly

Bgsave on some pointer of time

SPDK, PMDK ＆ Vtune™ Submit 17

Use DCPMM for Redis persistency

• Design option #1 – Persist everything in PMEM

• Use libpmemobj to store data and its mgmt structures in PMEM

• No need AOF and RDB and keep data persistent, consistent and atomic.

• provide a fast data restore after server reboots.

• URL: https://github.com/pmem/redis/tree/reserve_publish_poc + (some fix patches)

• Design option #2 – Pointer based AOF

• Consider Redis has its own persistency mechanism, leverage RBD/AOF to guarantee
data integrity

• Store key in DDR and AOF (same to Open Source Redis), store value in PMEM (for
persistency) and only store its pointer in AOF(for recover) Performance:

• Much better than Open Source Redis AOF (sync=always)

• URL: https://github.com/pmem/pmem-redis

https://github.com/pmem/redis/tree/reserve_publish_poc
https://github.com/pmem/pmem-redis

SPDK, PMDK ＆ Vtune™ Submit

Redis persistent with libpmemobj w/o AOF（POC）

• Redis string persistent with libpmemobj，
see Fig 1

• No need redis persistent mechanism AOF

• Persistent key/value in DCPMM

• keyoid, valoid maintained in a linked list.

• Batch transaction to reduce the
undo/redo overhead。

• Restore the database by scanning keyoid,
valoid linked list and quickly load the data
to redis.

Entity NameRedisDB dictEntry **table

 .dictEntry dictEntry

objectKey Value next objectKey Value next

SDSinfobackref

valoidkeyoid

Second index

type:string

Encoding
Encoding_raw

LRU

void *ptr

SDS

valoidkeyoid

 .

STRING Key/Value Pair

PMEM

DRAM

keyoid valoid pre next

keyoid valoid pre next

Double linked list for the
String Key/Value Pair

Restart Time
Optimization

Fig1. Redis string persistent with libpmemobj

Note: use libpmemobj w/o AOF is only a POC that can keep the data persistent always with the ACID features. Batch update to improve the persistent
performance. In multi-instances cases (1 instance/core），value size is 1K with redis-benchmark, persistent with libpmemobj is about 3.x of the opensource
AOF always and 5x restore time.

SPDK, PMDK ＆ Vtune™ Submit 19

RDB Issue on DCPMM

• RDB forked a child process to save the
memory snapshot. The main process can
still service the client.

• Data in DRAM can take advantage of COW
that mean data update in DRAM will not be
visible by forked child process.

• DCPMM is DAX-enabled, the write to
DCPMM is shared in different processes that
mean data update in DCPMM will be visible
for both parent and child process and
snapshot will fail.

App Direct Persistent Memory are shared in processes, fork child process
cannot save the memory snapshot of that time pointer.

SPDK, PMDK ＆ Vtune™ Submit

Redis RDB

• A User Mode COW is designed for the RDB
snapshot. See Figure 1.

• D1,D2,D3, D4 will be saved to RDB in disk by the
forked process.

• Not real free the buffer when delete a data in main
process (see Step 2: delete D3).

• Copy real buffer instead pages during update a data
in main process (see Step 4: update D4).

• After fork done and D1, D2, D3, D3 saved, free the
data in COW address list (see Step 7).

• User Mode COW show good performance than
kernel COW [2LM] . See Figure 2. Figure 2 User COW shows good performance ~3.x during snapshot

Figure 1 User COW implementation in detail

User Mode COW designed for RDB with DCPMM and show ~3x write performance in
some stress scenarios.

20

SPDK, PMDK ＆ Vtune™ Submit

Redis Pointer Based AOF

1. Redis get a write request from client
2. Redis store the key in the DRAM
3. Redis use memkind to allocate space and store the big value data into PMEM and use libpmem persistent

the big value.
4. Redis save the command as AOF in SSD. AOF only store the key and location of big value(DCPMM)

Note: AOF only store the location of value，reduce the throughput of the disk which is always the bottleneck of the AOF and improve the persistent perfomrnace. In
multi-instances cases (1 instance/core），value size is 1K with redis-benchmark, Pointer based AOF performance is about 3.x of the opensource AOF always.

Pointer Based AOF

SPDK, PMDK ＆ Vtune™ Submit

Persistent Ring Buffer used for SSD log acceleration

Application Application

Atomic producer
Address

Atomic Consumer
Address NVM POOL

SSD LOG FILE

1

2

3

SSD LOG FILE

1

2

3. Once the data in the persistent buffer is big enough, the data will synced to the
SSD and the atomic consumer address will be updated at the same time.

Note: If power loss during sync to SSD, the atomic consumer address will not update, the data still exist on the
persistent buffer. Since part of data has been written to the SSD, to make the SSD data be atomic, the SSD log
file length will combine with the consumer address together to be a 64 bit atomic data.

1. Data generated and request the
application to persistent these data.

2. Application will write the data to
the SSD (traditional approach) or
write the data to the persistent
buffer, once write successfully, the
atomic producer address will be
updated.

SPDK, PMDK ＆ Vtune™ Submit 23

Redis Performance (AOF) pba vs Open source

pointer-
based-aof

persistent ring
buffer

appendfsy
nc

Durability

pba yes yes Everysec Per record

Open source-
volatile

no no no N/A

source-always yes yes always Per record

Test case
datasize: 1024,
Workload: Set
aof dir : nvme ssd

*

Note for *: recommend configuration to use PBA and PRB

SPDK, PMDK ＆ Vtune™ Submit 24

Summary

New Way to Manage Data Flows

 Migrate the less accessed big data
(cold) into the DCPMM and keep
frequently accessed small data (hot)
into the DRAM.

 With the data migration, the
performance with DCPMM keep
>85% performance with DRAM

Architected for Persistence,
Optimized for Performance

 Data persistent by Intel PMDK
library which is performance
optimized.

 Leverage the persistent
capability to improve the
persistent performance, redis
with DCPMM persistent
performance >2x open source
persistent performance

25

SPDK, PMDK ＆ Vtune™ Submit 26

Developer Call to Action
Who: Developers interested in persistent memory programming. Focus areas include: databases, large
datasets, transactional programs, devops, and many others.
 Getting Started

– Intel IDZ Persistent Memory- https://software.intel.com/en-us/persistent-memory

– Persistent Memory Programming - http://pmem.io

 Linux* Resources

– Linux Community Pmem Wiki - https://nvdimm.wiki.kernel.org/

– Pmem enabling in SUSE Linux Enterprise 12 SP2 - https://www.suse.com/communities/blog/nvdimm-enabling-suse-
linux-enterprise-12-service-pack-2/

 Other Resources

– SNIA Persistent Memory Summit 2017 - https://www.snia.org/pm-summit

– Intel manageability tools for Pmem - https://01.org/ixpdimm-sw/

– Persistent Memory Development Kit - https://github.com/pmem/pmdk

– PMDK documents – https://pmem.io

 Redis

– Redis Documents - https://redis.io/topics/persistence

– PMEM-Redis - https://github.com/pmem/pmem-redis (user mode COW + pointer based AOF)

– Redis with PMDK POC - https://github.com/pmem/redis/tree/reserve_publish_poc + (some fix patches)

 Rocksdb

– https://github.com/pmem/pmem-rocksdb

https://software.intel.com/en-us/persistent-memory
http://pmem.io/2014/08/27/crawl-walk-run.html
https://nvdimm.wiki.kernel.org/
https://www.suse.com/communities/blog/nvdimm-enabling-suse-linux-enterprise-12-service-pack-2/
https://www.snia.org/pm-summit
https://01.org/ixpdimm-sw/
https://github.com/pmem/pmdk
https://pmem.io/
https://redis.io/topics/persistence
https://github.com/pmem/pmem-redis
https://github.com/pmem/redis/tree/reserve_publish_poc
https://github.com/pmem/pmem-rocksdb

SPDK, PMDK ＆ Vtune™ Submit 28

Provisioning Persistent Memory

PMEM (Socket1)PMEM (Socket0)

Volatile
DRAM

Region 0

Namespace0.0

/dev/pmem0

DAX
Filesystem

Namespace0.1

/dev/dax0.1

Region 1

Namespace1.0

/dev/pmem1

DAX
Filesystem

Namespace1.1

/dev/dax1.1
NVDIMM

Driver
(Kernel)

Hardware

DAX Filesystems:
EXT4, XFS, NTFS

Persistent Memory
Devices

Namespaces

Regions
(Interleave Sets)

Mount DAX-enabled file
system onto DCPMMs

Operating System
defined software device
representing the
namespace

ndctl (Linux): configures
& manages namespaces

ipmctl (Linux or UEFI):
configures & manages
the regions on the
DIMMs

SPDK, PMDK ＆ Vtune™ Submit 29

AEP 2-2-1 and DRAM only

System SKX-2S

CPU SKX
CPU per Node 28core/socket, 2 sockets, 2 threads per core

Memory

1. 12x16GB DDR@2666 + 8x128GB AEP, QS
(AD 2-2-1) or

2. 24 * 32GB DDR@2666 (Baseline)

SUT OS 4.17.5-100.fc27.x86_64
BKC WW30.5
Network 80Gb Ethernet

Redis Server
1. Open source redis 4.0.9 for DRAM
2. CCE redis 4.0.9 for AD 2-2-1

Patch Security patch enabled

Server

Client
Client

System SKX-2S

CPU Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz

CPU per Node 24core/socket, 2 sockets, 2 threads per core

Memory 196GB (12*16GB)

OS 4.17.5-100.fc27.x86_64 (security patch enable)

Redis Benchmark Redis 4.0.9

Redis – Test System Setup

1LM (open source redis) AD 2-2-1 (CCE redis)

SPDK, PMDK ＆ Vtune™ Submit 30

Benchmark Configure*

• set,get

redis-benchmark -k 1 $hostcmd -p $port -r $range -n $req_num -t set,get -d $data_size -P 3 -c 5

• set2get8 (set:get=1:4)

memtier_benchmark $hostcmd -p $port --ratio=1:4 -d $data_size -n $req_num --key-
pattern=R:R --key-minimum=1 --key-maximum=$range --threads=1 --pipeline=64 -c 3 --hide-
histogram

- bind socket “numactl –m socket taskset –c localcores”

- range=0.1m << request 10m

- pipeline (-P 3 for set,get ; --pipeline=64 for set2get8)

- Client (-c 5 for set,get; -c 3 for set2get8)

- Data size (512, 1K, 2K

Note *: the benchmark configure parameters are the same with “1LM vs 2LM
study”

SPDK, PMDK ＆ Vtune™ Submit 31

Redis Performance
100% Write

Not meet
SLA

• AD TPS > 90% 1LM TPS @512
within SLA (136 instances)

• AD TPS > 85% 1LM TPS @1024 data
size within SLA (128 instances)

• AD TPS> 83% 1LM TPS @ 2048 data
size within SLA

• 1LM SLA instances is 92.

• AD SLA instances is 120.

SPDK, PMDK ＆ Vtune™ Submit 32

Redis Performance
100% Read

• AD QPS ~100% 1LM QPS
within SLA (128 instances)

SPDK, PMDK ＆ Vtune™ Submit 33

Redis Performance
SET:GET=1:4

• AD TPS > 75% 1LM TPS
@512 data size

• AD TPS > 75% 1LM TPS
@1024 data size

• AD TPS> 90% 1LM TPS @
2048 data size

Note*: Latency in
Memtier_benchmark is average
latency = total_lat/total_ops

*

*
*

SPDK, PMDK ＆ Vtune™ Submit 34

Libpmemobj introduction
• Transactional object store, providing memory allocation, transactions, and general facilities for

persistent memory programming.

• PMEMoid is like the (void *) and pointer to a object.

• Libpmemobj Actions API allows application to first reserve some persistent memory buffer in volatile
state, and publish it some time later.

• libpmemobj provides ACID (Atomicity, Consistency, Isolation, Durability) transactions for persistent
memory.

• Redo log for the transaction allocation

• Undo log for the transaction updates.
Code example: Allocate new objects / Free existing objects/ Modify existing
objects/Isolate objects

TX_BEGIN_PARAM(pool, TX_PARAM_MUTEX, &root->lock,
TX_PARAM_NONE) {

pmemobj_tx_add_range_direct(root, sizeof(*root));
root->objA = pmemobj_tx_alloc(sizeof(struct objectA),

type_num);
pmemobj_tx_free(root->objB):
root->objB = OID_NULL;

} TX_END

SPDK, PMDK ＆ Vtune™ Submit 35

Configuration

AEP 2-2-1 and DRAM only

System CLX-2S
CPU CLX B0 CPU
CPU per Node 28core/socket, 2 sockets, 2 threads per core

Memory

1. 12x16GB DDR@2666 + 8x128GB AEP, QS (AD 2-
2-1) or

2. 24 * 32GB DDR@2666 (Baseline)

SUT OS Fedora

BKC
WW42 BKC [AEP FW: 5310] [BIOS:
PLYXCRB1.86B.0563.D11.1812050623]

Redis Server

1. Open source redis 4.10 for DRAM
2. PMEM-redis 4.10 for AD 2-2-1;
https://github.com/pmem/pmem-redis

Patch Security patch enabled

Server (Note AOF in NVMe SSD and HD have different performance data) benchmark

Test
Command

numactl -m 0 taskset -c $core redis-server --port ${port} --dir ./
--appendonly yes --appendfsync always --pointer-based-aof yes --appendfilename ${port}.aof --maxmemory 3G
to Use the NVM:
--nvm-maxcapacity 20 --nvm-dir /mnt/pmem0/ --nvm-threshold 64

-t: set get
-n 1000000
-r 12000000
-d 1024

Redis-server1
Redis-

Benchmark1

Redis-server2

Redis-server3

Redis-server…

Redis-
Benchmark2

Redis-
Benchmark3

Redis-
Benchmark…

Socket 0 Socket 1

TCP/IP

Start 28 redis server instances on the socket0
Start 28 redis benchmark on the socket 1

https://github.com/pmem/pmem-redis

SPDK, PMDK ＆ Vtune™ Submit 36

Redis Performance (AOF)
pba vs Open source

pointer-
based-aof

persistent ring
buffer

appendfsy
nc

Durability

pba-volatile no no no N/A

pba-everysec yes yes everysec Per record

pba-always yes yes always Per record

source-volatile no no no N/A

source-
everysec

yes yes everysec Per second

source-always yes yes always Per record

Test case
datasize: 1024,
Workload: Set
aof dir : nvme ssd

*

Note for *: recommend configuration to use PBA and PRB

SPDK, PMDK ＆ Vtune™ Submit

Redis Persistent Performance

37

Point based AOF (PBA) NO YES

Persistent ring buffer(PRB) NO NO YES

Every second (ops) 1.74M 1.98M

Always (ops) 0.62M 1.41M

113.7%

227%

Benefits:

• Pointer based AOF - PBA save value pointer on SSD instead of the whole value which reduce
SSD IO throughput and solve the SSD bottleneck issue.

• W/ PBA (every second) ~ 1.13x w/o PBA (every second)

• W/ PBA (always) ~ 2.27x w/o PBA (always)

• Persistent ring buffer- PRB can keep buffer data persistent and keep durability as “always”.

• W/ PRB every second can keep durability as “always” ~ 1.4x w/o PRB always

• To keep no data loss (PBA + PRB) performance [1.98M] ~ 3.19x Open source Always [0.62M]

1.98M
Perf
gain

SPDK, PMDK ＆ Vtune™ Submit 38

Outlook of DCPMM

• PMDK is the main library for DCPMM Persistence for long time.

• eADR reduce the complexity of PMDK programming.

• In the short period, complex memory data structure can’t persistent/store to
the PMEM from the performance consideration.

• New compact data structures designed for DCPMM.

• Designed K-V pair tables with PMDK for Persistence instead of AOF or WAL.

• DCPMM as SSD cache or DCPMM as the faster storage.

• Data encoding (serialization) and persistent to DCPMM (redis over flash).

• High availability design (reduce restore time) with PMDK.

