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ABSTRACT 

 

SPEAKER NORMALIZATION FOR IMPROVED AUTOMATIC SPEECH 
RECOGNITION FOR DIGITAL LIBRARIES 

Wei Wang 
Old Dominion University, 2004 

Director: Dr. Stephen A. Zahorian 

 
The context of the thesis work is the improvement of automatic speech recognition 

(ASR) for use with digital libraries. First, commonly used multimedia file formats and codecs are 

surveyed with the objective of identifying those formats that preserve speech quality while 

keeping file sizes compact. The main contribution of the work is a new technique for speaker 

adaptation based on frequency scale modifications. The frequency scale is modified using a 

minimum mean square error matching of a spectral template for each speaker to a "typical 

speaker" spectral template. Each spectral template is computed from the average amplitude-

normalized spectra of several seconds of the voiced portions of an utterance of a speaker. The 

advantages of the new technique include the relatively small amount of speech needed to form 

each spectral template, the text independence of the method, and the overall computational 

simplicity. Of several parameters investigated for implementing the spectral matching, two 

parameters, the low frequency limit and high frequency limit, were found to be the most effective. 

Generally the improvements due to the speaker normalization were small. However, it was 

determined that the normalization could compensate for the primary differences between male 

and female speakers. Furthermore, adjustment of the frequency scale parameters based on a 

neural network classifier, resulted in large improvements in vowel classification accuracy, thus 

indicating that frequency scale modifications can be used to obtain better ASR performance.    
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CHAPTER I 

  

INTRODUCTION 

 

Digital Library 

The goal of a digital library is to convert and store raw materials, such as the content of 

books, magazines, audio and video, in a digital format. These digitized materials have many 

advantages compared to the printed copies stored in conventional libraries. For example, in a 

conventional library, the library usually stores at least two copies of each item in case of damage 

from sources such as insect bites, normal wear and tear from human use, or natural disasters. 

Extra money is spent for special preservation equipment; nevertheless, many works, such as 

documentary films, still lose quality over time. One of the major advantages of digital-format 

materials is that they can be restored with the same quality as the original and do not require 

special equipment for preservation. Moreover, the raw materials become much easier to organize 

and access using computers. People are not even required to physically stop at the library to 

obtain their information by viewing or copying from original materials. Information can be 

accessed through the Internet and downloaded to the user’s computer.  When all the materials are 

digitized, the titles of the materials and their contents can be stored and searched by computer and 

accessed remotely over the network, which is much more convenient for users. Additionally, 

searchable indices can be created automatically, greatly reducing the time and labor needed to 

organize the library. The user also has much faster and easier access to the materials. Since many 

of the digitizing processes can be highly automated, even the newest material can be available on 

its release day. 

________________________ 
* This thesis uses the APA style for citation, figures and tables. 
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Over the past 20 years, most text-based materials such as books or magazines have 

slowly been converted into a digital format. Archived materials can easily be converted using 

pattern recognition systems such as OCR (optical character recognition), so the content of the text 

can be searched in detail for keywords or even sentences. Newer material is typically created in a 

digital format.  There is greater difficulty, however, with audio and video recordings, which are 

another large growing portion of the raw materials and becoming more and more important for 

digital libraries. Nowadays, home video recording systems have become so low cost that many 

documentaries are recorded as video or audio. Many lectures, presentations, news reports and 

movies are included in a digital library. There are many advantages in converting them to a 

digital format. They become easier to preserve and require less physical storage space. 

 In comparison to text-based material, audio and video require much more data storage to 

achieve a high quality representation. Data compression techniques can be used to dramatically 

reduce the data storage required and thus also enable much faster remote access over a network, 

but often with some quality reduction.  Therefore, quality and quantity of data need to be 

balanced. Another important issue is how to digitize the raw materials automatically, including 

adding convenient features for searching. In the past,   video usually could only be searched by 

title or by keywords in a brief text-based introduction created by humans. It was often very 

difficult to find the desired material without searching the content of the video. Now, with the 

help of an automatic speech recognition (ASR) system, the audio portion can be converted to text 

directly, so people can access and search for words or sentences from automatically-created 

captions of the video clips and thus locate precise locations of interest within a video recording. 

Although automatic speech recognition technology greatly aids the process of converting 

audio to text, this aspect of digital library creation still faces many challenges. Due to the very 

large file sizes of digital video, it is desirable to use a high level of compression to reduce the 

storage space to a manageable level. However, even advanced compression algorithms result in 

quality loss, which will be discussed in more detail in chapter two. The highest compression ratio 
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is not always the best choice, at least in the audio portion, because usually better audio quality 

improves speech recognition performance. 

The multimedia digital library, containing both video and audio portions, results in a 

massive database. There are several problems encountered in digitizing these multimedia 

materials.  In the discussion here, we assume the original multimedia is in good condition and that 

the signal to noise ratio is acceptable. We focus on comparing different algorithms for converting 

the multimedia to a digital format and on improving the automatic speech recognition at the front-

end level. 

Research Objectives 

One objective of this research is to discuss and summarize many current video and audio 

compression algorithms, which reduce file size to be convenient for access, but which also 

preserve audio quality. Many current audio and video compressing algorithms are surveyed here. 

The main concern is on the transfer rate over a network, balancing between audio quality and 

speed of transmission. The second, and main objective, of this work is to investigate a method for 

improving speech recognition performance for a digital library by normalizing for different 

speakers.  That is, even though we may have high quality audio, the audio portion comes from a 

variety of speakers, none of whom we can ask to pronounce scripted sentences to improve the 

recognition system.  It is also not convenient, nor even possible, to retrain the system for each 

new speaker. Thus the digital library application requires that speaker independent ASR be used.  

Since the speaker-independent ASR system does not work well for all different speech dialogs, 

non-typical pronunciations, many non-native English speakers, or even speakers with a slight 

accent, the end result is often low recognition accuracy.  The goal of speaker normalization is to 

transform features for each speaker so that they resemble those of a “typical” speaker as closely 

as possible, thus potentially improving the performance of an ASR system.  

Introduction to Speaker Normalization 
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The fundamental difficulty in automatic speech recognition is variability in the acoustic 

speech signal due to factors such as noise, varying channel conditions, varying speaking rates, 

and speaker-specific differences. Many algorithms have been developed to ameliorate the affects 

of the “unwanted” variability and thus hopefully improve ASR performance. Much of this effort 

has been devoted to speaker normalization, or speaker adaptation, since speaker effects are a 

major source of acoustic variability. 

The primary physical cause of speaker variability is the difference in vocal tracts lengths 

among speakers. Typically, men have the longest vocal tract lengths, children the shortest vocal 

tract lengths, and women intermediate lengths. The main effect of these differences is a shift in 

the natural resonances of the vocal tract, with the longest vocal tracts having the lowest frequency 

resonances. Figure 1 illustrates this effect with the upper panel depicting the average spectra of 3 

female speakers, and the lower panel depicting the average spectra of 3 male speakers. It can be 

clearly seen that the spectra of the female speakers is shifted toward higher frequencies than that 

of the male speakers.  
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Figure 1: Illustration of systematic differences in the spectra of female (a) versus male (b) speakers. 
 

In some respects the most straightforward way to eliminate speaker variability is to 

simply train an ASR system from only the data of a single speaker, that is, speaker-dependent 

ASR. However, this approach, which was typical of high-performance ASR systems prior to 

about 1990, has the obvious drawback that the ASR system must be retrained for each new 

speaker. Another approach, which is much more typical today, is to first train an ASR system in a 

speaker independent manner, using training data from many speakers, but then to adapt some 

parameters in the recognizer for each speaker. However, even this second approach, typically 

requires several minutes of scripted enrollment data. At the very least this enrollment period is an 

inconvenience to the user; for some applications of ASR, such as for use with speech 

transcription in a digital library, enrollment or speaker specific training is not possible. 
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From a user convenience perspective, an ASR system should be either completely 

speaker independent, or at least appear to be so.  In fact speaker-independent ASR performance 

has improved dramatically over the past decade to the point that many systems are now usable 

without this additional speaker specific training. Nevertheless, considerable variability remains in 

the acoustic speech signal due to differences in vocal tract lengths among speakers, thus resulting 

in different frequency ranges and scales used by each speaker. Several studies (see next section) 

have shown that some type of linear or nonlinear speaker-specific frequency scale modification 

can improve ASR performance. Most of the current methods of this category, generally referred 

to as Vocal Tract Length Normalization (VTLN), determine the normalization from 

computationally expensive ASR optimization experiments. Typically a single vocal tract scaling 

parameter is adjusted for each speaker so as to maximize ASR performance on training data. 

More importantly, a multi-pass recognition phase is used to find the most likely word sequence, 

with an optimization over all possible VTLN scale factors. Although fast search routines have 

been developed, which are much faster than the exhaustive search that gives the best solution, 

still time-consuming multiple recognition passes are required. 

Overview of the Following Chapters 

This chapter gave a brief introduction to basic issues in digital library creation and 

speaker normalization as a possible approach to improve ASR for digital libraries. In this section, 

we give an overview of the contents of the following chapters in this thesis. 

In chapter two, we present many different video and audio compression algorithms that 

can help reduce the size of video clips while maintaining high audio quality. We also summarize 

some literature from the field of speaker normalization for improving automatic speech 

recognition. 

Chapter three describes the new algorithm of speaker normalization, developed in the 

course of this research. It is derived from the Long Term Average Spectral Template for each 
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speaker and uses Minimum Mean Square Error (MMSE) techniques to make the average template 

of each speaker to be as similar as possible, using nonlinear speaker-specific transformations of 

the frequency scale. The fundamental physical basis underlying the normalization is the different 

vocal tract lengths of each speaker, as mentioned previously. Additionally, other systematic vocal 

tract differences and even learned effects can cause each speaker to use a speakers-dependent 

frequency scale.  

The topic of chapter four is an experimental evaluation of the speaker normalization 

procedure, focusing on vowel classification results with the TIMIT database. Three major 

methods of normalization were evaluated. Additionally, the methods were tested for various 

combinations of training and test speakers (with speakers either matching in gender or not 

matching), for various combinations of speaker normalization parameters, and for the condition 

of using classification optimized performance to determine the normalization parameters. 

Chapter five gives a short summary of this research work and also mentions several 

possible areas for further investigation of this research topic. 
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CHAPTER II 

 

TECHNICAL BACKGROUND 

 

Introduction 

In this chapter, two main topics are discussed. First, we give brief summary of popular 

multimedia file formats, focusing on compression issues. Some general information and history is 

given for each multimedia file format. Then we evaluate these formats with respect to suitability 

for use with a digital library. The goal is a multimedia format with low total size of the media file 

which retains a high quality audio stream to enable acceptable automatic speech recognition 

performance. Secondly, we also summarize some research work in the literature for speaker 

normalization based on vocal tract length. By compensating for the differences in vocal tract 

length, the spectral characteristics of each speaker are normalized, thus potentially improving the 

performance of automatic speech recognition (ASR). 

The CODEC 

The word codec stands for compression and decompression. Codecs are used with 

multimedia files (video, audio, or both) to compress the data using mathematical algorithms. In 

general, after the media file is converted by the codec, the size of the file becomes much smaller 

than original file size. The new compressed file can be transferred faster and can be stored using 

less space. However, the compressed file must be decompressed before it can be processed. As 

hardware technology becomes faster and faster, the total processing time can be reduced. The 

time to compress, transfer, and decompress a file is considerably less than the same operations for 

the original uncompressed file,  due primarily to the large transfer times required for the very 
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large size original file. As an example, consider that 135 minutes of uncompressed DVD quality 

video requires: 

Image: 

720 (width) * 480 (length) * 32 bit color = 1350 Kbytes per frame 

30 frames/second * 135 minutes * 60 seconds/minutes = 243000 frames 

1350Kbytes * 243000 ~= 312 GBytes 

Audio: 

44.1 KHz * 16 bit * 1/8 bit/byte ~= 86 Kbytes/sec 

135 minutes * 60 seconds/minutes = 8100 seconds 

8100 * 86 Kbytes * 5 channels = 3.5 GBytes 

 

Thus the uncompressed media file, which includes both audio and video, requires about 315 

GBytes for storage space. Even with the technology of 2004, this size is too large for convenient 

storage and processing. For example, a single movie would require on the order of 75 DVDs! 

There are many different approaches to solving this problem, as summarized in the following 

section.  

Overview of Compression of Multimedia Files 

The simplest way to perform compression is to reduce the sampling rate and thus the 

resolution of the raw media data.  For the case of speech data and automatic speech recognition, a 

22.05 kHz sampling rate is adequate (rather than 44.1 kHz) since most speech information is 

between 300 Hz and 6000 Hz (twice the typical telephone bandwidth), and a 22.05 kHz sampling 

rate is quite adequate for this frequency range.  Speech can also be coded with a mono channel 

and 16 bits per sample, giving an overall reduction by a factor of 8, or a file size of 2.5 Mbytes 

per minute. This amount of reduction causes virtually no degradation in quality or ASR 
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performance. However, much larger reductions based on this approach will cause degradation in 

speech quality and subsequently poorer ASR performance. 

This reduced resolution method can also apply to the image portion of the media files. In 

fact, a lower number of bits per sample, fewer pixels per frames, and fewer frames per second, 

can reduce the size of the image portion of the media file dramatically. However, as with speech, 

eventually, image quality degrades noticeably. It is necessary to preserve very high image quality 

for many applications such as medical image data, and generally wherever image pattern 

recognition is to be used. In order to allow large multimedia files to be stored and transferred in a 

reasonable file size, a more complex compression algorithm must be used. Generally, a codec 

works by removing duplicate or unnecessary data, or even less important data. 

Reversible (lossless) and Irreversible (lossy) Compression Algorithms 

There are two categories of compression algorithms—reversible and irreversible 

compression. The reversible compression basically combines duplicate data. It then stores 

compressed data in a different structure to reduce the size of the file.  The new structure does not 

really remove any data, so it is possible to decompress and exactly recreate the original file. This 

compression approach is mainly used for compressing documents. The most well-known 

algorithm of this type is Huffman Coding. In Huffman Coding, all symbols in the original file are 

represented in a tree structure and symbols are assigned different numbers of bits, inversely 

proportional to the probability of each symbol appearing in the file. That is, frequently appearing 

symbols use a small number of bits,   and less frequent symbols use more bits.  This approach can 

be used systematically, and in such a way that each symbol can be uniquely coded and decoded, 

to provide overall compression. 

• Example: encoding phrase ABABAC 

• ASCII  representation (8 bits/symbol or 48 bits total)   

01000001 01000010 01000001 01000010 01000001 01000011 
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• Symbol probability  A (1/2)     B (1/3)     C (1/6) 

• Symbol assignments A=1, B=01, C=00 

• Huffman coding of phrase (9 bits total)  

 1 01 1 01 1 00 

• The size reduces to 18.75% of original size 

 

Although these reversible algorithms are quite effective for applications where the media 

file must be preserved exactly, the algorithms do not result in high enough compression ratios for 

most applications that do not require exact data representations. For such applications, the 

irreversible compression algorithms are used to obtain much higher compression ratios. However, 

the compressed media file is actually “different” and cannot be restored to the original file. The 

quality of the media is changed in certain portions only, but usually in such a way that the 

changes cannot be recognized by humans. For example, humans can hear sound waves primarily 

from 30Hz to 3000Hz. It is therefore possible to remove higher frequency data to reduce the size 

of the media file, taking advantage of human physical limitations. In the image portion of the 

media file, as long as reversibility is not required, very high compression ratios can be obtained, 

thus making file archives much smaller.  

Non-Streaming and Streaming Video 

Even with a high compression ratio codec, good video-quality compressed two-hours 

multimedia files still typically require about 500 Mbytes. For the case of non-streaming video, the 

whole media file must be available. Thus, for example, if such a method were used for WEB 

applications, the user would first have to download the entire 500 Mbytes before viewing the file. 

In contrast, for the streaming approach with media files, data is sent data little by little and 

decompressed in real time. The data stream in the compressed file is reordered such that data 

dependencies are present only within a short-time range. Thus data can be buffered and decoded 
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immediately using only the data in a buffer. Typically each frame can be decoded immediately, 

once the data from that frame is completely received. Thus, for WEB applications, a streaming 

media file massively reduces the latency in the download time and also reduces the storage space 

of the media file at the receiving end, since only a short amount of the entire file must be stored. 

Overview of Common Codecs as Related to Multimedia File Formats 

In this section, a brief history and summary of coding methods are given for several 

multimedia file formats. Note that multimedia files and codecs are often considered to be 

synonymous. In some cases, a multimedia file only uses one type of codec and thus the file 

format and the codec can be considered interchangeably. However, some of the newer file 

formats allow several different codes to be used, and thus the file format is not uniquely 

associated with a codec. Moreover, many commercial companies release their own media player 

software, and thus codecs and media file formats are integrated in their software. In the remainder 

of this section, we discuss the file formats, with a primary focus on the codecs associated with 

each format.  

MPEG (mpeg, mpg) 

MPEG, which stands for Moving Picture Experts Group, is widely used for coding video 

and audio information such as movies, video, and music in a digital compressed format. There are 

many generations of this compression algorithm. The file extension for the early MPEG codec 

(mainly MPEG-1) is mpg or mpeg and the later version of the codecs (MPEG-2 and MPEG-4) 

also generally use the mpg or mpeg file extensions. However, there are other multimedia file 

types (i.e., files with extensions other than mpg or mpeg) that do use the MPEG codec, as 

described in the following section. The following is a brief summary of each generation of the 

MPEG algorithm. 
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MPEG-1, the first generation of this codec, was released in 1989. The quality of MPEG-1 

is similar to that of a VHS tape. One of the standard uses of this codec is the Video-CD, with the 

aim of being an alternative to analog VHS tape. The MPEG-1 standard uses 352 pixels by 240 

pixels for each frame and 30 frames per second (in the US). After compression, the video thus 

requires approximately 1.5 Mbits per second and the audio ranges from 64 to 192 Kbits per 

second per channel. Thus, using MPEG-1, approximately 3000 seconds, or 50-60 minutes,  of 

video could be stored on a single 650 Mbyte CD. 

MPEG-2 uses 720 pixels by 480 pixels for each frame and 30 frames per second. The bit 

rate of MPEG-2 can be varied from 1.5 Mbps to 15 Mbps. The video typically requires about 4 

Mbps and is widely used in DVD-VIDEO. At 4 Mbps, a 4.7 Gbytes DVD, could hold 

approximately 10000 seconds (165 minutes) of video. The actual duration on DVD-VIDEO 

varies because the audio is  usually recorded as 5.1 channels (front left, front right, rear left, rear 

right, center, 5 speakers and 1 subwoofer). Also, it includes extra special features, captions and 

multiple audio formats in different languages. Because of these reasons, many DVD-VIDEOs are 

dual layer format, with a storage capacity of approximately 8.5 Gbytes. 

MPEG-4 is a new version of the previous standards. (Note that MPEG-3 was "skipped" 

since the proposed MPEG-3 changes were incorporated into MPEG-4.)   MPEG-4 is a streaming 

compression algorithm of both multimedia video and sound. It has been used in many different 

file formats such as AVI, MOV, etc.  The bit rates of MPEG-4 vary from as low as 64kbps to as 

high as 384Mbps. It only requires about 1.5Mbps for DVD quality video. Note that at 1.5 Mbps, a 

4.7 GBytes DVD could store about 400 minutes of video. 

MPEG Audio Layer-3 - This is used for audio compression and creates nearly CD quality 

sound. This encoding is popularly known as mp3, and is widely used to store high quality music 

in compressed form. Earlier versions were MPEG Audio Layer 1 and Layer 2. The bit rates for 

these layers are: 

• Layer-1: 32 kbps to 448 kbps 
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• Layer-2: 32 kbps to 384 kbps 
• Layer-3: 32 kbps to 320 kbps 

Microsoft Windows Media Player (avi, asf, wmv, wma) 

Microsoft created the AVI media file format as an Audio Video Interface. It is basically a 

file structure that contains video and audio data. Therefore, the file can be packed with 

uncompressed data or used with any video and audio codec. It is just a specification for audio and 

video data in a file along with the header, which contains control information specifying the data 

format and other details of the media file.  

The advantage of the AVI format is its flexibility. Since there is no specific compression 

algorithm for an AVI file, the developer can design a custom codec for a particular application. It 

is also possible to use newer and better compression algorithms with the AVI format without 

redefining the file format. Another advantage is that the  video and audio codec are independent, 

so very high quality audio or even uncompressed audio can be stored (for better speech 

recognition),  along with highly compressed video (if the video quality is not of primary 

importance).  

A problem with the AVI file format is that all such files have the file extension avi, and 

thus it is not possible to determine which codec will be needed to view the file, just by examining 

the file extension. The Microsoft Windows system is usually setup only with some of the basic 

codecs. If other codecs are required, the user must obtain these from a developer website or from 

the original hardware or software package, and insure that these other codes are properly 

installed. This problem is especially bad when codecs become outdated and are no longer 

available and supported. Commonly used video codecs in AVI are. 

• CVID Cinepak video codec 
• IV50 Intel Indeo V5 codec 
• Microsoft H.261 codec 
• Microsoft H.263 codec 
• Microsoft RLE 
• Microsoft Video 1 
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• MP41/ MP42 Microsoft MPEG-4 codec 
• Microsoft WMVideo Encoder DMO 
• Microsoft WMVideo9 Encoder DMO 

Because of this reason, Microsoft re-defined AVI to an extended media file format. 

Following are some Microsoft media file formats:  

• WMV - Windows Media Video. 
• WMA - Windows Media Audio. 
• ASF - Advanced Streaming Format. 

The newer versions of the Microsoft media player include their standard codec wmv for 

video and wma for audio, and uses file extensions to identify these. Microsoft also provides an 

application called Movie Maker to convert other media file formats to these two new standards. 

The application is very user friendly and easy to use in that the user only selects the usage 

purpose such as high quality for a LAN connection or low quality for dial-up access, etc., and 

does not need to be concerned with the codec details. 

The ASF file is a Microsoft version streaming media file.  It does not specify nor restrict 

the video and audio codec. It only gives the structure of the video and audio stream. Basically, it 

is a streaming version of the AVI media file format, so the media file can be encoded by any 

video or audio codec. 

DivX 

The earliest DivX was called “DivX ;-)” and was initiated by computer "hackers" who 

modified the Microsoft version of the MPEG-4 encoder, also known as MP43. Basically, the 

hackers wanted to overcome the limitation that a video stream could not be directly saved using 

Microsoft's MPEG-4 encoder. MP43 also has other limitations that were removed and features 

that were improved in DivX ;-) such as allowing the user to choose different audio compression 

algorithms in the media file. This illegal version of DivX became so popular because of its high 

compression ratio and high-quality image that the people who originally hacked this codec 

decided to build a new legal version of DivX. A project called Project Mayo has begun to 
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maintain and support DivX, called OpenDivX or DivX4. Eventually some of the developers 

started a company, DivX Networks, which has built a closed source version of DivX4. As of 

2003, the newest version is DivX5.1 and it is a complete MPEG-4 encoder. However, the 

remaining open source group didn't want to stop Project Mayo, so they changed the DivX4 to 

XviD and continued their open source work. 

 DivX doesn’t really have its own file format because of its history, so most DivX files 

use avi as the file extension. The files cannot be viewed by Microsoft media player without 

installing a supported DivX codec. The bit stream rate, frames rate, and image size can be varied 

resulting in a wide range of compression ratios and flexibility for the users creating media files 

with suitable file sizes.  

Macintosh (Apple) QuickTime Player (mov) 

Apple QuickTime is one of the very first video formats, and was released by Apple 

Computer Systems around 1991. The quicktime file extension is mov. Apple QuickTime Player is 

one of three major multimedia player products, (along with RealOne Player (RealNetworks), 

mentioned in the next paragraph,  and Microsoft Media Player, as described above) but it has lost 

popularity with the majority of PC and Microsoft windows users.  It was originally designed for 

the Mackintosh system. On the Windows platform, the user must download the Apple Quicktime 

Player software to view quicktime media files.  

RealNetworks Real One Player (rm, rmvb) 

RealNetworks created a new standard for streaming audio and released a program called 

RealAudio in 1995. It is now mainly used for pre-recoded media files and distributed to view 

streaming media files.  It can also be used for live broadcasts such as web radio or web news. The 

newest  generation (as of 2003) media file format of the real video codec is rmvb, which uses 

variable bite rate encoding, so the rapidly changing scenes have a higher frame rate, and slowly 
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changing  scenes have lower frame rates to obtain high quality video with high compression 

ratios. 

On2 Technology (vp3, vp4, vp5, vp6) 

On2 Technology is another company that developed a codec for streaming media files.  

There are a total of 4 generations of this codec--VP3, VP4, VP5, and VP6. VHS quality video can 

be obtained with data rates as low as 100Kbps, an extremely high compression ratio with respect 

to the original video. Each generation of the codecs use the same name as their file extensions 

such that VP3 as vp3, VP4 as vp4 and so on.  

Comparison of Codecs and Media File Formats for use with a Digital Library 

As summarized above, there are many codecs and file formats with advantages and 

disadvantages for each one. Most of the codecs were designed for a specific purpose, and thus 

today some are better suited for some applications then others. In general, a very high 

compression ratio codec reduces storage and enables faster file transfers, but usually with lower 

quality as compared to codecs with less compression. Real time processing is also important. The 

streaming video codecs, which do not need to wait until the whole file has been transferred, are a 

definite advantage for any application (such as the Digital Library), which is intended to work 

over the WEB for easy access.  

Although the purpose of all of these codecs is to reduce the size of the media file, they 

are not all suitable for a digital library. Generally speaking, the audio signal is much more 

important then the video signal in the digital library (at least for the present application) because 

the audio must be high enough quality to enable accurate speech recognition. As long as the 

quality of the video is acceptable for viewing by humans, the size can be massively reduced by 

high compression ratios. An MPEG-4 codec such as DivX5 or Xvid codec is a very good choice 

for compressing the video portion of the media file.  The Xvid codec is not only free but also is 
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an open source project. For the overall media file format, it is desirable that the user should be 

able to specify different codecs for video and audio. For example, it might be desirable to use 

uncompressed audio for speech recognition. Some new codecs such as rmvb, wmv, and mov 

employ variable bite rate encoding with very good video quality at high compression ratios. 

However, these codecs have a fixed standard audio encoding, without flexibility for changing the 

audio codecs.  In practice, uncompressed media files are desired for speech recognition, but with 

high-quality compressed video and audio for storage. This does require two types of files to be 

managed. Of all the file formats reviewed here, the AVI format appears to be most suitable 

overall for use with the digital library. This following table summarizes basic information about 

the codecs and media file formats as discussed above. The quality is related to VHS tape (Video 

CD quality) and DVD-VIDEO. 
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Table 1: Commonly used video and audio codecs and file formats 
 

 

Provider      FORMAT AUDIO VIDEO File Size
( 2 Hours ) 

Comment 

  algorithm      bit rates algorithm bit rates resolution(*)  
         
 VCD (.dat) MPEG-1 Layer2 384kbps MPEG-1 1.5Mbps 352x240 ~1.2GB  
         

 DVD-VIDEO (.vob) 

MPEG-1 / 2 
AC3 (5.1 ch) 
DTS (5.1 ch) 
PCM 

    MPEG-2 3M-8Mbps 720x480 ~2.0-5.0GB

         
Microsoft         
 DIVX (.avi) ANY 64k-192bps MPEG-4 300k-2Mbps 640x480 ~800MB-2GB  
 ASF (.asf) MPEG-4 64k-128kbps MPEG-4 100k-500kbps 320x240 ~120-600MB  
 WMV (.wmv) WMA9 64kbps WMV9 768k-2.1Mbps 640x480 ~750MB-2GB  
Apple QuickTime         
 MOV (.mov)     640x350 ~2GB  
RealNetworks         
 RM (.rm) RM 64k-128kbps RM 100k-500kbps 320x240 ~120-600MB  
 (.rmvb)      RealAudio 64kbps RV40 various 640x480 ~400MB 
On2 Technology         
 VP5 (.vp5)   VP5 700k-1Mbps 640x336 ~460-860MB  
 VP6 (.vp6)   VP6 500k-700kbps 640x352 ~450-650MB  

* The video resolution can be different. 
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Vocal Tract Length Normalization (VTLN) 

Although high quality audio preserved with a "good" audio compression algorithm is 

helpful for ASR accuracy, a completely speaker-independent ASR system is still subject to errors 

due to variability arising from speaker differences.  The ASR errors will create problems for 

automated digital library creation of multimedia materials.  In the remainder of this chapter, some 

previous research for speaker normalization, the main research topic of this thesis, is summarized. 

The most typical form of speaker normalization is a simple spectral transformation. 

Assume SA(ω) and SB(ω) are long-term average spectra produced by speakers A and B.  There are 

many factors that cause differences in the long-term average spectra between two speakers 

speaking the same speech materials. These factors include dialect, emphasis, miss-pronunciation, 

and vocal tract-length differences.  A normalizing spectral transformation is a mapping function 

for one of the speakers, say speaker B, such that S'B(ω) = f(SB(ω)), and such that S'B(w) is similar 

in some sense to SA(ω). 

There has been much research that suggests that a major component of the speech 

spectral variance between different speakers is because of different lengths of the vocal tract. The 

human vocal tract is a basic physical component of the human anatomy that shapes the spectra of 

sounds. For the speech recognition application, one of the traditional feature sets used are formant 

frequencies, which are the peaks of the high-energy portions of the spectrum. These peaks are 

determined by the resonances of the vocal tract, which are determined by overall length, and then 

also by shape.  For the case of vowels, in particular, the first two formant frequencies (F1, F2) of 

each vowel signal are often used to project the speech signal to a two-dimensional pattern. 

Beginning with the work of Peterson and Barney, it has been shown that vowels cluster 

reasonably well in an F1-F2 space in the sense that the same vowels uttered by different speakers 

have very similar values, and different vowels tend to have different F1-F2 values (Peterson and 

Barney, 1952). 
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Although an F1-F2 space is a reasonably good feature space for recognizing vowels, the 

vowel clusters in an F1-F2 space are large and overlap because of speaker differences. Thus, for 

example, automatic vowel recognition rates based on F1 and F2 is much lower than rates obtained 

by human listeners. One of the earliest reported attempts at vocal tract length normalization is that 

of Wakita, who linearly scaled formant frequencies in a speaker specific way, in order to improve 

the clustering properties of vowels in an F1-F2 space (Wakita, 1977). Wakita's approach is based 

on theoretical work which shows that vocal tract length differences result in a linear scaling of 

formant frequencies. In Wakita’s work, nine stationary American vowels were investigated. 

Although there are many other investigations of speaker normalization, most other methods 

require prior knowledge of the individual speaker. Wakita’s approach is physically based on a 

general relationship between vocal tract length and formant locations, and the normalization is 

accomplished without any prior knowledge of the speaker. The fundamental idea is that the vocal 

tract configuration of each stationary vowel is the same for all speakers, but varies primarily in 

vocal tract length. This is especially true when comparing male, female and child speakers. 

Furthermore, Wakita showed that the changes in formant frequencies resulting from the 

differences in vocal tract length can be compensated for by a simple equation. 
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Only the first three formant frequencies are adjusted by this equation, which implicitly 

assumes a reference vocal tract length. As a result, the formant frequency projection area for each 

vowel sound can be reduced to half or less of the original size.  

There are many shortcomings of this approach, leaving room for improvements.    The 

normalization is based on comparisons of individual vowels, thus requiring that each speaker 

utter the same vowels. It is not very convenient to make use of additional data from each speaker, 
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unless the new sounds are the same as those of the reference speaker. As also mentioned in the 

paper, the formant frequency and length estimation is not very accurate. Additional methods for 

normalizing for vocal tract length, based on various combinations of frequency shifts and warps 

(Ono, Wakita, and Zhao, 1993; Tuerk and Robinson, 1993; Zahorian and Jagharghi, 1991).  

In Ono et al’s paper, they investigate the relationship between spectral parameters and 

speaker variations by a speaker-dependent shift of the spectra to improve the performance of a 

speaker independent speech recognition system. The basic idea of their spectral shift techniques is 

to shift individual filter band energies for each speaker to the band estimated to be that of the 

reference speakers, based on the estimated vocal tract length. 

Many researchers claimed that pitch is also one of the important parameters that can be 

used to help normalize the acoustic properties of different speakers. Tuerk and Robinson 

proposed a shift function based on each speaker’s geometric mean pitch frequency. The 

normalization theory in their work is a modification of the auditory–perceptual work of Miller 

(Miller, 1989). In Miller’s work, the transformed short-term spectral analysis of the input speech 

signal can be equated to four pointers. The first three of the pointers (SF1, SF2, and SF3) relate to 

formant frequencies and the fourth pointer SR is the speaker’s reference pitch, which is defined 

as: 
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The GMF0ss is the standard speaker’s geometric mean frequency, and the GMF0cs is the 

current speaker’s mean frequency. Each formant frequency SF1, SF2, and SF3, then divided by 

the SR and log scaled. The results are a set of coordinates in the auditory-perceptual space. Since 

the formant ratio of F2-F1 and F3-F2 can be used to identify different vowels, the shift function 

can adjust the location of formant frequencies, without changing identification. The processing 
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was tested by fist measuring the variance of the original data, then applying a speaker-specific 

shift function dependent on the speakers mean pitch, and then re-examining the variance of the 

shifted data. Relative to the original data, the variance was found to be reduced in the shifted set.  

From a classifier point of view, the reduction of the variance helps test data to relocate to a 

smaller area which improves the classification performance. In Tuerk and Robinson’s work, they 

present a new linear function to further shift the coordinates to improve the performance. 

 Many of these VTLN methods are based on linear transformations. In Zahorian and 

Jagharghi’s paper, the normalization is also derived from a physical basis. The frequency scale 

for each speaker is re-scaled by a set of coefficients in a second order polynomial warping 

function in the frequency domain. In particular, the frequency for each speaker is scaled by three 

coefficients, a, b, and c, using. 
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In comparison to a linear transformation function, the second order polynomial function was 

found to give a better mapping between unknown speakers and a reference speaker. The 

coefficients were computed and stored by matching unknown and reference frequency patterns, 

and finding coefficients such that the overall spectra of each unknown speaker and the reference 

speakers would match as closely as possible. However, as in Wakita's earlier work, the method 

required that the unknown and reference speaker utter the same sounds. 

More recent work is focused on speaker adaptation to improve ASR for large-vocabulary 

continuous speech recognition (Zhan and Westpa, 1997; Welling, Ney and Kanthank, 2002; 

Gouvea, 1998). These references also summarize many of the general issues in speaker 

adaptation by VTLN and provide a list of many related references on this topic. In Welling et al’s 

work, the acoustic front end includes magnitude spectrum calculation, Mel frequency warping, 
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critical band integration, cepstral coefficient calculations, and additional parameter 

transformations such as mean normalization and LDA. VTLN, for each speaker in training, and 

each sentence in testing, is based on a piece-wise linear rescaling of the frequency axis applied to 

the magnitude spectrum. The linear compression / expansion factor ranges from 0.88 to 1.12 with 

a step size of 0.02 (13 total steps). The fundamental difficulty is that training of HMM model 

parameters is in principle based on a separate optimization for each speaker, over both the 

frequency scale parameter and all HMM parameters. Similarly, in recognition, optimal decoding 

of the most likely word sequence for each sentence requires the consideration of each possible 

frequency scaling for each sentence. The authors have presented several novel algorithmic 

methods for improving performance and reducing computations, such as the use of single mixture 

Gaussian densities in the first phase of training to determine VTLN scale factors, and 

computationally efficient multi-pass approaches for both training and testing. The authors were 

able to achieve error rate reductions on the order of 10-20% for several different ASR tasks 

including digit strings and WSJ0. 

Summary 

In this chapter, several commonly used codecs and multimedia file formats were 

discussed. Each of them has advantages and disadvantages because of original design goals. 

Since we are mainly interesting in speech processing with better audio quality, the goal is to find 

a multimedia file format with "reasonable"  video quality at a high  video compression, but with 

the flexibility of a user specified and high quality audio codec to enable good performance for 

automatic speech recognition. For the various multi-media formats surveyed, the avi appears to 

be best for our work with the digital library.  

We also surveyed some previous research for speaker normalization. Many researchers 

attempted to determine a set of parameters, which could be normalized to remove differences 

among speakers saying the same words. Thus, instead of retraining the classifier with each new 
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speaker, a much easier front-end normalization process could be used to improve recognition 

performance. In this thesis, we purpose another normalization procedure by comparing the long-

term spectral template of a pre-selected typical speaker with each new speaker to improve 

recognition performance.  In chapter three the normalization process is described in detail;   

experimental results are given in chapter four. 
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CHAPTER III 

 

NORMALIZATION ALGORITHM DESPCRIPTION 

 

Introduction 

The normalization method is based on determining speaker specific frequency ranges and 

scale factors, such that a spectral template for each speaker best matches, in a mean square error 

sense,  a spectral template for a selected typical speaker, with the goal of improving automatic 

speech recognition. Generally speaking, speaker dependent automatic speech recognition systems 

are more accurate than speaker independent systems. However, for many applications including 

the case of digital libraries, it is difficult or impractical to obtain specific speech data from the 

speaker to re-train the classifier to improve the accuracy. In the work reported here, the basic idea 

is to create a spectral template of the high energy portions of a speech database for a typical 

speaker and then, for each training and testing speaker, to adjust frequency ranges and scale 

factors so that spectral templates computed for each speaker best match the typical speaker 

template. The parameters used to make the match are the low frequency band edge, the high 

frequency band edge, and a warping factor. The algorithm searches through all the possible 

combination of these three parameters to obtain the closest mean square error (MSE) match of 

each speaker’s spectral template to the typical speaker template. Using this new frequency range 

and scale factor for each speaker, the classifier is trained using normalized speech features. 

The Algorithm Description 

The algorithm consists of the following two primary steps for Vocal Tract Length 

Normalization. First, create a spectral template for a selected “typical” speaker, using a frequency 

range and scaling factor expected to be nominal. Represent this spectral template with DCTC 
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parameters. Second, for each additional training and testing speaker, compute a spectral template. 

Then, determine values of low frequency (FL), high frequency (FH), and warping factor (α), such 

that a spectral template computed with this new frequency scale better matches the template of 

the typical speaker.  Two methods were investigated to obtain FL, FH, and α.  In one, FL and FH 

are first determined based on the frequency range each speaker appears to use, and then α is 

determined by search methods. In the other method, all three parameters are determined by a 

three-dimensional search process.  The set of FL, FH, and α is obtained such that the weighted 

mean square error difference between the DCTCs of the speaker and the DCTCs of the typical 

speaker is minimized. The resultant values for FL, FH, and α are then considered as a parametric 

representation of the spectral template for each speaker. Normalized parameters (DCTC values 

computed using a normalized frequency range and scaling) can then be used as front-end features 

for an ASR system. Many variations of this basic approach, and many experimental evaluations, 

are reported in this work. 

In addition to the algorithm mentioned above, another approach was investigated 

whereby the frequency scaling parameters were adjusted so as to optimize automatic vowel 

classification performance for “testing” data for each test speaker. The classifier was trained only 

once. The training speakers are still first parameterized using normalized features from the 

minimum mean square error approach. However, the frequency ranges and scaling factor 

parameters of each testing speaker are re-adjusted so that classification accuracy is maximized. 

Although this approach is not really fair, since "testing" data is used to some extent in training, 

this method can be viewed as a control indicating the upper limit of possible recognition 

performance. Each of these steps is explained and illustrated in more detail below. 

Spectral Processing  

In this work, for each training and testing speaker, all selected sentences (ten sentences or 

about 30 seconds of speech in this work) were combined into a single array containing the 
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samples of the acoustic speech signal.  The speech signal was then pre-emphasized using the 

second order equation. 
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This type of pre-emphasis simulates the frequency response of human hearing, and is 

commonly used as a first step in speech processing for automatic speech recognition systems. For 

the filtered sequence of data, the short-time spectrum was computed, using a frame length of 

30ms and a frame spacing of 15ms. This short-time spectrum (called a spectrogram) gives the 

distribution of the speech energy over time and frequency. From a spectrogram, the unvoiced and 

voiced portions of speech are quite apparent. In particular, in a previous study (Kasi and 

Zahorian, 2002), it was demonstrated that the normalized low frequency energy ratio (NFLER) is 

a good indicator for voiced versus unvoiced speech. NFLER is determined by computing the 

energy in each frame over the frequency range of 100 Hz to 900 Hz, and then normalizing (i.e., 

dividing) by the average energy in that range, over the entire utterance. Experiments showed that 

those frames with NLFER above 0.75 are nearly always voiced and those frames with NFLER 

below .5 are nearly always unvoiced. Thus, except for the uncertainty in the regions of the speech 

signal when NFLER is between .5 and .75, NFLER is a reliable indicator of voiced versus 

unvoiced speech. Thus, for the purposes of creating a spectral template using only the voiced 

portions of the speech, frames were selected with NLFER greater than 0.75. This procedure 

insured that only voiced frames were used to create the spectral template. 

There are two main reasons that we decided to create speech templates based only on the 

voiced speech. First, since the experiments were conducted only for vowels, which are voiced, it 

seemed logical to assume that the spectral templates should be based only on the same type of 

speech. However, in addition, pilot tests were done to compare results using spectral templates 
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created only from voiced speech versus spectral templates created from all the speech. In these 

tests, it was found that normalization based on the voiced spectral templates was slightly better 

(i.e., higher recognition results). 

 In following figure, the NFLER was scaled so that a value of 1.0 for NFLER corresponds 

to a spectrogram frequency of 5000Hz. The spectral template was then formed by computing an 

arithmetic average of the log spectrum for all the voiced frames (i.e., NFLER >.75) and then 

linearly scaling the average log spectrum to a range of 0 to 1.0. 

 

 

Figure 2: The spectrogram overlaid with the NFLER, as described in text, which can be used to 
discriminate the voiced and unvoiced speech regions  

 

Spectral Template Reliability  

A critical assumption underlying the speaker normalization algorithm investigated in this 

work is that a spectral template, based on several seconds of speech data for each speaker, is a 

relatively consistent and reliable indicator of the average spectral characteristics (and  hence the 

vocal tract properties) for each speaker. In this section, we describe the detailed procedures used 

 



 30

to create spectral templates, and give results that indicate that the spectral template is indeed a 

reliable stable indicator of the average spectral characteristics of each speaker. 

In the TIMIT speech database, which was used for the experiments reported in this thesis, 

there are ten sentences for each speaker. Since each sentence is only 2 to 3 seconds long, it was 

necessary to make sure that the spectral template computed from a small number of sentences are 

a good representation of the long term spectral characteristics of each speaker. Although longer 

speech data gives a better representation, there are also disadvantages such as the need for 

acquiring the longer speech sample and more computations. In actual applications, long speech 

materials may simply not be available. Therefore, experiments were conducted with one sentence, 

two sentences, and five sentences to examine the degree to which spectral templates vary as a 

function of speech length. The following figures depict long-term average spectral template using 

one, two, and five sentences from the same speaker. 
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Figure 3: Comparison of 4 different spectral templates of a speaker, each computed from 
approximately 3 seconds (1 sentence) of speech 

 

The graphs in Figure 3 depict four spectral templates from the same speaker. Each 

colored line indicates the spectral template from a single (different) sentence. The content of each 
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sentence is different and the speech data is about 2-3 seconds long for each sentence. There are 

some apparent differences between the curves, thus implying that 2-3 seconds of speech data is 

not sufficient to form a good estimate of a spectral template for each speaker. 
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Figure 4: Comparison of 2 different spectral templates of a speaker, each computed from 
approximately 6 seconds (2 sentences) of speech 
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Figure 5: Comparison of 2 different spectral templates of a speaker, each computed from 
approximately 15 seconds (5 sentences) of speech 
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This graph in Figure 5 depicts two long term spectral templates from the same speaker.  

Each spectral template was created from approximately 15 seconds of speech data (5 sentences). 

Even though each of the five sentences corresponds to totally different speech materials, the two 

spectral templates match very closely.  Note that the graphs shown in Figure 4, each obtained 

from two sentences of speech data,  are more similar to each other than the graphs depicted in 

Figure 3, but not as similar as the two graphs shown in Figure 5. Thus, as expected, the spectral 

templates are more reliable indicators of the long term spectrum, as a longer speech length is 

used. 

In the speaker normalization experiments reported in chapter 4, all ten sentences were 

used for template creation. Thus, the total speech duration for each speaker was typically between 

20 and 30 seconds.  Spectral template based on ten sentences are the most accurate possible with 

the TIMIT speech database, since the database contains only ten sentences for each speaker. 

Discrete Cosine Transform 

 The spectral templates were parametrically encoded with a Discrete Cosine Transform 

(DCT). In the following few paragraphs, we describe the procedure used to compute the DCT. For 

ease of explanation, consider X(f) to be the continuous magnitude spectrum represented by the FFT,  

encoded with linear amplitude and frequency scales.  Before the Discrete Cosine Transform 

Coefficients (DCTCs) are computed, X(f) is first rescaled using perceptual amplitude and frequency 

scales, and relabeled as X'(f). The relationship between the X(f) and the X’(f’) is defined by the  

following equations. 
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A selected range of f, that is from FL to FH, is first linearly scaled and shifted to a range of 0 to 1. 

Similarly g is constrained so that f’ is also over a 0 to 1 range.  In all of this work, g was the 

bilinear transformation given by the formula. 
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Thus g is parametrically encoded with a single parameter, α, which is referred to as the warping 

scale factor. Figure 6 illustrates the warping function, with values of α equal to 0.45, 0, and -0.45. 

Typically an α value of 0.45 is used for automatic speech recognition applications. 

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

f

f'

  
Figure 6: Bilinear transformation with α = 0.45 (dash-dot line), 0 (dotted line), and -0.45 (dashed line) 

 

 The nonlinear amplitude scaling, “a”, in practice is typically a logarithm, since amplitude 

sensitivity in hearing is approximately logarithmic. The next step in processing is to compute a 

cosine transform of the scaled magnitude spectrum. The DCTC values, computed as in equation 6 

below, can be considered as acoustic features for encoding the perceptual spectrum: 
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By substitution in equation 7, and replacing "a" by log 
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Also, we can redefine the basis vectors as 

 

 
df
dgfgifi ))(cos()( ∗∗= πφ        (9) 

 

so the final equation for computing the DCTCs becomes  
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 For the actual processing, all discrete spectral values are computed with FFTs and the 

equation above changes to a summation: 
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where n is a an FFT index, and N1 and N2 correspond to the lowest and highest frequencies used in 

the calculation. The calculation of these modified cosine basis vectors is very similar to the 

calculation of cepstral coefficients. However, in line with our previous work, we call these terms 

Discrete Cosine Transform Coefficients (DCTC), (Zahorian and Nossair, 1999), rather than 

cepstral coefficients. Note that the DCTCs are also coefficients that represent a smoothed version of 

the scaled spectrum and it is thus very easy to compute the smoothed spectrum from the DCTCs. 

From the Vocal Tract Length Normalization point view, this method for DCTC 

calculations is very convenient, since speaker-normalized DCTC coefficients can be computed 

directly from the FFT spectrum, using only three normalization parameters, low frequency (FL), 

high frequency (FH), and warping factor (α), to control the normalization. 

 The combination of using DCTC representations and VTLN is illustrated in Figure 7. The 

top panel of the Figure 7 (a) shows the original spectral template of a single female speaker over a 

frequency range of 0 Hz to 8000 Hz,  as well as the DCTC smoothed version of this spectrum (FL 

= 100 Hz, FH = 5000 Hz, and α = 0.45). The bottom panel (b) shows a similar graph of the DCTC 

smoothed spectrum of a male speaker. 
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Figure 7: Illustration of original spectral template (dashed curve) and DCTC smoothing of spectrum 
by using FL, FH, and α (dotted curve) of a female speaker (a) and a male speaker (b). See text for 
more complete description 
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Determination of FL, FH, and α  

For this work, two methods were used for the actual template matching. In the first 

method, FL and FH, were first determined independently by separate algorithms for all speakers, 

including the typical speaker. In particular, FL was determined by computing the average F0 in the 

speech utterance, and then letting FL equal to ½ that average F0 value. FH was determined by 

searching the amplitude-normalized spectral template, from FS/2 toward lower frequencies, and 

setting FH equal to the frequency at which the spectral template is first higher than some threshold 

(typically 0.1 times the maximum value). Thus the objective here was to first determine the 

frequency range used by each speaker, based only on the spectral template of that speaker. 

For this first method, α was set to .45 for the typical speaker. Then, for all other speakers, 

α was adjusted to minimize the mean square error (as described below) between the DCTCs of 

that speaker and the typical speaker, but using the frequency ranges found as described in the 

preceding paragraph. 

In the second method of the spectral template matching, the low frequency limit (FL), the 

high frequency limit (FH), and warping factor α were set to nominal values (100 Hz, 5000 Hz, and 

0.45) for the typical speaker. Using these three values for the parameters, FL, FH, and α, a set of 

"warped" cosine basis vectors over frequency (referred to as bvF matrix) were computed.  This 

matrix was then used to convert the spectral template of the speech signal for the typical speaker 

to 15 DCTC coefficients. These 15 DCTCs thus form a 15-dimensional representation of the 

spectral template for the typical speaker. After the typical speaker template was created, for all 

remaining speakers in the database, speaker specific values of FL, FH and the α were computed 

such that DCTCs computed for each of the speakers with speaker specific frequency parameters 

best match the DCTCs of the typical speaker template.  That is, for each speaker, determine FL, 

FH, and α, such that 
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is minimized. In the equation, U denotes the both training and test (unknown) speaker and T 

denotes the typical speaker.  

Figure 8 illustrates the spectral template matching procedure, both in the frequency 

domain (upper panel), and in the DCTC parameter space (lower panel).  In the top panel, the 

dashed and dotted lines are spectral templates from the "typical” speaker (dashed) and an 

arbitrary "test" speaker (dotted), before any frequency adjustments were made. The dash-dot 

curve is the template for the test speaker, but after the Minimum Mean Square Error was 

minimized. The lower panel in the figure depicts the DCTC differences between the typical 

speaker and the unknown new speaker both before and after the Mean Square Error was 

minimized.  
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Figure 8: (a) The upper panel depicts the long term spectral template of the typical speaker (dashed 
curve), another speaker without normalization applied (dotted curve), and the other curve after 
mean square error minimization between the DCTCs of the two speakers (dash-dot curve). In the 
lower panel, the DCTC differences between the two speakers are shown both before “x” and after 
“o” mean square error minimization 
 

The computation time for method two is much greater than for method one, since method 

two requires an iterative search over three parameters (FL, FH, and α), whereas method one 

requires an iterative search over α only.  Nevertheless, in this work, method two was mainly used, 

since pilot experiments showed that method two gave superior performance. For method two, two 

search methods were investigated. In the "complete" method, an exhaustive search was used to 

find the parameter values giving the minimum mean square error, by checking combinations of 

the three variables over a certain range for each variable. In particular, FL was varied from 50Hz 

to 200Hz, with a step size of 5 (6 steps); FH was varied from 4000Hz to 7000Hz with a step size 

of 20 (21 steps); and α was varied from .35 to .55 with a step size of 20 (21 steps). We selected FL 

from 50Hz to 150Hz and FH from 4000Hz to 6000Hz for all male speakers. For female speakers, 

 



 40

FL was varied from 100Hz to 200Hz and FH was varied from 5000Hz to 7000Hz. The same range 

of α was used for both male and female speakers. An exhaustive search of all these combinations 

thus required a total of 6 x 21 x 21 or 2664 steps, in the search process for each speaker. After 

experimental verification that the error surface was relatively smooth, a much faster search 

technique was adopted with termination of the search in all directions for which the error was 

found to be increasing. This method was found to reduce the number of calculations by 

approximately a factor of 10 with very little change in performance relative to the more complete 

search of the parameter space. 

A file for each speaker was generated consisting of the frequency ranges and scaling 

factor (FL, FH, and α), and  remaining DCTC differences for each training and test speaker. This 

parameters were then used for additional processing and for vowel classification experiments.  

Front-End Feature Adjustment using Normalization Parameters  

In the original DCTC features extraction function (no speaker normalization), the 

spectrum was computed for 30ms frames with 15 ms frame spacing over the entire speech data 

available for that speaker. Then the DCTC features were computed by multiplying with the 

cosine basis matrix. To be able to use the new frequency ranges and scaling factor, an additional 

flag was added to the feature calculation function. In particular, the normalization can be either 

enabled. When the normalization is disabled, the FL, FH and α are based on the standard settings; 

typical, FL is equal to 100Hz, FH is equal to 5000Hz, and α is equal to 0.45 for each frame. When 

the normalization is enabled, the parameters are replaced by the speaker-specific values of FL, FH 

and α, and the DCTC differences are (optionally) added to the DCTC features. 

Parameter Adjustment Based on Classification performance 

As mentioned earlier, in order to examine the upper limit of performance possible based 

on adjustments of the three parameters of frequency, additional experiments were conducted with 
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parameters adjusted so as to maximize classification performance for each speaker. In particular, 

the spectral template matching described above (based on minimum mean square error matching) 

was first implemented for each training and test speaker. A neural network vowel classifier was 

then trained using the normalized data of each training speaker. This trained neural network was 

then used to iteratively evaluate each test speaker, with further adjustments then made in FL, FH, 

and α for each test speaker so as to maximize classification performance. Of course, these tests 

are not really good indicators of test performance, since the test data does effectively become part 

of the training data. However, the results obtained with this method do give an indication of the 

performance improvements possible by adjusting only three parameters that control the frequency 

range and scale for each speaker. 

Normalization based on DCTC differences 

Finally, since the fundamental assumption of this normalization is that the mean square 

difference between the DCTCs of the typical speaker template and that of each underlying 

speaker should be minimized, the average DCTC values for each speaker, including the typical 

speaker, were computed after normalization by the frequency parameters. These speaker-specific 

average DCTC values could then be subtracted from the DCTCs of each speaker after the 

frequency domain adjustments described above.   After this subtraction, the DCTCs of each 

speaker would have a mean value of 0.0, thus also presumably reducing the variability in DCTCs 

among speakers.  

Summary 

In this chapter, we described the normalization procedure in detail. By comparing long term 

spectral template from the typical speaker and each training and test speaker, the average spectral 

differences between speakers can be reduced, potentially improving classifier accuracy.  Methods 

presented were: 
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1. Algorithmic methods to determine the frequency range, defined by parameters FL and FH, 

followed by error minimization to compute the nonlinear scaling parameter α. 

2. An error minimization method to find the simultaneous best fit of all three normalization 

parameters FL, FH, and α. 

3. Method 2, above followed by additional adjustments of the parameters FL, FH, and α so as 

to maximize classification accuracy. 

4. Either method 1 or 2, followed by subtraction of the DCTC averages for each spectral 

template. 

With minor modifications of the front-end speech analysis feature extraction procedure, we 

can avoid the computational burden of re-training the classifier for each new speaker and 

hopefully further improve classifier accuracy. In the next chapter, the experimental work is 

presented which evaluates the speaker normalization method. 
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CHAPTER IV 

 

EXPERIMENTAL EVALUATION 

 

TIMIT Database 

All experiments reported in this thesis were conducted with the TIMIT database of 

sentences.  The DARPA TIMIT database is acoustic-phonetic speech data, which was designed to 

provide phonetically labeled acoustic data for the development and evaluation of automatic 

speech recognition systems. It was developed as a joint effort between Texas Instruments (TI) 

and MIT, funded by DARPA, in 1986. (DARPA Speech Recognition Workshop, 1986) It consists 

of utterances of 630 speakers that represent the major dialects of American English, as subdivided 

by regions at U.S. There are totally eight different regions represented as shown below:     

Folder  Area 
------------- ---------------------------------------------------- 
dr1  New England 
dr2  Northern 
dr3  North Midland 
dr4  South Midland 
dr5  Southern  
dr6  New York City 
dr7  Western 
dr8  Army Brat (moved around) 
 

 The TIMIT speech database is organized in 2 categories, a training data set that 

includes 420 speakers, and a test data set that includes 210 speakers. There are ten sentences for 

each speaker. For each speaker, there are three different sentence types; (1) ”sa” consists of 2 

(same sentence for all speakers) sentences per speaker which are considered as SRI dialect 

calibration sentences; (2) “si” consists of 3 (different) sentences per speaker which are referred to 

as TI (Texas Instruments)  random contextual variants sentences; and (3) “sx” consists of 5 
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(different) sentences per speaker, which are the MIT phonetically compact sentences.  In our 

work, we used small training data sets and large test data sets. Therefore the training and test data 

sets, as mentioned above, were not used. The actual training and test database subsets of TIMT 

are described below. 

Brief Description of Experimental Database 

The normalization methods described in chapter three were evaluated using a neural 

network classification of 10 monophone vowels (/aa/, /iy/, /uw/, /ae/, /er/, /ih/, /eh/, /ao/, /ah/, and 

/uh/) taken from the TIMIT database. In the TIMIT database, there are many more male speakers 

than female speakers.  In the experiments reported here, we did not use the defined training and 

test data sets. Instead, we selected speakers more suitable for our experimentation. In Experiment 

1 and Experiment 3, there are totally 4 different configurations of interest: (1) no normalization, 

(2) normalization based on FH, FL, and α, (3) normalization based on FH, FL, α, and DCTC 

averages, and (4) normalization based on FH and FL only. Also, three data configurations were 

used, consisting of three different training sets, and three different testing sets; (1) 50 female 

training speakers with 120 male or female testing speakers; (2), 50 male training speakers with 

120 male or female testing speakers; (3) 25 male plus 25 female (a total of 50) training speakers 

with 60 male plus 60 female (a total of 120) testing speakers.  The total number of vowel training 

tokens was either 3584 (female training), 3424 (male training), or 3462 (mixed training set). The 

total number of vowel tokens for testing was either 8336 (female testing), 8139 (male testing), 

and 8126 (mixed testing set). 

Experiments 1, 2, and 3 were conducted with a back-propagation neural network 

classifier with one hidden layer of 10 hidden nodes. Each neural network had 15 input nodes, 

which equals the number of features generated by the front-end analysis. Each network had 10 

output nodes, one for each to indicate each vowel.  Although 10 hidden nodes were used for most 

of the results presented in this chapter, in experiment 4, the changes in classification accuracy due 
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to varying the number of hidden nodes are also reported.  Finally, one series of tests was done 

with a maximum likelihood classifier. 

Long-Term Spectral Template Matching Experiment 

 In chapter three, we mentioned two different approaches for finding the three 

normalization parameters. The first method is to first determine FL and FH based on intrinsic 

properties of each spectral template, and to compute α to minimize the mean square error between 

two spectral templates. The second method is based on a simultaneous error minimization 

solution of three normalization parameters, so this gives many possible combinations of the three 

parameters to consider. Although the second method is highly time consuming, pilot experiments 

indicated that higher recognition rates were obtained with the second method than for the first 

method. Thus, all the experiments reported in this chapter were conducted using the second 

method.As mentioned in Chapter 3, if the speech signal has a longer duration, the spectral 

template computed from the longer duration signal should be a more "reliable" estimate of 

spectral characteristics of the speaker, and the three normalization parameters, FH, FL, and α, 

computed from such a template should be consistent estimates for each speaker. That is, if these 

three parameters were computed from a spectral template computed from a different speech 

segment from the same speaker, the three parameters should have the same or nearly the same 

values. To experimentally test this assumption, spectral templates were computed for speech 

segments consisting of two, five, and ten sentences, which varied the speech duration from 

approximately 6 seconds to 30 seconds. The three normalization parameters, FL, FH, and α, were 

then computed for each spectral template, using the same typical speaker reference. The 

following three figures illustrate the variations in the three normalization parameters as a function 

of speech duration (two, five, and ten sentences) for each of 20 speakers. The method used here is 

the full search of the three normalization parameters, FL, FH, and α. 
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Figure 9: FL values as obtained from spectral templates computed from 3 different speech lengths for 
each of 20 speakers 
 

Figure 9 depicts the minimum mean square error obtained value of FL for each test 

speaker, using templates obtained from two, five, or ten sentences. The x-axis is represents test 

speaker indices, using randomly selected female speakers (speakers 1-13) and randomly selected 

male speakers (speakers 14-20).   The y-axis is the computed FL value (search range of 50-150Hz 

for male speakers and 100-200Hz for female speakers) for each of the three template lengths. 
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Figure 10: FH values as obtained from spectral templates computed from 3 different speech lengths 
for each of 20 speakers 
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Figure 10 is analogous to Figure 9, except that FH is plotted for the three template cases. 

Note also that the search ranges are 4000-6000 Hz for males and 5000-7000 Hz for females. 

Similarly Figure 8 depicts the α values for these same 20 speakers for the three template cases.  
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Figure 11: α values as obtained for from spectral templates computed from 3 different speech lengths 
for each of 20 speakers 
 

 Figures 9, 10, and 11 indicate that the parameters FL, FH, and α, are very consistent even 

as the data from which the spectral template is created changes. However, as a more complete test 

of the consistency of these parameters, the tests above were repeated with 460 test speakers, and 

results are summarized as percentage differences in Table 2. The table indicates the number of 

sentence combinations (for the case of both two and five sentences) that have the same 

normalization parameter values, as when the corresponding parameters are computed with all ten 

sentences for the 460 test speakers. For example, if templates are made with only five sentences 

for each test speaker, there are 411 of 460 speakers (89.3%) that have the same FL values as when 

FL is computed with a 10 sentence template. 
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Table 2: The percentage of speakers such that FL, FH, and α exactly match (columns 1and 2) and 
percentage of speakers for which matches are within +1 or -1 search steps (column 3 and 4), when 2 
or 5 sentences are used 
 

 exact matched +1 or -1 step matched 
 5 sentences 2 sentences 5 sentences 2 sentences 
number of same FL 89.6% 82.6% 97.4% 95.2% 
number of same FH 84.6% 81.1% 97.6% 92.8% 
number of same α 47.2% 39.8% 95.2% 83.7% 

 

Although the percentage of exact matches for α is only 40–50%, the normalization 

parameters generally do not vary much when the templates change. For example, as Table 2 

shows, the percentage of speakers for which the normalization parameters match to within +1 or -

1 step of the search range is typically over 90%. Nevertheless, since spectral templates based on 

longer speech intervals should give the best representation of the average spectrum of each 

speaker, all ten sentences were used for each test speaker in the following experiments. In actual 

applications, it appears that the long term spectral template should be based on 30 seconds or 

more of speech, so that the normalization parameters FL, FH, and α will accurately represent the 

spectral characteristics of each speaker. 

 In summary, the experimental results presented in this section, along with the spectral 

template plots given in chapter 3, are reasonable evidence that the spectral templates based on all 

10 sentences available in the  TIMIT database  for each speaker are quite good representations of 

the average spectrum  for each speaker.  It was also simply not possible to test with even longer 

speech durations. 

Experiment Set 1: General Effect of Normalization for Various Combinations of the 

Normalization Parameters and Various Combinations of Training and Test Data 

The primary goal of these experiments was to determine the general effects on vowel 

classification performance of the normalization for various combinations of normalization 

parameters, including the entire set. As specific sub goal was to determine if, for the case when 
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training and test speakers are deliberately mismatched as to speaker gender, the frequency axis 

normalization could eliminate the systematic differences between parameters computed from 

female speakers and male speakers.  Test results, in terms of test classification results for the 

vowels, are presented in Table 3, 4 and 5.  

 

Table 3: Vowel classification rates for training and test data, with gender matched training and test 
data, for various parameters used to control the normalization 
 

speaker gender condition  (Male vs Male)  (Female vs Female)  
  Training data Test data Training data Test data 
number of speakers 50 120 50 120 
number of sentences 500 1200 500 1200 
no spkn 71.6% 66.5% 69.5% 64.7% 
spkn, (FL, FH, α, DCTC) 68.3% 65.5% 68.8% 64.1% 
FL, FH, and α  67.9% 65.6% 68.6% 63.5% 
FL, FH 71.0% 67.0% 69.8% 65.8% 

 

Referring to Table 3, the first two rows of data are the numbers of sentences and speakers 

for each training and test data set.  For the case of Table 3, the training and test data sets are 

matched in terms of speaker gender. The remaining rows of data are vowel classification results 

for various normalization conditions. The third row lists the classification accuracy without any 

normalization. The normalization parameters are selectively applied to the test speakers in each of 

the following rows.  For two of the cases (rows 4 and 5), the normalization procedure appears to 

result in a 1 to 2% drop in classification accuracy. The only case for which the normalization 

results in a slight improvement is when only FL and FH are applied, which gives approximately a 

0.5 to 1% improvement. 
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Table 4: Vowel classification rates for training and test data, with gender mismatched between 
training and test data, for various parameters used to control the normalization 
 

speaker gender condition  (Male vs Female)  (Female vs Male)  
  Training data Test data Training data Test data 
number of speakers 50 120 50 120 
number of sentences 500 1200 500 1200 
no spkn 71.6% 44.4% 69.5% 48.2% 
spkn, (FL, FH, α, DCTC) 68.3% 60.9% 68.8% 62.7% 
FL, FH, and α  67.9% 60.3% 68.6% 63.4% 
FL, FH 71.0% 61.9% 69.8% 64.0% 

 

Table 4 is arranged the same as is Table 3. The primary difference from Table 3 is that 

training and test speakers are from different genders in Table 4. With no speaker normalization, 

test results are much lower than comparison results for the gender matched training and testing 

results with no normalization. Additionally, for this gender mismatched case, test results are 

improved about 17% relative to non-normalized results (61% versus 44%).  Furthermore, the 

"best" normalization is that based only on FL and FH. However, even the normalized test data 

results shown in Table 4 are lower than all the test results given in Table 3. 

 

Table 5: Vowel classification rates for training and test data, with gender mixed training data and 
female or male test data, for various parameters used to control the normalization 
 

speaker gender condition  (Male&Female vs Female) (Male&Female vs Male) 
 Training data Test data Training data Test data 
number of speakers 25-25 120 25-25 120 
number of sentences 250-250 1200 250-250 1200 
no spkn 68.1% 61.7% 68.1% 64.3% 
spkn, (FL, FH, α, DCTC) 68.5% 63.4% 68.5% 65.4% 
FL, FH, and α  68.3% 63.1% 68.3% 65.3% 
FL, FH 69.7% 64.1% 69.7% 65.0% 

 

Finally, in Table 5, results are given when the training data is a mixture of male and 

female speakers, but test speakers are either only male or only female.  For the case of female test 

speakers, the normalization results in about a 4% improvement relative to the non-normalized 
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results. However, for the case of male test speakers, the normalization results in less than 1% 

improvement. 

Experiment Set 2: Classification Results with Mixed Training and Test Speakers for 

Various Typical Speakers  

 This experiment was designed as a further investigation of the normalization procedure 

presented in this thesis, but using a mixture of male and female speakers for both training and 

testing. For these tests, only FL and FH, shown to be most effective in Experiment 1, were used for 

normalization. Results are given in Table 6. The normalization results in about a 2% 

improvement of test results, as compared to no normalization. 

 

Table 6: Vowel classification rates for training and test data, both with mixed gender training and 
test data, for various parameters used to control the normalization 
 

speaker gender condition  (Male&Female vs Male&Female) 
  Training data Test data 
number of speakers 25-25 60-60 
number of sentences 250-250 600-600 
no spkn 68.1% 63.5% 
spkn, (FL, FH, α, DCTC) 68.5% 64.4% 
FL, FH, and α  68.3% 64.2% 
FL, FH 69.7% 65.2% 

 

Additionally, we tested the performance of the system, using each of the training speakers in the 

training database as the typical speaker. Typical test results are shown in Table 7. Test results for 

the different typical speakers are shown for the four "best” and four "worst” typical speakers. 
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Table 7: Test results for mixed speakers types (male and female), without normalization (row 1), and 
with normalization, but using different training speakers as the “typical” speaker in the training 
process 
 

speaker gender condition (Male vs Female) 
no normalization 63.5% 
1. (FL, FH), female 65.2% 
2. (FL, FH), male 64.7% 
3. (FL, FH), female 63.8% 
4. (FL, FH), female 63.2% 
1. (FL, FH), male 61.3% 
2. (FL, FH), male 62.5% 
3. (FL, FH), female 62.8% 
4. (FL, FH), male 62.9% 

 

Experiment Set 3: Parameter Adjustment by Classification Performance 

As mentioned earlier, the DCTC coefficients can be computed from the log spectrum 

using only FL, FH, and α to adjust the normalization. In this experiment, a further investigation 

was conducted using neural network classification performance accuracy to guide the adjustment 

of parameters. First, the method mentioned for experiment 1 was performed to evaluate the 

baseline performance accuracy. Secondly, using the neural network trained from the normalized 

training data, the FL, FH, and α for each test speaker was used and the performance accuracy for 

each test speaker was calculated individually. Next, using the fixed neural network based on the 

training speakers, the three parameters, FL, FH, and α were adjusted for each test speaker (but 

considering one speaker only at a time), until the maximum performance accuracy was reached 

for each test speaker. These tests were very time consuming, since a very large number of tests 

were needed for each speaker, since classification performance did not seem to depend 

“smoothly” on parameter adjustments. 
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Figure 12: Test results using procedure similar to that used for experiment 1, but considering each 
test speaker individually for 20 test speakers 
 

Test results were obtained using the same procedure used for experiment 1, but results 

are shown for test speaker individually. Results for 20 speakers are given in Figure 12. The bars 

labeled “Mean Square Error” are test classification results obtained when parameter adjustments 

for each test speaker are based on minimum mean square error methods. The bars labeled 

“Classification Optimized” are test classification results obtained when the original parameter 

settings (based on the mean square error) were further adjusted to maximize classification 

accuracy. 
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Figure 13: Similar results as shown in Figure 12, but based on 120 test speakers 
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Generally speaking, the classification accuracy for each test speaker improved from 3% 

to 25%.  The optimized classification values for FL, FH, and α were recorded for each test 

speaker, and front-end DCTC features recomputed for each test speaker based on the new 

parameters values.  The overall classification accuracy with the “new” FL, FH, and α is compared 

with test results for no normalization, and mean square error normalization, in Tables 8, 9, 10. 

 

Table 8: Test results for no normalization, minimum mean square error normalization, and 
classification optimized. 
 

speaker gender condition  (Male vs Male) (Female vs Female) 
  Training data Test data Training data Test data 
number of speakers 50 120 50 120 
number of sentences 500 1200 500 1200 
no spkn 71.6% 66.5% 69.5% 64.7% 
FL, FH, α 67.9% 65.6% 68.6% 63.5% 
classification improved 67.9% 73.4% 68.6% 72.6% 

 

Table 9: Test results for no normalization, minimum mean square error normalization, and 
classification optimized 
 

speaker gender condition (Male&Female vs Male&Female) 
  Training data Test data 
number of speakers 25-25 60-60 
number of sentences 250-250 600-600 
no spkn 68.1% 63.5% 
FL, FH, and α 68.3% 64.2% 
classification improved 68.3% 72.7% 

 

Table 10: Test results for no normalization, minimum mean square error normalization, and 
classification optimized 
 

speaker gender condition  (Male vs Female)  (Female vs Male) 
  Training data Test data Training data Test Data 
number of speakers 50 120 50 120 
number of sentences 500 1200 500 1200 
no spkn 71.6% 44.4% 69.5% 48.2% 
FL, FH, and α 67.9% 60.3% 68.6% 63.4% 
classification improved 67.9% 69.5% 68.6% 70.6% 
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 The 3st row of the table indicates the no normalization results in different training and test 

data combinations. The 4nd row of the table indicates the spectral template matching with 

minimum mean square error method. The 5th row of the table indicates the classification accuracy 

adjusting normalization parameters (FL, FH, and α) adjusted to maximize classification accuracy. 

There is approximately a 7% improvement in gender matched and gander mixed case. In the 

gender mismatched case, there is approximately a 22% improvement.  

Note that in all the results reported for experiment 3, the classifier was trained only once, 

using normalized features from training speakers, based on the minimum mean square error 

approach. It is possible that test results would have improved even more if the classification 

optimization approach had also been used to refine the parameter settings for each of the training 

speakers, and then the neural network retrained. 

Experiment Set 4: Classification Accuracy as function of the Number of Hidden 

Nodes in the Neural Network 

The number of hidden nodes of the neural network classifier can further affect the 

performance accuracy.  For all experiments reported previously in this chapter, the neural 

network classifier had one hidden layer with 10 hidden nodes. In this experiment, the number of 

different hidden nodes was varied, and classification tests were conducted for each number of 

hidden nodes.  In general it was observed that if fewer than 5 hidden nodes or more than 35 

hidden nodes were used, test classification accuracy degraded. The best overall accuracy was 

obtained with 30 hidden nodes. Note that the accuracy of classification for both non-normalized 

and normalized speech data improved as the number of hidden nodes increased. The 

improvement from no normalization to normalization decreased slightly as the number of hidden 

nodes increased.  Table 11 gives the classification result with mixed gender training data and each 

gender as test data using 10 hidden nodes. Table 12 summarizes the classification results of 

experiments with 5 and 30 hidden nodes with mixed gender training data and female test data. 
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Table 11: Vowel classification rates for training and test data, with mixed gender training data and 
female or male test data, for various parameters used to control the normalization 
 

number of hidden nodes 10 10 
speaker gender condition (Male&Female vs Female)  (Male&Female vs Male)  
  Training data Test data Training data Test data 
number of speakers 25-25 25-25 120 120 
number of sentences 250-250 250-250 1200 1200 
no spkn 68.1% 61.7% 68.1% 64.3% 
spkn, (FL, FH, α, DCTC) 68.5% 63.4% 68.5% 65.4% 
FL, FH, and α  68.3% 63.1% 68.3% 65.3% 
FL, FH 69.7% 64.1% 69.7% 65.0% 

 

Table 12: Vowel classification rates for training and test data, with mixed gender training data and 
female or male test data, for various parameters used to control the normalization 
 

number of hidden nodes 5 30 
speaker gender condition (Male&Female vs Female)  (Male&Female vs Female)  
  Training data Test data Training data Test data 
number of speakers 25-25 120 25-25 120 
number of sentences 250-250 1200 250-250 1200 
no spkn 64.3% 59.2% 72.4% 63.7% 
spkn, (FL, FH, α, DCTC) 65.7% 62.7% 72.8% 64.4% 
FL, FH, and α  65.7% 62.8% 72.7% 64.1% 
FL, FH 66.2% 63.0% 74.4% 64.5% 

 

Experiment Set 5: Classification Accuracy with a Maximum Likelihood Classifier 

 Most of the experiments reported in the previous sections did not indicate much 

improvement due to speaker normalization. We hypothesized that perhaps the neural network was 

already able to discriminate such complex decision boundaries that the normalization was not 

needed. We further hypothesized that the effects of the normalization might be more apparent if a 

"simpler" classifier, with smoother decision boundaries, were used. One such classifier is a 

Gaussian-assumption “maximum-likelihood " classifier. This classifier is based on classifying 

each test vector according to the minimum distance to the training center for each category. There 

are three variations of the classifier. In the first variation, the distance measure is simply 
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Euclidean distance. In the second variation, the distance measure is Mahalonbis distance. This 

distance is based on the assumption that the covariance matrix of the data in each category is 

identical. The third distance measure is based on different covariance matrices for each category. 

 Tables 13 and 14 show the classification accuracy for various cases with the maximum 

likelihood classifier. Four different combinations were evaluated for gender matched training and 

test data in Table 13, and mixed gender for training with male or female speakers for test data in 

Table 14. Each case used all three normalization parameters FL, FH, and α. Three options to 

perform the distance measurement were used, indicated as <1>, <2>, <3> in tables 13 and 14, and 

corresponding to the three variations on distance as mentioned above.  

 

Table 13: Vowel classification rates with Gaussian-assumption classifiers for training and test data 
for males and females (tested separately) with same gender for both training and test data 
 

  (Male vs Male) (Female vs Female) 
  Training data Test data Training data Test data 
nspkn<3> 67.8% 66.3% 65.6% 64.9% 
nspkn<2> 71.6% 64.7% 69.3% 63.8% 
nspkn<1> 52.6% 50.9% 51.3% 50.8% 
spkn<3> 64.5% 64.9% 64.7% 63.9% 
spkn<2> 68.8% 64.8% 69.3% 63.1% 
spkn<1> 48.0% 49.1% 50.1% 49.6% 

 

Table 14: Vowel classification rates with Gaussian-assumption classifiers, used mixed gender 
training data, and either female or male test data (tested separately)  
 

   (Male&Female vs Female) (Male&Female vs Male) 
  Training data Test data Training data Test data 
nspkn<3> 62.8% 59.9% 62.8% 63.7% 
nspkn<2> 69.4% 61.3% 69.4% 65.0% 
nspkn<1> 50.0% 50.6% 50.0% 46.9% 
spkn<3> 63.6% 64.1% 63.6% 64.7% 
spkn<2> 68.5% 61.9% 68.5% 64.8% 
spkn<1> 47.9% 48.7% 47.9% 48.4% 

 

 The results obtained using the maximum likelihood classifier (distance measures <2> and 

<3>) are very close (typically 1 to 2% lower) to the results obtained using the neural network 

 



 58

classifier. The accuracy obtained with the Euclidean distance classifier (distance measure <1>), is 

considerably lower. However, in no cases are there large differences in accuracy between speaker 

normalized and non-normalized data. Thus the speaker normalization was also not found to be 

effective with this type of classifier. 

Summary 

 In this chapter, results of five vowel classification experiments conducted to evaluate the 

effectiveness of the speaker normalization are reported. The effects investigated in these 

experiments are:  

1. Different combinations of the normalization parameters. 

2. A mixture of male and females speakers for training with various typical speakers. 

3. Parameter adjustment by classification performance. 

4. Performance evaluation with various numbers of hidden nodes. 

5. Performance evaluation with Gaussian-based Maximum-Likelihood classifiers. 

 

These experiments indicate that the spectral template matching based on minimizing 

mean square error does reduce differences among speakers enough to improve classification 

performance when training and test speakers differ in gender.     Only small improvements are 

obtained when the training and test data are each gender mixed.  For the case when both the 

training and test data are all male or all female, virtually no improvement was obtained due to 

speaker normalization.  
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CHAPTER V 

 

 

CONCLUSIONS AND FUTURE IMPROVEMENTS 

 

In this thesis, two main topics were considered in relation to digital library applications. 

First, a survey of widely used multimedia file formats and commonly applied codecs were 

compared, with respect to digital library usage.  The intention is to preserve high audio quality, so 

that automatic speech recognition algorithms will perform as well as possible, but with only 

reasonable video quality so that overall file sizes will be small. Of all the commonly available 

multimedia formats, the Microsoft AVI files appear to best meet these requirements.  

The second, and main topic of this thesis was the development of a new vocal tract length 

speaker normalization method.   The algorithm is based on determining three speaker parameters, 

FH, FL, α such that the mean square error between spectral templates of speakers is minimized. 

The goal of the normalization is to reduce spectral variability among speakers, and thus hopefully 

improve the accuracy of ASR. Several experiments were conducted, and results reported, to 

evaluate the effectiveness of the speaker normalization. 

The primary observations and conclusions from the evaluation experiments are: 

1. The normalization is effective enough to greater improve classifier accuracy if the 

classifier is trained on male speech and tested on female speech, or vice-versa.   That is, the 

normalization appears to account for the primary spectral differences between male and 

female speakers. 

2. The normalization is not effective enough to significantly improve classifier accuracy 

when training and test data are matched.   Thus the normalization does not appear to 

significantly reduce spectral differences among speakers of the same gender. 
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3. Classification results for normalized speech do not strongly depend on the selection of the 

typical speaker that is used as the prototype for matching. 

4. Conclusions mentioned above are valid independently of whether a neural network for 

Gaussian Maximum-Likelihood classifier is used. 

5. If the three frequency parameters are adjusted for each speaker based on neural network 

accuracy, it is possible to find improved values for the parameters, in the sense that 

classification accuracy can be improved with the adjusted parameter values. 

 

Although the VTLN algorithm based on minimum mean square error spectral template 

matching was not effective for improving classification accuracy, there are ways that the 

algorithm might be improved. A few possible ways are listed here. 

1. As reported in chapter 4, the frequency domain parameters based on classifier performance 

did result in considerably improved accuracy. This gives a kind of "existence" proof that 

classification accuracy can be improved with better speaker-specific values of FL, FH, and 

α. Therefore a method for determining FL, FH, and α other than the one based on mean 

square error should be explored. 

2. In practice, test speech is likely to have poor audio quality or might be from a non-native 

speaker with an accent. It is possible that the speaker normalization may make more of a 

difference for this poorer quality speech than for the studio quality speech used in the 

experiments reported in this thesis. 

3. As mentioned in chapters 3 and 4, the longer speech segments result in better spectral 

templates. In the case of digital libraries, the speech samples from each speaker are 

typically much longer than 30 seconds. Thus, there is potential to create better spectral 

templates. 

4. The speaker normalization should be tested using a complete ASR system, rather than just 

vowels. 
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