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The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent
times, however, communication and collaboration between the two fields has become less commonplace.
In this article, we argue that better understanding biological brains could play a vital role in building intelligent
machines. We survey historical interactions between the AI and neuroscience fields and emphasize current
advances in AI that have been inspired by the study of neural computation in humans and other animals. We
conclude by highlighting shared themes that may be key for advancing future research in both fields.
In recent years, rapid progress has been made in the related

fields of neuroscience and artificial intelligence (AI). At the

dawn of the computer age, work on AI was inextricably inter-

twined with neuroscience and psychology, andmany of the early

pioneers straddled both fields, with collaborations between

these disciplines proving highly productive (Churchland and

Sejnowski, 1988; Hebb, 1949; Hinton et al., 1986; Hopfield,

1982; McCulloch and Pitts, 1943; Turing, 1950). However,

more recently, the interaction has become much less common-

place, as both subjects have grown enormously in complexity

and disciplinary boundaries have solidified. In this review, we

argue for the critical and ongoing importance of neuroscience

in generating ideas that will accelerate and guide AI research

(see Hassabis commentary in Brooks et al., 2012).

We begin with the premise that building human-level general

AI (or ‘‘Turing-powerful’’ intelligent systems; Turing, 1936) is a

daunting task, because the search space of possible solutions

is vast and likely only very sparsely populated. We argue that

this therefore underscores the utility of scrutinizing the inner

workings of the human brain— the only existing proof that

such an intelligence is even possible. Studying animal cognition

and its neural implementation also has a vital role to play, as it

can provide a window into various important aspects of higher-

level general intelligence.

The benefits to developing AI of closely examining biological

intelligence are two-fold. First, neuroscience provides a rich

source of inspiration for new types of algorithms and architec-

tures, independent of and complementary to the mathematical

and logic-based methods and ideas that have largely dominated

traditional approaches to AI. For example, were a new facet of

biological computation found to be critical to supporting a cogni-

tive function, then we would consider it an excellent candidate

for incorporation into artificial systems. Second, neuroscience

can provide validation of AI techniques that already exist. If a

known algorithm is subsequently found to be implemented in

the brain, then that is strong support for its plausibility as an in-

tegral component of an overall general intelligence system.

Such clues can be critical to a long-term research program

when determining where to allocate resources most produc-
tively. For example, if an algorithm is not quite attaining the level

of performance required or expected, but we observe it is core to

the functioning of the brain, then we can surmise that redoubled

engineering efforts geared to making it work in artificial systems

are likely to pay off.

Of course from a practical standpoint of building an AI

system, we need not slavishly enforce adherence to biological

plausibility. From an engineering perspective, what works is

ultimately all that matters. For our purposes then, biological

plausibility is a guide, not a strict requirement. What we are

interested in is a systems neuroscience-level understanding

of the brain, namely the algorithms, architectures, functions,

and representations it utilizes. This roughly corresponds to

the top two levels of the three levels of analysis that Marr

famously stated are required to understand any complex bio-

logical system (Marr and Poggio, 1976): the goals of the sys-

tem (the computational level) and the process and computa-

tions that realize this goal (the algorithmic level). The precise

mechanisms by which this is physically realized in a biological

substrate are less relevant here (the implementation level).

Note this is where our approach to neuroscience-inspired AI

differs from other initiatives, such as the Blue Brain Project

(Markram, 2006) or the field of neuromorphic computing sys-

tems (Esser et al., 2016), which attempt to closely mimic or

directly reverse engineer the specifics of neural circuits (albeit

with different goals in mind). By focusing on the computational

and algorithmic levels, we gain transferrable insights into gen-

eral mechanisms of brain function, while leaving room to

accommodate the distinctive opportunities and challenges

that arise when building intelligent machines in silico.

The following sections unpack these points by considering the

past, present, and future of the AI-neuroscience interface.

Before beginning, we offer a clarification. Throughout this article,

we employ the terms ‘‘neuroscience’’ and ‘‘AI.’’ We use these

terms in the widest possible sense. When we say neuroscience,

we mean to include all fields that are involved with the study of

the brain, the behaviors that it generates, and the mechanisms

by which it does so, including cognitive neuroscience, systems

neuroscience and psychology. When we say AI, we mean work
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in machine learning, statistics, and AI research that aims to build

intelligent machines (Legg and Hutter, 2007).

We begin by considering the origins of two fields that are

pivotal for current AI research, deep learning and reinforcement

learning, both of which took root in ideas from neuroscience. We

then turn to the current state of play in AI research, noting many

cases where inspiration has been drawn (sometimes without

explicit acknowledgment) from concepts and findings in neuro-

science. In this section, we particularly emphasize instances

where we have combined deep learning with other approaches

from across machine learning, such as reinforcement learning

(Mnih et al., 2015), Monte Carlo tree search (Silver et al., 2016),

or techniques involving an external content-addressable mem-

ory (Graves et al., 2016). Next, we consider the potential for

neuroscience to support future AI research, looking at both the

most likely research challenges and some emerging neurosci-

ence-inspired AI techniques. While our main focus will be on

the potential for neuroscience to benefit AI, our final section

will briefly consider ways in which AI may be helpful to neuro-

science and the broader potential for synergistic interactions

between these two fields.

The Past
Deep Learning

As detailed in a number of recent reviews, AI has been revolu-

tionized over the past few years by dramatic advances in neural

network, or ‘‘deep learning,’’ methods (LeCun et al., 2015;

Schmidhuber, 2014). As the moniker ‘‘neural network’’ might

suggest, the origins of these AI methods lie directly in neuro-

science. In the 1940s, investigations of neural computation

began with the construction of artificial neural networks that

could compute logical functions (McCulloch and Pitts, 1943).

Not long after, others proposed mechanisms by which networks

of neurons might learn incrementally via supervisory feedback

(Rosenblatt, 1958) or efficiently encode environmental statistics

in an unsupervised fashion (Hebb, 1949). These mechanisms

opened up the field of artificial neural network research, and

they continue to provide the foundation for contemporary

research on deep learning (Schmidhuber, 2014).

Not long after this pioneering work, the development of

the backpropagation algorithm allowed learning to occur in

networks composed of multiple layers (Rumelhart et al., 1985;

Werbos, 1974). Notably, the implications of this method for

understanding intelligence, including AI, were first appreciated

by a group of neuroscientists and cognitive scientists, working

under the banner of parallel distributed processing (PDP)

(Rumelhart et al., 1986). At the time, most AI research was

focused on building logical processing systems based on serial

computation, an approach inspired in part by the notion that

human intelligence involves manipulation of symbolic represen-

tations (Haugeland, 1985). However, there was a growing sense

in some quarters that purely symbolic approaches might be too

brittle and inflexible to solve complex real-world problems of the

kind that humans routinely handle. Instead, a growing foundation

of knowledge about the brain seemed to point in a very different

direction, highlighting the role of stochastic and highly parallel-

ized information processing. Building on this, the PDP move-

ment proposed that human cognition and behavior emerge
246 Neuron 95, July 19, 2017
from dynamic, distributed interactions within networks of simple

neuron-like processing units, interactions tuned by learning pro-

cedures that adjust system parameters in order to minimize error

or maximize reward.

Although the PDP approach was at first applied to relatively

small-scale problems, it showed striking success in accounting

for a wide range of human behaviors (Hinton et al., 1986). Along

the way, PDP research introduced a diverse collection of ideas

that have had a sustained influence on AI research. For example,

current machine translation research exploits the notion that

words and sentences can be represented in a distributed

fashion (i.e., as vectors) (LeCun et al., 2015), a principle that

was already ingrained in early PDP-inspired models of sentence

processing (St. John andMcClelland, 1990). Building on the PDP

movement’s appeal to biological computation, current state-

of-the-art convolutional neural networks (CNNs) incorporate

several canonical hallmarks of neural computation, including

nonlinear transduction, divisive normalization, and maximum-

based pooling of inputs (Yamins and DiCarlo, 2016). These oper-

ations were directly inspired by single-cell recordings from the

mammalian visual cortex that revealed how visual input is filtered

and pooled in simple and complex cells in area V1 (Hubel and

Wiesel, 1959). Moreover, current network architectures replicate

the hierarchical organization of mammalian cortical systems,

with both convergent and divergent information flow in succes-

sive, nested processing layers (Krizhevsky et al., 2012; LeCun

et al., 1989; Riesenhuber and Poggio, 1999; Serre et al., 2007),

following ideas first advanced in early neural network models

of visual processing (Fukushima, 1980). In both biological and

artificial systems, successive non-linear computations transform

raw visual input into an increasingly complex set of features,

permitting object recognition that is invariant to transformations

of pose, illumination, or scale.

As the field of deep learning evolved out of PDP research into a

core area within AI, it was bolstered by new ideas, such as the

development of deep belief networks (Hinton et al., 2006) and

the introduction of large datasets inspired by research on human

language (Deng et al., 2009). During this period, it continued to

draw key ideas from neuroscience. For example, biological con-

siderations informed the development of successful regulariza-

tion schemes that support generalization beyond training data.

One such scheme, in which only a subset of units participate in

the processing of a given training example (‘‘dropout’’), was

motivated by the stochasticity that is inherent in biological sys-

tems populated by neurons that fire with Poisson-like statistics

(Hinton et al., 2012). Here and elsewhere, neuroscience has

provided initial guidance toward architectural and algorithmic

constraints that lead to successful neural network applications

for AI.

Reinforcement Learning

Alongside its important role in the development of deep learning,

neuroscience was also instrumental in erecting a second pillar of

contemporary AI, stimulating the emergence of the field of rein-

forcement learning (RL). RL methods address the problem of

how tomaximize future reward bymapping states in the environ-

ment to actions and are among the most widely used tools in AI

research (Sutton and Barto, 1998). Although it is not widely

appreciated among AI researchers, RL methods were originally
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inspired by research into animal learning. In particular, the

development of temporal-difference (TD) methods, a critical

component of many RL models, was inextricably intertwined

with research into animal behavior in conditioning experiments.

TD methods are real-time models that learn from differences

between temporally successive predictions, rather than having

towait until the actual reward is delivered. Of particular relevance

was an effect called second-order conditioning, where affective

significance is conferred on a conditioned stimulus (CS) through

association with another CS rather than directly via association

with the unconditioned stimulus (Sutton and Barto, 1981). TD

learning provides a natural explanation for second-order condi-

tioning and indeed has gone on to explain a much wider range

of findings from neuroscience, as we discuss below.

Here, as in the case of deep learning, investigations initially

inspired by observations from neuroscience led to further devel-

opments that have strongly shaped the direction of AI research.

From their neuroscience-informed origins, TD methods and

related techniques have gone on to supply the core technology

for recent advances in AI, ranging from robotic control (Hafner

and Riedmiller, 2011) to expert play in backgammon (Tesauro,

1995) and Go (Silver et al., 2016).

The Present
Reading the contemporary AI literature, one gains the impres-

sion that the earlier engagement with neuroscience has dimin-

ished. However, if one scratches the surface, one can uncover

many cases in which recent developments have been inspired

and guided by neuroscientific considerations. Here, we look at

four specific examples.

Attention

The brain does not learn by implementing a single, global optimi-

zation principle within a uniform and undifferentiated neural

network (Marblestone et al., 2016). Rather, biological brains

are modular, with distinct but interacting subsystems underpin-

ning key functions such as memory, language, and cognitive

control (Anderson et al., 2004; Shallice, 1988). This insight from

neuroscience has been imported, often in an unspoken way,

into many areas of current AI.

One illustrative example is recent AI work on attention. Up until

quite lately, most CNN models worked directly on entire images

or video frames, with equal priority given to all image pixels at the

earliest stage of processing. The primate visual system works

differently. Rather than processing all input in parallel, visual

attention shifts strategically among locations and objects,

centering processing resources and representational coordi-

nates on a series of regions in turn (Koch and Ullman, 1985;

Moore and Zirnsak, 2017; Posner and Petersen, 1990). Detailed

neurocomputational models have shown how this piecemeal

approach benefits behavior, by prioritizing and isolating the in-

formation that is relevant at any given moment (Olshausen

et al., 1993; Salinas and Abbott, 1997). As such, attentional

mechanisms have been a source of inspiration for AI architec-

tures that take ‘‘glimpses’’ of the input image at each step,

update internal state representations, and then select the next

location to sample (Larochelle and Hinton, 2010; Mnih et al.,

2014) (Figure 1A). One such network was able to use this selec-

tive attentional mechanism to ignore irrelevant objects in a
scene, allowing it to performwell in challenging object classifica-

tion tasks in the presence of clutter (Mnih et al., 2014). Further,

the attentional mechanism allowed the computational cost

(e.g., number of network parameters) to scale favorably with

the size of the input image. Extensions of this approach were

subsequently shown to produce impressive performance at diffi-

cult multi-object recognition tasks, outperforming conventional

CNNs that process the entirety of the image, both in terms of

accuracy and computational efficiency (Ba et al., 2015), as well

as enhancing image-to-caption generation (Xu et al., 2015).

While attention is typically thought of as an orienting mecha-

nism for perception, its ‘‘spotlight’’ can also be focused inter-

nally, toward the contents of memory. This idea, a recent focus

in neuroscience studies (Summerfield et al., 2006), has also

inspired work in AI. In some architectures, attentional mecha-

nisms have been used to select information to be read out

from the internal memory of the network. This has helped provide

recent successes in machine translation (Bahdanau et al., 2014)

and led to important advances on memory and reasoning tasks

(Graves et al., 2016). These architectures offer a novel imple-

mentation of content-addressable retrieval, which was itself a

concept originally introduced to AI from neuroscience (Hopfield,

1982).

One further area of AI where attention mechanisms have

recently proven useful focuses on generative models, systems

that learn to synthesize or ‘‘imagine’’ images (or other kinds of

data) that mimic the structure of examples presented during

training. Deep generative models (i.e., generative models imple-

mented as multi-layered neural networks) have recently shown

striking successes in producing synthetic outputs that capture

the form and structure of real visual scenes via the incorporation

of attention-like mechanisms (Hong et al., 2015; Reed et al.,

2016). For example, in one state-of-the-art generative model

known as DRAW, attention allows the system to build up an im-

age incrementally, attending to one portion of a ‘‘mental canvas’’

at a time (Gregor et al., 2015).

Episodic Memory

A canonical theme in neuroscience is that that intelligent

behavior relies on multiple memory systems (Tulving, 1985).

These will include not only reinforcement-based mechanisms,

which allow the value of stimuli and actions to be learned incre-

mentally and through repeated experience, but also instance-

based mechanisms, which allow experiences to be encoded

rapidly (in ‘‘one shot’’) in a content-addressable store (Gallistel

and King, 2009). The latter form of memory, known as episodic

memory (Tulving, 2002), is most often associated with circuits

in the medial temporal lobe, prominently including the hippo-

campus (Squire et al., 2004).

One recent breakthrough in AI has been the successful inte-

gration of RL with deep learning (Mnih et al., 2015; Silver et al.,

2016). For example, the deep Q-network (DQN) exhibits expert

play on Atari 2600 video games by learning to transform a vector

of image pixels into a policy for selecting actions (e.g., joystick

movements). One key ingredient in DQN is ‘‘experience replay,’’

whereby the network stores a subset of the training data in an

instance-based way, and then ‘‘replays’’ it offline, learning

anew from successes or failures that occurred in the past. Expe-

rience replay is critical to maximizing data efficiency, avoids the
Neuron 95, July 19, 2017 247



Figure 1. Parallels between AI Systems and Neural Models of Behavior
(A) Attention. Schematic of recurrent attention model (Mnih et al., 2014). Given an input image (xt) and foveal location (lt � 1), the glimpse sensor extracts a multi-
resolution ‘‘retinal’’ representation (r(xt, lt � 1)). This is the input to a glimpse network, which produces a representation that is passed to the LSTM core, which
defines the next location to attend to (lt) (and classification decision).
(B) Schematic of complementary learning systems and episodic control. Top: non-parametric fast learning hippocampal system and parametric slow-learning
neocortical system (i.e., parametric: a fixed number of parameters; non-parametric: the number of parameters can growwith the amount of data). Hippocampus/
instance-based system supports rapid behavioral adjustment (i.e., episodic control; Blundell et al., 2016) and experience replay, which supports interleaved
training (i.e., on random subsets of experiences) of deep neural network (Mnih et al., 2015) or neocortex. Bottom: episodic control (from Blundell et al., 2016).
Game states (Atari shown) are stored within buffers (one for each possible action) together with the highest (discounted) return experienced from that state (i.e.,
Q-value). When experiencing a new state, the policy (p) is determined by averaging the Q-value across the k nearest neighbors in each action buffer and selecting
the action with the highest expected return.
(C) Illustration of parallels betweenmacroscopic organization of models of workingmemory and the differentiable neural computer (Graves et al., 2016) (or Neural
Turing Machine). The network controller (typically recurrent) is analogous to the central executive (typically viewed to be instantiated in the prefrontal cortex) and
attends/reads/writes to an external memory matrix (phonological loo /sketchpad in working memory model). Architecture is shown performing copy task.
(D) Illustration of parallel between neurobiological models of synaptic consolidation and the elastic weight consolidation (EWC) algorithm. Left: two-photon
structural imaging data showing learning-related increase in size of dendrites (each corresponding approximately to a single excitatory synapse) that persists for
months (from Yang et al., 2009). Middle: schematic of Cascademodel of synaptic consolidation (adapted with permission from Fusi et al., 2005). Binary synapses
transition betweenmetaplastic states which aremore/less plastic (least plastic states at bottom of diagram), as a function of prior potentiation/depression events.
Right panel: schematic of elastic weight consolidation (EWC) algorithm. After training on the first task (A), network parameters are optimized for good perfor-
mance: single weight (w1

A* illustrated). EWC implements a constraint analogous to a spring that anchors weights to the previously found solution (i.e., for task A),
when training on a new task (e.g., task B), with the stiffness of the spring proportional to the importance of that parameter for task A performance (Kirkpatrick
et al., 2017).
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destabilizing effects of learning from consecutive correlated ex-

periences, and allows the network to learn a viable value function

even in complex, highly structured sequential environments such

as video games.

Critically, experience replay was directly inspired by theories

that seek to understand how the multiple memory systems in

the mammalian brain might interact. According to a prominent

view, animal learning is supported by parallel or ‘‘complemen-

tary’’ learning systems in the hippocampus and neocortex (Ku-

maran et al., 2016; McClelland et al., 1995). The hippocampus

acts to encode novel information after a single exposure (one-
248 Neuron 95, July 19, 2017
shot learning), but this information is gradually consolidated to

the neocortex in sleep or resting periods that are interleaved

with periods of activity. This consolidation is accompanied by

replay in the hippocampus and neocortex, which is observed

as a reinstatement of the structured patterns of neural activity

that accompanied the learning event (O’Neill et al., 2010; Skaggs

and McNaughton, 1996) (Figure 1B). This theory was originally

proposed as a solution to the well-known problem that in con-

ventional neural networks, correlated exposure to sequential

task settings leads to mutual interference among policies, re-

sulting in catastrophic forgetting of one task as a new one is
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learned. The replay buffer in DQN might thus be thought of as a

very primitive hippocampus, permitting complementary learning

in silico much as is proposed for biological brains. Later work

showed that the benefits of experience replay in DQN are

enhanced when replay of highly rewarding events is prioritized

(Schaul et al., 2015), just as hippocampal replay seems to favor

events that lead to high levels of reinforcement (Singer and

Frank, 2009).

Experiences stored in amemory buffer can not only be used to

gradually adjust the parameters of a deep network toward an

optimal policy, as in DQN, but can also support rapid behavioral

change based on an individual experience. Indeed, theoretical

neuroscience has argued for the potential benefits of episodic

control, whereby rewarded action sequences can be internally

re-enacted from a rapidly updateable memory store, imple-

mented in the biological case in the hippocampus (Gershman

and Daw, 2017). Further, normative accounts show that episodic

control is particularly advantageous over other learning mecha-

nisms when limited experience of the environment has been

obtained (Lengyel and Dayan, 2007).

Recent AI research has drawn on these ideas to overcome the

slow learning characteristics of deep RL networks, developing

architectures that implement episodic control (Blundell et al.,

2016). These networks store specific experiences (e.g., actions

and reward outcomes associated with particular Atari game

screens) and select new actions based on the similarity between

the current situation input and the previous events stored in

memory, taking the reward associatedwith those previous events

into account (Figure 1B). As predicted from the initial, neurosci-

ence-based work (Lengyel and Dayan, 2007), artificial agents

employing episodic control show striking gains in performance

over deepRLnetworks, particularly early onduring learning (Blun-

dell et al., 2016). Further, theyareable toachievesuccesson tasks

that depend heavily on one-shot learning, where typical deep RL

architectures fail. Moreover, episodic-like memory systemsmore

generally have shown considerable promise in allowing new con-

cepts to be learned rapidly based on only a few examples (Vinyals

et al., 2016). In the future, it will be interesting to harness the

benefits of rapid episodic-like memory and more traditional

incremental learning in architectures that incorporate both of

these components within an interacting framework that mirrors

the complementary learning systems in mammalian brain. We

discuss these future perspectives below in more detail later, in

‘‘Imagination and planning.’’

Working Memory

Human intelligence is characterized by a remarkable ability to

maintain and manipulate information within an active store,

known as working memory, which is thought to be instantiated

within the prefrontal cortex and interconnected areas (Gold-

man-Rakic, 1990). Classic cognitive theories suggest that this

functionality depends on interactions between a central controller

(‘‘executive’’) and separate, domain-specific memory buffers

(e.g., visuo-spatial sketchpad) (Baddeley, 2012). AI research

has drawn inspiration from these models, by building architec-

tures that explicitly maintain information over time. Historically,

such efforts began with the introduction of recurrent neural

network architectures displaying attractor dynamics and rich

sequential behavior, work directly inspired by neuroscience
(Elman, 1990; Hopfield and Tank, 1986; Jordan, 1997). This

work enabled later, more detailed modeling of human working

memory (Botvinick and Plaut, 2006; Durstewitz et al., 2000), but

it also laid the foundation for further technical innovations that

have proved pivotal in recent AI research. In particular, one can

see close parallels between the learning dynamics in these early,

neuroscience-inspired networks and those in long-short-term

memory (LSTM) networks, which subsequently achieved state

of the art performance across a variety of domains. LTSMs allow

information to be gated into a fixed activity state and maintained

until an appropriate output is required (Hochreiter and Schmid-

huber, 1997). Variants of this type of network have shown some

striking behaviors in challenging domains, such as learning to

respond to queries about the latent state of variables after training

on computer code (Zaremba and Sutskever, 2014).

In ordinary LSTM networks, the functions of sequence control

and memory storage are closely intertwined. This contrasts with

classic models of human working memory, which, as mentioned

above, separate these two. This neuroscience-based schema

has recently inspired more complex AI architectures where con-

trol and storage are supported by distinct modules (Graves et al.,

2014, 2016; Weston et al., 2014). For example, the differential

neural computer (DNC) involves a neural network controller

that attends to and reads/writes from an external memory matrix

(Graves et al., 2016). This externalization allows the network

controller to learn from scratch (i.e., via end-to-end optimization)

to perform awide range of complexmemory and reasoning tasks

that currently elude LSTMs, such as finding the shortest

path through a graph-like structure, such as a subway map, or

manipulating blocks in a variant of the Tower of Hanoi task

(Figure 1C). These types of problems were previously argued

to depend exclusively on symbol processing and variable

binding and therefore beyond the purview of neural networks

(Fodor and Pylyshyn, 1988; Marcus, 1998). Of note, although

both LSTMs and the DNC are described here in the context of

working memory, they have the potential to maintain information

over many thousands of training cycles and so may thus be

suited to longer-term forms of memory, such as retaining and

understanding the contents of a book.

Continual Learning

Intelligent agents must be able to learn and remember many

different tasks that are encountered over multiple timescales.

Both biological and artificial agents must thus have a capacity

for continual learning, that is, an ability to master new tasks

without forgetting how to perform prior tasks (Thrun andMitchell,

1995). While animals appear relatively adept at continual

learning, neural networks suffer from the problem of catastrophic

forgetting (French, 1999; McClelland et al., 1995). This occurs as

the network parameters shift toward the optimal state for per-

forming the second of two successive tasks, overwriting the

configuration that allowed them to perform the first. Given the

importance of continual learning, this liability of neural networks

remains a significant challenge for the development of AI.

In neuroscience, advanced neuroimaging techniques (e.g.,

two-photon imaging) now allow dynamic in vivo visualization

of the structure and function of dendritic spines during

learning, at the spatial scale of single synapses (Nishiyama

and Yasuda, 2015). This approach can be used to study
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neocortical plasticity during continual learning (Cichon and

Gan, 2015; Hayashi-Takagi et al., 2015; Yang et al., 2009).

There is emerging evidence for specialized mechanisms that

protect knowledge about previous tasks from interference

during learning on a new task. These include decreased syn-

aptic lability (i.e., lower rates of plasticity) in a proportion of

strengthened synapses, mediated by enlargements to den-

dritic spines that persist despite learning of other tasks

(Cichon and Gan, 2015; Yang et al., 2009) (Figure 1D). These

changes are associated with retention of task performance

over several months, and indeed, if they are ‘‘erased’’ with

synaptic optogenetics, this leads to forgetting of the task

(Hayashi-Takagi et al., 2015). These empirical insights are

consistent with theoretical models that suggest that memories

can be protected from interference through synapses that

transition between a cascade of states with different levels

of plasticity (Fusi et al., 2005) (Figure 1D).

Together, these findings from neuroscience have inspired the

development of AI algorithms that address the challenge of

continual learning in deep networks by implementing of a form

of ‘‘elastic’’ weight consolidation (EWC) (Kirkpatrick et al.,

2017), which acts by slowing down learning in a subset of

network weights identified as important to previous tasks,

thereby anchoring these parameters to previously found solu-

tions (Figure 1D). This allows multiple tasks to be learned without

an increase in network capacity, with weights shared efficiently

between tasks with related structure. In this way, the EWC algo-

rithm allows deep RL networks to support continual learning at

large scale.

The Future
In AI, the pace of recent research has been remarkable. Artificial

systems now match human performance in challenging object

recognition tasks (Krizhevsky et al., 2012) and outperform expert

humans in dynamic, adversarial environments such as Atari

video games (Mnih et al., 2015), the ancient board game of Go

(Silver et al., 2016), and imperfect information games such as

heads-up poker (Morav�cı́k et al., 2017). Machines can autono-

mously generate synthetic natural images and simulations of

human speech that are almost indistinguishable from their real-

world counterparts (Lake et al., 2015; van den Oord et al.,

2016), translate between multiple languages (Wu et al., 2016),

and create ‘‘neural art’’ in the style of well-known painters (Gatys

et al., 2015).

However, much work is still needed to bridge the gap between

machine and human-level intelligence. In working toward closing

this gap, we believe ideas from neuroscience will become

increasingly indispensable. In neuroscience, the advent of new

tools for brain imaging and genetic bioengineering have begun

to offer a detailed characterization of the computations occurring

in neural circuits, promising a revolution in our understanding of

mammalian brain function (Deisseroth and Schnitzer, 2013). The

relevance of neuroscience, both as a roadmap for the AI

research agenda and as a source of computational tools is

particularly salient in the following key areas.

Intuitive Understanding of the Physical World

Recent perspectives emphasize key ingredients of human intel-

ligence that are already well developed in human infants but
250 Neuron 95, July 19, 2017
lacking in most AI systems (Gilmore et al., 2007; Gopnik and

Schulz, 2004; Lake et al., 2016). Among these capabilities are

knowledge of core concepts relating to the physical world,

such as space, number, and objectness, which allow people to

construct compositional mental models that can guide inference

and prediction (Battaglia et al., 2013; Spelke and Kinzler, 2007).

AI research has begun to explore methods for addressing this

challenge. For example, novel neural network architectures have

been developed that interpret and reason about scenes in a

humanlike way, by decomposing them into individual objects

and their relations (Battaglia et al., 2016; Chang et al., 2016;

Eslami et al., 2016) (Figures 2A and 2B). In some cases, this

has resulted in human-level performance on challenging

reasoning tasks (Santoro et al., 2017). In other work, deep RL

has been used to capture the processes by which children

gain commonsense understanding of the world through interac-

tive experiments (Denil et al., 2016). Relatedly, deep generative

models have been developed that are able to construct rich

object models from raw sensory inputs (Higgins et al., 2016).

These leverage constraints first identified in neuroscience,

such as redundancy reduction (Barlow, 1959), which encourage

the emergence of disentangled representations of independent

factors such as shape and position (Figure 2C). Importantly,

the latent representations learned by such generative models

exhibit compositional properties, supporting flexible transfer to

novel tasks (Eslami et al., 2016; Higgins et al., 2016; Rezende

et al., 2016a). In the caption associated with Figure 2, we provide

more detailed information about these networks.

Efficient Learning

Human cognition is distinguished by its ability to rapidly learn

about new concepts from only a handful of examples, leveraging

prior knowledge to enable flexible inductive inferences. In order

to highlight this human ability as a challenge for AI, Lake and col-

leagues recently posed a ‘‘characters challenge’’ (Lake et al.,

2016). Here, an observer must distinguish novel instances of

an unfamiliar handwritten character from other, similar items af-

ter viewing only a single exemplar. Humans can perform this task

well, but it is difficult for classical AI systems.

Encouragingly, recent AI algorithms have begun to make

progress on tasks like the characters challenge, through both

structured probabilistic models (Lake et al., 2015) and deep

generative models based on the abovementioned DRAW

model (Rezende et al., 2016b). Both classes of system can

make inferences about a new concept despite a poverty of

data and generate new samples from a single example concept

(Figure 2D). Further, recent AI research has developed networks

that ‘‘learn to learn,’’ acquiring knowledge on new tasks by

leveraging prior experience with related problems, to support

one-shot concept learning (Santoro et al., 2016; Vinyals et al.,

2016) and accelerating learning in RL tasks (Wang et al., 2016).

Once again, this builds on concepts from neuroscience: learning

to learn was first explored in studies of animal learning (Harlow,

1949), and has subsequently been studied in developmental

psychology (Adolph, 2005; Kemp et al., 2010; Smith, 1995).

Transfer Learning

Humans also excel at generalizing or transferring generalized

knowledge gained in one context to novel, previously unseen do-

mains (Barnett and Ceci, 2002; Holyoak and Thagard, 1997). For



Figure 2. Examples of Recent AI Systems that Have Been Inspired by Neuroscience
(A) Intuitive physics knowledge. Illustration of the ability of the interaction network (Battaglia et al., 2016) to reason and make predictions about the physical
interaction between objects in the bouncing ball problem (top) and spaceship problem (bottom: Hamrick et al., 2017). The network takes as input objects and their
relations and accurately simulates their trajectories by modeling collisions, gravitational forces, etc., effectively acting as a learned physics engine.
(B) Scene understanding through structured generative models (Eslami et al., 2016). Top: iterative inference in a variational auto-encoder architecture. The
recurrent network attends to one object at a time, infers its attributes, and performs the appropriate number of inference steps for each input image (x). Scenes are
described in terms of groups of latent variables (Z) that specify presence/absence (zpres), properties such as position (zwhere), and shape (zwhat). Inference network
(black connections), and the generator network (red arrow), which produces reconstructed image (y). Bottom: illustration of iterative inference in multiple MNIST
images (green indicates the first step and red the second step). Right: inference about the position/shape of multiple objects in realistic scene (note that inference
is accurate, and hence it is difficult to distinguish inferred positions [red line] from ground truth). Latent representations in this network speed learning on
downstream tasks (e.g., addition of MNIST digits) (not depicted; see Eslami et al., 2016).
(C) Unsupervised learning of core object properties (Higgins et al., 2016) is shown. Left: schematic illustrating learning of disentangled factors of sensory input by
deep generative model (left: variational auto-encoder [VAE]), whose representations can speed learning on downstream tasks (Eslami et al., 2016), as compared
to relatively entangled representation learned by typical deep network (e.g., DQN: right). Right panel illustrates latent representation of VAE; latent units coding for
factors of variation, such as object position, rotation, and scale, are shown by effect of independently changing the activity of one latent unit. Such networks can
learn intuitive concepts such as ‘‘objectness,’’ being able to support zero-shot transfer (i.e., reasoning about position or scale of an unseen object with a novel
shape; Higgins et al., 2016).
(D) One-shot generalization in deep sequential generative models (Rezende et al., 2016b) is shown. Deep generative models specify a causal process for
generating the observed data using a hierarchy of latent variables, with attentional mechanisms supporting sequential inference. Illustrated are generated
samples from the Rezende et al. model, conditioned on a single novel character from a held-out alphabet from the Omniglot dataset (Lake et al., 2015),
demonstrating abilities that mirror human abilities to generalize from a single concept.
(E) Imagination of realistic environments in deep networks (Chiappa et al., 2017) is shown. Generated (left) and real (right) frames from procedural mazes (i.e., new
maze layout on each episode) produced by an action-conditional recurrent network model �150 and 200 frames after the last observed image, respectively.
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example, a human who can drive a car, use a laptop computer,

or chair a committee meeting is usually able act effectively when

confrontedwith an unfamiliar vehicle, operating system, or social

situation. Progress is being made in developing AI architectures

capable of exhibiting strong generalization or transfer, for

example by enabling zero-shot inferences about novel shapes

outside the training distribution based on compositional repre-

sentations (Higgins et al., 2016; Figure 2C). Others have shown

that a new class of architecture, known as a progressive

network, can leverage knowledge gained in one video game to
learn rapidly in another, promising the sort of ‘‘far transfer’’ that

is characteristic of human skill acquisition (Rusu et al., 2016a).

Progressive networks have also been successfully employed

to transfer knowledge for a simulated robotic environment to a

real robot arm, massively reducing the training time required

on the real world (Rusu et al., 2016b). Intriguingly, the proposed

architecture bears some resemblance to a successful computa-

tional model of sequential task learning in humans (Collins and

Koechlin, 2012; Donoso et al., 2014). In the neuroscience litera-

ture, one hallmark of transfer learning has been the ability to
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reason relationally, and AI researchers have also begun to make

progress in building deep networks that address problems of this

nature, for example by solving visual analogies (Reed et al.,

2015). More generally however, how humans or other animals

achieve this sort of high-level transfer learning is unknown, and

remains a relatively unexplored topic in neuroscience. New

advances on this front could provide critical insights to spur AI

research toward the goal of lifelong learning in agents, and we

encourage neuroscientists to engage more deeply with this

question.

At the level of neural coding, this kind of transfer of abstract

structured knowledge may rely on the formation of conceptual

representations that are invariant to the objects, individuals, or

scene elements that populate a sensory domain but code instead

for abstract, relational information amongpatterns of inputs (Dou-

mas et al., 2008). However, we currently lack direct evidence for

the existence of such codes in the mammalian brain. Neverthe-

less, one recent report made the very interesting claim that neural

codes thought to be important in the representation of allocentric

(map-like) spaces might be critical for abstract reasoning in more

general domains (Constantinescu et al., 2016). In the mammalian

entorhinal cortex, cells encode the geometry of allocentric space

with a periodic ‘‘grid’’ code, with receptive fields that tile the local

space in a hexagonal pattern (Rowland et al., 2016). Grid codes

may be an excellent candidate for organizing conceptual knowl-

edge, because they allow state spaces to be decomposed

efficiently, in a way that could support discovery of subgoals

and hierarchical planning (Stachenfeld et al., 2014). Using func-

tional neuroimaging, the researchers provide evidence for the

existence of such codes while humans performed an abstract

categorization task, supporting the view that periodic encoding

is a generalized hallmark of human knowledge organization

(Constantinescu et al., 2016). However, much further work is

required to substantiate this interesting claim.

Imagination and Planning

Despite their strong performance on goal-directed tasks, deep

RL systems such as DQN operate mostly in a reactive way,

learning the mapping from perceptual inputs to actions that

maximize future value. This ‘‘model-free’’ RL is computationally

inexpensive but suffers from twomajor drawbacks: it is relatively

data inefficient, requiring large amounts of experience to derive

accurate estimates, and it is inflexible, being insensitive to

changes in the value of outcomes (Daw et al., 2005). By contrast,

humans can more flexibly select actions based on forecasts of

long-term future outcomes through simulation-based planning,

which uses predictions generated from an internal model of the

environment learned through experience (Daw et al., 2005; Dolan

and Dayan, 2013; Tolman, 1948). Moreover, planning is not a

uniquely human capacity. For example, when caching food,

scrub jays consider the future conditions under which it is likely

to be recovered (Raby et al., 2007), and rats use a ‘‘cognitive

map’’ when navigating, allowing inductive inferences during

wayfinding and facilitating one-shot learning behaviors in

maze-like environments (Daw et al., 2005; Tolman, 1948). Of

course, this point has not been lost on AI researchers; indeed,

early planning algorithms such as Dyna (Sutton, 1991) were

inspired by theories that emphasized the importance of ‘‘mental

models’’ in generating hypothetical experiences useful for
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human learning (Craik, 1943). By now, a large volume of literature

exists on AI planning techniques, including model-based RL

methods, which seek to implement this forecast-based method

of action selection. Furthermore, simulation-based planning,

particularly Monte Carlo tree search (MCTS) methods, which

use forward search to update a value function and/or policy

(Browne et al., 2012), played a key role in recent work in which

deep RL attained expert-level performance in the game of Go

(Silver et al., 2016).

AI research on planning, however, has yet to capture some of

the key characteristics that give human planning abilities their

power. In particular, we suggest that a general solution to this

problem will require understanding how rich internal models,

which in practice will have to be approximate but sufficiently ac-

curate to support planning, can be learned through experience,

without strong priors being handcrafted into the network by the

experimenter. We also argue that AI research will benefit from

a close reading of the related literature on how humans imagine

possible scenarios, envision the future, and carry out simulation-

based planning, functions that depend on a common neural

substrate in the hippocampus (Doll et al., 2015; Hassabis and

Maguire, 2007, 2009; Schacter et al., 2012). Although imagina-

tion has an intrinsically subjective, unobservable quality, we

have reason to believe that it has a conserved role in simula-

tion-based planning across species (Hassabis and Maguire,

2009; Schacter et al., 2012). For example, when paused at a

choice point, ripples of neural activity in the rat hippocampus

resemble those observed during subsequent navigation of the

available trajectories (‘‘preplay’’), as if the animal were ‘‘imag-

ining’’ each possible alternative (Johnson and Redish, 2007;

Ólafsdóttir et al., 2015; Pfeiffer and Foster, 2013). Further, recent

work has suggested a similar process during non-spatial plan-

ning in humans (Doll et al., 2015; Kurth-Nelson et al., 2016).

We have discussed above the ways in which the introduction

of mechanisms that replay and learn offline from past experi-

ences can improve the performance of deep RL agents such

as DQN (as discussed above in Episodic Memory).

Some encouraging initial progress toward simulation-based

planning has been made using deep generative models (Eslami

et al., 2016; Rezende et al., 2016a, 2016b) (Figure 2). In partic-

ular, recent work has introduced new architectures that have

the capacity to generate temporally consistent sequences of

generated samples that reflect the geometric layout of newly

experienced realistic environments (Gemici et al., 2017; Oh

et al., 2015) (Figure 2E), providing a parallel to the function of

the hippocampus in binding together multiple components to

create an imagined experience that is spatially and temporally

coherent (Hassabis and Maguire, 2007). Deep generative

models thus show the potential to capture the rich dynamics of

complex realistic environments, but using these models for

simulation-based planning in agents remains a challenge for

future work.

Insights from neuroscience may provide guidance that facili-

tates the integration of simulation with control. An emerging

picture from neuroscience research suggests that the hippo-

campus supports planning by instantiating an internal model of

the environment, with goal-contingent valuation of simulated

outcomes occurring in areas downstream of the hippocampus
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such the orbitofrontal cortex or striatum (Redish, 2016). Notably,

however, the mechanisms that guide the rolling forward of an

internal model of the environment in the hippocampus remain

uncertain and merit future scrutiny. One possibility is that this

process is initiated by the prefrontal cortex through interactions

with the hippocampus. Indeed, this notion has distinct parallels

with proposals from AI research that a separate controller inter-

acts with an internal model of the environment in a bidirectional

fashion, querying the model based on task-relevant goals and

receiving predicted simulated states as input (Schmidhuber,

2014). Further, recent efforts to develop agents have employed

architectures that instantiate a separation between controller

and environmental model to effect simulation-based planning

in problems involving the interaction between physical objects

(Hamrick et al., 2017).

In enhancing agent capabilities in simulation-based planning,

it will also be important to consider other salient properties of

this process in humans (Hassabis and Maguire, 2007, 2009).

Research into human imagination emphasizes its constructive

nature, with humans able to construct fictitious mental scenarios

by recombining familiar elements in novel ways, necessitating

compositional/disentangled representations of the form present

in certain generative models (Eslami et al., 2016; Higgins et al.,

2016; Rezende et al., 2016a). This fits well with the notion that

planning in humans involves efficient representations that sup-

port generalization and transfer, so that plans forged in one

setting (e.g., going through a door to reach a room) can be lever-

aged in novel environments that share structure. Further,

planning and mental simulation in humans are ‘‘jumpy,’’ bridging

multiple temporal scales at a time; for example, humans seem to

plan hierarchically, by considering in parallel terminal solutions,

interim choice points, and piecemeal steps toward the goal

(Balaguer et al., 2016; Solway et al., 2014; Huys et al., 2012).

We think that ultimately these flexible, combinatorial aspects of

planning will form a critical underpinning of what is perhaps the

hardest challenge for AI research: to build an agent that can

plan hierarchically, is truly creative, and can generate solutions

to challenges that currently elude even the human mind.

Virtual Brain Analytics

One rather different way in which neuroscience may serve AI is

by furnishing new analytic tools for understanding computation

in AI systems. Due to their complexity, the products of AI

research often remain ‘‘black boxes’’; we understand only poorly

the nature of the computations that occur, or representations

that are formed, during learning of complex tasks. However, by

applying tools from neuroscience to AI systems, synthetic equiv-

alents of single-cell recording, neuroimaging, and lesion tech-

niques, we can gain insights into the key drivers of successful

learning in AI research and increase the interpretability of these

systems. We call this ‘‘virtual brain analytics.’’

Recent work has made some progress along these lines. For

example, visualizing brain states through dimensionality reduc-

tion is commonplace in neuroscience, and has recently been

applied to neural networks (Zahavy et al., 2016). Receptive field

mapping, another standard tool in neuroscience, allows AI

researchers to determine the response properties of units in a

neural network. One interesting application of this approach in

AI is known as activity maximization, in which a network learns
to generate synthetic images by maximizing the activity of

certain classes of unit (Nguyen et al., 2016; Simonyan et al.,

2013). Elsewhere, neuroscience-inspired analyses of linearized

networks have uncovered important principles that may be of

general benefit in optimizing learning these networks, and under-

standing the benefits of network depth and representational

structure (McClelland and Rogers, 2003; Saxe et al., 2013).

While this initial progress is encouraging, more work is

needed. It remains difficult to characterize the functioning of

complex architectures such as networks with external memory

(Graves et al., 2016). Nevertheless, AI researchers are in the

unique position of having ground truth knowledge of all compo-

nents of the system, together with the potential to causally

manipulate individual elements, an enviable scenario from the

perspective of experimental neuroscientists. As such, we

encourage AI researchers to use approaches from neuroscience

to explore properties of network architectures and agents

through analysis, visualization, causal manipulation, not forget-

ting the need for carefully designed hypothesis-driven experi-

ments (Jonas and Kording, 2017; Krakauer et al., 2017). We think

that virtual brain analytics is likely to be an increasingly integral

part of the pipeline of algorithmic development as the complexity

of architectures increases.

From AI to Neuroscience
Thus far, our review has focused primarily on the role of neurosci-

ence in accelerating AI research rather than vice versa. Histori-

cally, however, the flow of information between neuroscience

and AI has been reciprocal. Machine learning techniques

have transformed the analysis of neuroimaging datasets—for

example, in the multivariate analysis of fMRI and magnetoence-

phalographic (MEG) data (Cichy et al., 2014; Çukur et al., 2013;

Kriegeskorte and Kievit, 2013)—with promise for expediting con-

nectomic analysis (Glasser et al., 2016), among other techniques.

Going further, we believe that building intelligent algorithms has

the potential to offer new ideas about the underpinnings of intel-

ligence in the brains of humans and other animals. In particular,

psychologists and neuroscientists often have only quite vague

notions of themechanisms that underlie the concepts they study.

AI research can help, by formalizing these concepts in a quanti-

tative language and offering insights into their necessity and suf-

ficiency (or otherwise) for intelligent behavior.

A key illustration of this potential is provided by RL. After ideas

from animal psychology helped to give birth to reinforcement

learning research, key concepts from the latter fed back to

inform neuroscience. In particular, the profile of neural signals

observed in midbrain dopaminergic neurons in conditioning

paradigms was found to bear a striking resemblance to TD-

generated prediction errors, providing neural evidence that the

brain implements a form of TD learning (O’Doherty et al., 2003;

Schultz et al., 1997). This overall narrative arc provides an excel-

lent illustration of how the exchange of ideas between AI

and neuroscience can create a ‘‘virtuous circle’’ advancing the

objectives of both fields.

In another domain, work focused on enhancing the perfor-

mance of CNNs has also yielded new insights into the nature

of neural representations in high-level visual areas (Khaligh-

Razavi and Kriegeskorte, 2014; Yamins and DiCarlo, 2016). For
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example, one group systematically compared the ability of more

than 30 network architectures from AI to explain the structure of

neural representations observed in the ventral visual stream of

humans and monkeys, finding favorable evidence for deep

supervised networks (Khaligh-Razavi and Kriegeskorte, 2014).

Further, these deep convolutional network architectures offer a

computational account of recent neurophysiological data

demonstrating that the coding of category-orthogonal properties

of objects (e.g., position, size) actually increases as one pro-

gresses higher up the ventral visual stream (Hong et al., 2016).

While these findings are far from definitive as yet, it shows how

state-of-the-art neural networks fromAI can be used as plausible

simulacra of biological brains, potentially providing detailed ex-

planations of the computations occurring therein (Khaligh-Ra-

zavi and Kriegeskorte, 2014; Yamins and DiCarlo, 2016). Relat-

edly, properties of the LSTM architecture have provided key

insights that motivated the development of working memory

models that afford gating-based maintenance of task-relevant

information in the prefrontal cortex (Lloyd et al., 2012; O’Reilly

and Frank, 2006).

We also highlight two recent strands of AI research that may

motivate new research in neuroscience. First, neural networks

with external memory typically allow the controller to iteratively

query or ‘‘hop through’’ the contents of memory. This mecha-

nism is critical for reasoning over multiple supporting input state-

ments that relate to a particular query (Sukhbaatar et al., 2015).

Previous proposals in neuroscience have argued for a similar

mechanism in human cognition, but any potential neural sub-

strates, potentially in the hippocampus, remain to be described

(Kumaran and McClelland, 2012). Second, recent work high-

lights the potential benefits of ‘‘meta-reinforcement learning,’’

where RL is used to optimize the weights of a recurrent network

such that the latter is able to implement a second, emergent RL

algorithm that is able to learn faster than the original (Duan et al.,

2016; Wang et al., 2016). Intriguingly, these ideas connect with a

growing neuroscience literature indicating a role for the prefron-

tal cortex in RL, alongside more established dopamine-based

mechanisms (Schultz et al., 1997). Specifically, they indicate

how a relatively slow-learning dopaminergic RL algorithm may

support the emergence of a freestanding RL algorithm instanti-

ated with the recurrent activity dynamics of the prefrontal cortex

(Tsutsui et al., 2016).

Insights from AI research are also providing novel perspec-

tives on how the brain might implement an algorithmic parallel

to backpropagation, the key mechanism that allows weights

within multiple layers of a hierarchical network to be optimized

toward an objective function (Hinton et al., 1986; Werbos,

1974). Backpropagation offers a powerful solution to the prob-

lem of credit assignment within deep networks, allowing efficient

representations to be learned from high dimensional data (LeCun

et al., 2015). However, until recently, several aspects of the back-

propagation algorithm were viewed to be biologically implau-

sible (e.g., see Bengio et al., 2015). One important factor is that

backpropagation has typically been thought to require perfectly

symmetric feedback and feedforward connectivity, a profile that

is not observed in mammalian brains. Recent work, however,

has demonstrated that this constraint can in fact be relaxed

(Liao et al., 2015; Lillicrap et al., 2016). Random backward con-
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nections, even when held fixed throughout network training, are

sufficient to allow the backpropagation algorithm to function

effectively through a process whereby adjustment of the forward

weights allows backward projections to transmit useful teaching

signals (Lillicrap et al., 2016).

A second core objection to the biological plausibility of back-

propagation is that weight updates in multi-layered networks

require access to information that is non-local (i.e., error signals

generated by units many layers downstream) (for review, see

Bengio et al., 2015). In contrast, plasticity in biological synapses

depends primarily on local information (i.e., pre- and post-syn-

aptic neuronal activity) (Bi and Poo, 1998). AI research has begun

to address this fundamental issue. In particular, recent work has

shown that hierarchical auto-encoder networks and energy-

based networks (e.g., continuous Hopfield networks) (Scellier

and Bengio, 2016; Whittington and Bogacz, 2017)—models

that have strong connections to theoretical neuroscience ideas

about predictive coding (Bastos et al., 2012)—are capable of

approximating the backpropagation algorithm, based on weight

updates that involve purely local information. Indeed, concrete

connections have been drawn between learning in such net-

works and spike-timing dependent plasticity (Scellier and Ben-

gio, 2016), a Hebbian mechanism instantiated widely across

the brain (Bi and Poo, 1998). A different class of local learning

rule has been shown to allow hierarchical supervised networks

to generate high-level invariances characteristic of biological

systems, including mirror-symmetric tuning to physically sym-

metric stimuli, such as faces (Leibo et al., 2017). Taken together,

recent AI research offers the promise of discovering mecha-

nisms by which the brain may implement algorithms with the

functionality of backpropagation. Moreover, these develop-

ments illustrate the potential for synergistic interactions between

AI and neuroscience: research aimed to develop biologically

plausible forms of backpropagation have also been motivated

by the search for alternative learning algorithms. Given the

increasingly deep networks (e.g., >20 layer) used in AI research,

factors such as the compounding of successive non-linearities

pose challenges for optimization using backpropagation (Bengio

et al., 2015).

Conclusions
In this perspective, we have reviewed some of the many ways

in which neuroscience has made fundamental contributions to

advancing AI research, and argued for its increasingly impor-

tant relevance. In strategizing for the future exchange between

the two fields, it is important to appreciate that the past con-

tributions of neuroscience to AI have rarely involved a simple

transfer of full-fledged solutions that could be directly re-im-

plemented in machines. Rather, neuroscience has typically

been useful in a subtler way, stimulating algorithmic-level

questions about facets of animal learning and intelligence of

interest to AI researchers and providing initial leads toward

relevant mechanisms. As such, our view is that leveraging in-

sights gained from neuroscience research will expedite prog-

ress in AI research, and this will be most effective if AI re-

searchers actively initiate collaborations with neuroscientists

to highlight key questions that could be addressed by empir-

ical work.
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The successful transfer of insights gained from neuroscience

to the development of AI algorithms is critically dependent on

the interaction between researchers working in both these

fields, with insights often developing through a continual hand-

ing back and forth of ideas between fields. In the future, we

hope that greater collaboration between researchers in neuro-

science and AI, and the identification of a common language

between the two fields (Marblestone et al., 2016), will permit a

virtuous circle whereby research is accelerated through shared

theoretical insights and common empirical advances. We

believe that the quest to develop AI will ultimately also lead to

a better understanding of our own minds and thought pro-

cesses. Distilling intelligence into an algorithmic construct and

comparing it to the human brain might yield insights into

some of the deepest and the most enduring mysteries of the

mind, such as the nature of creativity, dreams, and perhaps

one day, even consciousness.
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MACHINE LEARNING AND LAW

Harry Surden

INTRODUCTION

What impact might artificial intelligence (AI) have upon the practice
of law? According to one view, Al should have little bearing upon legal
practice barring significant technical advances.1 The reason is that legal
practice is thought to require advanced cognitive abilities, but such
higher-order cognition remains outside the capability of current Al

2technology. Attorneys, for example, routinely combine abstract
reasoning and problem solving skills in environments of legal and
factual uncertainty.3 Modern Al algorithms, by contrast, have been
unable to replicate most human intellectual abilities, falling far short in
advanced cognitive processes-such as analogical reasoning-that are
basic to legal practice.4 Given these and other limitations in current Al
technology, one might conclude that until computers can replicate the
higher-order cognition routinely displayed by trained attorneys, Al
would have little impact in a domain as full of abstraction and
uncertainty as law.

Although there is some truth to that view, its conclusion is overly
broad. It misses a class of legal tasks for which current Al technology

* Associate Professor of Law, University of Colorado Law School; B.A. Cornell University; J.D.
Stanford University; Affiliated Faculty, Stanford Codex Center for Legal Informatics. I would like
to thank my colleagues at the University of Colorado for their insightful comments, and Ted
Sichelman, Seema Shah, and Dan Katz for their helpful observations and suggestions.

1. See, e.g., Symposium, Legal Reasoning and Artificial Intelligence: How Computers "Think"
Like Lawyers, 8 U. CHI. L. SCH. ROUNDTABLE 1, 19 (2001) (Cass Sunstein argues that, -[Alt the
present state of the art artificial intelligence cannot engage in analogical reasoning or legal
reasoning").

2. See, e.g., Karl Okamoto, Teaching Transactional Lawyering, 1 DREXEL L. REV. 69, 83 (2009)
("The essence of lawyering is 'creative problem solving' under conditions of uncertainty and
complexity. This conception of lawyering as problem solving has become commonplace.").

3. Id. at 83.

4. Id.

5. See Harry Surden, Computable Contracts, 46 U.C. DAVIs L. REv. 629, 646 (2012) (discussing
how language changes that are typically trivial for humans to decipher may confuse computer
algorithms).
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can still have an impact even given the technological inability to match
human-level reasoning. Consider that outside of law, non-cognitive Al
techniques have been successfully applied to tasks that were once
thought to necessitate human intelligence-for example language
translation. 6 While the results of these automated efforts are sometimes
imperfect, the interesting point is that such computer generated results
have often proven useful for particular tasks where strong
approximations are acceptable. In a similar vein, this Article will
suggest that there may be a limited, but not insignificant, subset of legal
tasks that are capable of being partially automated using current Al
techniques despite their limitations relative to human cognition.

In particular, this Article focuses upon a class of Al methods known
as "machine learning" techniques and their potential impact upon legal
practice. Broadly speaking, machine learning involves computer
algorithms that have the ability to "learn" or improve in performance
over time on some task.8 Given that there are multiple Al approaches,
why highlight machine learning in particular? In the last few decades,
researchers have successfully used machine learning to automate a
variety of sophisticated tasks that were previously presumed to require
human cognition. These applications range from autonomous (i.e., self-
driving) cars, to automated language translation, prediction, speech
recognition, and computer vision.9 Researchers have also begun to apply
these techniques in the context of law.10

To be clear, I am not suggesting that all, or even most, of the tasks
routinely performed by attorneys are automatable given the current state
of Al technology. To the contrary, many of the tasks performed by
attorneys do appear to require the type of higher order intellectual skills
that are beyond the capability of current techniques. Rather, I am
suggesting that there are subsets of legal tasks that are likely

6. See DAVID BELLOS, Is THAT A FISH IN YOUR EAR?: TRANSLATION AND THE MEANING OF

EVERYTHING 253-57 (2011); Find Out How Our Translations Are Created, GOOGLE,

http://translate.google.com/about (last visited Feb. 24, 2014).

7. See BELLOS, supra note 6.

8. PETER FLACH, MACHINE LEARNING: THE ART AND SCIENCE OF ALGORITHMS THAT MAKE

SENSE OF DATA 3 (2012).

9. Burkhard Bilger, Auto Correct: Has the Self-Driving Car at Last Arrived?, NEW YORKER,
Nov. 25, 2013, at 96, 106; PARAG KULKARNI, REINFORCEMENT AND SYSTEMIC MACHINE

LEARNING FOR DECISION MAKING 1-2 (2012) (discussing computer vision).

10. See, e.g., Daniel Martin Katz, Quantitative Legal Prediction-or How I Learned to Stop
Worrying and Start Preparing for the Data-Driven Future of the Legal Services Industry, 62
EMORY L.J. 909, 936 (2013) (discussing legal applications such as automation in document
discovery and quantitative legal prediction).
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automatable under the current state of the art, provided that the
technologies are appropriately matched to relevant tasks, and that
accuracy limitations are understood and accounted for. In other words,
even given current limitations in Al technology as compared to human
cognition, such computational approaches to automation may produce
results that are "good enough" in certain legal contexts.

Part I of this Article explains the basic concepts underlying machine
learning. Part II will convey a more general principle: non-intelligent
computer algorithms can sometimes produce intelligent results in
complex tasks through the use of suitable proxies detected in data. Part
III will explore how certain legal tasks might be amenable to partial
automation under this principle by employing machine learning
techniques. This Part will also emphasize the significant limitations of
these automated methods as compared to the capabilities of similarly
situated attorneys.

I. OVERVIEW OF MACHINE LEARNING

A. What Is Machine Learning?

"Machine learning" refers to a subfield of computer science
concerned with computer programs that are able to learn from
experience and thus improve their performance over time." As will be
discussed, the idea that the computers are "learning" is largely a
metaphor and does not imply that computers systems are artificially
replicating the advanced cognitive systems thought to be involved in
human learning. 12 Rather, we can consider these algorithms to be
learning in a functional sense: they are capable of changing their
behavior to enhance their performance on some task through
experience. 1

Commonly, machine learning algorithms are used to detect patterns in
data in order to automate complex tasks or make predictions. 14 Today,
such algorithms are used in a variety of real-world commercial
applications including Internet search results, facial recognition, fraud

11. STUART RUSSELL & PETER NORVIG, ARTIFICIAL INTELLIGENCE: A MODERN APPROACH 693

(3d ed. 2010).

12. I. H. WITTEN, DATA MINING: PRACTICAL MACHINE LEARNING TOOLS AND TECHNIQUES

§ 1.3 (3d ed. 2011).

13. Id.

14. David E. Sorkin, Technical and Legal Approaches to Unsolicited Electronic Mail, 35 U.S.F.
L. REV. 325, 326 (2001).
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detection, and data mining. 5 Machine learning is closely associated with
the larger enterprise of "predictive analytics" as researchers often
employ machine learning methods to analyze existing data to predict the
likelihood of uncertain outcomes.16 If performing well, machine learning
algorithms may produce automated results that approximate those that
would have been made by a similarly situated person. Machine learning
is thus often considered a branch of artificial intelligence, since a well-
performing algorithm may produce automated results that appear
"intelligent." 1

The goal of this Part is to convey some basic principles of machine
learning in a manner accessible to non-technical audiences in order to
express a larger point about the potential applicability of these
techniques to tasks within the law.

1. Email Spam Filters as an Example of Machine Learning

Consider a familiar example-email "span" filters-that will
illustrate some basic features common to machine learning techniques.
"Spain" emails are unsolicited, unwanted commercial emails that can
interfere with a user accessing more important communications." In
principle, an email user could manage spam manually by reading each
email, identifying whether a given email is spam, and deleting those
determined to be spam. However, given that this task is labor intensive,
it would be desirable to automate spam identification. To perform such
automated filtering of spam, email software programs frequently use
machine learning algorithms.19

How do machine learning algorithms automatically identify spam?
Such algorithms are designed to detect patterns among data. In a typical
process, a machine learning algorithm is "trained" to recognize spam
emails by providing the algorithm with known examples of spam for
pattern analysis. For instance, imagine that a person determines that a
particular email is spam and flags it as such using her email reading
software. We can think of this act of flagging as an indication to the
computer algorithm that this is a verified example of a spam email that

15. WITTEN, supra note 12, at § 1.3.

16. See, e.g., LAWRENCE MAISEL, PREDICTIVE BUSINESS ANALYTICS: FORWARD LOOKING

CAPABILITIES TO IMPROVE BUSINESS PERFORMANCE, 27-30 (2014).

17. RUSSEL & NORVIG, supra note 11, at 3-5.

18. Sorkin, supra note 14, at 325 30.

19. Id.
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should be assessed for patterns.2
In analyzing the spam email, the machine learning algorithm will

attempt to detect the telltale characteristics that indicate that a given
email is more likely than not to be spam. After analyzing several such
examples, the algorithm may detect a pattern and infer a general
"rule" 21-for instance that emails with the phrase "Earn Extra Cash"
tend to be statistically more likely to be spam emails than wanted emails.
It can then use such learned indicia to make automated assessments

22about the likelihood that a new incoming email is or is not span.
In general, machine learning algorithms are able to automatically

build such heuristics by inferring information through pattern detection
in data. If these heuristics are correct, they will allow the algorithm to
make predictions or automated decisions involving future data.23 Here,
the algorithm has detected a pattern within the data provided (i.e., the set
of example spam emails) that, of the emails that were flagged as spam,
many of them contained the phrase "Earn Extra Cash." From this
pattern, it then inferred a heuristic: that emails with the text "Earn Extra
Cash" were more likely to be spam. Such a generalization can thus be
applied going forward to automatically categorize new incoming emails
containing "Earn Extra Cash" as spam. The algorithm will attempt to
detect other similar patterns that are common among spam emails that
can be used as a heuristic for distinguishing spam from wanted emails.

Importantly, machine learning algorithms are designed to improve in
performance over time on a particular task as they receive more data.
The goal of such an algorithm is to build an internal computer model of
some complex phenomenon-here spam emails-that will ultimately
allow the computer to make automated, accurate classification decisions.

20. In many cases, machine learning algorithms are trained through carefully validated training
sets of data, in which the data has been carefully screened and categorized by people. See, e.g.,
DAVID BARBER, BAYESIAN REASONING AND MACHINE LEARNING 290-96 (2011).

21. The term "rule" is used approximately in the sense of "rule of thumb." This is important,

because machine learning is an inductive rather a deductive technique. In a deductive approach,

general logical rules (statements) characterizing the state of the world are expressly articulated, and

information is extracted by combining statements according to logical operations. By contrast, in an

inductive approach, models of the world are developed upon observing the past and expressing the

state of the world (often) in probabilities induced from observation, rather than as general rules. See
generally Katz, supra note 10, at 946.

22. To be clear, this is an extreme over-simplification of machine learning for illustrative

purposes. Moreover, there are many different machine learning algorithmic strategies other than the
particular one illustrated here. See generally MEHRYAR MOHRI ET AL., FOUNDATIONS OF MACHINE
LEARNING (2012).

23. TOBY SEGARAN, PROGRAMMING COLLECTIVE INTELLIGENCE: BUILDING SMART WEB 2.0

APPLICATIONS 3 (2007).
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In this case, the internal model would include multiple rules of thumb
about the likely characteristics of spam induced over time-in addition
to the "Earn Extra Cash" heuristic just described-that the computer can
subsequently follow to classify new, incoming emails.

For instance, such an algorithm might infer from additional spam
examples that emails that originate from the country BelaruS24 tend to be
more likely to be spam than emails from other countries. Similarly, the
algorithm might learn that emails sent from parties that the reader has
previously corresponded with are less likely to be spam than those from
complete strangers. These additional heuristics that the algorithm
learned from analyzing additional data will allow it to make better
automated decisions about what is or is not spam.

As illustrated, the rule sets25 that form the internal model are inferred
by examining and detecting patterns within data. Because of this, such
rule-sets tend to be built cumulatively over time as more data arrives.
Machine learning algorithms typically develop heuristics incrementally
by examining each new example and comparing it against prior
examples to identify overall commonalities that can be generalized more
broadly. For example, an algorithm may have to analyze several
thousand examples of spam emails before it detects a reliable pattern
such that the text "Earn Extra Cash" is a statistical indicia of likely
spam.

For this reason, a machine learning algorithm may perform poorly at
first when it has only had a few examples of a phenomenon (e.g., spam
emails) from which to detect relevant patterns. At such an early point, its
internal rule-set will likely be fairly underdeveloped. However, the
ability to detect useful patterns tends to improve as the algorithm is able
to examine more examples of the phenomenon at issue. Often, such an
algorithm will need data with many hundreds or thousands examples of
the relevant phenomenon in order to produce a useful internal model (i.e.
robust set of predictive computer rules).26

The prior example illustrates what is meant by "learning" in the
machine learning context: it is this ability to improve in performance by
detecting new or better patterns from additional data. A machine

24. See Paul Ducklin, Dirty Dozen Spam Sending Nations, NAKED SECURITY (Oct. 17, 2013),
http://nakedsecurity.sophos.com/2013/10/17/dirty-dozen-spam-sending-nations-find-where-you-
finished-in-our-q 3 -spampionship-chard.

25. It is important to note that these rule-sets are often actually mathematical functions or some
other data structure representing the object to be modeled, rather than a series of formal, general
rules. See KULKARNI, supra note 9, at 2 10.

26. CHRISTOPHER D. MANNING, INTRODUCTION TO INFORMATION RETRIEVAL 335 (2008).
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learning algorithm can become more accurate at a task (like classifying
email as spam) over time because its design enables it to continually
refine its internal model by analyzing more examples and inferring new,
useful patterns from additional data.

This capability to improve in performance over time by continually
analyzing data to detect additional useful patterns is the key attribute that
characterizes machine learning algorithms. Upon the basis of such an
incrementally produced model, a well-performing machine learning
algorithm may be able to automatically perform a task-such as
classifying incoming emails as either spam or wanted emails-with a
high degree of accuracy that approximates the classifications that a
similarly situated human reviewer would have made.2

2. Detecting Patterns to Model Complex Phenomena

There are a few points to emphasize about the above example. First,
machine learning often (but not exclusively) involves learning from a set
of verified examples of some phenomenon. Thus, in the prior example,
the algorithm was explicitly provided with a series of emails that a
human predetermined to be spam, and learned the characteristics of
spam by analyzing these provided examples. This approach is known as
"supervised" learning, and the provided examples upon which the
algorithm is being trained to recognize patterns are known as the
"training set." 28 The goal of such training is to allow the algorithm to
create an internal computer model of a given phenomenon that can be
generalized to apply to new, never-before-seen examples of that
phenomenon.

Second, such machine learning algorithms are able to automatically
build accurate models of some phenomenon-here the characteristics of
spam email-without being explicitly programmed. 29 Most software is
developed by a manual approach in which programmers explicitly
specify a series of rules for a computer to follow that will produce some
desired behavior. For instance, if designing a spam filter by this manual
method, a programmer might first consider the features that she believed
to be characteristic of spam, and then proceed to program a computer

27. WILLIAM S. YERAZUIMs, THE SPAM-FILTERING ACCURACY PLATEAU AT 99.9 PERCENT

ACCURACY AND How To GET PAST IT (Dec. 2004), available at http://www.merl.com/
reports/docs/TR2004-091.pdf (noting that many span filters have achieved accuracy rates at over
99.9 )

28. FLACH, supra note 8, at 2.

29. Pedro Domingos, A Few Useful Things to Know About Machine Learning, COMM. ACM, Oct.
2012, at 80.
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with a series of corresponding rules to make automated distinctions.
However, many phenomena are so complicated and dynamic that it is

difficult to model them manually.30 The problem with a manual, bottom-
up approach to modeling complex and changing phenomenon (such as
spam) is that it is very difficult to specify a rule set ex-ante that would be
robust and accurate enough to direct a computer to make useful,
automated decisions. For instance, a programmer might not think to
include a rule that an email with a Belarus origin should be considered
somewhat more likely to be spam. It is often difficult to explicitly
program a set of computer rules to produce useful automation when
dealing with complex, changing phenomenon.

Machine learning algorithms, by contrast, are able to incrementally
build complex models by automatically detecting patterns as data
arrives. Such algorithms are powerful because, in a sense, these
algorithms program themselves over time with the rules to accomplish a
task, rather than being programmed manually with a series of pre-
determined rules.31 The rules are inferred from analyzed data and the
model builds itself as additional data is analyzed. For instance, in the
above example, as the algorithm encountered new examples of spam
with different features, it was able to add to its internal model additional
markers of spam that it was able to detect (e.g., emails originating from
Belarus). Such an incremental, adaptive, and iterative process often
allows for the creation of nuanced models of complex phenomena that
may otherwise be too difficult for programmers to specify manually, up
front. 32

Third, what made the discussed spam filtering algorithm a machine
learning algorithm was that it was able to improve its accuracy in
classifying spam as it received more examples to analyze. In this sense,
we are using a functional meaning of "learning." The algorithms are not
learning in the cognitive sense typically associated with human learning.
Rather, we can think of the algorithms as learning in the sense that they
are changing their behavior to perform better in the future as they
receive more data.33 Thus, in the above example, if the spam filter

30. Id.

31. TOM MITCHELL, THE DISCIPLINE OF MACHINE LEARNING, REPORT No. ML-06-CMU- 108 § 1
(2006), available at http://www.cs.cmu.edu/-tom/pubs/MachineLearning.pdf ("Machine Learning
focuses on ... how to get computers to program themselves (from experience plus some initial
structure).").

32. Id. ("[S]peech recognition accuracy is greater if one trains the system, than if one attempts to
program it by hand.").

33. I. H. WITTEN, DATA MINING: PRACTICAL MACHINE LEARNING TOOLS AND TECHNIQUES 8

(2d ed. 2005).
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algorithm became more accurate at identifying spam as it received more
examples of spam and refined its internal rule-set. We can conceptualize
this shift as "learning" from a functional perspective in an analogous
way that we often associate human learning with improved performance
on some task.

Fourth, the filtering algorithm described used statistical techniques to
classify spam. Machine learning algorithms are often (although not
exclusively) statistical in nature. Thus, in one sense, machine learning is
not very different from the numerous statistical techniques already
widely used within empirical studies in law.34 One salient distinction is
that while many existing statistical approaches involve fixed or slow-to-
change statistical models, the focus in machine learning is upon
computer algorithms that are expressly designed to be dynamic and
capable of changing and adapting to new and different circumstances as
the data environment shifts.

II. INTELLIGENT RESULTS WITHOUT INTELLIGENCE

A. Proxies and Heuristics for Intelligence

The prior example was meant to illustrate a broader point: one can
sometimes accomplish tasks associated with human intelligence with
non-intelligent computer algorithms. There are certain tasks that appear
to require intelligence because when humans perform them, they
implicate higher-order cognitive skills such as reasoning,
comprehension, meta-cognition, or contextual perception of abstract
concepts. However, research has shown that certain of these tasks can be
automated-to some degree-through the use of non-cognitive
computational techniques that employ heuristics or proxies (e.g.,
statistical correlations) to produce useful, "intelligent" results. By a
proxy or heuristic, I refer to something that is an effective stand-in for
some underlying concept, feature, or phenomenon.

To say it differently, non-cognitive computer algorithms can
sometimes produce "intelligent" results in complex tasks without
human-level cognition. To employ a functional view of intelligence,
such automated results can be considered "intelligent" to the extent that
they approximate those that would have been produced by a similarly
situated person employing high-level human cognitive processes. This is
an outcome-oriented view of intelligence-assessing based upon

34. See, e.g., David L. Schwartz, Practice Makes Perfect? An Empirical Study of Claim

Construction Reversal Rates in Patent Cases, 107 MICH. L. REv. 223 (2008).
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whether the results that were produced were sensible and useful-rather
than whether the underlying process that produced them was "cognitive"
in nature.

The machine learning spam filtering example illustrated this idea. We
might normally think of the identification of spam email by a person as
entailing a series of advanced cognitive processes. A human user
determining whether a particular email is spam may do the following:
visually process the email, read, absorb, and understand the language of
the email text, contextualize the meaning of the email contents, reason
about whether or not the email was solicited, and based upon that
assessment determine whether the email constituted unwanted spam.35

One might conclude that, because spam determination involves
intelligence when conducted by people, the task is inherently cognitive.
In terms of automation, however, most of the advanced cognitive
processes just described have not been artificially matched by computer
systems to any significant degree.3 6 Given that identifying spam emails
appears to involve cognition, and that computers have not been able to
replicate advanced human level cognitive processes-such as
understanding arbitrary written text at the level of a literate person-one
might presume it would not be possible to automate a task as abstract as
identifying spam emails.37

However, in the example described earlier, the machine learning
algorithm was able to automate the task of spam filtering through non-
cognitive processes. Through the use of pattern detection, the algorithm
was able to infer effective proxy markers for spam emails: that emails
with the text "Earn Extra Cash" or with an origin from Belarus were
statistically more likely to be spam. On that basis, the algorithm was able
to make automated classifications that were useful and "intelligent" in

35. See, e.g., Argye E. Hillis & Alfonso Caramazza, The Reading Process and Its Disorders, in
COGNITIVE NEUROPSYCHOLOGY IN CLINICAL PRACTICE 229, 229 30 (David Ira Margolin ed.,

1992) ("[A] cognitive process such as reading involves a series of transformations of mental

representations.... On this view, even very simple cognitive tasks will involve various processing
mechanisms.. . .").

36. RUSSELL & NORVIG, supra note 11, at 3-10.

37. For detailed explanations of the limits of Natural Language Processing (NLP) as of the
writing of this Article, see RUSSELL & NORVIG, supra note 11, at 860-67; Robert Dale, Classical
Approaches to Natural Language Processing, in HANDBOOK OF NATURAL LANGUAGE PROCESSING

1, 1 7 (Nitin Indurkhya & Frederick J. Damerau eds., 2d ed. 2010); Richard Socher et al., Semantic
Compositionality through Recursive Matrix-Vector Spaces, in CONFERENCE ON EMPIRICAL
METHODS IN NATURAL LANGUAGE PROCESSING § 1 (2012) (noting that particular NLP approaches

are limited and "do not capture ... the important quality of natural language that allows speakers to
determine the meaning of a longer expression based on the meanings of its words and the rules used
to combine them").
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the sense that they approximated what a human user would have done
after reading and comprehending the email.

However, notably, the algorithm did not engage in the meaning or
substance of the email text in a manner comparable to a similarly
situated person, nor did it need to.38 In other words, the algorithm did
not need to understand abstract concepts such as "email," "earning
cash," "Belarus," or "spam"-in the way that a person does-in order to
make accurate automatic spam classifications. Rather, it was able to
detect statistical proxies for spam emails that allowed it to produce
useful, accurate results, without engaging in the underlying meaning or
substance of the email's constituent words.

Thus, the machine learning spam filter example illustrated a rather
profound point: it is sometimes possible to accomplish a task typically
associated with cognition not through artificial simulations of human
intellectual processes, but through algorithms that employ heuristics and
proxies-such as statistical correlations learned through analyzing
patterns in data-that ultimately arrive at the same or similar results as
would have been produced by a similarly situated intelligent person
employing higher order cognitive processes and training.

1. Approximating Intelligence by Proxy

More generally, the example is illustrative of a broader strategy that
has proven to be successful in automating a number of complex tasks:
detecting proxies, patterns, or heuristics that reliably produce useful
outcomes in complex tasks that, in humans, normally require
intelligence.3 9 For a certain subset of tasks, it may be possible to detect
proxies or heuristics that closely track the underlying phenomenon
without actually engaging in the full range of abstraction underlying that
phenomenon, as in the way the machine learning algorithm was able to
identify spam emails without having to fully understand substance and
context of the email text. As will be discussed in Part III this is the
principle that may allow the automation of certain abstract tasks within
law that, when conducted by attorneys, require higher order cognition.

It is important to emphasize that such a proxy-based approach can
have significant limitations. First, this strategy may only be appropriate
for certain tasks for which approximations are suitable. By contrast,
many complicated problems-particularly those that routinely confront
attorneys-may not be amenable to such a heuristic-based technique.

38. SEGARAN, supra note 23, at 4.

39. Id. at 1-3.
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For example, an attorney counseling a corporate client on a potential
merger is a task of such scale, complexity, and nuance, with so many
considerations, that a simple proxy approach would be inappropriate.

Second, a proxy-based strategy can often have significant accuracy
limitations. Because proxies are stand-ins for some other underlying
phenomenon, they necessarily are under- and over-inclusive relative to
the phenomenon they are representing, and inevitably produce false
positives and negatives. By employing proxies to analyze or classify text
with substantive meaning for an abstract task, for example, such
algorithms may produce more false positives or negatives than a
similarly situated person employing cognitive processes, domain
knowledge, and expertise. Thus, for example, automated spain-filters
can often do a reasonably accurate job of classifying spam, but often
make errors in substantively complex cases that would be trivial for a
person to detect. 40 However, once the limitations are properly
understood, for certain common purposes (e.g., classifying emails)
where the efficiency of automation is more important than precision,
such approximations may be sufficient.

2. Developments in AI Research

The strategy just described parallels changes among computer science
artificial intelligence research over the last several decades. In the
earliest era of Al research-from the 1950s through the 1980s-many
researchers focused upon attempting to replicate computer-based
versions of human cognitive processes.41 Behind this focus was a belief
that because humans employ many of the advanced brain processes to
tackle complex and abstract problems, the way to have computers
display artificial intelligence was to create artificial versions of brain

42functionality.
However, more recently, researchers have achieved success in

automating complex tasks by focusing not upon the intelligence of the
automated processes themselves, but upon the results that automated
processes produce.43 Under this alternative view, if a computer system is
able to produce outputs that people would consider to be accurate,
appropriate, helpful, and useful, such results can be considered
"intelligent"-even if they did not come about through artificial versions

40. YERAZUNIS, supra note 27, at 1-5.

41. See, e.g., RUSSELL & NORVIG, supra note 11, at 3-10.

42. Id.

43. See Surden, supra note 5, at 685-86.
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of human cognitive processes.
In general, this has been the approach followed by many successful

Al systems of the past several years. These systems have used machine
learning and other techniques to develop combinations of statistical
models, heuristics, and sensors that would not be considered cognitive in
nature (in that they do not replicate human-level cognition) but that
produce results that are useful and accurate enough for the task
required.t As described, these proxy-based approaches sometimes lack
accuracy or have other limitations as compared to humans for certain
complex or abstract tasks. But the key insight is that for many tasks,
algorithmic approaches like machine learning may sometimes produce
useful, automated approaches that are "good enough" for particular
tasks.

A good example of this principle comes from the task of language
translation. For many years, the translation of foreign languages was
thought to be a task deeply connected with higher-order human cognitive
processes.45 Human translators of foreign languages call upon deep
knowledge of languages, and abstract understanding of concepts, to
translate foreign language documents. Many early Al projects sought to
replicate in computers various language rules believed to reside within
the human brain.46 However, these early, bottom-up, rules-based
language translation systems produced poor results on actual

-47translations .
More recent research projects have taken a different approach, using

statistical machine learning and access to large amounts of data to
produce surprisingly good translation results without attempting to
replicate human-linguistic processes. 48 "Google Translate," for example,
works in part by leveraging huge corpuses of documents that experts
previously translated from one language to another. The United Nations
(UN) has for instance, over the years, employed professional translators
to carefully translate millions of UN documents into multiple languages,
and this body of translated documents has become available in electronic

44. See RUSSELL & NORVIG, supra note 11, at 3-10.

45. See EKATERINA OVCHINNIKOVA, INTEGRATION OF WORLD KNOWLEDGE FOR NATURAL

LANGUAGE UNDERSTANDING 215-20 (2012).

46. Mathias Winther Madsen, The Limits of Machine Translation 5-15 (Dec. 23, 2009)
(unpublished Master thesis, University of Copenhagen), available at http://www.math.ku.dk/
-m0lmwm/The%20Limits%20Ofk20Machine%20Translation%20%28Dec.%2023,%202009%29.
pdf.

47. Id.

48. See ENCYCLOPEDIA OF MACHINE LEARNING 912-13 (Claude Sammut & Geoffrey I. Webb

eds., 2011).
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form. While these documents were originally created for other
purposes, researchers have been able to harness this existing corpus of
data to improve automated translation. Using statistical correlations and
a huge body of carefully translated data, automated algorithms are able
to create sophisticated statistical models about the likely meaning of
phrases, and are able to produce automated translations that are quite
good. 0  Importantly, the algorithms that produce the automated
translations do not have any deep conception of the words that they are
translating, nor are they programmed to understand the meaning and
context of the language in the way a human translator might. Rather,
these algorithms are able to use statistical proxies extracted from large
amounts of previously translated documents to produce useful
translations without actually engaging in the deeper substance of the
language.

While this automated translation often falls short of expert human
translations in terms of accuracy and nuance in many contexts, and may
not be sufficient for tasks requiring high degrees of accuracy (e.g.,
translating legal contracts), the interesting point is that for many other
purposes, the level of accuracy achieved by automated translation may
be perfectly sufficient (e.g., getting a rough idea of the contents of a
foreign web page). 1 Such automation has allowed for approximate but
useful translations in many contexts where no translation was previously
available at all.

In sum, the translation example illustrates a larger strategy that has
proven successful in recent Al automation: applying machine learning
analysis to large bodies of existing data in order to extract subtle but
useful patterns that can be employed to automate certain complex tasks.
Such pattern detection over large amounts of data can be used to create
complex, nuanced computer models that can be brought to bear on
problems that were previously intractable under earlier manual
approaches to automation.

49. See Find Out How Our Translations Are Created, GOOGLE, http://translate.google.com/about
(last visited Feb. 24, 2014).

50. See id.

51. See Madsen, supra note 46, at 10 (citing Google Translate FAQ, GOOGLE,
http://www.google.com/-intl/en/help/faq-translation.html (last visited Mar. 25, 2009)).
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III. MACHINE LEARNING AND LAW

A. Machine Learning Applied to Law

Because machine learning has been successfully employed in a
number of complex areas previously thought to be exclusively in the
domain of human intelligence, this question is posed: to what extent
might these techniques be applied within the practice of law? 52 We have
seen that machine learning algorithms are often able to build useful
computer models of complex phenomena frequently by detecting
patterns and inferring rules from data. More generally, we have seen that
machine learning techniques have often been able to produce
"intelligent" results in complex, abstract tasks, often not by engaging
directly with the underlying conceptual substance of the information, but
indirectly, by detecting proxies and patterns in data that lead to useful
results. Using these principles, this Part suggests that there are a subset
of legal tasks often performed manually today by attorneys, which are
potentially partially automatable given techniques such as machine
learning, provided the limitations are understood and accounted for.

I emphasize that these tasks may be partially automatable, because
often the goal of such automation is not to replace an attorney, but
rather, to act as a complement, for example in filtering likely irrelevant
data to help make an attorney more efficient. Such a dynamic is
discussed below in the case of automation in litigation discovery
document review. There, the machine learning algorithms are not used to
replace (nor are they currently capable of replacing) crucial attorney
tasks such as of determining whether certain ambiguous documents are
relevant under uncertain law, or will have significant strategic value in
litigation. Rather, in many cases, the algorithms may be able to reliably
filter out large swathes of documents that are likely to be irrelevant so
that the attorney does not have to waste limited cognitive resources
analyzing them. Additionally, these algorithms can highlight certain
potentially relevant documents for increased attorney attention. In this
sense, the algorithm does not replace the attorney but rather automates
certain typical "easy-cases" so that the attorney's cognitive efforts and
time can be conserved for those tasks likely to actually require higher-
order legal skills.

There are particular tasks for which machine learning algorithms are

52. This is not to say that other Al techniques will not have an impact on the law. As I have
written elsewhere, logic-based Al is impacting legal domains such as contracting. See generally
Surden, supra note 5.
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better suited than others. By generalizing about the type of tasks that
machine learning algorithms perform particularly well, we can
extrapolate about where such algorithms may be able to impact legal
practice.

B. Predictive Models

1. Legal Predictions

Machine learning algorithms have been successfully used to generate
predictive models of certain phenomena. Some of these predictive
capabilities might be useful within the practice of law.53

The ability to make informed and useful predictions about potential
legal outcomes and liability is one of the primary skills of lawyering.
Lawyers are routinely called upon to make predictions in a variety of
legal settings. In a typical scenario, a client may provide the lawyer with
a legal problem involving a complex set of facts and goals. 5 A lawyer
might employ a combination of judgment, experience, and knowledge of
the law to make reasoned predictions about the likelihood of outcomes
on particular legal issues or on overall issue of liability, often in contexts
of considerable legal and factual uncertainty.56 On the basis of these
predictions and other factors, the lawyer might counsel the client about
recommended courses of action.

The ability to generally assess the likelihood of legal outcomes and
relative levels of risk of liability in environments of considerable legal
and factual uncertainty is one of the primary value-added functions of a
good lawyer. As a general matter, attorneys produce such estimations by
employing professional judgment, knowledge, experience, training,
reasoning and utilizing other cognitive skills and intuitions. However,
as Daniel Katz has written, such prediction of likely legal outcomes may
be increasingly subject to automated, computer-based analysis.58 As

53. STEPHEN MARSLAND, MACHINE LEARNING: AN ALGORITHMIC PERSPECTIVE 103 (2011).

54. See, e.g., Tanina Rostain, Ethics Lost: Limitations of Current Approaches to Lawyer
Regulation, 71 S. CAL. L. REV. 1273, 1281-82 (1998); Brian Z. Tamanaha, Understanding Legal
Realism, 87 TEX. L. REV. 731, 749-52 (2009).

55. See, e.g., PAUL BREST & LINDA HAMILTON KRIEGER, PROBLEM SOLVING, DECISION MAKING

AND PROFESSIONAL JUDGMENT 29 30 (2010).

56. Id.

57. See, e.g., Patrick E. Longan, The Shot Clock Comes to Trial: Time Limits for Federal Civil
Trials, 35 ARIz. L. REV. 663, 687 (1993) ("Lawyers with trial experience and the consequent ability
to predict outcomes more accurately can charge more.").

58. Katz, supra note 10, at 912.
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Katz notes, there is existing data that can be harnessed to better predict
outcomes in legal contexts. 59 Katz suggests that the combination of
human intelligence and computer-based analytics will likely prove
superior to that of human analysis alone, for a variety of legal prediction
tasks. 60

This Part will sketch a simple overview of what such an approach to
legal prediction, involving machine learning, might look like. In general,
such a method would involve using machine learning algorithms to
automatically detect patterns in data concerning past legal scenarios that
could then be extrapolated to predict outcomes in future legal scenarios.
Through this process, an algorithm may be able to detect useful proxies
or indicia of outcomes, and general probability ranges.

One relevant technique to apply to such a process is the "supervised
learning" method discussed previously.61 As mentioned, supervised
learning involves inferring associations from data that has been
previously categorized by humans.62 Where might such a data set come
from? Law firms often encounter cases of the same general type and
might create such an analyzable data set concerning past cases from
which associations could potentially be inferred. On the basis of
information from past clients and combining other relevant information
such as published case decisions, firms could use machine learning
algorithms to build predictive models of topics such as the likelihood of
overall liability. If such automated predictive models outperform
standard lawyer predictions by even a few percentage points, they could
be a valuable addition to the standard legal counseling approach. Thus,
by analyzing multiple examples of past client data, a machine learning
algorithm might be able to identify associations between different types
of case information and the likelihood of particular outcomes.

For example, imagine that a law firm that represents plaintiffs in
employment law cases records key data about past client scenarios into a
database. Such data might include the nature of the incident, the type of
company where the incident occurred, the nature of the claim. The firm
could also keep track of the different aspects of the case, including the
outcome of the case, whether it settled, how much it settled for, the
judge involved, the laws involved, and whether it went to trial, etc. This
data set of past case information that the firm has encountered over the

59. Id.

60. Id.

61. See FLACH, supra note 8, at 16-18.
62. Id
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years, combined with other data such as published case decisions or
private sources of data about case outcomes, would be the "training set."
And similar to the spam filter example, the machine learning algorithm
could be trained to study the past examples to learn the salient features
that are most indicative of future outcomes. Over time, after examining
sufficient examples of past client cases, a machine learning algorithm
could potentially build a predictive model determining the weights of the
factors that are most predictive of particular outcomes.

For example, (to oversimplify) we could envision an algorithm
learning that in workplace discrimination cases in which there is a racial
epithet expressed in writing in an email, there is an early defendant
settlement probability of 98 percent versus a 60 percent baseline. An
attorney, upon encountering these same facts, might have a similar
professional intuition that early settlement is likely given these powerful
facts. However, to see the information supported by data may prove a
helpful guide in providing professional advice.

More usefully, such an algorithm may identify a complex mix of
factors in the data associated with particular outcomes that may be hard
or impossible for an attorney to detect using typical legal analysis
methods. For instance, imagine that the algorithm reveals that in cases in
which there are multiple hostile emails sent to an employee, if the emails
are sent within a three week time period, such cases tend to be 15
percent more likely to result in liability as compared to cases in which
similar hostile emails are spread out over a longer one-year period. Such
a nuance in timeframe may be hard for an attorney to casually detect
across cases, but can be easily revealed through data pattern analysis. As
such an algorithm received more and more exemplars from the training
set, it could potentially refine its internal model, finding more such
useful patterns that could improve the attorney's ability to make
reasoned predictions.

In sum, entities concerned with legal outcomes could, in principle,
leverage data from past client scenarios and other relevant public and
private data to build machine learning predictive models about future
likely outcomes on particular legal issues that could complement legal
counseling. In essence, this would be formalizing statistically to some
extent what lawyers often do intuitively today. 63 Lawyers who see

63. This is reminiscent of the quote from great mathematician Pierre-Simon Laplace who said
several hundred years ago, "The theory of probabilities is at bottom nothing but common sense
reduced to calculus; it enable us to appreciate with exactness that which accurate minds feels with a
sort of instinct for which ofttimes they are unable to account." H. C. TUMS, UNDERSTANDING
PROBABILITY 3-4 (3d ed. 2012) (quoting LaPlace).
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similar cases often over time develop an internal, intuitive understanding
of the likely outcomes in particular cases once they factor in particular
salient facts. Attorneys combine their judgment, training, reasoning,
analysis, intuition, and cognition under the facts to make approximate
legal predictions for their clients. To some extent, machine learning
algorithms could perform a similar but complementary role, only more
formally based upon analyzed data.

2. Limitations to Machine Learning Legal Predictive Models

There may be some limitations to predictive models that should be
noted. Generally speaking, the goal of using machine learning is to
analyze past data to develop rules that are generalizable going forward.
In other words, the heuristics that an algorithm detects by analyzing past
examples should be useful enough that they produce accurate results in
future, never-before-seen scenarios. In the prior discussion for instance,
the goal would be to analyze the data from past client scenarios,
associate variables (e.g., hostile emails) with particular outcomes (e.g.,
increased settlement probability) in order to devise a set of heuristics
that are sufficiently general that they would be predictive in cases with
facts somewhat different from those in the training set. Such a learned
model is thus only useful to the extent that the heuristics inferred from
past cases can be extrapolated to predict novel cases.

There are some well-known problems with this type of generalization.
First, a model will only be useful to the extent that the class of future
cases have pertinent features in common with the prior analyzed cases in
the training set.64 In the event that future cases present unique or unusual
facts compared to the past, such future distinct cases may be less
predictable. In such a context, machine learning techniques may not be
well suited to the job of prediction. For example, not every law firm will
have a stream of cases that are sufficiently similar to one another such
that past case data that has been catalogued contain elements that will be
useful to predicting future outcomes. The degree of relatedness between
future and past cases within a data-set is one important dimension to
consider regarding the extent that machine learning predictive models
will be helpful. Additionally, machine learning algorithms often require

64. There are other well-known problems with induction. Induction relies upon analyzing
examples from the past to generalize about the future. However, under the so-called "Black Swan"
problem, there may be never-before-seen, but salient scenarios that may arise in the future. In such
an instance, a model trained upon past data may be insufficiently robust to handle rare or unforeseen
future scenarios. See, e.g., NASSIM NICHOLAS TALEB, THE BLACK SwAN: THE IMPACT OF THE

HIGHLY IMPROBABLE 1-10 (2d ed. 2010).
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a relatively large sample of past examples before robust generalizations
can be inferred. To the extent that the number of examples (e.g., past
case data) are too few, such an algorithm may not be able to detect
patterns that are reliable predictors.

Another common problem involves overgeneralization. This is
essentially the same problem known elsewhere in statistics as
overfitting. 65 The general idea is that it is undesirable for a machine
learning algorithm to detect patterns in the training data that are so finely
tuned to the idiosyncrasies or biases in the training set such that they are
not predictive of future, novel scenarios. For example, returning to the
spam filter example, imagine the emails that were used as a training set
happen to be systematically biased in some way: they all were sent from
a data server located in Belarus. A machine learning algorithm may
incorrectly infer from this biased training data that spam emails only
originate from Belarus, and might incorrectly ignore spam emails from
other countries. Such an inference would be accurate based upon the
particular training data used, but as applied in the wider world, would
produce inaccurate results because the training data was non-
representative of spam emails generally.

Similarly, in the legal prediction context, the past case data upon
which a machine learning algorithm is trained may be systematically
biased in a way that leads to inaccurate results in future legal cases. The
concern, in other words, would be relying upon an algorithm that is too
attuned to the idiosyncrasies of the past case data that is being used to
train a legal prediction algorithm. The algorithm may be able to detect
patterns and infer rules from this training set data (e.g., examining an
individual law firm's past cases), but the rules inferred may not be useful
for predictive purposes, if the data from which the patterns were detected
were biased in some way and not actually reflective enough of the
diversity of future cases likely to appear in the real world.

A final issue worth mentioning involves capturing information in
data. In general, machine learning algorithms are only as good as the
data that they are given to analyze. These algorithms build internal
statistical models based upon the data provided. However, in many
instances in legal prediction there may be subtle factors that are highly
relevant to legal prediction and that attorneys routinely employ in their
professional assessments, but which may be difficult to capture in
formal, analyzable data.

For example, imagine that there is an administrative board that

65. See RUSSELL & NORVIG, supra note 11, at 705.
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adjudicates disciplinary cases and there has recently been a change in the
board's personnel. An experienced attorney who has worked in a
particular area for many years may be familiar with the board personnel
and the types of cases that these individuals are and are not sympathetic
to. Thus, such an attorney may make a recommendation as to a course of
action to a client based upon a nuanced understanding of the board
personnel and their particular inclinations. This might be the kind of
information that would be available to an experienced attorney, and
which is often used in legal counseling, but might be difficult to
consistently and accurately capture in a data model. Consequently, a data
model that does not include such hard-to-capture but predictive
information may in fact produce inferior predictive results to an
attorney.

Similarly, there are certain legal issues whose outcomes may turn on
analyzing abstractions-such as understanding the overall public policy
of a law and how it applies to a set of facts-for which there may not be
any suitable data proxy. Thus, in general, if there are certain types of
salient information that are both difficult to quantify in data, and whose
assessment requires nuanced analysis, such important considerations
may be beyond the reach of current machine learning predictive
techniques.

C. Finding Hidden Relationships in Data

Machine learning techniques are also useful for discovering hidden
relationships in existing data that may otherwise be difficult to detect.
Using the earlier example, attorneys could potentially use machine
learning to highlight useful unknown information that exists within their
current data but which is obscured due to complexity. For example,
consider a law firm that tracks client and outcome data in tort cases over
the span of several years. A machine learning algorithm might detect
subtle but important correlations that might go unnoticed through typical
attorney analysis of case information. Imagine, for instance, that the
algorithm detects that the probability of an early settlement is
meaningfully higher when the defendant sued in a personal injury case is
a hospital as compared to other types of defendants. This is the type of
relationship that a machine learning algorithm might detect, and which
may be relevant to legal practice, but might be subtle enough that it
might escape notice absent data analysis.

In general, the mining of the law firm's existing data may give
attorneys new information about important factors affecting outcomes
(such as the category of the defendant as a hospital) that may otherwise
escape traditional professional analysis. This represents a departure from
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the normal mode of legal assessment of information. Attorneys typically
rely upon internal intuition and previous experience to determine the
factors that tend to be relevant to particular outcomes in particular
instances. Machine learning as a technique-since it excels at ferreting
out correlations-may help to supplement the attorney intuitions and
highlight salient factors that might otherwise escape notice. The
discovery of such embedded information, combined with traditional
attorney analysis, could potentially impact and improve the actual advice
given to clients.

1. Judicial Decisions and Data Relationships

There are some other potentially profound applications of machine
learning models that can reveal non-obvious relationships, particularly in
the analysis of legal opinions. A basis of the United States common law
system is that judges are generally required to explain their decisions.
Judges often issue major legal judgments in written opinions and
orders. 66 In such a written document, judges typically explain why they
decided the way that they did by referencing the law, facts, public
policy, and other considerations upon which the outcome was based.6

Implicit in such a system of written opinions is the following premise:
that the judge actually reached the outcome that she did for the reasons
stated in the opinion. In other words, the justifications that a judge
explicitly expresses in a written opinion should generally correspond to
that judge's actual motivations for reaching a given outcome.
Correspondingly, written legal decisions should not commonly and
primarily occur for reasons other than those that were expressly stated
and articulated to the public. At least one reason why legal opinions that
do not reflect actual judicial motivations are undesirable is that there are
thought to be certain motivations that are thought to be improper, illegal,
or unseemly. For example, legal decisions based upon racial animus are
illegal, and legal outcomes driven by pure partisanship over substance
may be perceived as unseemly or improper. Moreover, it is desirable that
stated judicial rationales correspond with actual rationales, because in a
common law system, societal actors (and lawyers) rely upon legal
opinions, and the stated justifications for these decisions, to make
predictions about future legal outcomes and to understand and comply
with the law.

66. Jonathan R. Macey, Promoting Public-Regarding Legislation Through Statutory
Interpretation: An Interest Group Model, 86 CoLUM. L. REv. 223, 253 54 (1986).

67. Id-
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Since machine learning algorithms can be very good at detecting hard
to observe relationships between data, it may be possible to detect
obscured associations between certain variables in legal cases and
particular legal outcomes. It would be a profound result if machine
learning brought forth evidence suggesting that judges were commonly
basing their decisions upon considerations other than their stated
rationales. Dynamically analyzed data could call into question whether
certain legal outcomes were driven by factors different from those that
were expressed in the language of an opinion.

An earlier research project illustrated a related point. In that project,
Theodore Ruger, Andrew Martin, and collaborators built a statistical
model of Supreme Court outcomes based upon various factors including
the political orientation of the lower opinion (i.e. liberal or conservative)
and the circuit of origin of the appeal. 68 Not only did the statistical
model outperform several experts in terms of predicting Supreme Court
outcomes, it also highlighted relationships in the underlying data that
may not have been fully understood previously. 69

For example, the Supreme Court hears appellate cases originating
from many different appellate circuits. Many experts had deemed the
circuit of origin (e.g., Ninth or Sixth Circuits) of such a lower opinion as
less important than other factors (e.g., the substantive law of the case) in
relating to particular outcomes. However, the analysis of the data
showed a stronger correlation between the circuit of origin and the
outcome than most experts had expected based upon their intuition and
judgment.70 Although this earlier project did not involve machine
learning algorithms in particular, it did involve some similar statistical
techniques that might be used in a machine learning approach.

That project illustrates a basic point: that statistically analyzing
decisions might bring to light correlations that could undermine basic
assumptions within the legal system. If, for example, data analysis
highlights that the opinions are highly correlated with a factor unrelated
to the reasons articulated in the written opinions, it might lessen the
legitimacy of stated opinions. 1 It also demonstrates the more general

68. Andrew D. Martin et al., Competing Approaches to Predicting Supreme Court Decision
Making, 2 PERSP. ON POL. 761, 761-68 (2004); see also Theodore W. Ruger et al., The Supreme
Court Forecasting Project: Legal and Political Science Approaches to Predicting Supreme Court
Decision-Making, 104 COLUM. L. REV. 1150, 1151 59 (2004).

69. Martin, supra note 68, at 761-68.

70. Id.

71. To be clear, this is not to suggest that correlation implies causation. It is perfectly consistent
for Supreme Court decisions to be correlated with a non-substantive factor (e.g. circuit of origin)
and still be based upon substantive determination. Thus, for example, if one circuit court was
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point that statistical heuristics can be predictive and informative in a
domain as abstract and full of uncertainty as law, even when computers
do not actually engage with the underlying legal substance (e.g.,
underlying meaning and goals of the laws, doctrines, or policies) that is
typically the primary focus of attorneys.

D. Document Classification and Clustering

The practice of law is intertwined with the production, analysis, and
organization of text documents. These include written legal opinions,
discovery documents, contracts, briefs, and many other types of written
legal papers. Outside of law, machine learning algorithms have proven
useful in automatically organizing, grouping, and analyzing documents
for a number of tasks.72 This Subpart will explore two machine learning
methods that may be relevant to the automated analysis and organization
of legal documents: 1) document classification; and 2) document
clustering.

1. Automated Document Classification

In a document classification task, the goal of a machine learning
algorithm is to automatically sort a given document into a particular,
pre-defined category. Often such classification is based upon the
document's text and other document features.74

The earlier spam filtering example illustrated the idea of such an
automated document classification. We can think of the machine
learning algorithm described as attempting to classify a given incoming
email document into one of two categories: unwanted spam or wanted
email. The algorithm was able to make such automatic classifications
based upon the various indicia of spam emails that it had automatically
detected from past examples of spam (e.g., text included "Earn Extra
Cash" or country of origin was Belarus). Moreover, the algorithm was
able to "learn"-refine its internal model of the characteristics of spam
emails as it examined more examples of span-and improve in its
classification ability over time as its internal model and rule-set of spam

consistently making errors in its interpretation of the law, one outcome (reversed) might be highly
correlated with a particular circuit, but that outcome would not necessarily mean that the decision
was being made based upon considering the circuit of origin.

72. SEGARAN, supra note 23, at 6 9.

73. See, e.g., Kevin D. Ashley & Stefanie Brfininghaus, Automatically Classifying Case Texts and
Predicting Outcomes, 17 ARTIFICIAL INTELLIGENCE & L. 125, 125-65 (2009).

74. Id-
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became more sophisticated. Thus, we consider such a task to be
"classification" because a human user, examining an email, is essentially
performing the same classification task-deciding whether a particular
incoming email is or is not in the category "spam."

Within law, there are numerous similar tasks that can be thought of as
document classification problems. For these, machine learning
algorithms may be useful, and in some cases have already been
deployed.

2. Classification of Litigation Docket Documents

Since about 2002, documents associated with lawsuits have been
typically contained in online, electronically accessible websites such as
the Federal "PACER" court records system. Such core documents
associated with a lawsuit might include the complaint, multiple party
motions and briefs, and the orders and judgments issued by the court. In
a complicated court case, there may be several hundred documents
associated with the case. However, obscured within such collections of
hundreds litigation docket documents, there may be a few especially
important documents-such as the active, amended complaint-that
might be crucial to access, but difficult to locate manually. Electronic
court dockets can become very lengthy, up to several hundred entries
long. A particular important document-such as the active, amended
complaint-may be located, for example, at entry 146 out of 300.
Finding such an important document within a larger collection of less
important docket entries often can be difficult.

The task of finding and organizing core case documents can be
thought of as a document classification task. Analogous to the spam
filtering example, a machine learning algorithm may be trained to learn
the telltale characteristics that indicate that a particular document is a
complaint rather than, say, a party motion. Such an algorithm could be
trained to automate classifications of the documents based upon features
such as the document text and other meta information such as the
descriptive comments from the clerk of the court. Thus, key electronic
court documents could be automatically identified as "complaints,"
"motions," or "orders," by machine learning algorithms, and parties
could more easily to locate important docket documents thanks to such

75. See Administrative Office of the U.S. Courts, 25 Years Later, PACER, Electronic Filing
Continue to Change Courts, THE THIRD BRANCH NEWS (Dec. 9, 2013), http://news.uscourts.gov/25-
years-later-pacer-electronic-filing-continue-change-courts; Amanda Conley et al., Sustaining
Privacy and Open Justice in the Transition to Online Court Records: A Multidisciplinary Inquiry,
71 MD. L. REv. 772 (2012).
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automated classification.
Projects such as the Stanford Intellectual Property Litigation

Clearinghouse have employed similar machine learning techniques in
order to automate the organization of very lengthy and complex case

76dockets, and to ease the finding of crucial court documents. More
broadly, machine learning algorithms are capable of providing
intelligent classification of documents to aid in overall organization.

3. E-Discovery and Document Classification

Similarly, certain aspects of litigation discovery can be thought of as a
document classification problem. In litigation discovery, each party is
often presented with a voluminous trove of documents, including emails,
memos, and other internal documents that may be relevant to the law
and the facts at hand. A crucial task is sorting through such discovery
documents in order to find those few that are actually relevant to some
issue at hand. Thus, for example, in a case involving securities fraud,
certain crucial emails demonstrating the intent to defraud may be
extremely crucial to proving an element of the law. The major problem
is that in modern litigation, the number of documents presented during
discovery can be enormous, ranging from the tens of thousands to the
millions.

Only an extremely small fraction of these documents are likely to be
relevant to the issue or case at hand. In some sense, the task is akin to
finding the proverbial needle (e.g., smoking-gun email) in the haystack
(e.g., trove of millions of discovery documents). This task can be
thought of as a classification task, as the goal is to classify each of the
documents into a few categories based upon relevance, such as (for
simplicity's sake), highly relevant, possibly relevant, likely irrelevant,
highly irrelevant.

Previously, much of this discovery was conducted manually by junior
associates who pored over and read emails and used their judgment to
classify emails and other documents as either likely relevant or non-
relevant. In essence, this is similar to the classification task described
above. The major difference is that the classification of an email as spam
or not spam is often a dichotomous, binary classification-an email
either is or is not spam. By contrast, the classification of a given

76. Stanford IP Litigation Clearinghouse, STAN. L. SCH., http://www.law.stanford.edu/
organizations/programs-and-centers/stanford-ip-litigation-clearinghouse (last visited Jan. 27, 2014).

77. See, e.g., John Markoff, Armies of Expensive Lawyers, Replaced by Cheaper Software, N. Y.
TIMES (Mar. 4, 2011), http://www.nytimes.com/2011/03/05/science/05legal.html.
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litigation discovery document as either relevant or non-relevant often
exists upon a continuum of judgment. Some documents may be
somewhat relevant, others highly relevant, and some not relevant at all.
It is in this latter category that automation has proven highly useful.

Today, certain aspects of litigation discovery are being automated in
part, often by machine learning algorithms. Similar to the categorization
tasks discussed before, in some cases, algorithms can roughly categorize
documents by likelihood of relevance (often referred to as "predictive
coding" or "technology assisted review"). In particular, they may be able
to filter out documents that are likely irrelevant based upon dates or the
parties involved. For example, such an algorithm may infer that emails
that predated the core incident in the lawsuit by two years are highly
likely to be irrelevant. There are, however, limitations to what these
automated techniques can do. As discussed, the algorithms are not well
suited to, or intended to, apply legal judgment in nuanced, uncertain
areas. Rather, in many cases, the algorithms perform the role of filtering
down the size of the document stack that is ultimately in need of
lawyerly review. Once flagged, many of the documents still require
attorney attention in order to conduct legal analysis as to relevance or
privilege.

4. Clustering and Grouping of Related Documents

In a previous example, the machine learning algorithm described was
used to classify documents into well-understood, predefined categories,
such as "complaints," "motions," or "orders." In some cases, however,
documents may have features in common, but the uniting characteristics
of the documents may be unknown or non-obvious. In such an instance
where there are hidden or unknown commonalities among items such as
documents, a machine learning approach known as "clustering" may be
useful.79

In clustering, a machine learning algorithm attempts to automatically
group items that are similar in some way on the basis of some common
characteristic that the algorithm has detected. In other words, the
algorithm attempts to automatically detect hidden or non-obvious
relationships between documents that would not otherwise be easily
discoverable, and group such related documents together.

78. See, e.g., Vincent Syracuse et al., E-Discovery: Effects of Automated Technologies on
Electronic Document Preservation and Review Obligations, INSIDE COUNSEL (Dec. 18, 2012),
http://m.insidecounsel.com/2012/12/18/e-discovery-effects-of-automated-technologies-on-e.

79. See Rut Xu & DON WUNSCH, CLUSTERING 2 6 (2008).
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In this way, such a machine algorithm might be used to discover that
seemingly unconnected legal documents are actually related to one
another in essential or useful ways. For example, imagine that there are
two legal opinions in two fundamentally different areas of law: family
law and trademark law. Imagine further that the two opinions share some
subtle underlying commonality, such a lengthy discussion of best-
practice strategies in administrative law. Such a connection between
these two cases may go undetected by attorneys, since practitioners of
family law may be unlikely to read trademark law opinions, and vice-
versa. However, a clustering algorithm may be able to automatically find
such an association and group the documents through this non-obvious
relationship, by detecting a pattern among a large set of data-all
opinions.

Consider another example in which automated document clustering
and grouping might have uses within law. In patent law, patent
examiners and patent attorneys spend a great deal of effort trying to find
published documents describing inventions that are similar to a given
patent.80 Patent law has a requirement, for example, that the patent office
not issue a patent on a patent application if the claimed invention is not
new.' The way that one determines that an applied-for invention is not
new is by finding "prior art" documents, which are documents that
describe the invention but predate the patent application. Such prior art
typically consists of earlier published scientific journal articles, patents,
or patent applications that indicate than the invention had been created
previously.

Given the huge volumes of published patents and scientific journals,
it is a difficult task to find those particular prior art documents in the
wider world that would prove that an invention was invented earlier. The
task of finding such a document is essentially a problem involving
automatically determining a relationship between the patent application
and the earlier prior art document. Machine learning document
clustering may potentially be used to help make the search for related
prior art documents more automated and efficient by grouping
documents that are related to the patent application at hand. More
generally, automated document clustering might be useful in other areas
of the law in which finding relevant documents among large collections
is crucial.

80. JANICE M. MUELLER, PATENT LAW 30-40 (4th ed. 2012).

81. 35 U.S.C. § 102(a) (2006 & Supp. V 2011).
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CONCLUSION

This Article focused upon a computer science approach known as
machine learning and its potential impact upon legal practice. There has
been a general view that because current Al technology cannot match
the abstract analysis and higher-order cognitive abilities routinely
displayed by trained attorneys, current Al techniques may have little
impact upon law, barring significant technological advances. However,
this Article has argued that outside of law, Al techniques-particularly
machine learning-have been successfully applied to problems that had
been traditionally thought to require human cognition.

This Article suggested that similarly, there are a number of tasks
within the law for which the statistical assessments within the ambit of
current machine learning techniques are likely to be impactful despite
the inability to technologically replicate the higher-order cognition
traditionally called upon by attorneys. The general insight is that
statistical and other heuristic-based automated assessments of data can
sometimes produce automated results in complex tasks that, while
potentially less accurate than results produced by human cognitive
processes, can actually be sufficiently accurate for certain purposes that
do not demand extremely high levels of precision and accuracy.
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I. INTRODUCTION

[1] Over the past twenty years, the near-constant use of sophisticated
technological tools has become an essential and indispensable aspect of
the practice of law. The time and cost efficiencies generated by these
resources are obvious, and have been for years.' And because clients

2
expect their counsel to take full advantage, savvy attorneys understand
that they must keep up with ever-evolving legal technologies to stay
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competitive in a crowded marketplace.3

[2] With increased globalization and exponential growth in the
creation, collection, use, and retention of electronic data, the challenges to
all lawyers-especially those who may not have tech backgrounds or a
natural aptitude for the mechanics of these innovations-are multiplying
with breathtaking speed. 4 Nevertheless, many attorneys are either
blissfully unaware of the power and potential danger associated with the
tools they now find themselves using on a daily basis, or they are willfully
avoiding a confrontation with reality. For lawyers, technological know-
how is no longer a "nice to have" bonus; it now poses an ethical
obligation. Where competent client representation demands a minimum
level of tech proficiency, however, many lawyers come up short with
respect to this fundamental component of their professional
responsibilities.

[3] What types of privacy and data security threats do various
technologies pose to attorneys, their firms, their clients, and the legal

3 See, e.g., Evan Weinberger, Fintech Boom Prompts Lawyers to Add Tech Know-How,
LAw360 (Sep. 4, 2015, 6:05 PM), http://www.law360.com/articles/692081/fintech-boom-
prompts-lawyers-to-add-tech-know-how, archived at https://perma.cc/WVE8-UPGP; see
also Allison 0. Van Laningham, Navigating in the Brave New World ofE-Discovery:
Ethics, Sanctions and Spoliation, FDCC Q. 327(Summer 2007),
http://www.thefederation.org/documents/V57N4-VanLaningham.pdf, archived at
https://perma.cc/9L48-MPLU.

See Frank Strong, Beautiful Minds: 41 Legal Industry Predictions for 2016, LEXISNEXIS
LAWBLOG (Dec. 17, 2015), http://businessoflawblog.com/2015/12/legal-industry-
predictions-2016/, archived at http://perma.cc/BG5W-R4DB.

To further complicate matters, for attorneys and law firms practicing in the financial
technology area such as payment, online lending, bitcoin and other virtual currencies,
these lawyers need to be competent in "fintech", financial technology, another outgrowth
of the expertise in technology requirement. See Evan Weinberger, Fintech Boom Prompts
Lawyers to Add Tech Know-How, LAw360 (Sep. 4, 2015, 6:05 PM),
http://www.law360.com/articles/69208 1/fintech-boom-prompts-lawyers-to-add-tech-
know-how, archived at https://perma.cc/L76C-FZRL.
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profession in general? What rules and regulations govern how attorneys
may make use of technology in their practice, and how might clients seek
to impose restrictions around such use when it comes to their corporate
data? Must attorneys gain mastery over the intricate mechanics of the
technological resources they employ, or is basic knowledge sufficient?
How can we weigh the potential risks and rewards of cutting-edge,
emerging digital products and electronic resources about which clients-
and indeed, even the lawyers themselves-may understand very little?
These are just a few of the questions that arise when we consider the issue
of technological competence in the legal profession and corresponding
ethical requirements.

[4] To begin to answer these questions, we look to the applicable
Model Rules issued by the American Bar Association ("ABA"), various
state-level professional ethics rules that incorporate the Model Rules,
associated ethics opinions and guidance issued by the states, state and
federal court decisions, and guidelines issued by sector-specific agencies

6and organizations. Our focus in this investigation concerning lawyerly
"technological competence" will be on privacy and data security risks and
safeguards, e-Discovery-related challenges, and the potential perils of
various uses of social media in the legal sphere.

II. THE THREAT LANDSCAPE: LAW FIRMS AS PRIME TARGETS

[5] In recent years, the volume and severity of attacks on
electronically-stored data, and the information systems and networks that
house that data, have increased exponentially. The modern-day "threat
environment" is "highly sophisticated," and "massive data breaches are
occurring with alarming frequency. For attorneys, such perils implicate

6 See infra Part III (explaining that agencies such as the FDA have issued guidance in
their arena- Postmarket Management of Cybersecurity in Medical Devices).

Report to the House of Delegates, ABA Cybersecurity Legal Task Force Section of Sci.
& Tech. Law 1,
http://www.americanbar.org/content/dam/aba/administrative/house of delegates/resoluti
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multiple ethical and professional responsibilities with respect to how they
handle data, including the duty to protect the confidentiality of client
information and the obligation to provide "competent" representation.

[6] Unfortunately, law firms can provide a proverbial back door for
hackers seeking access to a company's data, as attorneys often are
custodians of a veritable "treasure trove" of valuable client information
"that is extremely attractive to criminals, foreign governments, adversaries
and intelligence entities."8 Some hackers even focus their efforts primarily
on law firms, especially those firms collecting vast amounts of data from
corporate clients in the course of E-Discovery or corporate due diligence.9

Corporate secrets, business strategies, and intellectual property all may be
found in a law firm's collection of its clients' data.10 In some cases, the
interceptors may be looking for competitive information relevant to
merger negotiations, or trying to suss out evidence of as-yet unannounced
deals for insider trading purposes."

[7] A 2015 report estimated that 80% of the biggest 100 law firms

ons/2014 hod annualmeeting_109.authcheckdam.pdf, archived at
https://perma.cc/KQT3-AFAJ.

Ellen Rosen, Most Big Firms Have Had Some Hacking: Business ofLaw, BLOOMBERG

(Mar. 11, 2015, 12:01 AM), http://www.bloomberg.com/news/articles/2015-03-11/most-
big-firms-have-had-some-form-of-hacking-business-of-law, archived at
https://perma.cc/YDR6-ZUV8.

9 See Melissa Maleske, A Soft Target for Hacks, Law Firms Must Step Up Data Security,
LAw360 (Sep. 23, 2015, 10:09 PM), http://www.law360.com/articles/706312/a-soft-
target-for-hacks-law-firms-must-step-up-data-security, archived at
https://perma.cc/6V7K-2WB4.

10 See id.

See Susan Hansen, Cyber Attacks Upend Attorney-Client Privilege, BLOOMBERG

BUSINESSWEEK (Mar. 19, 2015, 2:56 PM),
http://www.bloomberg.com/news/articles/2015-03-19/cyber-attacks-force-law-firms-to-
improve-data-security, archived at https://perma.cc/29A5-MUNG.
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have experienced some sort of data security incident. 12 And as is the case
with so many companies that suffer a breach, law firms that have been
hacked may not know about it for a considerable period of time.
Moreover, unlike other industry sectors subject to various reporting
requirements, law firms generally do not have a statutory obligation to
publicly report cybercrimes that do not involve personally identifiable
information. 13 Lack of obligations notwithstanding, a recent report
indicated that "[t]he legal industry reported more "cyber threats" threats in
January [2016] than nearly any other sector," topped only by the retail
industry and financial services.14

[8] Although these reported "threats" might not necessarily result in
data compromises, the fact that the legal industry frequently is among the
most targeted for data theft should concern attorneys. 15 Anecdotal
evidence of actual and attempted interference with law firms' data security
systems abounds as well. In 2014, a report indicated that communications
between lawyers from the law firm of Mayer Brown and officials with the
Indonesian government were intercepted by an Australian intelligence
agency that had ties with the U.S. National Security Agency ("NSA"). 16

And the managing partner of the Washington-area offices of Hogan
Lovells LLP recently noted that her firm "constantly intercept[s]

12 See Rosen, supra note 8.

13 id.

14 Mark Wolski, Report: Legal Industry Was Heavily Targeted with Cyber Threats in
January, BLOOMBERGBNA (Mar. 9, 2016), https://bol.bna.com/report-legal-industry-
was-heavily-targeted-with-cyber-threats-in-january, archived at https://perma.cc/ZCR9-
2WRX.

15 See id.

16 James Risen & Laura Poitras, Spying by N.S.A. Ally Entangled U.S. Law Firm, N.Y.
TIMES, Feb. 15, 2014, http://www.nytimes.com/2014/02/16/us/eavesdropping-ensnared-
american-law-firm.html, archived at https://perma.cc/F8M4-TEQ7.
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attacks."1 7

[9] The message to law firms seems clear: first, if "you're a major law
firm, it's safe to say that you've either already been a victim, currently are
a victim, or will be a victim." 18 Second, "[f]irms have to make sure they
are not a weak link...which at its most basic level means their standards
for protecting data need to be at least equivalent to those of the companies
they represent."19

[10] It seems inevitable that client expectations and demands with
regard to their legal service providers' security will continue to evolve and
expand. One commentator recently predicted that in the future "clients
across the board will demand firms demonstrate they're prepared for all
shapes and sizes of cybersecurity breaches,"20 while another prophesized
that "in the name of risk management and data leakage prevention, a large
financial industry corporation will challenge their outside counsel's [Bring
Your Own Device] program."2 1 Indeed, according to a 2014 report in the
New York Times:

Banks are pressing outside law firms to demonstrate that
their computer systems are employing top-tier technologies
to detect and deter attacks from hackers bent on getting
their hands on corporate secrets for their own use of sale to
others... .Some financial institutions are asking law firms to
fill out lengthy 60 page questionnaires detailing the [law

17 See Rosen, supra note 8.

"s See Hansen, supra note 11.

19 Blake Edwards, Verizon GC: Law Firms Prime Targets for Hackers, BLOOMBERG
BNA (Feb. 4, 2016), https://bol.bna.com/verizon-gc-law-firms-are-prime-targets-for-
hackers/, archived at https://perma.cc/F6WU-N6FW.

20 Strong, supra note 4.

21 id.

6
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firm's] cybersecurity measures, while others are demanding
on-site inspections... Other companies are asking law firms
to stop putting files on portable thumb drives, to stop
emailing non-secure iPad or working on computers linked
to a share network in countries like China and Russia.22

[11] In short, lawyers, law firms, and other legal services providers
cannot afford to be complacent when it comes to cybersecurity.

A. Lawyering in the Cloud

[12] Firm adoption of cloud services is on the rise, especially among
boutiques and solo practitioners that previously lacked the resources to
compete effectively with larger law firms when it came to technology and
data storage.23 At first, the added value of cloud services created a
perception that "nirvana had arrived" in terms of leveling the playing field
for smaller firms.24 Notwithstanding the apparent advantages of the cloud,
attorneys were quick to identify concerns associated with the technology
and its supporting practices, including "increased sensitivity to cyber-
threats and data security."2 5 Some commentators opted for a cautious and
conservative approach, noting that the "legal profession has developed
many safeguards to protect client confidences," and that the use of cloud
hosting, among other practices, fell on a continuum where, as "an
individual attorney gives up direct control of his or her client's

22 Matthew Goldstein, Law Firms Are Pressed on Security for Data, N.Y. TIMES (Mar.
26, 2014), http://dealbook.nytimes.com/2014/03/26/law-firms-scrutinized-as-hacking-
increases/, archived at https://perma.cc/Q77A-8BN3.

23 See N.Y. CITY BAR COMM. ON SMALL LAW FIRMS, THE CLOUD AND THE SMALL LAW

FIRM: BUSINESS, ETHICS AND PRIVILEGE CONSIDERATIONS 2 (Nov. 2013),
http://www2.nycbar.org/pdf/report/uploads/20072378-
TheCloudandtheSmallawFirm.pdf, archived at https://perma.cc/A8EG-AH7E.

24 id.

25 Strong, supra note 4.
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information, he or she takes calculated risks with the security of that
information."26

[13] There is hope for attorneys drawn to the advantages of cloud
services, but vigilance and diligence is required. As noted in tech law
guidance from March 2014, "[u]sing the cloud to hold data is fine, so long
as you understand the security precautions."2 7 Security concerns have put
a damper on adoption rates and the development of attorney-specific cloud
services lags behind other industries. This reluctance is unsurprising given
the slow rate of technological advancements within the profession
generally,28 and a deserved reputation that the tendency of firms is "to be
technology followers, not leaders."2 9 That said, lawyers do seem to be
embracing the cloud to some extent,30 with the majority utilizing cloud

26 Patrick Mohan & Steve Krause, Up in the Cloud: Ethical Issues that Arise in the Age of
Cloud Computing, 8 ABI ETHICS COMM. NEWS L. 1 (Feb. 2011),
http://www.davispolk.com/sites/default/files/files/Publication/a2e048ea-3b 12-45fe-a639-
9fc288 la4db8/Preview/PublicationAttachment/0f8af440-ldbO-4936-8dOd-
al937a0e6c8f/skrause.ethics.clouds.feb11.pdf, archived at https://perma.cc/SW3C-
FYT5.

27 Sharon D. Nelson & John W. Simek, Why Do Lawyers Resist Ethical Rules Requiring
Competence with Technology?, SLAW (Mar. 27, 2015),
http://www.slaw.ca/2015/03/27/why-do-lawyers-resist-ethical-rules-requiring-
competence-with-technology/, archived at https://perma.cc/6HNN-UCDZ.

28 Ed Finkel, Technology No Longer a 'Nice to Learn'for Attorneys, Legal Management,
Association of Legal Administrators (Oct. 2014) http://encoretech.com/wp-
content/uploads/2014/10/Technology-No-Longer-a-Nice-to-Leam-for-AttomeysALA-
Legal-ManagementOct2014.pdf, archived at https://perma.cc/TW7N-4WP5.

29 Leslie Pappas, The Security Concerns Holding Up One Firm's Cloud Usage,
BLOOMBERG BNA (Jan. 22, 2016), https://bol.bna.com/the-security-concerns-holding-up-
one-firms-cloud-usage/, archived at https://perma.cc/Z4LJ-H83Q.

30 See Casey C. Sullivan, Is It Time for a Law Firm Cloud Computing Security
Standard?, FINDLAW (Feb. 18, 2016), http://blogs.findlaw.com/technologist/2016/02/is-
it-time-for-a-law-firm-cloud-computing-security-standard.html, archived at
https://perma.cc/78HF-KKX4.
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31- -solutions in some capacity, even if implementation is mostly through
"sporadic action and adoption among firms and law departments."32

[14] With respect to professional obligations, this type of
implementation may not require specific technological expertise on the
part of the attorneys. New York State Bar Association Opinion 1020,
which addressed ethical implications of the "use of cloud storage for
purposes of a transaction," determined that compliant usage "depends on
whether the particular technology employed provides reasonable
protection to confidential client information and, if not, whether the
lawyer obtains informed consent from the client after advising the client of
the relevant risks."3 3

[15] Further, New Jersey Opinion 701 addresses the reality that it is

[N]ot necessarily the case that safeguards against
unauthorized disclosure are inherently stronger when a law
firm uses its own staff to maintain a server. Providing
security on the Internet against hacking and other forms of
unauthorized use has become a specialized and complex
facet of the industry, and it is certainly possible that an
independent [Internet Service Provider] may more
efficiently and effectively implement such security

34precautions.

31 See Jonathan R. Tung, Survey: Law Departments Are Warming Up to the Cloud,
FINDLAW (Feb. 18, 2016), http://blogs.findlaw.com/inhouse/2016/02/survey-law-depts-
are-warming-up-to-the-cloud.html, available at https://perma.cc/M89M-LC3M.

32 Strong, supra note 4.

33 N.Y. State Bar Ass'n Comm. on Profl Ethics, Op. 1020 (Sept. 12, 2014),
http://www.nysba.org/CustomTemplates/Content.aspx?id=5200 1, archived at
https://perma.cc/8MPU-62BR.

34 N.J. Advisory Comm. on Prof' Ethics, Op. 701 (2006),
https://www.judiciary.state.nj.us/notices/ethics/ACPEOpinion7O 1_ElectronicStorage_12
022005.pdf, archived at https://perma.cc/2H5Y-UYWX.
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[16] Opinion 701 does include an additional caveat, that

[W]hen client confidential information is entrusted in
unprotected form, even temporarily, to someone outside the
firm, it must be under a circumstance in which the outside
party is aware of the lawyer's obligation of confidentiality,
and is itself obligated, whether by contract, professional
standards, or otherwise, to assist in preserving it. 3 5

B. E-Discovery Tools

[17] To begin with, federal judges are unconvinced that many of the
attorneys appearing before them understand how to make proper use of the
technologies and related strategies associated with E-Discovery. A recent
report, "Federal Judges Survey on E-Discovery Best Practices &
Trends,"3 6 compiled some of the judges' concerns, noting first "the typical
attorney... does not have the legal and technical expertise to offer effective
advice to clients on e-discovery."3 7 Some of the judges' comments were
quite blunt, with one noting that "[s]ome attorneys are highly competent;
but most appear to have significant gaps in their understanding of e-
discovery principles."3 8

[18] Legal ethical rules and related opinions and scholarship provide
guidance for what attorney E-Discovery competence should look like. At
least one author has made the connection between professional
responsibility and technological savoir-faire, noting that:

35 id.

37 Aebra Coe, Judges Lack Faith in Attys' E-Discovery Skills, Survey Says, LAW360 (Jan.
28, 2016), http://www.1aw360.com/articles/751961/judges-lack-faith-in-attys-e-
discovery-skills-survey-says, archived at https://perma.cc/5UJB-D2YX.

38 id.

10

Richmond Journal of Law & Technology Volume XXII, Issue 4



There is growing recognition across the country that the
practice of law requires some degree of competence in
technology. In the forum of litigation, competence in
technology necessarily equates with competence in e-
discovery. It is only a matter of time before ethics bodies
across the nation call for competence in e-discovery.3 9

[19] The opinions of courts and bar associations may carry the most
weight, but a number of influential professional and industry groups also
have offered useful commentary on technological competence. For
example, competence is

... highlighted in the very first rule of legal ethics,
according to the American Bar Association['s] Rule 1.1 of
the ABA Model Rules of Professional Conduct," which
"specifically recognized the need for technological
competence through a significant change in August 2012
that formally notified all lawyers (and specifically those in
jurisdictions following the Model Rules) that competency
includes current knowledge of the impact of e-Discovery
and technology on litigation.40

[20] This guidance predated and perhaps presaged a number of state
and federal reactions to technology and the impact of these developments
on the practice of law, especially within the realm of E-Discovery.
Delaware amended its Lawyers' Rules of Professional Conduct as they

39 Bob Ambrogi, California Considers Ethical Duty to Be Competent in E-Discovery,
CATALYST BLOG (Feb. 27, 2015),
http://www.catalystsecure.com/blog/2015/02/california-considers-ethical-duty-to-be-
competent-in-e-discovery/, archived at https://perma.cc/2FXD-8KM4.

40 Karin S. Jenson, Coleman W. Watson & James A. Sherer, Ethics, Technology, and
Attorney Competence, THE ADVANCED EDISCOVERY INST. (Nov. 2014),
http://www.law.georgetown.edu/cle/materials/eDiscovery/2014/frimomdocs/EthicslneDi
scoveryBakerHostetler.pdf, archived at https://perma.cc/TFR6-VZNG.
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related to technology in 2013;41 North Carolina42 and Pennsylvania43 did
the same shortly thereafter.

[21] California's relatively recent Formal Opinion No. 2015-193 (the
"California Opinion") addresses a number of issues associated with
attorney ethical duties vis-a-vis E-Discovery. Although advisory in nature,
the California Opinion states "attorneys have a duty to maintain the skills
necessary to integrate legal rules and procedures with 'ever-changing
technology."'4 4 That reads broadly, but the California Opinion has been
interpreted to indicate that, because E-Discovery arises "in almost every
litigation matter, attorneys should have at least a baseline understanding of
it." 4 5 Specifically, the California Opinion begins with the premise that E-
Discovery requires an initial assessment of its inclusion at the beginning
of a matter.46 If E-Discovery will be a component of a matter,

[T]he duty of competence requires an attorney to assess his
or her own e-discovery skills and resources as part of the
attorney's duty to provide the client with competent

41 See Order Amending Rules 1.0, 1.1, 1.4, 1.6, 1.17, 1.18, 4.4, 5.3, 5.5, 7.1, 7.2, and 7.3
of the Delaware Lawyers' Rules of Professional Conduct, DEL. R. PROF'L CONDUCT

(2013), http://courts.delaware.gov/rules/pdf/dlrpc2013rulechange.pdf.

42 See N.C. STATE. BAR RULES OF PROF'L RESPONSIBILITY & CONDUCT R. 1.1 (2014),
http://www.ncbar.com/rules/rules.asp?page=4, archived at https://perma.cc/7R44-4JAG.

43 See Notice of Proposed Rulemaking, 43 Pa. Bull. 1997 (Apr. 13, 2013), http://www.pa
bulletin.com/secure/data/vol43/43-15/652.html, archived at https://perma.cc/WS5G-
MHKQ.

Bob Ambrogi, California Finalizes Ethics Opinion Requiring Competence in E-
Discovery, CATALYST BLOG (Aug. 6, 2015),
https://www.catalystsecure.com/blog/2015/08/california-finalizes-ethics-opinion-
requiring-competence-in-e-discovery/, archived at https://perma.cc/V7NV-QCWW.

45Id.

46 See id.
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representation. If an attorney lacks such skills and/or
resources, the attorney must try to acquire sufficient
learning and skill, or associate or consult with someone
with expertise to assist.4 7

[22] Other commentators have noted that the California Opinion
focuses on "nine (9) core competency issues" which would offer "solid
guidelines for attorneys.. .to maintain competency and protect client
confidentiality in the era of eDiscovery."4 8 One author notes that one of
these core competency issues and its related directive, that of performing
data searches, stretches across the entirety of the E-Discovery process
"occurring at each of these steps, from preservation and collection to
review and redaction."49

[23] Soon after the California Opinion was decided, Magistrate Judge
Mitchell Dembin issued a Southern District of California decision that
addressed "counsels' ethical obligations and expected competency" in HM
Electronics, Inc. v. R.F. Technologies, Inc.50 The HM Electronics case
focused both on specific steps the attorneys should have taken (such as

47State Bar of Cal. Standing Comm. on Profl Responsibility & Conduct, Formal Op.
2015-193 (2015),
https://ethics.calbar.ca.gov/Portals/9/documents/Opinions/CAL%/"202015-
193%20%5B 1 1-0004%5D%20(06-30-15)%20-%20FINAL.pdf, archived at
https://perma.cc/8GWJ-BVJ2.

Adam Kuhn, The California eDiscovery Ethics Opinion: 9 Steps to Competency,
RECOMMIND BLOG (Aug. 11, 2015), http://www.recommind.com/blog/california-
ediscovery-ethics-opinion-9-steps-to-competency, archived at https://perma.cc/2X2K-
FCRQ.

49 Id.

50 H. Christopher Boehning & Daniel J. Toal, E-Discovery Competence of Counsel
Criticized in Sanctions Decision, NEW YORK LAW JOURNAL (Oct. 6, 2015),
http://www.newyorklawjournal.com/id=1202738840840/EDiscovery-Competence-of-
Counsel-Criticized-in-Sanctions-Decision#ixzz42wNK34Ms, archived at
https://perma.cc/4BMP-T76U.
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implementing a legal hold and doing the legwork necessary to certify
discovery responses as true) as well as behavior actively detrimental to the
case (instructing client personnel to destroy relevant documents). Of note
in Judge Dembin's excoriation of the misbehaving attorneys is his
statement that "a judge must impose sanctions for a violation of the Rule
that was without substantial justification." 5 2 One article suggests that part
of the problem may be simply that "counsel and clients alike...fail to take
seriously judges' expectations for how they conduct themselves
throughout the discovery process."53

[24] New York attorneys followed the California Opinion with interest,
first noting that it merely presented "the standard tasks one should engage
in and competently execute to properly collect and produce responsive ESI
[Electronically Stored Information] to the opposing party."5 4 A 2009
S.D.N.Y. opinion had chastised attorneys who would otherwise disclaim
experience, warning that it was "time that the Bar-even those lawyers
who did not come of age in the computer era" understood E-Discovery
technologies and their application.5 A recent article indicated that there is
"an ample basis to discern a framework for ethical obligations, derived
from ethics rules, court rules, and sanctions decisions in the e-discovery

51 See generally HM Elecs., Inc. v. R.F. Techs., Inc., 2015 U.S. Dist. LEXIS 104100
(S.D. Cal. Aug. 7, 2015) (arguing the invalidity of the steps that the defendants took in
order to certify discovery as true).

52 Boehning & Toal, supra n. 50.

53 id.

Samantha V. Ettari & Noah Hertz-Bunzl, Ethical E-Discovery: Core Competencies for
New York Lawyers, NEW YORK LAW JOURNAL (Nov. 2, 2015),
http://www.kramerlevin.com/files/Publication/6060705 1-f0 18-43b7-8a3c-
7d43b4ff6e50/Presentation/PublicationAttachment/ 1e570a52-e27d-425f-a75b-
9e2581 1df796/NYLJ%/"2OArticle-EDiscovery%/"2011.2.15.pdf, archived at
https://perma.cc/F3R8-UWM6.

5 William A. Gross Constr. Assocs., Inc. v. Am. Mfrs. Mut. Ins. Co., 256 F.R.D. 134,
136 (S.D.N.Y. 2009).
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context" based in part on the history of New York courts as "leaders in the
advancement of e-discovery law." 5 6

[25] But such a "framework for ethical obligations" might not even be
necessary where competence is the ethical rule at issue. Competence
"requires that lawyers have the legal knowledge, skill, thoroughness, and
preparation to conduct the representation, or associate with a lawyer who
has such skills" 57 and that supervision is appropriate to ensure that the
work of others "is completed in a competent manner."5 8 The issue of
supervision came up in another advisory opinion, Ethics Opinion 362 of
the District of Columbia Bar, which indicated that retaining an e-
Discovery vendor that provided all of the E-Discovery services was both
impermissible (as the unauthorized practice of law on the part of the
vendor) as well as a circumstance where the attorney engaging such a
vendor was not absolved from understanding and supervising the work
performed, no matter how technical.59

1. Metadata in Electronic Files

[26] A very basic threat to client confidentiality (as well as the secrecy
of counsel's strategy) is the existence of metadata embedded in electronic
files exchanged between the parties or produced as evidence. Most
frequently this threat exists in the form of automatically created
information about a file, including changes made to the file, that can be
recovered and viewed by a third party if not removed (or "scrubbed") prior

56 See Ettari & Hertz-Bunzl, supra n. 54.

See Ettari & Hertz-Bunzl, supra n. 54 (citing New York Rules of Professional Conduct
(N.Y. Rule) 1.1.5).

See Ettari & Hertz-Bunzl, supra n. 54 (citing N.Y. Rule 5.1(c)).

59 See generally D.C. Comm. on Legal Ethics, Formal Op. 362 (2012),
https://www.dcbar.org/bar-resources/legal-ethics/opinions/opinion362.cfm, archived at
https://perma.cc/TXA5-26ZG (discussing the permissibility of non-lawyer ownership of
discovery service vendors).
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to disclosing the file. This "application metadata" can include information
about the document itself, the author, comments and prior edits, and may
also detail when the document was created, viewed, modified, saved or
printed.6 0 In addition to the fact that access to metadata can provide
opposing parties with everything from revealing insights to damning
evidence, there's also a "real danger" that "application metadata may be
inaccurate."61

[27] Further, disputes related to metadata regularly arise in the E-
Discovery context. Indeed, one of the "biggest challenges in electronic
discovery" concerns "[u]nderstanding when metadata is relevant and
needs to be preserved and produced."6 2 To cite just one example, the
concurring opinion in State v. Ratcliff noted that judges must determine
whether submitted evidence contained more than the information visible
on the face of the document, or whether metadata was included as well,
where the distinction "is critical, both on an ethical and adjudicative
basis."6 3

[28] Accordingly, understanding and managing metadata has become a
baseline requirement for technological competence when dealing with
client data and attorney work product. Numerous products exist to help
save lawyers from themselves when it comes to accidental disclosure of
metadata, including software applications that may be integrated into
email programs to prevent documents from being sent outside the network

60 See generally The Sedona Conference Working Group, Best Practices
Recommendations & Principles for Addressing Electronic Document Production, THE

SEDONA PRINCIPLES: SECOND EDITION, June 2007, at 60, 61
https://thesedonaconference.org/publication/The%/"20Sedona%/"2OPrinciples, archived at
https://perma.cc/UU5K-V8KQ (explaining the composition and functionality of
metadata).

6 1 Id. at 4.

62 id.

63 State v. Ratcliff, 849 N.W.2d 183, 196 (N.D. 2014).
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without first passing through a scrubbing filter. And the e-filing portal in
many jurisdictions "contains a warning reminder that it is the
responsibility of the e-filer to strip metadata from the electronic file before
submitting it through the portal."64 Reliance on these tools, however, may
not suffice for long as the sophistication and complexity of issues related
to the creation and manipulation of metadata continue to evolve.

III. OVERVIEW OF U.S. DATA PRIVACY AND

INFORMATION SECURITY LAW

[29] The sectoral approach to privacy and data security law in the
United States often is described as "a patchwork quilt" comprised of
numerous state and federal laws and regulations that apply variously to
certain types of data, certain industries, the application of particular
technologies, or some combination of those elements. These laws may be
enforced by a variety of regulators, with state Attorneys General and the
Federal Trade Commission often leading the way.6 5 Plaintiffs' lawyers
also are prominent actors in this space, bringing an ever-increasing
number of class action and other civil suits alleging violations of privacy
rights, data protection laws, and information security standards.

[30] Although there are no federal or state privacy statutes specifically
applicable solely to lawyers, numerous data protection laws and
regulations may apply to attorneys in their role as service provider to their
clients or in other contexts. The obligations associated with these laws
often implicitly or explicitly demand that lawyers handling client data
(1) have a thorough understanding of the potential privacy and security

64 See Christian Dodd, Metadata 101 for Lawyers: A 2-Minute Primer, LAw360 (Oct. 15,
2015, 4:30 PM), http://www.law360.com/articles/712714/metadata-101-for-lawyers-a-2-
minute-primer, archived at https://perma.cc/3VCT-TJRB.

65 See Daniel J. Solove & Woodrow Hartzog, The FTC and the New Common Law of
Privacy, 114 COLUM. L. REV. 583, 587 (2014).
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risks to that data; (2) assess and determine how best to secure the data and
prevent unauthorized access to the data; and (3) supervise anyone acting
on their behalf with respect to the data to ensure the data is appropriately
protected at all times.

[31] Below we describe a few of the privacy and data security laws that
tend to come up frequently for lawyers and impose requirements on their
handling of client data that may involve technological competence. This
discussion is by no means exhaustive, as technology touches upon
virtually every aspect of data protection regulation and information
security counseling by attorneys in the field. To provide just a few
examples, advising companies on restrictions applicable to cross-border
data transfers, data localization requirements, cybersecurity standards and
information sharing obligations, and regulatory action around the use of
biometrics and geolocation technologies are just a few examples of areas
where a lawyer must have an understanding of the underlying technology
to effectively assist clients.

A. HIPAA - Business Associate Agreements

[32] The Health Insurance Portability and Accountability Act of 1996
("HIPAA"), is the most significant health privacy law in the United States,
imposing numerous obligations on "covered entities" and "business
associates" of those "covered entities" to protect the privacy and security
of "protected health information" ("PHI").66 As required by HIPAA, the
Department of Health and Human Services ("HHS") issued two key sets
of regulations to implement the statute: the Privacy Rule 67 and the
Security Rule.68

66See Health Insurance Portability and Accountability Act of 1996 (HIPAA), 42 U.S.C.
§§1320d to 1320d-8 (2007) [hereinafter HIPAA].

67 See Standards for Privacy of Individually Identifiable Health Information, 65 Fed. Reg.
82,462 (Dec. 28, 2000) (codified at 45 C.F.R. pts. 160, 164).

68 See Security Standards, 68 Fed. Reg. 8333, 8334 (Feb. 20, 2003) (codified at 45 C.F.R.
pts. 160, 162, 164).

18

Richmond Journal of Law & Technology Volume XXII, Issue 4



[33] Although attorneys and law firms are not themselves considered
covered entities directly subject to HIPAA's requirements, 69 when
attorneys obtain PHI from covered entity clients in the course of a
representation, the law firm may be subject to certain HIPAA Privacy
Rule requirements70 in its role as a business associate.7 1 The Privacy Rule
and the Security Rule apply to a covered entity's interactions with third
parties (e.g., service providers) that handle PHI on the covered entity's
behalf 72 The covered entity's relationships with these "business
associates" are governed by obligatory contracts known as business
associate agreements ("BAAs") that must contain specific terms.7 3 With
respect to technological competence specifically, for example, the BAA
requires the business associate to implement appropriate safeguards to
prevent use or disclosure of PHI other than as provided for by the BAA,
and states that the business associate must ensure that any
agents/subcontractors that receive PHI from the business associate also
protect the PHI in the same manner. And attorneys who "hold HIPAA data
or [other P11] may be governed by state or federal law beyond the scope of
the proposed rules, which is noted in the new comments"74 to ABA Rule

69 The health plan within an organization, such as a law firm's employee health plan, may
itself be a "covered entity" for HIPAA compliance purposes, but a firm generally is not,
itself, a covered entity. See, e.g., HIPAA, supra note 66.

7 0 See John V. Arnold, PRIVACY: What Lawyers Must Do to Comply with HIPAA, 50
TENN. B.J. 16, 17 (Mar. 2014).

71 See Lisa J. Acevedo et. al., New HIPA4 Liability for Lawyers, 30 GPSOLO, no. 4, 2013,
http://www.americanbar.org/publications/gpsolo/2013/julyaugust/newhipaa liability
lawyers.html, archived at https://perma.cc/F88Y-U928.

72 See Standards for Privacy of Individually Identifiable Health Information, supra note
67; see Security Standards, supra note 68.

73 Both the Privacy Rule and the Security Rule dictate certain terms that must be included
in a BAA.

See Nelson & Simek, supra note 27.
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1.6, discussed further below.

B. GLBA Safeguards Rule Requirements

[34] Pursuant to the Gramm-Leach-Bliley Act ("GLBA"), the primary
federal financial privacy law in the United States, various federal agencies
promulgated rules and regulations addressing privacy and data security
issues. For example, the Safeguards Rule requires financial institutions
to protect security of personally identifiable financial information by
maintaining reasonable administrative, technical, and physical safeguards

76for customer information. To comply with the Safeguards Rule, a
financial institution must develop, implement, and maintain a
comprehensive information security program, and that program must
address the financial institution's oversight of service providers that have
access to customers' nonpublic personal information ("NPI"). 7 7

[35] Again, although a law firm is not a financial institution directly
subject to the GLBA, when it acts as counsel to a financial institution,
GLBA requirements may apply to its handling of NPI received from that
client. To the extent a financial institution's law firm will have access to
such NPI in the course of the representation, the financial institution-client
must take reasonable steps to ensure the law firm has the ability to
safeguard such data prior to disclosing it to the firm, and require the firm
to contractually agree (in writing) to safeguard the NPI. Assuming such
data will be stored electronically (a safe assumption in virtually all cases),
it is incumbent on the law firm to understand the potential data security
risks and how to prevent unauthorized access, use, transfer, or other
processing of their clients' NPI.

See 15 U.S.C. §§ 6801-6809 (2012).

76 See 16 C.F.R. §§ 314.2, 314.3(b).

See 16 C.F.R. § 314.4(a-c).
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C. State Data Security Laws

[36] At the state level, there are numerous laws and regulations
regarding the protection of personal information (and other types of data)
that apply to all entities that maintain such data, including lawyers, law
firms, and other legal service providers.

[37] A number of states, such as California, Connecticut, Maryland,
Nevada, Oregon, and Texas, have enacted laws that require companies to
implement information security measures to protect personal information
of residents of the state that the business collects and maintains.7 8 These
laws of general application are relevant to attorneys and law firms with
respect to the personal information they maintain-both client data and
data relating to their employees. Typically, these laws are not overly
prescriptive and include obligations to implement and maintain reasonable
security policies and procedures to safeguard personal information from
unauthorized access, use, modification, disclosure, or destruction (though
most do not offer a definition or description of what is meant by
"reasonable" security). Some laws, such as California's, impose a
requirement to contractually obligate non-affiliated third parties that
receive personal information from the business to maintain reasonable
security procedures with respect to that data.79

[38] Massachusetts was the first state to enact regulations that directed
businesses to develop and implement comprehensive, written information
security programs ("WISPs") to protect the personal information of
Massachusetts residents.80 These regulations apply to all private entities

See, e.g., CAL. CIV. CODE § 1798.81.5 (Deering 2009); CONN. GEN. STAT. § 42-471
(2010); MD. CODE ANN., COM. LAW §§ 14-3501 to 14-3503 (LexisNexis 2009); NEv.
REV. STAT. § 603A.210 (2009); OR. REV. STAT. § 646A.622 (2009); TEx. Bus. & COM.
CODE ANN. §§ 72.001-72.051 (West 2009).

7 See CAL. CIV. CODE § 1798.81.5 (Deering 2009).

so See 201 MASS. CODE REGS. 17.01-17.05 (2008).
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(including law firms) that maintain personal information of Massachusetts
residents, including those that do not operate in Massachusetts; they also
list a number of minimum standards for the information security
program.81 The Massachusetts regulations are relatively prescriptive as
compared to other similar state laws of this nature, and they include
numerous specific technical requirements.

[39] These requirements apply to law firms directly, but they also apply
to law firms as service providers to businesses that maintain personal
information of Massachusetts residents. A compliant WISP must address
the vetting of service providers, and the contract must include provisions
obligating the service provider to protect the data. 82

IV. APPLICABLE ETHICAL RULES AND GUIDANCE

[40] The myth of the Luddite8 3 or caveman84 lawyer persists, even if
this type of anachronism is, in fact, an ethical violation waiting to
happen.8 5 But even attorneys who "only touch a computer under duress,

8 See id.

82 See id.

83 See Debra Cassens Weiss, Lawyers Have Duty to Stay Current on Technology's Risks
and Benefits, New Model Ethics Comment Says, ABA Journal Law News (Aug. 6, 2012,
7:46 PM)
http://www.abajournal.com/news/article/lawyers have duty tostaycurrentontechnol
ogys_risks and benefits/, archived at https://perma.cc/WPZ4-2DYH.

See Unfrozen Caveman Lawyer, SATURDAY NIGHT LIvE TRANSCRIPTS,
http://snltranscriptsjt.org/91/91gcaveman.phtml, archived at https://perma.cc/M7GB-
DGJZ ("Sometimes when I get a message on my fax machine, I wonder: 'Did little
demons get inside and type it?' I don't know! My primitive mind can't grasp these
concepts.") (last visited Apr. 5, 2016).

See Megan Zavieh, Luddite Lawyers Are Ethical Violations Waiting to Happen,
LAWYERIST.COM (last updated July 10, 2015), https://lawyerist.com/7107 1/luddite-
lawyers-ethical-violations-waiting-happen/, archived at https://perma.cc/6V4W-94J7.
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and take comfort in paper files and legal research from actual books"86

must deal with technology.17 The adequate practice-or perhaps simply
"the practice" of law does not exist without technology, and there is no
longer a place for lawyers who simply "hope to get to retirement before
they need to fully incorporate technology into their lives."

[41] "Really?" goes the refrain. "Why can't I just practice the way I
always have, without [insert mangled, vaguely-recognizable technology
portmanteau] getting in the way?"

[42] Well, for one thing, to the extent attorneys rely on the protections
of privilege to serve their clients, said attorneys must understand how the
confidentiality of their communications and work product may be
compromised by the technology they use. Technologies introduce
complexity that, in turn, may affect privilege-especially when "many
lawyers don't understand electronic information or have failed to take
necessary precautions to protect it." 89 But how much understanding,

86 Lois D. Mermelstein, Ethics Update: Lawyers Must Keep Up with Technology Too,
American Bar Association - Business Law Today, BUSINESS LAW TODAY (Mar. 2013),
http://www.americanbar.org/publications/blt/2013/03/keepingcurrent.html, archived at
https://perma.cc/T8CF-ZWND.

See Blair Janis, How Technology Is Changing the Practice OfLaw, GP SOLO,
http://www.americanbar.org/publications/gpsolo/2014/mayjune/howtechnologychan
gingpracticelaw.html, archived at https://perma.cc/23P5-PGM7 (last visited Apr. 5,
2016).

Kevin O'Keefe, We Need Laws Requiring Lawyers to Stay Abreast of Technology?
LEXBLOG: ETHICS & BLOGGING LAW (Mar. 28, 2015),
http://kevin.lexblog.com/2015/03/28/we-need-laws-requiring-lawyers-to-stay-abreast-of-
technology/, archived at https://perma.cc/8DR5-XK43.

8 Attorney-client Privilege: Technological Changes Bring Changing Responsibilities for
Attorneys and Legal Departments, CORPORATE LAW ADVISORY,
http://www.lexisnexis.com/communities/corporatecounselnewsletter/b/newsletter/archive
/2014/01/06/attomey-client-privilege-technological-changes-bring-changing-
responsibilities-for-attomeys-and-legal-departments.aspx, archived at
https://perma.cc/XQ53-P3MF (last visited Apr. 5, 2016).
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exactly, may be required to competently represent clients in matters
concerning E-Discovery, or data security, or even privacy? At many
organizations, "[p]rivacy issues get handled by anyone who wants to do
them" because the subject matter area is understaffed or ignored.90 The
key technological issues relevant to E-Discovery versus data privacy may
be somewhat different, but the "solutions" companies find are eerily
similar: the practitioners that are actually doing the work are often those
who have been delegated the work, whose "expertise" is somewhat home-
grown and may, in fact, not really represent true technological competence
at all. 91

[43] What, then, are the requirements for expertise? Perhaps a
pragmatic approach is best. Certainly, practitioners who use technology-
again, likely all of them-must take some well-defined, initial steps
toward acquiring the appropriate skill set. This might be as straightforward
as the lawyer familiarizing herself with the relevant technologies at issue.
Although it may sound a bit too easy, "just being well-versed enough to
understand the issues is a big plus." 92 That being said, "those considering a
career in cybersecurity or privacy will need to spend time developing
some level of technical expertise."9 3 In short, the answer is "it depends"

90 Daniel Solove, Starting a Privacy Law Career, LINKEDIN PULSE (Aug. 27, 2013),
https://www.linkedin.com/pulse/20130827061558-2259773 -starting-a-privacy-law-
career?forceNoSplash=true, archived at https://perma.cc/G78L-DM2X.

91 See Peter Geraghty & Sue Michmerhuizen, Think Twice Before You Call Yourselfan
Expert, YOUR ABA (Mar. 2013),
http://www.americanbar.org/newsletter/publications/youraba/201303article l.html,
archived at https://perma.cc/HJK7-RSLG.

92 Solove, supra note 90.

93 Alysa Pfeiffer-Austin, Four Practical Tips to Succeed in the Cybersecurity and
Privacy Law Market, ABA Security Law (Dec. 9, 2015),
http://abaforlawstudents.com/2015/12/09/four-practical-tips-to-succeed-in-the-
cybersecurity-and-privacy-law-market/, archived at https://perma.cc/AH9A-JCTU.
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and "no one really knows - yet." In this relatively new space, actual
decisions and definitive standards for "technological competence" are thin
on the ground. Below we will examine some of the relevant rules and
guidelines to consider.

A. Recent Guidelines in the Ethics Rules

[44] Most attorneys do not have specialized training focused on a
particular technological field. Certainly the vast majority do not hold
themselves out as experts in cybersecurity, cloud-based storage, social
media, biometrics, or any of a variety of related disciplines. However,
even in the absence of expertise, there are some basic ethical rules that
provide a framework for determining a practitioner's professional duties
and obligations with regard to technology-specifically, rules pertaining
to competent client representation, adequate supervision, confidentiality,
and communications.9 4

1. Competent Client Representation (Model Rule 1.1)

[45] As discussed briefly above, almost four years ago, the America Bar
Association formally approved a change to the Model Rules of
Professional Conduct to establish a clear understanding that lawyers have
a duty to be competent not only in the law and its practice, but also with
respect to technology. Detailed below, the passage of this rule
contemplated changes in technology and eschewed specifics. Rather than a
paint-by-numbers approach, ABA Model Rule 1.1 puts the responsibility
on attorneys to understand their own-and their clients'-needs, and how
new technologies impact their particular practice.

[46] ABA Model Rule 1.1 states that:

9 See David G. Ries, Cybersecurity for Attorneys: Understanding the Ethical
Obligations, LAW PRACTICE TODAY (Mar. 2012),
http://www.americanbar.org/publications/lawpractice todayhome/lawpractice today
archive/marchl2/cyber-security-for-attorneys-understanding-the-ethical-obligations.html,
archived at https://perma.cc/N4VM-N4NG.
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A lawyer shall provide competent representation to a client.
Competent representation requires legal knowledge, skill,
thoroughness and preparation reasonably necessary for the
representation.9 5

[47] ABA Model Rule 1.1 was amended in 2012 by Codified Comment
8 as follows:

To maintain the requisite knowledge and skills, a lawyer
should keep abreast of changes in the law and its practice,
including the benefits and risks associated with relevant
technology, engage in continuing study and education and
comply with all continuing legal education requirements to
which the lawyer is subject.9 6

[48] Some note that Rule 1.1 "does not actually impose any new
obligations on lawyers;" 97 neither does it require perfection.98 Instead it
"simply reiterates the obvious, particularly for seasoned eDiscovery
lawyers, that in order for lawyers to adequately practice, they need to
understand the means by which they zealously advocate for their
clients."99 One article noted, in fact, that Comment 8 was evidence of "the
ABA's desire to nudge lawyers into the 2 1st century when it comes to

95 MODEL RULES OF PROF'L CONDUCT R. 1.1 (2014).

96 MODEL RULES OF PROF'L CONDUCTR. 1.1 cmt. 8 (2014) (emphasis added).

97 Jenson, Watson & Sherer, supra note 40, at 2.

98 See James Podgers, You Don't Need Perfect Tech Knowhow for Ethics' Sake But a
Reasonable Grasp Is Essential, ABA JOURNAL (Aug. 9, 2014),
http://www.abajournal.com/news/article/you dont needperfect tech knowhow for eth
icssake--but_a_reasonable_grasp, archived at https://perma.cc/CB3P-R7YL.

99 Jenson, Watson & Sherer, supra note 40, at 2.
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technology." 100 It did, however, caution that it was "a very gentle
nudge."101

[49] Nudge or not, that message has resonated across the United States.
In the four years since that amendment was approved and adopted by the
ABA, twenty-one states since have adopted the ethical duty of
technological competence for lawyers.102 As for many of the states that
have not formally adopted the change to their Model Rules of Professional
Conduct, those may still explicitly or implicitly acknowledge this
emerging duty to be competent in technology, having a basic
understanding of technologies their clients use, and a duty to keep abreast
of such changes including a required awareness of regulatory requirements
and privacy laws. 103

100 Kelly H. Twigger, Symposium, Ethics in Technology and eDiscovery - Stuff You
Know, butAren't Thinking About, ARK. L. REV. (Oct. 16, 2014),
http://law.uark.edu/documents/2014/1O/TWIGGER-Ethics-in-Technology-and-
eDiscovery.pdf, archived at https://perma.cc/LTG8-7AYU.

101 Id.

102 These states are: Arizona, Arkansas, Connecticut, Delaware, Idaho, Illinois, Iowa,
Kansas, Massachusetts, Minnesota, Nebraska, New Hampshire, New Mexico, New York,
North Carolina, Ohio, Pennsylvania, Utah, Virginia, West Virginia, and Wyoming. See
Robert Ambrogi, 20 States Have Adopted Ethical Duty of Technological Competence,
LAW SiTEs (Mar. 16, 2015), http://www.lawsitesblog.com/2015/03/11 -states-have-
adopted-ethical-duty-of-technology-competence.html, archived at
https://perma.cc/B5TF-D6NJ (last updated Dec. 23, 2015) (listing 20 states not including
Nebraska); see also Basic Technology Competence for Lawyers, Event Details,
NEBRASKA BAR Assoc. (Apr. 6, 2016), https://nebar.site-
ym.com/events/EventDetails.aspx?id=788239&group=, archived at
https://perma.cc/SMU6-58TU ("[T]he need to be aware of and have a working
knowledge of technology... is ethically required of all lawyers.").

103 Ann M. Murphy, Is It Safe? The Need for State Ethical Rules to Keep Pace with
Technological Advances, 81 FORDHAM L. REV. 1651, 1659, 1665-66 (2013),
http://ir.lawnet.fordham.edu/cgi/viewcontent.cgi?article=4876&context=flr, archived at
https://perma.cc/V69A-EETR.
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2. Supervision (Model Rules 5.1 and 5.3)

[50] ABA Model Rule 5.1 also bears on a lawyer's duties regarding
technology insofar as duties aided or supported by technology are
performed by someone other than the attorney. This responsibility extends
to immediate as well as remote support staff, with ABA Model Rule 5.1
requiring that "[1]awyers must also supervise the work of others to ensure
it is completed in a competent manner."10 4 This attempt at establishing
"the principle of supervisory responsibility without introducing a vicarious
liability concept" 105 has led to considerations regarding inexperience
generally,10 6 but the implications for technological applications should be
clear-an associate or other paralegal professional is much more likely to
use technology to support legal work 107 than she is to make a
representation before a court or like body.

[51] ABA Model Rule 5.3 also sets forth responsibilities of partners and
supervising attorneys to non-lawyer assistants. This set of ethical
considerations further reinforces the responsibilities attorneys have to
apply sufficient care in their practice when outsourcing supporting legal

104 Samantha V. Ettari & Noah Hertz-Bunzl, Ethical E-Discovery: What Every Lawyer
Needs to Know, LEGALTECHNEWS (Nov. 10, 2015),
http://www.kramerlevin.com/files/Publication/d7dec721-693a-48 10-a4b9-
32dfe9c 1864b/Presentation/PublicationAttachment/01 8a444a-d7de-46b2-bc 16-
506cff88d346/EDiscovery-Legaltech%/o20News 11.10.15..pdf, archived at
https://perma.cc/4YMR-XL9U (referring to MODEL RULE OF PROF'L CONDUCT 5.1).

105 AMERICAN BAR ASSOCIATION, A LEGISLATIVE HISTORY: THE DEVELOPMENT OF THE

ABA MODEL RULES OF PROFESSIONAL CONDUCT, 1982-2005 560 (2006).

106 Jeffrey P. Reilly, Rule 5.1 of the Rules ofProfessional Conduct: What Must Corporate
General Counsel Do? ASSOCIATION OF CORPORATE COUNSEL, BALTIMORE CHAPTER

FOCUS 2Q12 5-6 (2012),
http://www.milesstockbridge.com/pdf/publications/ReillyACCArticle.pdf, archived at
https://perma.cc/G26J-NTJE.

107 See Jennifer Ellis, What Technology Does a Modern US Lawyer Generally Use in
Practice?, QUORA (Mar. 22, 2014), https://www.quora.com/What-technology-does-a-
modem-US-lawyer-generally-use-in-practice, archived at https://perma.cc/4FX4-2UV7.
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work to inexperienced non-professionals, and to ensure that confidentiality
is maintained with outsourcing staff. 18 This is not just a matter of
supervising specific tasks. It also contemplates knowing which tasks are
appropriate for delegation, both within the firm and to third-party vendors.
For example, if a delegate of the attorney uses technology to begin an
engagement, it's possible that such an arrangement could be viewed as
"establish[ing] the attorney-client relationship," which may be prohibited
under ABA Model Rule 5.5.109

3. Duty of Confidentiality (Model Rule 1.6)

[52] ABA Model Rule 1.6 states that it is critical that lawyers do not
reveal confidential or privileged client information.o10 When information
was kept in an attorney's head, or perhaps committed to a sheet of paper,
historical precedent on how to comply with this duty may have been
helpful. In the "world of tomorrow,""' looking to the past for answers
makes little sense, especially in those instances where the attorney is
unclear as to how information is stored, accessed, maintained, or utilized.

[53] Model Rule 1.6 also considers a duty of confidentiality that resides
at the core of every attorney's role and serves as one of the attorney's most
important ethical responsibilities. Model Rule 1.6 generally defines the
duty of confidentiality as follows: "A lawyer shall not reveal information
relating to the representation of a client unless the client gives informed
consent, the disclosure is impliedly authorized in order to carry out the

10 See MODEL RULES OF PROF'L CONDUCT R. 5.3.

109 Frances P. Kao, No, a Paralegal Is Not a Lawyer, ABA Bus. LAW TODAY, (Jan./Feb.
2007), https://apps.americanbar.org/buslaw/blt/2007-01-02/kao.shtml, archived at
https://perma.cc/3J2N-ELPA.

110 See MODEL RULES OF PROF'L CONDUCT R. 1.6.

111 See Jon Snyder, 1939's 'World of Tomorrow 'Shaped Our Today, WIRED (Apr. 29,
2010, 8:00 PM), http://www.wired.com/2010/04/gallery-1939-worlds-fair/, archived at
https://perma.cc/D5V4-36R5.

29

Richmond Journal of Law & Technology Volume XXII, Issue 4



representation or the disclosure is permitted [elsewhere]."112

[54] This rule is broad. It encompasses any client information,
confidential or privileged, shared or accessible to the attorney and is not
limited to just confidential communications. Further, it may only be
relinquished under the most onerous of circumstances.113 A lawyer shall
not, therefore, reveal information relating to the representation of a client
unless the client gives informed consent, the disclosure is impliedly
authorized in order to carry out the representation, or the disclosure is
permitted elsewhere in the rules.

[55] In 2000, the Advisory Committee looked into its crystal ball and
considered ESI on various platforms, in different repositories, in various
forms. It then added Comment 18 to Rule 1.6, requiring reasonable
precautions to safeguard and preserve confidential information. Comment
18 states that, "[A] lawyer [must] act competently to safeguard
information relating to the representation of a client against ... inadvertent
or unauthorized disclosure by the lawyer or other persons who are
participating in the representation of the client or who are subject to the
lawyer's supervision."114 Indeed, "[p]artners and supervising attorneys are
required to take reasonable actions to ensure that those under their
supervision comply with these requirements."11 5

112 MODEL RULES OF PROF'L CONDUCT R. 1.6.

113 See Saul Jay Singer, Speaking ofEthics: When TarasoffMeets Rule 1.6, WASHINGTON

LAWYER (May 2011), https://www.dcbar.org/bar-resources/publications/washington-
lawyer/articles/may-20 11 -speaking-of-ethics.cfm, archived at https://perma.cc/A7E4-
DSH6.

114 MODEL RULES OF PROF'L CONDUCT R. 1.6 cmt. 18.

11' David G. Ries, Cybersecurity for Attorneys: Understanding the Ethical Obligations,
LAW PRACTICE TODAY (Mar. 2012),
http://www.americanbar.org/publications/lawpractice todayhome/lawpractice today
archive/marchl2/cyber-security-for-attorneys-understanding-the-ethical-obligations.html,
archived at https://perma.cc/59Q2-55Q4.
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[56] In addition to the ABA's commentary, state and local professional
organizations have issued guidance as well. In establishing a specific
roadmap for lawyers to attain the skills necessary to meet their ethical
obligations with respect to relevant technology in the practice of law, and
returning to the California Bar's Formal Opinion 2015-193, there is a sort
of checklist that may assist lawyers in meeting their ethical obligations to
develop and maintain core E-Discovery competence in the following

116areas:
* Initially assessing E-Discovery needs and issues, if any;
* Implementing or causing (the client) to implement

appropriate ESI preservation procedures, ("such as
circulating litigation holds or suspending auto-delete
programs"); 117

* Analyzing and understanding the client's ESI systems and
storage;

* Advising the client on available options for collection and
preservation of ESI;

* Identifying custodians of potentially relevant ESI;
* Engaging in competent and meaningful meet and confers

with opposing counsel concerning an E-Discovery plan;
* Performing data searches;
* Collecting responsive ESI in a manner that preserves the

integrity of the ESI; and
* Producing responsive, non-privileged ESI in a recognized

and appropriate manner.

[57] But this technological competence inherent in the Duty of
Competence represents only one third of the ethical duties that govern an

116 See State Bar of Cal. Standing Comm. on Prof'1 Responsibility and Conduct, Formal
Op. 2015-193, 3-4 (2015) [hereinafter Cal. Ethics Op. 2015-193] (discussing what an
attorney's ethical duties are in the handling of discovery of electronically stored
information).

117 Ettari & Hertz-Bunzl, supra note 104.
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attorney's interaction with technology. This ESI and litigation skills
checklist does not address "the scope of an attorney's duty of competence
relating to obtaining an opposing party's ESI;"118 nor does it consider the
skills required of non-litigation attorneys, which must be inferred from the
rule.

[58] In addition, the State Bar of California's Standing Committee on
Professional Responsibility and Conduct, Formal Opinion 2010-179 states
that "[a]n attorney's duties of confidentiality and competence require the
attorney to take appropriate steps to ensure that his or her use of
technology in conjunction with a client's representations does not subject
confidential client information to an undue risk of unauthorized
disclosure."1 19

[59] In reference to the duty of confidentiality, the New York County
Lawyer's Association's Committee on Professional Ethics examined
shared computer services amongst practitioners in Opinion 733, noting
that an "attorney must diligently preserve the client's confidences, whether
reduced to digital format, paper, or otherwise. The same considerations
would also apply to electronic mail and websites to the extent they would
be used as vehicles for communications with the attorney's clients."12 0

The New York State Bar's Committee on Professional Ethics Opinion 842
further stated that, when "a lawyer is on notice that the [client's]
information... is of 'an extraordinarily sensitive nature that it is reasonable
to use only a means of communication that is completely under the

i" Cal. Ethics Op. 2015-193, supra note 116, at fn. 7.

119 State Bar of Cal. Standing Comm. on Prof'1 Responsibility and Conduct, Formal Op.
2010-179, 7 (2010) (discussing whether an attorney violates the duties of confidentiality
and competence she owes to a client by using technology to transmit or store confidential
client information when the technology may be susceptible to unauthorized access by
third parties).

120 N.Y. Cnty. Lawyers' Ass'n Comm. on Prof'1 Ethics, Formal Op. 733, 7 (2004)
(discussing non-exclusive referrals and sharing of office space, computers, telephone
lines, office expenses, and advertising with non-legal professionals).
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lawyer's control,...the lawyer must select a more secure means of
communication than unencrypted Internet e-mail.' 121

4. Communications (Model Rule 1.4)

[60] ABA Model Rule 1.4 on Communications also applies to the
attorney's use of technology and requires appropriate communications
with clients "about the means by which the client's objectives are to be
accomplished," including the use of technology.122

[61] In construing all of these Model Rules and comments, it is clear
that attorneys who are not tech-must (1) understand their limitations;
(2) obtain appropriate assistance; (3) be aware of the areas in which
technology knowledge is essential; and (4) evolve to competently handle
those challenges; or (5) retain the requisite expert assistance. This list
applies equally to data security issues, such as being aware of the risks
associated with cloud storage, cybersecurity threats, and other sources of
potential harm to client data, and can easily be extended to include
awareness and understanding with respect to domestic and foreign data
privacy issues.

[62] The ethical obligations to safeguard information require reasonable
security, not absolute security. Accordingly, under such rules and related
guidance from the Proposal from the ABA Commission on Ethics
20/20, 123 the factors to be considered in determining the reasonableness of

121 N.Y. State Bar Ass'n Comm. on Prof'1 Ethics, Formal Op. 842 (2010) (discussing
using an outside online storage provider to store client's confidential information).

122 MODEL RULES OF PROF'L CONDUCT R. 1.4 (1983); see also 204 PA. CODE § 81.4
(1988), http://www.pacode.com/secure/data/204/chapter81/chap81toc.html, archived at
https://perma.cc/6FG5-9VP3 (incorporating ABA Model Rule 1.4 into Pennsylvania's
Model Rule 1.4).

123See ABA Comm. on Ethics 20/20, Introduction and Overview (Feb. 2013),
http://www.americanbar.org/content/dam/aba/administrative/ethics_2020/20121112_ethi
cs_20_20_overarching report finalwithdisclaimer.authcheckdam.pdf, archived at
https://perma.cc/D2ZY-NYEU.
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the lawyers' efforts with respect to security include:

(1) The sensitivity of the information;
(2) The likelihood of disclosure if additional safeguards are

not employed;
(3) The cost of employing additional safeguards;
(4) The difficulty of implementing the safeguards; and
(5) The extent to which the safeguards adversely affect the

lawyer's ability to represent the client. 124

As New Jersey Ethics Opinion 701 states, "[r]easonable care however
does not mean that the lawyer absolutely and strictly guarantees that the
information will be utterly invulnerable against all unauthorized access.
Such a guarantee is impossible."12 5

B. Ethics and Social Media

[63] When considering their ethical duties with respect to technology,
lawyers today must confront a host of challenges that would have been
almost unimaginable even ten years ago. The rise and proliferation of
social media as a daily part of most people's personal and professional
lives has created one such challenge. 126 Numerous courts have

124 MODEL RULES OF PROF'L CONDUCT R. 1.6(c) cmt. 18 (1983).

125 Opinion 701 also highlights, if inadvertently, the challenges attomeys face when
trying to modify existing practices to fit new technologies. As part of the inquiry
underpinning Opinion 701's guidance, the opinion notes that "nothing in the RPCs
prevents a lawyer from archiving a client's file through use of an electronic medium such
as PDF files or similar formats." This note is nearly laughable when read in the context
of current practice, as it suggests that attorneys were (or are?) concerned about whether
PDF files are appropriate for retaining paper documents. N.J. Advisory Comm. on Prof'1
Ethics, Formal Op. 701 (2006),
https://www.judiciary.state.nj.us/notices/ethics/ACPEOpinion7O 1_ElectronicStorage_12
022005.pdf, archived at https://perma.cc/EV9H-BN3T.

126 See Brian M. Karpf, Florida's Take on Telling Clients to Scrub Social Media Pages,
LAW 360 (Sept. 15, 2015, 4:33 PM), http://www.1aw360.com/articles/702288/florida-s-
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addressed-and continue to address-attorney duties with respect to social
media in the context of spoliation motions when social media evidence has
been lost, destroyed, or obfuscated due to negligence, or in accordance
with attorney advice.127 In addition, given the novelty and complexity of
the issues, and in the interest of consistency, state bar associations have
begun to address issues associated with attorney use of, counseling on, and
preservation of social media.

[64] The Association of the Bar of the City of New York's Committee
on Professional and Judicial Ethics, in Formal Opinion 2010-2, provided
some helpful guidelines on attorney access to social media, stating that
"[a] lawyer may not use deception to access information from a social
networking webpage," either directly or through an agent. 128 While
focused on behaviors that attorneys and their agents should not undertake
when developing a case, the opinion does note that the "potential
availability of helpful evidence on these internet-based sources makes
them an attractive new weapon in a lawyer's arsenal of formal and
informal discovery devices," and also offers up "the Court of Appeals' oft-
cited policy in favor of informal discovery."12 9 Simply put, the duty is
twofold: an attorney must both be aware of social media and know how to
use social media to provide effective representation.

2. State Bar Association Guidance

[65] State bar associations are becoming increasingly involved in

take-on-telling-clients-to-scrub-social-media-pages, archived at https://perma.cc/NZ3W-
FHPS.

127 See id.

128 N.Y.C. Bar Ass'n Comm. on Prof'l. Ethics, Formal Op. 2010-2 (2010),
http://www.nycbar.org/ethics/ethics-opinions-local/2010-opinions/786-obtaining-
evidence-from-social-networking-websites, archived at https://perma.cc/JT9K-2EGV
(discussing lawyers' obtainment of information from social networking websites).

129 id.
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providing guidance on social media and its implications for the practice of
law. For example, in 2014, the New York and Pennsylvania State Bar
Associations and the Florida Professional Ethics Committee issued
guidance on social media usage by attorneys and addressed the obligations
of attorneys to understand how various platforms work, what information
will be available to whom, the ethical implications of advising clients to
alter or change social media accounts, and the value of ensuring adequate
preservation of social media evidence.

i. New York

[66] The Social Media Ethics Guidelines of the Commercial and
Federal Litigation Section of the New York State Bar Association provide

specific guidance for the use of social media by attorneys.130 Guideline 4,
relating to the review and use of evidence from social media, is divided
into four subparts, all of which provide specific and pertinent guidance to
attorneys:

* Guideline No. 4.A: Viewing a Public Portion of a
Social Media Website, provides that "[a] lawyer may
view the public portion of a person's social media
profile or public posts even if such person is
represented by another lawyer. However, the lawyer
must be aware that certain social media networks may
send an automatic message to the person whose
account is being viewed which identifies the person
viewing the account as well as other information
about such person."13 1

* Guideline No. 4.B: Contacting an Unrepresented
Party to View a Restricted Portion of a Social Media

130 Mark A. Berman, Ignatius A. Grande & James M. Wicks, Social Media Ethics
Guidelines of the Commercial and Federal Litigation Section of the New York State Bar
Association, THE NEW YORK STATE BAR ASSOCIATION (June 9, 2015),
http://www.nysba.org/socialmediaguidelines/, archived at https://perma.cc/4ZSN-BXT4.

131 id.
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Website, provides that "[a] lawyer may request
permission to view the restricted portion of an
unrepresented person's social media website or
profile. However, the lawyer must use her full name
and an accurate profile, and she may not create a
different or false profile to mask her identity. If the
person asks for additional information from the
lawyer in response to the request that seeks
permission to view her social media profile, the
lawyer must accurately provide the information
requested by the person or withdraw her request."132

* Guideline No. 4.C: Viewing A Represented Party's
Restricted Social Media Website, provides that "[a]
lawyer shall not contact a represented person to seek
to review the restricted portion of the person's social
media profile unless an express authorization has
been furnished by such person."133

* Guideline No. 4.D: Lawyer's Use of Agents to
Contact a Represented Party, "as it relates to viewing
a person's social media account," provides that "[a]
lawyer shall not order or direct an agent to engage in
specific conduct, or with knowledge of the specific
conduct by such person, ratify it, where such conduct
if engaged in by the lawyer would violate any ethics
rules." 134

ii. Florida

132 id.

133 id.

134 id.
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[67] In Advisory Opinion 14-1, the Florida Bar Association's
Professional Ethics Committee confirmed that an attorney could advise a
client to increase privacy settings (as so to conceal from public eye) and
remove information relevant to the foreseeable proceedings from social
media as long as an appropriate record was maintained-the data
preserved-and no rules or substantive laws regarding preservation and/or
spoliation of evidence were broken. 135

iii. Pennsylvania

[68] In 2014, the Pennsylvania Bar Association issued a Formal
Opinion that included detailed guidance regarding an attorney's ethical
obligations with respect to the use of social media. Among other
guidelines, the Opinion specifically stated that:

* Attorneys may advise clients about the content of their
Social networking websites, including the removal or
addition of information;

* Attorneys may connect with clients and former clients;
* Attorneys may not contact a represented person through

social networking websites;
* Although attorneys may contact an unrepresented person

through social networking websites, they may not use a
pretextual basis for viewing otherwise private
information on social networking websites; and

* Attorneys may use information on social networking
websites in a dispute.136

135 See Fla. State Bar Comm. on Prof 1 Ethics, Proposed Op. 14-1 (2015),
http://www.floridabar.org/TFB/TFBResources.nsf/Attachments/B806500C941083C7852
57E730071222B/$FILE/14-01%/o20PAO.pdf?OpenElement, archived at
https://perma.cc/DK9W-A44Z.

136 Pa. Bar Ass'n. Comm. on Ethics, Formal Op. 2014-300, 2 (2014),
http://www.americanbar.org/content/dam/aba/events/professional responsibility/2015/M
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3. ABA Model Rule 3.4

[69] Finally, although ABA Model Rule 3.4 on Fairness to Opposing
Party and Counsel does not directly address social media, the principles
behind the rule apply in the social media context. The Rule provides that
an attorney shall not "unlawfully obstruct another party's access to
evidence or unlawfully alter, destroy or conceal a document or other
material having potential evidentiary value" nor shall the attorney
"counsel or assist another person" to undertake such actions.13 7

C. Guidance on Duties Related to Cybersecurity

[70] As we discussed above in Section II, attorneys face a complex
threat landscape when it comes to security concerns related to the
protection of their clients' data.13 8 Although the scope of an attorney's
ethical obligations in this regard remains somewhat unclear, there are
several sources of guidance relevant to how lawyers are expected to
manage cybersecurity risks.

[71] One such source that squarely addresses the issue is the Resolution
issued by the ABA's Cybersecurity Legal Task Force. The Resolution
contains a detailed Report explaining the ABA's position regarding the
growing problem of intrusions into computer networks utilized by lawyers
and law firms, and urges lawyers and law firms to review and comply with
the provisions relating to the safeguarding of confidential client
information. 139 As the ABA noted in its Report, defending the

ay/Conference/Materials/pa formalop_2014_300.authcheckdam.pdf, archived at
https://perma.cc/G6EY-PBFF.

137 MODEL RULES OF PROF'L CONDUCT R. 3.4 (1983).

138 See supra Part II.

139 See ABA Cybersecurity Legal Task Force, Resolution 118, 2 (August 2013),
http://www.americanbar.org/content/dam/aba/administrative/law-national-security/resol
ution_1 18.authcheckdam.pdf, archived at https://perma.cc/UQ44-3Q2C.
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confidentiality of the lawyer-client relationship and preservation of
privilege in communications and attorney work product are fundamental
to public confidence in the legal system.140 Attorneys are directed to
(1) keep clients reasonably informed as set forth in the Model Rules of
Professional Conduct, as amended in August 2012 and adopted in the
jurisdictions applicable to their practice; and (2) comply with other
applicable state, federal, and court rules pertaining to data privacy and
cybersecurity.14 1 The ABA further urges the respect and preservation of
the attorney client relationship during the pendency of any actions in
which a government entity aims to deter, prevent, or punish unauthorized,
illegal intrusions into computer systems and networks used by lawyers and
law firms.

[72] The comment to ABA Model Rule 5.7 states, perhaps somewhat
axiomatically, that when "[a] lawyer performs law-related services or
controls an organization that does so, there exists the potential for ethical
problems."14 2 This, combined with Model Rule 1.6's requirement for
attorneys to safeguard and protect client information, suggests further

143potential duties associated with cybersecurity. As one author notes

Fulfillment of a law firm's duty to maintain client
confidences in today's world of cyberattacks requires much
more than legal knowledge and legal skills. It requires
sophisticated computer knowledge and skills far beyond
legal practice. That is why cybersecurity experts should be
used to assist in any law firm's client's data protection

140 See id. at 4.

141 See id. at 16.

142 MODEL RULES OF PROF'L CONDUCT R. 5.7, cmt. 1 (1983).

143 See MODEL RULES OF PROF'L CONDUCT R. 1.6.
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efforts.144

Indeed, "[t]raining in security, including cybersecurity should be a part of
every lawyer's education. It is especially important for lawyers who do
electronic discovery".14 5

[73] On a related subject, in Formal Opinion 2015-3, the New York
City Bar Association issued guidance indicating that lawyers do not
violate their ethical duties by reporting suspected cybercrime to law
enforcement.14 6 If an attorney has performed "reasonable diligence" to
determine whether a prospective client is actually attempting fraud, the
opinion says, then the attorney is free to report.147 The Opinion continued,
highlighting the lack of duty associated with individuals who are not
actually clients, stating that an

attorney who discovers that is he the target of an Internet-
based trust account scam does not have a duty of
confidentiality to the individual attempting to defraud him,
and is free to report the individual to law enforcement
authorities, because that person does not qualify as a
prospective or actual client of the attorney.148

144 Ralph C. Losey, The Importance of Cybersecurity in eDiscovery, E-DISCOVERY LAW
TODAY (May 9, 2014) http://www.ediscoverylawtoday.com/2014/05/the-importance-of-
data-security-in-ediscovery/, archived at https://perma.cc/P64J-NYQ7.

145 Ralph C. Losey, The Importance of Cybersecurity to the Legal Profession and
Outsourcing as a Best Practice - Part Two, E-DISCOVERY TEAM (May 18, 2014), http://e-
discoveryteam.com/2014/05/18/the-importance-of-cybersecurity-to-the-legal-profession-
and-outsourcing-as-a-best-practice-part-two/, archived at https://perma.cc/W3HW-
AHCC.

146 N.Y.C. Bar Ass'n Comm. on Prof1 Ethics, Formal Op. 2015-3, 4-5 (2015),
http://www2.nycbar.org/pdf/report/uploads/20072898-FormalOpinion2O15-3-
LAWYERSWHOFALLVICTIMTOINTERNETSCAMS.pdf, archived at
https://perma.cc/6BHV-V2YC.

147 Id. at 1.
148 Id. at 6 (emphasis added).
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V. CONCLUSION

[74] It goes without saying that we live (and work) in interesting times.
Cloud technology offers convenience, flexibility, cost savings-and a host
of potential security issues that existing "hard-copy world" rules aren't fit
to address. The details of top-secret corporate transactions are now hashed
out on collaborative virtual platforms that may be vulnerable to damage,
destruction, or unauthorized access. And the increasing ubiquity of social
media makes it ever more likely that lawyers and clients alike may post
information without appreciating the potential legal ramifications. New
technologies have the capacity to enrich our personal lives and enhance
our professional lives, but they also create complex and novel challenges
for lawyers already subject to a web of ethical duties concerning
competence and confidentiality.

[75] Given the speed with which this dynamic area is changing, the
issues raised in this piece may well feel dated within months of
publication as the next new product or service revolutionizes another
fundamental aspect of human interaction and connectivity. Nevertheless,
in this article we have outlined some of the many challenges facing
attorneys operating in a threat-laden high-tech landscape, taken a look at
the ways in which existing and emerging ethical rules and guidelines may
apply to the practice of law in the digital age, and opened a door to further
conversation about all of these issues as they continue to evolve.

42

Richmond Journal of Law & Technology Volume XXII, Issue 4



AI INTEGRATION WITH BLOCKCHAIN 
 

*Please analyze the following readings separately in one paragraph only at the end of your 
three-page assignment 

 
 

a. Bernard Marr, "Artificial Intelligence And Blockchain: 3 Major Benefits of Combining 
These Two Megatrends" https://www.forbes.com/sites/bernardmarr/2018/03/02/artificial-
intelligence-and-blockchain-3-major-benefits-of-combining-these-two-mega-
trends/#3b322d954b44 

b. Francesco Corea, "The Convergence of AI and Blockchain: What's the Deal?" (this one is 
slightly more complex) https://medium.com/@Francesco_AI/the-convergence-of-ai-and-
blockchain-whats-the-deal-60c618e3accc 

 
 

https://www.forbes.com/sites/bernardmarr/2018/03/02/artificial-intelligence-and-blockchain-3-major-benefits-of-combining-these-two-mega-trends/#3b322d954b44
https://www.forbes.com/sites/bernardmarr/2018/03/02/artificial-intelligence-and-blockchain-3-major-benefits-of-combining-these-two-mega-trends/#3b322d954b44
https://www.forbes.com/sites/bernardmarr/2018/03/02/artificial-intelligence-and-blockchain-3-major-benefits-of-combining-these-two-mega-trends/#3b322d954b44
https://medium.com/@Francesco_AI/the-convergence-of-ai-and-blockchain-whats-the-deal-60c618e3accc
https://medium.com/@Francesco_AI/the-convergence-of-ai-and-blockchain-whats-the-deal-60c618e3accc
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