
Special Functions: Legendre functions,
Spherical Harmonics, and Bessel Functions

Physics 212 2010, Electricity and Magnetism

Michael Dine
Department of Physics

University of California, Santa Cruz

October 2010

Physics 212 2010, Electricity and Magnetism Special Functions: Legendre functions, Spherical Harmonics, and Bessel Functions



There are several special functions that recur in many branches
of physics. You are all familiar, at some level, with spherical
harmonics, from angular momentum in quantum mechanics.
The spherical harmonics, more generally, are important in
problems with spherical symmetry. They occur in electricity and
magnetism. They are important also in astrophysics and
cosmology, where they play the role of sines and cosines in
fourier expanding functions on the sky. Legendre polynomials
and legendre functions more generally solve the θ equations.
Bessel functions arise in problems with spherical symmetry, but
actually occur also more broadly. In quantum mechanics,
particular instances solve the free particle radial equation in
spherical coordinates, and again in cosmology, they appear as
solutions to a number of problems.
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Start with Laplaces’s eqn. in spherical coordinates:

1
r
∂2

∂r2 (rΦ) +
1

r2 sin θ
∂

∂θ
(sin θ

∂Φ

∂θ
) +

1
r2 sin2 θ

∂2Φ

∂φ2 = 0. (1)

Separate variables:

Φ =
u(r)

r
P(θ)Q(φ). (2)

Leads to
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r2 sin2 θ

[
1
u

d2u
dr2 +

1
r2 sin θP

d
dθ

(sin θ
dP
dθ

)

]
+

1
Q

d2Q
sφ2 = 0. (3)

The last term must be a constant:

d2Q
dφ2 = −m2Q (4)

or
Q = e±imφ. (5)

Singlevaluedness⇒ m integer.
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Now want equations for P, u. Divide by sin2 θ;

r2 1
u

d2u
dr2 +

1
sin θP

d
dθ

(sin θ
dP
dθ

)− m2

sin2 θ
= 0, (6)

Second and third terms are independent of r , so can again
introduce separation constant:

d2u
dr2 − `(`+ 1)

u
r2 = 0 (7)

and
1

sin θ
d
dθ

(sin θ
dP
dθ

) +

[
`(`+ 1)− m2

sin2 θ

]
P = 0. (8)
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u eqn. has solutions ra, with a(a− 1) = `(`+ 1). So

u = ar `+1 + Br−`. (9)

If solving equation in all of space, can reject solution singular at
the origin.
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For the equation for P, we first write

x = cos θ;
d
dθ

= − 1
sin θ

d
d cos θ

(10)

so the equation can be rewritten as:

d
dx

[
(1− x2)

dP
dx

]
+

[
`(`+ 1)− m2

1− x2

]
P = 0. (11)

The case m = 0 is known as the ordinary Legendre differential
equation; the case of non-zero m is known as Legendre’s
equation. The solutions of the first are known as Legendre
polynomials; of the second as associated Legendre functions.
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Solution by series method
Starting with the ordinary Legendre equation:

d
dx

[
(1− x2)

dP
dx

]
+ `(`+ 1)P = 0. (12)

try a solution:

P(x) = xα
∞∑

j=0

ajx j (13)

Substituting and equating powers of x j , gives the relation:

aj+2 =
(α + j)(α + j + 1)− `(`+ 1)

(α + j + 2)(α + j + 1)
aj . (14)
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In addition, either a0 = 0, or α(α− 1) = 0, or a1 = 0 or
(α + 1)α = 0. As a result, the series consists either of even
terms, starting with x0, or odd terms starting with x1. For j
large,

aj+2

aj
→ 1; (15)

this is the same as the series for 1
1−x2 , and so diverges as

x → 1. In order that the series converge over the whole angular
range, we require that the series terminates, which occurs if ` is
a positive integer.
Exercise: Verify the recursion relation above. With the
convention that P(1) = 1, determine the first three Legendre
polynomials.
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Properties of the Legendre Polynomials

P`(x) = (−1)`P`(x). (16)

Like eik ·x in Fourier series, a complete, orthogonal set.
Orthogonality: Multiply legendre’s equation by P`′ and integrate
over x:∫

dx ′P`′
[

d
dx

(
(1− x2)

dP`
dx

)
+ `(`+ 1)P`

]
= 0. (17)

Integrate by parts; then subtract the same equation with `↔ `′.
The surface term vanishes since 1− x2 = 0. Then, for ` 6= `′,∫ 1

−1
dxP`(x)P`′(x) = 0. (18)

We will do the case ` = `′ (normalization) shortly.
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Generating Function for the Legendre Polynomials

Just what is says: a way of generating the Legendre functions
explicitly, without directly solving the differential equation.
Start with the fact that

G(~x , ~x ′) =
1

|~x − ~x ′|
(19)

solves the laplace equation, the angular part of which (ignoring φ) is
Legendre’s equation.
For r ′ < r , expand:

1
|~x − ~x ′|

=
1

(r2 + r ′2 − 2rr ′ cos θ)1/2 =
1
r

1
(1 + r ′2

r2 − 2 r ′
r cos θ)1/2

(20)

=
1
r

∞∑
`=0

(
r ′

r
)`A`(cos θ).
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Note that the first term is the function u(r). Claim is that
A` = P`. Note for starters, that if A` satisfies the the condition
A`(1) = 1. The differential equation, in fact, follows by
substituting the expansion. For any fixed `, because u` satisfies
our previous equation, A` must satisfy the P` equation. The
expression, indeed, must hold for all θ and r , so it must hold
term by term.
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We can summarize:

g(t , x) =
1

(1− 2xt + t2)1/2 =
∞∑
`=0

P`(x)t`. (21)

We can extract explicit form for the P`’s by extracting coefficient
of t`: E.g.

P0 = 1; P1 = x (22)

We can extract explicit properties of P`’s by manipulating
g(t , x).
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Normalization integral:∫ 1

−1
dx

1
1− 2tx + t2 =

∫ 1

−1
(
∞∑
`=0

)(
∞∑
`′=0

)P`(x)P`′(x)t`t`′. (23)

Right hand side is ∫ 1

−1

∑
P`(x)2t2`. (24)

Left hand side is elementary:

1
t

ln(
1 + t
1− t

). (25)

Expand in powers of t , using

log(1 + a) =
∞∑

n=1

(−1)n+1

n
an. (26)
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So we have
1
t

log
(

1 + t
1− t

)
=

2
t

t2n+1

2n + 1
. (27)

So ∫ 1

−1
dxP2

ndx =
2

2n + 1
. (28)

Exercise: Differentiate g with respect to t and derive the
recursion relation:

(2n + 1)xPn − (n + 1)Pn+1 − nPn−1 = 0. (29)

Similarly, differentiate with respect to x :

dP`+1

dx
− dP`−1

dx
− (2`+ 1)P` = 0. (30)

Other recursion formulas, integral formulas, can be derived
similarly (see, e.g., Arfken and Weber).
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With these ingredients, we can expand any function of cos(θ)
(i.e. functions which are single-valued and otherwise well
behaved as functions of θ) in terms of the Legendre
polynomials.

f (cos θ) =
∑

a`P`(cos θ) (31)

with

a` =

√
2`+ 1

2

∫ 1

−1
f (x)P`(x). (32)
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Associated Legendre Functions

Recall the more general differential equation:

(1− x2)v ′′ − 2xv ′ +
[
`(`+ 1)− m2

1− x2

]
v = 0. (33)

This equation is solved by the associated Legendre functions:

Pm
` (x) = (−1)m(1− x2)m/2 dm

dxm P`(x). (34)

The constant in front is conventional. That this solves the
equation is shown by repeatedly differentiating Legendre’s
equation.
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Exercise: Prove that the functions in eqn. 34 solve the full
equation for positive m by repeated differentiation. For negative
m, argue that the same is true by arguing that

P−m(x)
` ∝ Pm

` (x). (35)

Not exercise: The normalization integral for the associated
Legendre functions is:∫ 1

−1
P`′(x)Pm

` (x)dx =
2

2`+ 1
(`+ m)!

(`−m)!
δ``′ . (36)
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Spherical Harmonics
Solve the full θ, φ equations. Convention is to normalize to unity
when integrated over the sphere.

Y`m(θ, φ) =

√
2`+ 1

4π
(`−m)!

(`+ m)!
Pm
` (cos θ)eimφ. (37)

Very useful is the addition theorem:

1
|~x − ~x ′|

= 4π
∞∑
`=0

∑̀
m=−`

1
2`+ 1

(
r `<

r `+1
>

)
Y ∗`m(θ′, φ′)Y`m(θ, φ).

(38)
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Bessel Functions

These arise frequently in problems with cylindrical symmetry.
Consider separation of variables in cylindrical coordinates.

∂2Φ

∂ρ2 +
1
ρ

∂Φ

∂ρ
+

1
ρ2
∂2Φ

∂φ2 +
∂2Φ

∂z2 = 0. (39)

Take
Φ = R(ρ)Q(φ)Z (z). (40)
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Substitute in the differential equation and divide by RQZ to give

1
R

(
d2R
dρ2 +

1
ρ

dR
dρ

)
+

1
ρ2Q

d2Q
dφ2 +

1
Z

d2Z
dz2 = 0. (41)

So first we can take
1
Z

d2Z
dz2 = k2 (42)

(k2 positive, by assumption). Then multiply by ρ2 to give:

1
Q

d2Q
dφ2 = −ν2. (43)

This leaves the ρ equation:

d2R
dρ2 +

1
ρ

dR
dρ

+ (k2 − ν2

ρ2 )R = 0. (44)
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From these equations we have:

Z = e±kz Q = e±iνφ (45)

If the full range in azimuth is allowed, ν must be an integer.
Setting x = kρ puts the radial equation in the standard form of
Bessel’s equation:

d2R
dx2 +

1
x

dR
dx

+ (1− ν2

x2 )R = 0. (46)
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We can attempt a power series solution as before:

R(x) = xα
∞∑

j=0

ajx j . (47)

Substituting in the equation and rearranging terms gives:

α = ±ν; a1 = 0. (48)

We then have the recursion relation:

a2j = − 1
4j(j + α)

a2j−2 (49)

which can be solved:

a2j =
(−1)ja0

4j j!(j + α)(j + α− 1) · · · (1 + α)
. (50)
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This can be written more concisely as:

a2j =
(−1)j Γ(α + 1)

22j j!Γ(j + α + 1)
a0. (51)

Convention:
a0 =

1
2αΓ(α + 1)

. (52)

So two solutions:

J±ν(x) =
(x

2

)±ν ∞∑
j=0

(−1)j

j!Γ(j ± ν + 1)

(x
2

)2j
(53)
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If ν is not integer, these are two linearly independent solutions
(“Bessel functions of the first kind"). If ν = m, integer, the two
solutions are not linearly independent (for ν = −m, the Gamma
function has poles for j ≤ m − 1, so these terms vanish), and
the rest is proportional to Jm).
Second solution can be taking to be (“Neumann function"):

Nν(x) =
Jν(x) cos(νπ)− J−ν(x)

sin νπ
. (54)

For integer ν, this becomes:

Nν(x) =
1
π

[
∂Jν
∂ν
− (−1)ν

∂J−ν
∂ν

]
(55)

By directly differentiating Bessel’s equation this can be shown
to be a solution.
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Asymptotic behavior:
1 Small x can be read off the series solution.
2 Large x requires more work, but it is easy to see that the

solutions behave as 1√
x cos(x + δ).

Jν(x)→
√

2
πx

cos(x − νπ

2
− π

4
) Nν(x)→

√
2
πx

sin(x − νπ

2
− π

4
).

(56)
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Complete orthogonal sets:
Infinite numbers of roots, Jν(xνm) = 0. Jν(xνnρ/a) complete on
interval 0 ≤ ρ < a. Similarly for derivatives of J.
Exercise: Verify the series expansion for the Jn’s.
Exercise: Verify that asymptotically the Bessel functions
behave as 1√

x cos(x + δ). You don’t have to determine δ.
Exercise: Verify directly from Bessel’s equations that the
functions are orthogonal for different n.

Physics 212 2010, Electricity and Magnetism Special Functions: Legendre functions, Spherical Harmonics, and Bessel Functions



There are a variety of other functions defined in terms of J,N
(Hankel functions; spherical Bessel functions, which we will
encounter later). See Jackson, Arfken for definitions, basic
properties.
For the J ’s, there is also a generating function, analogous to
that for the Bessel functions:

g(x , t) = e
x
2 (t−1/t) =

∞∑
n=−∞

Jn(x)tn. (57)

Exercise: Verify, by comparing the series expression we
derived earlier for Jn, and using (−1)nJ−n = Jn. Differentiating
with respect to t , verify the recursion formula:

Jn+1 + Jn−1 =
2n
x

Jn. (58)
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More on Spherical Harmonics

Connection to rotations: we have seen that Y00 is a scalar, and
that the Y1m’s are proportional to x ± iy and z. More generally,
the Y`m’s are irreducible tensors. To understand why this is the
case, and how they transform under rotations, let’s recall our
discussion of rotations. Under an infinitesimal rotation, we saw
that

∆x i = ωjεijkxk (59)

where ωj describes the infinitesimal rotation; its direction is the
rotation axis, and its magnitude the angle of the rotation. So a
function, f (~x), transforms as

δf (~x) = ωiεjik∂jxk f (~x). (60)
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This can be rewritten in terms of the usual angular momentum
operator (without the ~), Li = −iεijkxj∂k :

f (~f ) + ∆f (~x) = (1 + i~ω · ~L)f (~x) ≡ U(~ω)f (~x). (61)

Note that U is a unitary operator, U†U = 1.
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Now consider how the Y`m’s transform. They are
eigenfunctions of `2, so

δY`m = i~ω · ~LY`m′ . (62)

Because ~L2 commutes with the components of ~L, under
rotations, ` doesn’t change.
Because U is unitary:

∆(Y ∗`mY`m) = 0. (63)

In other words, the spherical harmonics are transformed by
unitary matrices. These rotation matrices you will encounter in
your quantum mechanics course.
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Proof of the Addition Theorem using unitarity of U:
P`(γ) can be expanded in either Y`m(θ, φ) or Y`m(θ′, φ′).
Symmetry between θ and θ′ implies that

P`(γ) =
∑
mm′

amm′Y`m(θ, φ)Y ∗`m′(θ′, φ′). (64)

The first thing we can say is that amm′ = amδm,m′ . This is
because P is unchanged if we rotate both ~x and ~x ′ about the z
axis. Actually, we can go further, using what we have just
learned about the rotation properties of the Y`m’s, and show
that am is independent of m. This is because the sum on the
right hand side must be invariant under any simultaneous
rotation of ~x and ~x ′. We have just leaned that the Y`m’s are
transformed by a unitary matrix, and Y ∗`mY`m is invariant.
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All that is left, then, is to determine the constant. We can do
this by taking θ′ = φ′ = 0. In this case, γ = θ, and only the
m = 0 term contributes in the sum. Recalling the connection
between the Y ’s and the P ’s, gives a = 4π

2`+1 , completing the
proof of the theorem.
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Multipole expansion

The representation of the Green’s function in terms of spherical
harmonics provides a very simple derivation of the multipole
expansion, where each term clearly represents an irreducible
tensor. Working in Cartesian coordinates is more awkward, but
the same must apply. The monopole and dipole terms are
simple. The quadrupole arises from the expansion of

1

r(1− ~x ·~x ′

r2 + ~x2

r2 )1/2
(65)

to second order in ~x ′. Using

1
(1 + ε)1/2 ≈ 1− 1

2
ε+

3
8
ε2 (66)

we have

Φ = · · ·+ 1
r3

∫
d3x ′ρ(~x ′)

(
−1

2
~x ′2 +

3
2

(~x · ~x ′)2
)

(67)
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The last term can be written in terms of the quadrupole
moment:

Φ = · · ·+ 1
r3 Qijxixj (68)

where
Qij =

∫
d3xρ(~x)(

3
2

xixj −
1
2
δijxixj). (69)

Q is a traceless, symmetric tensor. It has five independent
elements, like Y2m, and is an irreducible representation of the
rotation group.
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Quick introduction to the Γ function

Devised as a generalization of the factorial.

Γ(z + 1) = zΓ(z) Γ(1) = 1 (70)

so
Γ(n + 1) = n!. (71)

Beautiful analytic properties.
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Integral representation:

Γ(z) =

∫ ∞
0

dt tz−1 e−t . (72)

Easily seen that eqns. 70 are satisfied.
Well behaved for Re z > 0. From the defining relation, simple
poles at the integers. Defined for Re z < 0 by analytic
continuation.
From the integral rep., can derive Strirling’s formula, an
estimate of the factorial for large n (asymptotic series)

Γ(p + 1) ≈ ppe−p
√

2πp. (73)
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