
Special Topics in Software Estimation

Software Cost Estimating for Iterative/ Incremental
Development Programs
Agile Cost Estimating

NASA CAS July 2014

Outline

• Iterative and Incremental Development
(IID) Programs

Agile Software Development Processes

Issues for Program Managers

Software Estimating Process

Summary

•

•

•

•

2

Software Development

• While there are many approaches to Software
Development, they can generally be placed into
2 categories:

• Plan Driven – following a version of the Waterfall
Development Process

Iterative Driven – following a version of the Agile
Development Process

•

• Plan Drive programs have an assumption of
some reliable/realistic size metric, for example:

• Source Lines of Code (SLOC)

Function Points

Use Cases, etc.

•

•

3

Software Development

• Iterative Drive programs, by nature, start with a less
well-defined metric

• Therefore, they may require alternative estimating
approaches

• This briefing will focus on the challenges of
estimating an iterative program using Agile software
development

In practical experience the terms iterative,
incremental and agile may be used interchangably

•

While Incremental/Agile programs say they do not have
development metrics, I have almost always found them
in the development room 4

IID Programs’ Key Terms

• IID is an approach to building software in which the
overall lifecycle is composed of iterations or sprints in
sequence

• Each Iteration is a self-contained mini project

It grew out of the increased application of Agile Development
techniques

•

• In many defense programs, increments are 6
1

-12
months in length and each increment is composed of
multiple iterations/sprints of 1-6 weeks

Time-boxing is the practice of fixing the iteration or
increment dates and not allowing it to change

This approach is gaining favor in large federal
programs

•

•

5

Each Iteration/Sprint is a Mini Project

• Each iteration/sprint includes production-
quality programming, not just, for
example, requirements analysis
• The software resulting from each iteration/sprint is not a

prototype or proof of concept, but a subset of the final system

•

6

1

More broadly, viewing an iteration as a self-contained
mini project, activities in many disciplines
(requirements analysis, testing, etc.) occur within a

2

single iteration

IID

• Although IID is in the ascendency today, it is not a
new idea

• 1950s “stage-wise Model” – US Air Defense SAGE Project

IBM created the IID method of Integration Engineering in the
1970s

•

• IID Programs tend to be less structured in the
beginning, and therefore reliable estimates of cost
and schedule may not be available until 10-20% of
the project is complete 4

(in a recent program I saw a cost variance during the
first 4 increments of 45% per size metric)

• The current emphasis on agile software development
processes maps directly into the IID Concept

7

Typical IID Problems –
SLOC Count

Code Counting Organization and SLOC Counts

UCC Categories Contractor Categories

Support
Contractor

2011

Support
Contractor

2012

Development
Contractor

2011
Government

2011
Government

2012

Common 2,395 2,451 - - -

Connectors. Connectors 52,511 34,012 70,385 55,438 27,627

Feature Packages Feature Packages 5,887 8,173 49,277 7,468 18,836

Core Infrastructure Core Infrastructure 36,133 19,276 162,011 461 211,228

Information Services Information Services 23,245 - 11,432 25,256 -

Presentation Presentation Infrastructure 14,523 - - 51,813 -

Tools 35,743 - - 1,813,456 1,813,948

 Task Services - - - - -

In-House Dev In-House Dev - - 1,852,357 -

Total 170,437 63,912 293,105 3,806,249 2,071,639

Through analysis, we were able to somewhat reconcile these large

differ8 ences

Typical IID Problems (continued)–
Gathering Historic Data

9

Estimated S/W Development Costs through the Completion of “X” Increments

Contractor 1 Contractor 2 In-House

Increment
Development Development

Agile

Increment
Development

Agile
Development

Increment
Development

Agile
Development Totals

Inc a. $ 411,600 $ - $ 411,600 $ - $ 100,000 $ - $ 923,200

Inc b $ 1,032,402 $ - $ 1,108,939 $ - $ 100,000 $ - $ 2,241,341

Inc c $ 1,711,706 $ 538,398 $ 1,664,882 $ 296,508 $ 549,322 $ 218,400 $ 4,979,216

Inc c Ext 1 $ - $ 812,672 $ - $ - $ - $ - $ 812,672

Inc c, Ext 2 $ - $ 186,242 $ - $ - $ - $ - $ 186,242

Totals $ 3,155,708 $ 1,537,312 $ 3,185,421 $ 296,508 $ 749,322 $ 218,400 $ 9,142,671

Software Maintenance as a % of Develoment Costs

Factor Annual

Maint.

$/FTE FTEs *

Low 5% $ 457,134 $ 213,600 3

Most Likely 10% $ 914,267 $ 179,412 6

High 13% $ 1,188,547 $ 155,141 8

One could

suggest that

these problems

are common to

all Software

Intensive

Programs

What is Agile Software
Development?

• In the late 1990s, several methodologies
received increasing public attention

Each had a different combination of old,
new, and transmuted old ideas, but they
all emphasized:

•

• Close collaboration between the programmer and business
experts

Face-to-face communication (as more efficient than written
documentation)

Frequent delivery of new deployable business value
5

Tight, self-organizing teams

And ways to craft the code and the team such that the
inevitable requirements churn was not a crisis

•

•

•

•

10

Manifesto for Agile Software
Development

11

• “We are uncovering better ways of
developing software by doing it and
helping others do it

Through this work, we have come to
value:

•

• Individuals and interactions over processes 6 and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

•

•

•

• That is, while there is value in the items on the right, we
value the items on the left more”

Principles behind the Manifesto

• Principles of Agile Developers:

• Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software

Welcome changing requirements, even late in development •
• Agile processes harness change for the customer’s competitive advantage

• Deliver working software frequently, from a couple of weeks
to a couple of months, with a preference to the shorter
timescale

Business people and developers must work together daily
throughout the project

Build projects around motivated individuals

•

•
• Give them the environment and support they need, and trust them 7 to get

the job done

• Working software is the primary measure of progress

12

Principles behind the Manifesto

• Principles of Agile Developers (continued):

• The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation

Agile processes promote sustainable development

• The sponsors, developers, and users should be able to maintain a constant
pace indefinitely

Continuous attention to technical excellence and good design
enhances agility

Simplicity, the art of maximizing the amount of work not
done, is essential

The best architectures, requirements, and designs emerge
from self-organizing teams

At regular intervals, the team reflects on how to become more
8

effective, then tunes and adjusts its behavior accordingly

•

•

•

•

•

13

Common Myths about Agile

14

Myth Reality

Silver bullet / magic Actually very hard work!

Has no planning /
documentation / architecture

Just the minimum possible

Is undisciplined or a license to
hack

Disciplined, business driven
work

 Is new and unproven / just a
fad / not being used by industry
leaders

Not anymore. Many large and
small organizations using it

Only good for small projects

Also used successfully on
medium and large projects

Differences of Agile and Non-Agile

•

•

•

Agile Non-agile

Prioritize by value Prioritize by dependency

Self-organizing teams Managed resources the
minimum possible

Team focus Project focus

Evolving requirements Frozen requirements

Change is natural Change is risky

Recent observations regarding the utilization of
Agile development approaches within the Federal
Government:

May work best when the project is more requirements-driven than schedule-
driven

Beginning to see common usage in Department of Defense (DoD) unclassified
(e.g. Marine Corps) and classified programs (e.g. Naval Reconnaissance Office
[NRO])

Differences of Agile and Non-Agile

• Recent observations regarding the utilization of
Agile development approaches within the Federal
Government (continued):

• Being talked about within emerging National Aeronautics
and Space Administration (NASA) projects

Being used in DHS

It sounds very much like what we called “rapid
prototyping”

More common than is being recognized

•

•

•

16

Welcome to Agile

• What is an agile development approach?

Depends on the flavor: •
• Agile Modeling

Lean Development (LD)

Adaptive Software Development (ASD)

Exia Process (ExP)

Scrum

eXtreme Programming (XP)

Crystal methods

Evolutionary – EVO

Feature Driven Development (FDD)

Dynamic Systems Development Method (DSDM)

Various Unified Processes (UP): agile, essential, open

Velocity tracking, and more!

•

•

•

•

•

•

•

•

•

•

•

17

What do they have in common?

• Agile projects are focused on key business values

• What does the client really, really, really want?

Deliver what the client wants at the end of the
project, not what the client wanted at the beginning
of the project

•

• They all contain a project initiation stage (aka planning)

• Project scope, constraints, objectives, risks are all
officially documented

• Short (very short) development of chunks of
features/stores/requirements/needs/desires (aka sprints)

Constant feedback •

• The one place where we can actually find short
meetings

• Customer participation is MANDATORY or no-go!

Refactoring; as in, do it again and thi18 s time get it right, or
better

•

The Agile Paradigm Shift

19

9

What do the Models Say?

20

10

What is driving these “apparent” reductions?

Other Current Research

Empirical evidence indicates development costs may be reduced by
10 to 20 percent for Iterative Driven Programs. In a “The Raytheon
Agile Journey” a presentation by Cindy Molin (Director, SW
Engineering) and Katherine (K) Sementilli (Deputy, SW
Engineering), Raytheon Missile Systems on June 22, 2012 the
following efficiencies based on agile development are observed
(based on over 250 projects and over 5 million ELOCs):

 Agile Development Results

• 20% of Raytheon SW Engineering Development
Productivity

25% productivity increase Agile vs Non-Agile

10% variability reduction Agile vs Non-Agile

50% faster for Agile vs Non-Agile

Time on task for an average work day 30% more for Agile
vs Non-Agile

•

•

•

•

21

•
•

•
•

•
•

•

•

22

Scrums and Sprints

Scrum Size:

1-10 people (have seen up to
20)

Sprint Length:

1-6 weeks (have seen up to
13 weeks) (13 conveniently
give 4 sprints per year)

Story Points* per Sprint:

6-9 Story Points per Sprint

There seems to be a real
avoidance of using
Function Points or SLOC
in many of these efforts.

(But trust me a size
metric exists somewhere
within the development
community)

* I have Use Case, Feature Point, and other

metrics for specific agile development programs,

but I am not sure they are transferable

http://upload.wikimedia.org/wikipedia/commons/0/0b/Rugby_union_scrummage.jpg

Four Estimating Processes

• Process 1: Simple Build-up approach based on
averages can be defined as:

• Sprint Team Size (SS) x Sprint length (Sp time) x Number of
Sprints (# Sprints)

• Process 2: Structured approach based on
established “velocity” – most often used internally by
the developer since detailed/sensitive data are
available to them

Process 3: Automated Models approach based on
a size metric – which may be difficult to quantify

Process 4: Factor/Complexity approach based on
data generated in early iterations

•

•

23

A Word About 2014 Rates

• Developers and Tester - $70 to $200 per hour,
median team rate about $125

Agile Coach - $100 to $200 per hour, average about
$150

Business Analyst - $125

Average Team Rate of about $115

•

•

•

WARNING: THESE ARE BROAD AVERAGE I HAVE FOUND
THIS YEAR

Unit IV - Module 12

24

Process 1: Build-Up Approach

When a program is comprised completely of
agile sprints, we can use industry norms or
program plans to develop an estimate

• Process 1 is defined as:

• SS x Sp time x # Sprints

• SS (normally 1-10 people) x Sp time (normally 0.25 to
1.25 months) x # Sprints

Frequently used by independent estimators since actual
data are often unavailable

Remember to factor in time for demonstrations/user
feedback

Can develop a point estimate and a range

Works well for small programs

•

•

•

•

The weakness of this approach is justifying the team size, number of
sprints, sprint length and total25 req uired to meet the requirement

Process 2: Structured
Approach based on “Velocity”

• Process 2 can be summarized by:

1. Express requirements in the same size metric used by the
developer; normally Features, Feature Points, Use Case Points,
Story Points, … What the size metric is unimportant as long as it
is consistently used across this program*

2. (optional). Use a process to rank the size metric: small, medium,
large using something like Fibonacci sequence, planning poker

3. Estimate and/or document the velocity (number of size metrics
per time period) at which the Agile team has worked

4. Estimate and/or document the historic cost per size metric for the
Agile team

5. Spread the sprints over time to develop time-phased estimate

* I would hope that over time we could develop standards for agile
development across the various size metrics and programs. However,
since these metric often do not conform to a “standard” this is an
elusive task. But an average over several early interactions may be
very accurate for a specific [program.

26

What is a Use Case Point?

•

•
•

•

•

•

•

•

•

27

A weighted count of actors
and use cases

Actor weight is classified as:

1 – Simple: highly-defined and
elemental, such as a simple API
call

2 – Average: protocol-driven
interaction, allowing some freedom

3 – Complex: potentially complex
interaction

Use Case weight is classified
as:

5 – simple: 3 or fewer
transactions

10 – average: 4-7 transactions

15 – Complex: more than 7
transactions

Moving to Automated Models

• Step 5 of the previous slide suggested you time-
phase the Sprints

• When you do this, the results often resemble the Rayleigh
Function used in modern software models

28

• This observation leads to the third estimating process

http://en.wikipedia.org/wiki/Image:Rayleigh_distributionPDF.png

Process 3: Automated Model Approach

• The “Parameter” settings within automated models
can be adjusted to estimate costs and schedule for
complex/large projects

• The “environmental factors” in SEER, PRICE, SLM, and
COCOMO II have been adjusted to reflect Agile practices
and therefore Iterative Development

Remember, the size metric is still the key cost driver,
which is even less certain in agile programs than
traditional ones

•

29

Process 4: Factor/Complexity Approach

• In a normal IID program, the initial
program estimate must be based on
broad parameters with wide ranges –
analogy to previous programs and/or
generic models

Specific iterations/sprints can be
estimated using the agile estimating
processes previously presented

The real question is: how do we estimate
the cost of future Increments (time
boxes)?

The following slides present 30 Process 4 Factor/Complexity
Approach

•

•

•

Process 4: Factor/Complexity Approach

• Step 1: Select a Baseline Increment (often the
last successful increment) for the program

Step 2: Carefully analyze this baseline increment
– this analysis could be based on SLOC, function
points, features, requirements, dollars, or some
other metric

Step 3: For each new increment, compare the
expected functionality and complexity of the new
increment to the baseline (or last successful)
increment

•

•

• Notional functional and complexity factors are presented on the next slide

31

Process 4: Factor/Complexity Approach

32

Scale Functional Description Effort Multipliers

- - - Significantly less functionality to be delivered 0.5

- - Moderately less functionality to be delivered 0.7

- Slightly less functionality to be delivered 0.9

= Functionality equivalent to Increment X 1.0

+ Slightly more functionality to be delivered 1.3

+ + Moderately more functionality to be delivered 1.7

+ + + Significantly more functionality to be delivered 2.0

Scale

- -
Complexity Description Effort Multipliers

Significantly less complex 0.7

- Slightly less complex 0.9

= Complexity equivalent to Increment X 1.0

+ Slightly more complex 1.3

+ + Significantly more complex 1.7

• These initial set of factors came from the environmental factor
from traditional software cost models

Step 4: Because each Increment is a mini project, use a Rayleigh
or simple Beta Curve (such as a 60/50 Beta curve) to phase costs

However, do not be surprised if you encounter programs that are
truly operated and manages as Level of Effort (LOE)

•

•

Process 4: Factor/Complexity Approach

• Step 5: The project can define the length of each
increment – likely between 4 and 14 months

33

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

1.6000

1.8000

2.0000

Incremental Beta

Incremental Beta

Issues for Project Management

• Cost and Schedule modelers usually want well-
defined program requirements and size metrics
early in the lifecycle – the nature of IID
programs argues against this
• IID programs tend to be less structured in the beginning, and therefore reliable

estimates of cost and schedule may not be available until 10-20% of the project
is complete 11

• Initial contracts tend to be Fixed Price or LOE
• This does not imply poor value to the project

It does imply that key “value-added” metrics may not be identified or collected •

• “Time Boxing” tends to resolve the individual
scheduling issues, but not the total program
length issue
• A specific cost estimating strategy is required to accurately plan for resources

34

Issues for Project Management

• If a program has too many planned Increments (10 or
more), it may not be a well-defined program and could
spin out of control or just become an LOE research project

Establishing and monitoring metrics becomes critical

“To be able to adopt an empirical approach to project
management and control, we must be able to objectively
demonstrate and measure how much progress the project
has made in each iteration

•

•

• Possible ways to measure progress include:

• Number of products and documents produced

Number of lines of code produced

Number of activities completed

Amount of budget/schedule consumed

Number of requirements verified to have been verified
implemented correctly”

•

•

•

•

35
12

Schedule Analysis

• Due to the short length of increments (generally
9-12 months) and continuity between
increments, phasing the costs within a specific
increment is less important

• However, the “million dollar questions” for
incremental and agile programs (where
requirements definition and documentation are
less detailed, and the development is more
flexible/emergent) are:
• What will the program look like at Initial Operational Capability (IOC)?

How many increments will it take?

How long is each increment going to last?

•

•

• Cost estimators are going to have to adjust, and
examine these programs as a schedule analyst
might to produce credib

36
le lifecycle estimates

Summary

• Fixed Price and/or LOE contracts in the early phases should
be written so that key “value-added” metrics are collected
and reported during each increment

Estimators may have to employ a variety of software
estimating methodologies within a single estimate to model
the blended development approaches being utilized in

•

today’s development environments
• An agile estimating process can be applied to each iteration/sprint

Future Increments can be estimated based on most recent/successful IID performance •

• Cost estimators will have to scrutinize these programs like
a schedule analyst might to determine the most likely IOC
capabilities and associated date

• The number of increments are an important cost driver as well as an influential
factor in uncertainty/risk modeling

37

Summary

• All of the estimation methods are susceptible to error,
and require accurate historical data to be useful
within the context of the organization

When developers and estimators use the same
“proxy” for effort, there is more confidence in the
estimate

•

38

Recommended Reading

• “The Death of Agile” blog

“Agile Hippies and The Death of the Iteration” blog •

39

5

Endnotes

• 1, 2, 4, 10, 11: Larman, C. (2010). Agile and
Iterative Development: A Manager's Guide.

3: Kilgore, J. (2012). Senior Associate, Kalman &
Company, Inc.

5, 6, 7, 8: Agile Alliance. (2012). Agile Alliance.
Retrieved 2012, from
http://www.agilealliance.org

9: Coaching, T. L. (n.d.). Rally Software Scaling
Software Agility.

12: Bittner, K., & Spence, I. (2006). Managing
Iterative Software Development Projects.
Addison-Wesley Professional.

•

•

•

•

40

http://www.agilealliance.org/

Additional References

• Cohn, M. (2009). Succeeding with Agile Software
Development using Scrum.

Dooley, J. (2011). Software Development and
Professional Practice.

Gack, G. (2010). Managing the Black Hole.

George, J., & Rodger, J. (2010). Smart Data
(Enterprise Performance Optimization Strategy).

Royce, W., Bittner, K., & Perrow, M. (2009). The
Economics of Iterative Software Development:
Steering Towards Better Business Results.5

Addision Wesley Professional.

Smith, G., & Sidky, A. (2009). Becoming Agile in
an Imperfect World.

•

•

•

•

•

Contact Information

• Bob Hunt

• Email: BHunt@Galorath.com

Phone: 703.201.0651 •

42

mailto:BHunt@Galorath.com

	39_Agile Estimating for NASA CAS 2014 1
	39_Agile Estimating for NASA CAS 2014 2
	39_Agile Estimating for NASA CAS 2014 3
	39_Agile Estimating for NASA CAS 2014 4
	39_Agile Estimating for NASA CAS 2014 5
	39_Agile Estimating for NASA CAS 2014 6
	39_Agile Estimating for NASA CAS 2014 7
	39_Agile Estimating for NASA CAS 2014 8
	39_Agile Estimating for NASA CAS 2014 9
	39_Agile Estimating for NASA CAS 2014 10
	39_Agile Estimating for NASA CAS 2014 11
	39_Agile Estimating for NASA CAS 2014 12
	39_Agile Estimating for NASA CAS 2014 13
	39_Agile Estimating for NASA CAS 2014 14
	39_Agile Estimating for NASA CAS 2014 15
	39_Agile Estimating for NASA CAS 2014 16
	39_Agile Estimating for NASA CAS 2014 17
	39_Agile Estimating for NASA CAS 2014 18
	39_Agile Estimating for NASA CAS 2014 19
	39_Agile Estimating for NASA CAS 2014 20
	39_Agile Estimating for NASA CAS 2014 21
	39_Agile Estimating for NASA CAS 2014 22
	39_Agile Estimating for NASA CAS 2014 23
	39_Agile Estimating for NASA CAS 2014 24
	39_Agile Estimating for NASA CAS 2014 25
	39_Agile Estimating for NASA CAS 2014 26
	39_Agile Estimating for NASA CAS 2014 27
	39_Agile Estimating for NASA CAS 2014 28
	39_Agile Estimating for NASA CAS 2014 29
	39_Agile Estimating for NASA CAS 2014 30
	39_Agile Estimating for NASA CAS 2014 31
	39_Agile Estimating for NASA CAS 2014 32
	39_Agile Estimating for NASA CAS 2014 33
	39_Agile Estimating for NASA CAS 2014 34
	39_Agile Estimating for NASA CAS 2014 35
	39_Agile Estimating for NASA CAS 2014 36
	39_Agile Estimating for NASA CAS 2014 37
	39_Agile Estimating for NASA CAS 2014 38
	39_Agile Estimating for NASA CAS 2014 39
	39_Agile Estimating for NASA CAS 2014 40
	39_Agile Estimating for NASA CAS 2014 41
	39_Agile Estimating for NASA CAS 2014 42

