

SPECIALITY PIPE AND TUBE

FOR BOILER AND PETROCHEMICAL PLANT

Contents Introduction -Chronology of Chita Works Location of Chita Works — Tubular Products and Applications **Manufacturing Process and Equipment** Seamless Pipe Process Equipment -----Special Steel Pipe Process Equipment ______10 ERW Pipe Process Equipment -12 _____14 Quality Assurance System — Research and Development **Size Availability** 1. Hot Finished Seamless Pipe and Tube Small Diameter —— 18 Medium Diameter — 20 2. Electric-Resistance-Welded Pipe and Tube 22 Marking and Packaging 24 Available Grades 26 For Inquiring and Ordering 27 Customer Service 28

Boilers play an important role in various types of plants for the power and chemical industry. With the progress of these industries, modern boilers have become larger in size and the temperature, as well as the pressure, has increased. Therefore, the steel pipes used within them must be of a higher quality.

Chita Works is one of the world's largest specialized steel pipe mills, manufacturing high quality steel pipe for boilers and heat exchangers using integrated processes ranging from raw materials to final quality control. Using their ample knowledge and experience, JFE Steel Corporation has installed up-to-date manufacturing and inspection facilities at Chita Works. Furthermore, Chita Works includes a fully expanded research division, which is making vigorous endeavors in research and development to meet the highly sophisticated needs of the individual users.

JFE Steel strives for the complete satisfaction of its customers and looks forward to their continued patronage.

Boiler Tubes

HRSG module

Pipes for Piping Use

Plant piping

Chita Works:
Marking out new directions
for challenge
along the coordinates
of history and
technology.

Chita Works began operation in 1943 as part of Kawasaki Heavy Industries. The plant was originally constructed to produce special steels, and manufacture various types of molds, rolling rolls, and other cast steel products. When Kawasaki Steel Corporation was established in 1950, Chita Works became a part of the new company. At that time, the production system was completely renovated in response to the needs of the time and Chita Works became a specialty plant mainly producing steel pipes. Beginning with the construction of a large diameter spiral tube mill in 1961, a succession of new pipe-making shops was built. This established a production system that covered all types of steel pipe from butt-welded tube to seamless. In April 2003, the operations of Kawasaki Steel and NKK were reorganized, and Chita Works was reborn as part of

Chita Works has now become one of the world's leading pipe-making plants, boasting the world's most complete product line of pipe and tubular products made at a single facility. Chita Works is constantly aware of their mission to contribute to society by developing and applying the world's most advanced technologies. With this in mind, they will continue to meet the diverse needs of their customers with the highest levels of product quality.

JFE Steel Corporation.

Challenge

Technology

History

- Start of plant or equipment operation
- **▶** Topics
- Prize-related

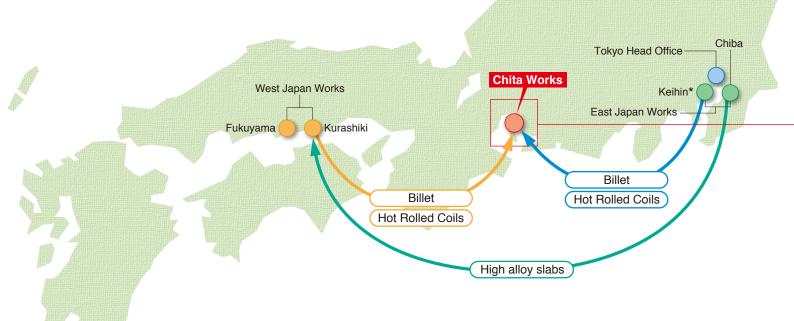
Chronology of Chita Works

History of Cast and Tubular Products

- 1943 Chita Works established as special steel plant.
- 1945 **♦** Steelmaking shop begins operation.
- 1949 South casting shop begins operation.
- 1950 ★ Kawasaki Steel Corporation established.
- 1953 ♦ Demming implementation prize.
- 1961 North casting shop begins operation.
 - Spiral tube mill begins operation.
- 1964 Medium diameter ERW pipe mill (14''mill) begins operation.
- 1970 Small diameter seamless pipe mill begins operation.
- 1971 Butt-welded tube mill begins operation.
 - OCTG equipment start up.
- 1972 ♦ Small diameter ERW pipe mill begins operation.
- 1978 Medium diameter seamless pipe mill begins operation.

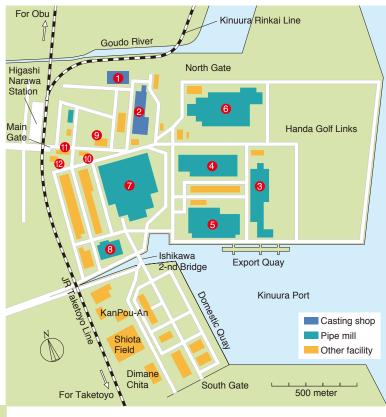
 Medium diameter ERW pipe mill (26''mill) begins operation.
- 1979 ♦ V-process casting equipment start up.
- 1981 ♦ Cumulative pipe production at Chita Works reaches 10 million tons.
- 1983 High grade special OCTG production equipment expanded.
 - Development of numerical control (NC) rolling technology for seamless pipe.

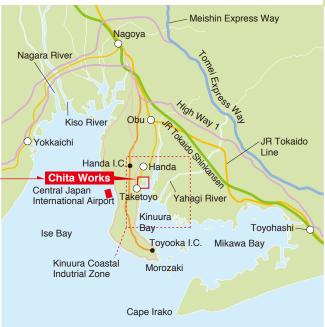
 (Awarded the Okochi Memorial Special Production Prize)
- 1985 ERW pipe production technology using full cage forming method.
 - (Awarded the Aida A ward of Japan Society for Technology of Plasticity.)
- 1990 ◆ CBR forming mill for stainless ERW pipe started up.
 - Modernization of small diameter heavy wall ERW pipe mill.
 - Stainless flexible tubing mill begins operation.
 - Square pipe (square column) production equipment started up.
- 1991 ♦ Special pipe mill equipment expanded.
 - Start of production of cast high speed steel rolls.
- 1993 ISO 9001 certification (pipe).
 - Establishment of high productivity production technology for stainless seamless pipe. (Awarded the Okochi Memorial Special Production Prize).
- 1994 Modernization of spiral tube mill.
- 1998 Start of production of cast super high speed steel rolls.
 - Development of martensitic stainless steel seamless pipe for line pipe.
 - (Awarded the MITI Minister's Prize)
- 1999 ♦ ISO 9001 certification (castings).
 - ISO 14001 certification.
- 2000 ♦ HISTORY[™] Pipe production equipment started up.
 - 50th anniversary of establishment of Kawasaki Steel Corporation.
 - Cumulative production of seamless steel pipe reaches 10 million tons.
- 2002 JFE Holdings, Inc. established.
- 2003 JFE Steel Corporation established.
- 2004 Developments of centrifugal cast HSS rolls for hot strip mills.
 - (Awarded the ICHIMURA Industrial Prize in Industry for Excellent Achievement)
- 2006 The HISTORY™ Steel Tubes with Excellent Mechanical Properties.
 - for by Thermo-Mechanical Control Process in Tube Reducing.
 - (Awarded the Japan Society for Technology of Plasticity · Aida Technology Award)
- 2007 Small Diameter Seamless Pipe production equipment expanded.
- 2008 Medium Diameter Seamless Pipe production equipment expanded.
- 2013 70th anniversary of establishment of Chita factory.
 - 014 Cumulative production of seamless steel pipe reaches 15 million tons.


Location of Chita Works

Located in the center of Japan, with excellent access to world markets Chita Works is part of the Chukyo Industrial Zone and faces Kinuura Bay.

Giving it good access to the world's sea lanes. Located almost in the center of the Kinuura Coastal Industrial Zone, Chita takes advantage of its excellent site conditions as a base for supplying tubular products to users around the world while coexisting with nature. The site also has outstanding access to other related industries, beginning with the company's East Works and West Works which supply materials for pipemaking. In short, Chita enjoys an excellent location for growing hand in hand with companies around the world.




Sendai works

An Integrated Production System and Ideal Layout

The group of shops that make up Chita Works was laid out on a 1.81 million m² site to create the ideal pipe production system. All aspects of the production system, from unification of research and development to concentration of technology and efficient quality control are realized by taking full advantage of the features of the location. This modern plant is a tangible symbol of Chita's confidence that it can meet demand for steel pipes of all types and sizes as one of the world's leading pipemaking works.

- North casting shop
- 2 South casting shop
- 3 Medium diameter ERW pipe mill (26" mill)
- 4 Small diameter ERW pipe mill (6" mill)
- 5 Small diameter ERW pipe mill (4" mill)
- 6 Medium diameter seamless pipe mill
- 7 Small diameter seamless pipe mill
- Special steel pipe mill
- Main building
- 10 Tubular Products and Castings Research Dept.
- ① Quality Assurance Group (Inspection)
- Training Center

Site area: 1.81 × 106 m²

By Train JR Line (From Nagoya station)

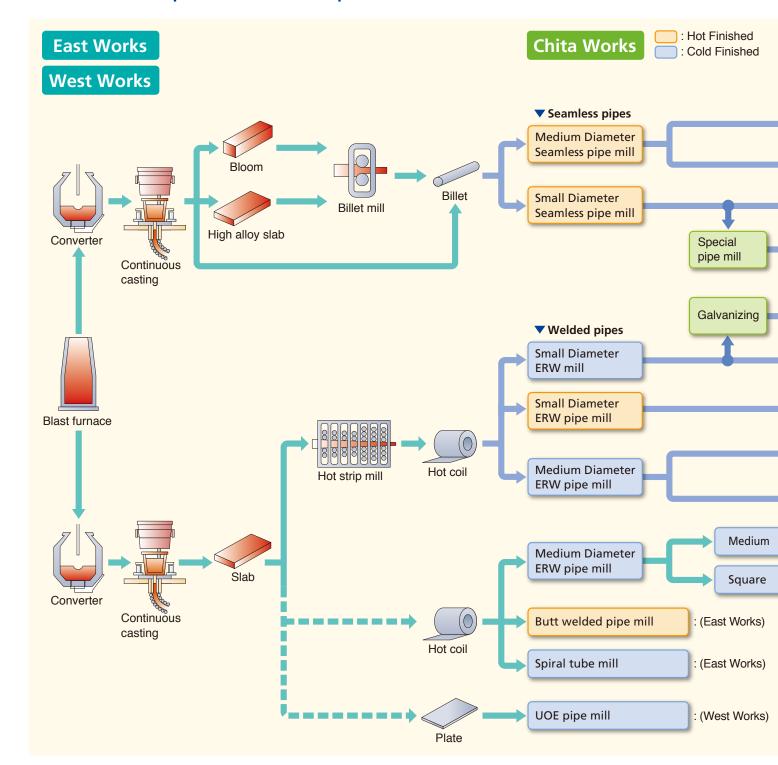
- Total time expected is 1 Hour -

Take a Tokaido Line train towards Toyohashi and stop at Obu station.

Change trains to Taketoyo Line. Stop at Higashi-Narawa station, just in front of Chita Works.

Meitetsu Line (From Shin-Nagoya station)

-Total time expected is 50 minutes.


Take a Utsumi-kowa Line train from Shin-Nagoya station and stop at Chita-Handa station. Take a taxi from Chita-Handa to Chita Works.(10 Minutes)

By Car 10 minutes by car from Handa I.C. to Chita Works.

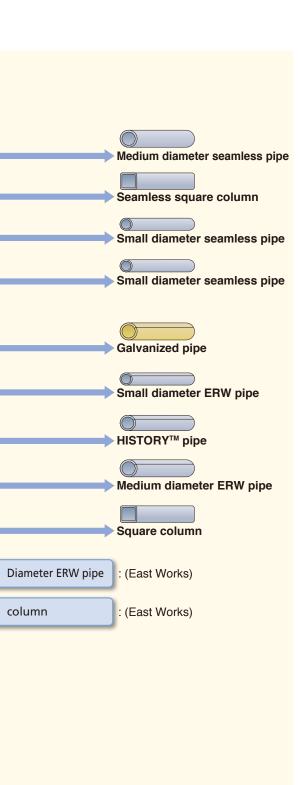
Tubular Products and Applications

World's most complete line of tubular products

Cast Products and Applications

Rolling rolls

- High speed tool steel
- · Super high speed tool steel
- Grain
- Ductile
- Adamite


etc.

V-process cast products

- Plugs for seamless pipe rolling
- Heat-and wear-resistant products
- Cast steel footing hardware
- Weather-resistant design panels

etc.

Energy-related Tubular Products

- Boiler and heat transmission use Boiler water tubes, flue pipes, superheat tubes, Heat exchangers
- Oil country tubular goods(OCTG)
 Casing and tubing for oil wells
- Line pipe
 Line pipe for transportation of oil, gas, etc.
- Others
 Geothermal power generation, nuclear power

FIN TUBE

Machine Structural Use and Material Piping

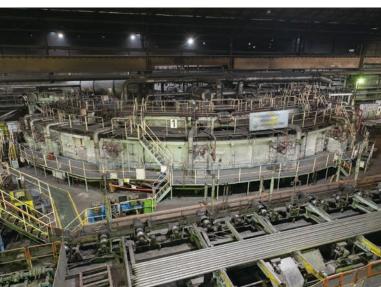
- Automobile parts Shafts, rods, frames, cylinders, exhaust manifolds, etc.
- Industrial machinery and transportation equipment parts
 Cylinders, bushes, frames, etc.
- Others
 Scuba diving tanks

General Piping

- Water works
 City water and sewerage piping, industrial water piping
- Gas piping
 Gas lead tubes, gas feed / support pipe
- Others
 Plant piping, office building air conditioning piping
 Low temperature piping

Civil Engineering and Construction

- Steel pipe pile, steel pipe sheet pile
 Bridge foundations, building
 foundations, quays, revetments,
 breakwaters, Steel pipe piles for
 landslide prevention
 (mechanical screw), etc.
- General structural and architectural structural use Buildings (square column), steel towers, scaffolding, supporting columns, etc.



Seamless Pipe Process Equipment

Using the mandrel mill method and plug mill method, these mills produce high grade small and medium diameter pipes with excellent dimensional accuracy. Seamless pipes play an active role as the "arterial system" in a wide range of modern industries, in various piping applications, and oil well tubulars. Chita produces these products by a dynamic manufacturing process.

Small diameter seamless pipe mill

Capacity	444,000 tons/year	
Equipment	Upsetter	ss1 equipment3
Product dimensions	Outside diameter Wall thickness Length	25.4-177.8 mm 2.3-40 mm 4.0-28.5 m

Regenerative burner type rotary hearth heating furnace

Rotary hearth heating furnace

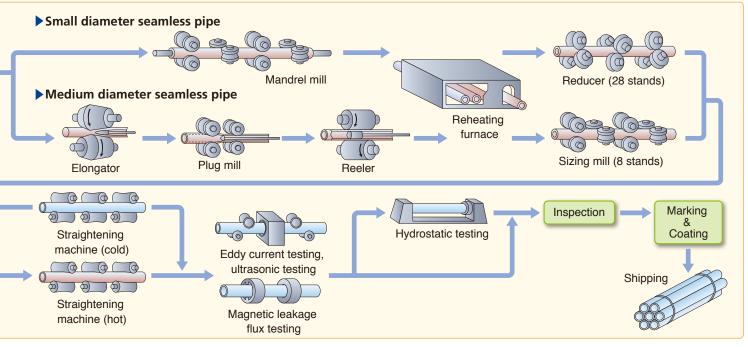
Product types

- Boiler tubes
- Line pipes
- OCTG
- Pipes for general structural use
- Pipes for machine structural use
- Material pipes
- Square pipes etc

Medium diameter seamless pipe mill

Capacity	468,000 tons/year							
Equipment	Plug mill process - Heat treatment e Thread cutting li	equipment1 ne1						
Product dimensions	Outside diameter Wall thickness Length	177.8-426.0 mm 5.1-65.0 mm 5.5-13.5 m						

Piercer


Manufacturing Flowchart Seamless pipe production process Pipe material (round billet) Heating furnace Piercer Straightening machine [quenching, tempering, normalizing] (walking beam type)

Mandrel mill Elongator

Special Steel Pipe Process Equipment

In producing special steel pipes, Chita Works takes advantage of the respective material properties of carbon steel, alloy steel, and other materials, and performs heat treatment, finishing processing, and inspections as required by the intended use, making full use of leading-edge technologies.

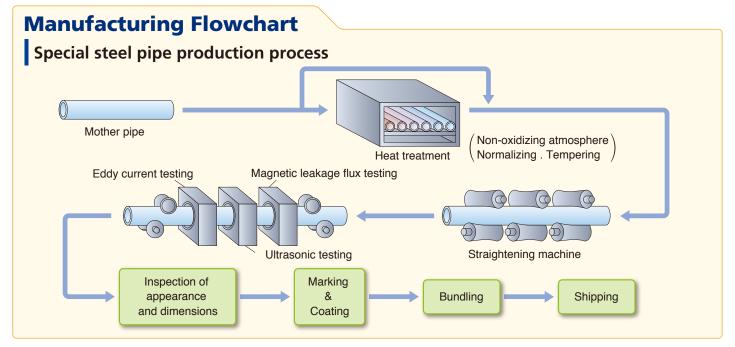
Special steel pipe is a field that has enjoyed large demand in recent years. Among these products, Chita Works is responding to the need for Extra long boiler tubes of the 28 m, in length.

Chita Works has established a totally reliable quality assurance system in which inspections are performed using three types of non-destructive inspection devices, magnetic leakage flux testing (MLFT), ultrasonic testing (UT), and eddy current testing (ET).

Product types

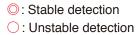
Carbon steel, alloy steel pipe

Boiler tubes, steel pipes for machine structural use, pipes for various piping applications


Capacity	60,000 tons/year										
Equipment	Non-destructive equipment Processing and	urnace2 inspection6									
Product dimensions	Outside diameter Wall thickness Length	25.4-114.3 mm 2.3-13.0 mm 28.5 m									

Roller hearth type non-oxidizing atmosphere heat treatment furnace

Ultrasonic test device



Boiler Tubes

Principles of non-destructive inspection (For Boiler tubes)

	Tion destructive inspection (for Bor		
	Magnetic Leakage Flux Tester (MLFT)	Ultrasonic tester (UT)	Eddy current tester (ET)
Principle of detection	Leakage Flux Sensor Crack Magnetizer Tube tested	UT Probe Tube tested	Reference coil Primary coil Self-comparative method by using a difference of impedance between an induced current and an excited current
Object	Outside crack and scratch in L direction Depth ≥ 0.20mm Length ≥ 8mm	 Inside / outside / internal crack in L direction Inside / outside / internal crack in T direction Lamination check Wall thickness 	Defect having spatial volume

			Crack	WT	Inside pit	Outside pit	Scab	Dent/Rolled in material
		Outside	0			0	\circ	0
	UT	Internal	0	0				
		Inside	0		0		\circ	0
Detect Ability		Outside	0			0	0	0
Ability	ET	Internal	0					
		Inside	0		0			
	NAL ET	Outside	0			0	0	0
	MLFT	Inside	0					

ERW Pipe Process Equipment

At the electric resistance welded (ERW) pipe mills, steel strip are formed into a pipe shape by roll forming, and then welded continuously by a high frequency electric resistance welder or high frequency or medium frequency induction heating welder to produce uniform, high strength steel pipes. The 26" mill manufactures ERW pipes with the world's largest outside diameter, at 700 mm and largest wall thickness, at 25.4 mm (1 inch).

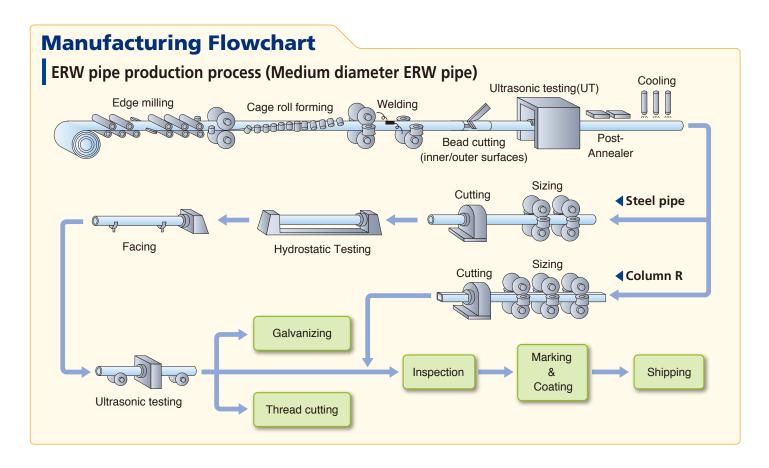
Line pipe

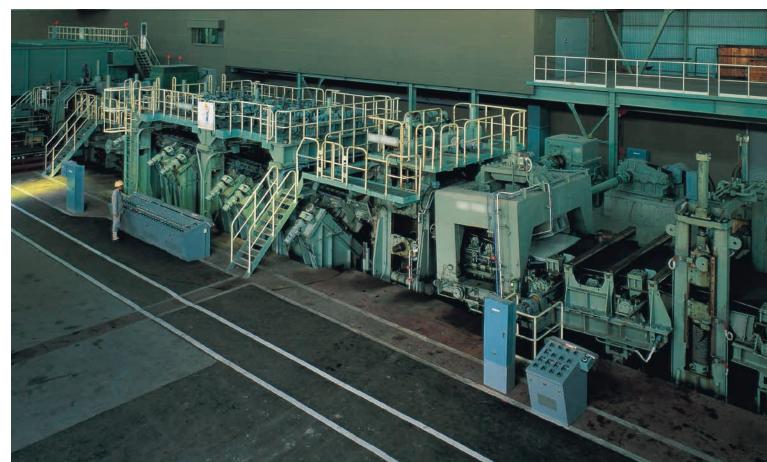
Small diameter ERW pipe mill (6"mill)

Capacity	190,000 tons/year										
Equipment	Maximum pipemak Welding method: A controlled high fred frequency induction										
Product dimensions	Outside diameter Wall thickness Length	60.3-165.2 mm 2.0-12.7 mm 4-15 m									

Product types

- Water line pipe
- Line pipe
- Boiler tubes
- OCTG
- Coated pipes
- Pipe piles
- Square columns
- Pipes for general structural use
- Pipes for machine structural use


etc



Square columns

Medium diameter ERW pipe mill (26"mill)

Capacity	480,000 tons/year	
Equipment	Maximum pipemak	(300KHz) Cage roll forming
Product dimensions (pipe)	Outside diameter Wall Thickness Length	318.5-700 mm 4.0-28.0 mm 5-20 m
Product dimensions (square column)	Outside diameter Wall thickness Length	250-550sq. mm 6.0-28.0 mm 6-14 m

World's largest outer diameter/heaviest wall full cage roll forming (26 inch) mill (Medium diameter ERW pipe mill)

Quality Assurance System

In 1993, Chita Works was certified under the international standard for quality assurance, ISO 9001. The works is carrying out activities to implement a quality system which ensures even higher levels of customer satisfaction.

1 Integrated Quality Control System by Independent Division

The inspection system has been firmly established at Chita Works as well as at the East Japan and West Japan Works for the purpose of assuring product quality and maintaining quality levels.

2 Manufacturing and Inspection System

Manufacture and inspection are performed by employing the latest techniques and superb inspection facilities to meet the highly sophisticated needs of users. The following special quality control systems have been established for both seamless and welded pipe.

For seamless pipe:

- (1) Employment of the hot dimensional measuring device for improving dimensional accuracy.
- (2) Total length dimensional inspection by using an ultrasonic automatic outside diameter and wall thickness measuring device.

(3) Computerization extending from the pipe making line to product inspection and shipping.

For welded pipe:

- (1) Employment of the automatic welding temperature control system.
- (2) Employment of the medium frequency induction welding process.
- (3) Development of the inert gas sealed welding process.
- (4) The weld shape microscopic investigation system.

3 Application of Various Non-destructive Inspections

Intermediate and product inspection steps are taken at each steel pipe mill. There are various facilities for eddy current detection, magnetic particle detection, ultrasonic detection, magnetic leakage flux testing, fluoroscopic inspection, spark tests, etc. These non-destructive inspections are conducted from time to time on specifications and dimensions of steel pipe, or in compliance with requests from the users, therefore making quality assurance guaranteed.

Flattening test

Ultrasonic automatic outside diameter and wall thickness measuring device

Non-Destructive Inspection Facility

1—Eddy Current Testing

In the eddy current flaw detector, scratches are detected by using a penetrating excitation coil and a detection coil. For electric resistance welded steel pipes, welds and base metal parts are simultaneously inspected. Flaw detection inspection is automatically recorded and marking is given to the defect indication part.

2 — Ultrasonic Testing

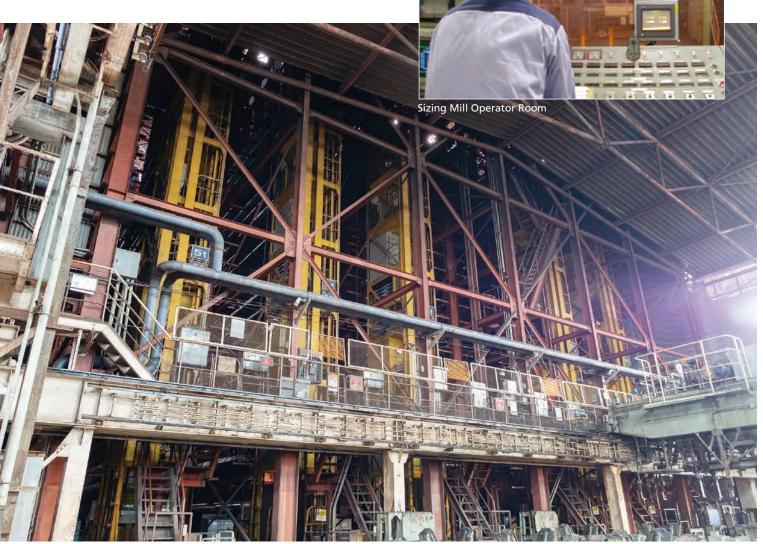
"Rotating Ultrasonic Flaw Detector" A rotating ultrasonic flaw detector consists of a rotor with a large number of probes rotated and running at high speed for flaw detection. Therefore, in the case of an electric resistance welded steel pipe, it is possible to inspect not only the welded portion but also the base material portion. In this case, the probe mainly has a bevel probe for the purpose of flaw detection of weld defects and a vertical probe for flaw detection of base material part defects. In addition, flaw detection results are automatically recorded for both seamless steel pipes and electric resistance welded steel pipes, and marking is given to the defect indication part.

3 — Magnetic Leakage Flux Testing, Ultrasonic Wall Thickness Gauge

The leakage magnetic flux flaw detector is a surface flaw detector based on a leakage magnetic flux developed for high speed. After rolling, the surface flaw of a long steel pipe with crop will be inspected. The ultrasonic wall thickness meter automatically measures the outer diameter and wall thickness of the steel pipe by ultrasonic method. The leakage magnetic flux flaw detector and the ultrasonic outer diameter / wall thickness meter are arranged in series, the flaw detection result is automatically recorded, and the defect indication part is marked.

4 — Magnetic Particle Testing

The fluorescent magnetic powder flaw detector magnetizes the tube, applies magnetic powder on tube surface, and detects defects close to the outer surface or the surface with high accuracy. The defect indication part is marked visually.


Quality Assurance System

4 Facility Examination and Inspector Qualification Systems

A system of periodical facility examination has been established for maintaining accuracy of manufacturing and inspection facilities. Special inspections such as nondestructive inspections and grade identification tests are conducted only by inspectors who have been specially trained and qualified to perform such inspections. A system is enforced to conduct periodical training and examination of such inspectors in order to maintain and improve their technical levels.

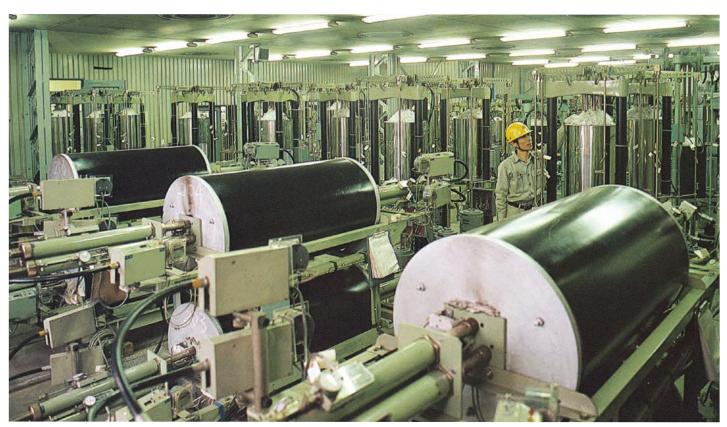
5 Enhancement of Operational Accuracy by Facility Computerization

Development of various kinds of sensors, system development, and computerization, which are related to manufacturing and inspection facilities, maintain the high level operational conditions. The analysis of various kinds of data is utilized for further enhancement of operational and inspection technique levels. JFE Steel's medium diameter seamless steel pipe manufacturing facility is one of the most automated mills in the world.

Automatic Rack System

Research and Development

The Chita Research Laboratory at the Chita Works is pursuing research and development directly connected to pipe making techniques and pipe products. Our Research Laboratories at the East Works (Chiba) are conducting basic studies as well as consolidated investigations, while


working on research and development in cooperation with the Chita Works. The research staff and facilities constitute the foundation of manufacturing high quality steel pipes at JFE Steel.

Internal Pressure Creep Tester

Elevated Temperature Tensile Tester

Creep Rupture Tester

Size Availability

1 Hot Finished Seamless Pipe and Tube

Small Diameter

У ПТан	II Diam	leter																			
	O.D.																				
N.P.S.	. In	mm	1	1 2		3	4	5	6	7	8	9 1	0 1	1 1	2 1	3 1	14	15 1	16	17 1	18
		25.4		2.3	3					7.0	+										\dagger
3/4		26.7									8.0	+						_			\dagger
		27.2	—									+	 	<u> </u>	<u> </u>		+	+	†	+	+
	1-1/4"	31.8										9.0	 				 	+	+	_	+
1		33.4	—	2	2.5									11.0	 		+	+	+	+	+
		34.0													_		+	+	+	+-	+
	1-1/2"	38.1	—	<u></u>	2.6										12.0		+	+	+	+-	+
	=	40.0	 		2.7										 		+	+-	+	+	+
1-1/4		42.7	 	\vdash	2													15.0	+	+	+
1 .7 .		45.0	 	\vdash														10.2		18.0	+
		47.0	\vdash	+																10.0	
1-1/2		48.3	\longrightarrow	+																	\vdash
1-1/2	2"	50.8	\vdash	+-+																	\vdash
		52.0	\leftarrow	++	2.9																\vdash
			\vdash	+																	\vdash
		54.0	\longrightarrow	+-+																	\vdash
0		57.1		\vdash																	\bot
2	2 1 (0)	60.3	igwdard	+-+																	\bot
	2-1/2"	63.5				3.3															4
		65.0	lacksquare	++		+	A = -														4
		68.1	\blacksquare																		
		70.0	4	\longrightarrow																	
2-1/2		73.0		1																	
	3"	76.2		\longrightarrow																	
		80.0		\longrightarrow	;	3.4															
		82.6		\sqcup																	
		85.0		\sqcup																	
3	3-1/2"	88.9																			
		95.0			;	3.5															
3-1/2	4"	101.6																			
		105.6																			
		108.0																			
		110.0																			
4	4-1/2"	114.3																			
		120.0																			
	5"	127.0																			
		130.0																			
		133.0																			
		135.0																			
	5-1/2"	139.8																			
5		141.3				4.0	.0														
		146.0	—			+															
	6"	152.4				+															
		153.7	 	\vdash		+-															
		159.0	+	+		+-															
		165.2	\vdash	+		+-															
6		168.3	\vdash	\vdash		+															
O	7"	177.8	\vdash	-		+															
	/	177.8		\longrightarrow				4	4	4	4	4	4	_	4		4	4	4	4	4

V	Wall thickness (mm)																					
19	20) 2	1 2	22 2	23 2	24 2	25 2	26 2	.7 2	28 2	9 3	0 3	1 3	32 3	33 3	4 3	5 3	36 3	37	38	39	40
_																						
\perp																						
		20.0																				
				22.0																		
							25.0															
																	05.0					
																	35.0					
																						40.0

Size Availability

Medium Diameter

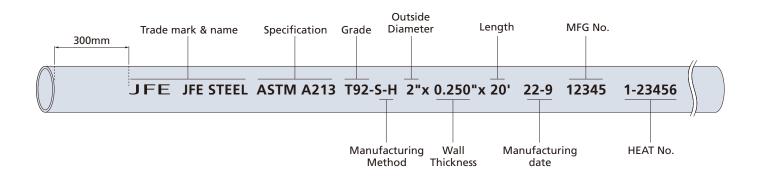
	O.D.										
N.P.S.	In	mm		5		1(0 1	15	20 2	25 3	30
	7"	177.8	5.1								
		180.0									
		185.0									
		187.7									
		190.7									
		193.7									
		194.5									
		203.0		6.0							
		215.0									T
		216.3									T
8	8-5/8"	219.1									T
		232.0									T
		241.8									
		244.5									
		245.0									
		250.0									
		267.4									
		269.9									
12	12-3/4"	273.0									T
		298.5		6.35							
		318.5									
		323.8									T
		325.0									
		339.7		7	7.0						
		351.0									
14	14"	355.6									
		365.1									
		377.0									
		400.0									
		402.0									
16	16"	406.4									
		426.0			9.0						

Above is reference chart based on Carbon pipe. Please consult for detail.

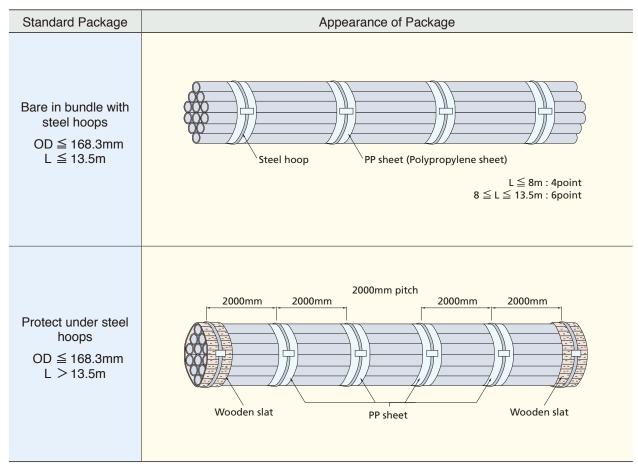
Wall thick	ness (mm)									
3	5 4	0 4	5 5	5 60					65	
										\perp
		40.0								\perp
										1
										\perp
			45.0							
				52.0						
					55.0					
								61.0)	
							60.	0		
									62.0	
							60.	0		
										65.0
									62.0	
										65.0
								61.0)	
										65.0
								61.0		
						58.0				
								61.0)	1
						57.0				\top
										+

Size Availability

2 Electric-Resistance-Welded Pipe and Tube


	O.D.													
N.P.S.	ln	mm	1	1 2	2 3	3	4	5	6	7	8 :	9 1	10 1	11
2	2-3/8	60.3		2.0									10.0	
	2-1/2	63.5			2.3									
		65.0												
		70.0												
		76.2												
		82.6			3.2			Smal	Diame	ter				
3	3-1/2	88.9											11.0	
3-1/2	4	101.6				3.5								
4	4-1/2	114.3				4.0								
	5	127.0												
		139.8						5.5						
		318.5				4	.37							
12	12-3/4	323.8					4.78							
14	14	355.6												
		400.0												
16	16	406.4												
		450.0												
18	18	457.2												
		473.1												
		475.0												
		500.0						5.65						
20	20	508.0												
		530.0						6	35					
		550.0												
22	22	558.8												
		600.0												
24	24	609.6												
26	26	660.4												
		700.0									9.0			

Above is reference chart based on Carbon pipe. Please consult for detail.


Wall thickness (mm)																	
12	2	13	14	1 1	15 1	6 1	7 1	8 1	9 2	0 2	.1 2	2 2	3 2		5	2	6
	10	2.5															
		12.7															
							17.5										
									19.05			22.0					
												22.0					
	N/lod		o Dian	neter													
	ivieu	lun	n Dian	neter												25.4	
														24.0			

Marking and Packaging

1 Standard Marking

2 Standard Packaging

Note: The package shall be perform at the option of the manufacturer, unless otherwise specified in the purchase order.

Classification	Standard Package	Appearance of Package
Takan 0 Dinas	Hexagonal Form OD ≦ 168.3mm L ≦ 13.5m	200mm Wire Point 200mm Steel hoop PP sheet $L \leq 8m : 4point$ $8 \leq L \leq 13.5m : 6point$
Tubes & Pipes	Hexagonal Form OD ≦ 168.3mm L > 13.5m	50mm 1500mm 1500mm pitch 600mm Wooden slat Steel hoop PP sheet
Tubes & Pipes	Bare in loose (OD > 168.3mm)	

Available Grades

Please recheck the original specification in advance of the order.

	JIS G 3454	ASTM/ASME	EN	NK	LR	ABS
		A/SA53A				ABS2
Carbon Steel Pipes for Pressure Service	STPG370			KSTPG38		
Tressure Service	STPG410	A/SA53B		KSTPG42		ABS3
	JIS G 3455	ASTM/ASME	EN	NK	LR	ABS
	STS370			KSTS38		
Carbon Steel Pipes for	STS410			KSTS42		
High Pressure Service	STS480					
			P265GH			
	JIS G 3456	ASTM/ASME	EN	NK	LR	ABS
		A/SA106A				ABS4
Carbon Steel Pipes for	STPT370			KSTPT38	LR-SEC2-360C1,2	
High Temperature service	STPT410	A/SA106B		KSTPT42	LR-SEC2-410C1,2	ABS5
	STPT480	A/SA106C		KSTPT49		
	JIS G 3458	ASTM/ASME	EN	NK	LR	ABS
	STPA12	A/SA335P1				
	STPA20	A/SA335P2				
	STPA22	A/SA335P12				
Alloy Steel Pipes for High	STPA23	A/SA335P11				
Temperature Service	STPA24	A/SA335P22				
	STPA25	A/SA335P5				
	STPA26	A/SA335P9				
	Japanese METI code	ASTM/ASME	EN	NK	LR	ABS
	KA-STPA24J1	A/SA335P23				
Alloy Steel Pipes	KA-STPA28	A/SA335P91-Type1/Type2	X10CRMOVNB9-1			
for Generator piping	KA-STPA29	A/SA335P92	X10CRWMOVNB9-2			
	JIS G 3460	ASTM/ASME	EN	NK	LR	ABS
Steel Pipes for	STPL380	A/SA333-1		KLPB		
Low Temperature Service		A/SA333-6				
	JIS	ASTM/ASME	EN	NK	LR	ABS
Header				KBH-1		
	JIS G 3461	ASTM/ASME	EN	NK	LR	ABS
	STB340	A/SA192		KSTB35	Sec.6-360	ABS H
	STB410	A/SA210A1			Sec.6-410	
Carbon Steel Boiler and		A/SA210C				
Heat Exchanger Tubes	STB510					
	310310					
	310310		P265GH			
	JIS G 3462	ASTM/ASME	P265GH EN	NK	LR	ABS
		ASTM/ASME A/SA209T1		NK	LR	ABS
	JIS G 3462			NK	LR	ABS
	JIS G 3462 STBA12	A/SA209T1		NK	LR	ABS
	JIS G 3462 STBA12 STBA22	A/SA209T1 A/SA213T12		NK	LR	ABS
Alloy Steel Boiler	JIS G 3462 STBA12 STBA22 STBA23	A/SA209T1 A/SA213T12 A/SA213T11		NK	LR	ABS
and Heat Exchanger	JIS G 3462 STBA12 STBA22 STBA23 STBA24	A/SA209T1 A/SA213T12 A/SA213T11 A/SA213T22		NK	LR	ABS
	JIS G 3462 STBA12 STBA22 STBA23 STBA24 STBA25	A/SA209T1 A/SA213T12 A/SA213T11 A/SA213T22 A/SA213T5		NK NK	LR	ABS
and Heat Exchanger	JIS G 3462 STBA12 STBA22 STBA23 STBA24 STBA25 STBA26	A/SA209T1 A/SA213T12 A/SA213T11 A/SA213T22 A/SA213T5 A/SA213T9	EN			
and Heat Exchanger	JIS G 3462 STBA12 STBA22 STBA23 STBA24 STBA25 STBA26 Japanese METI code	A/SA209T1 A/SA213T12 A/SA213T11 A/SA213T22 A/SA213T5 A/SA213T9 ASTM/ASME	EN			

For Inquiring and Ordering

All inquiries and orders should contain the following information.

1. Designation

Specification, edition, grade, type and part No. Purchaser's own specification covering requirements not included in the referenced specification, and/or those that replace, (or supersede) valid specification should be attached to first inquiry and/or given at revision.

2. Specific requirements

- (1) Method of manufacture (Seamless, electric-resistance welded)
- (2) "Type of end finish Square-cut or beveled* (*Special requirements on bevel angle and root face stipulated other than the specification should be mentioned in the inquiry.)

Threaded & coupled*
(*Requirements different from the specification should be mentioned.)

3. Dimensions

- (1) Outside diameter [O.D] or nominal pipe size [NPS] with abbreviation.
- (2) Wall thickness

 Nominal or minimum wall thickness, nominal weight or schedule number.
- (3) Length
 Specific* or random
 (*In case of specific length, length tolerance should be specified if necessary.)

4. Quantity

Feet, meters or number of lengths *Delivery allowance should be specified.

5. Inspection

Specify the name of an inspection agent when the inspector representing the purchaser should inspect.

6. Finish and coating

Mill's standard varnish coating. * (*Consult with us if there is other requirement)

7. Marking requirement

When a marking other than that stipulated in the specification is required, give a detailed description of such marking.

8. Packaging requirement

Bundled or loose*

(*Any special packaging should be so instructed if specified other than the specification.)

9. Delivery requirements

Time, place and shipping instructions

10. End use

Commodities to be transported, location, on-land or off-shore, operation pressure and temperature, when available.

11. Consult with us before placing an order or at an inquiry, when any of the following items are required.

- (1) Intermediate grade, wall thickness
- (2) Special and/or supplemental requirements in chemistry
- (3) Special and/or supplemental mechanical properties
- (4) Special or alternative hydrostatic pressure
- (5) Closer tolerance on sizes
- (6) Additional and/or alternative nondestructive inspection
- (7) Any alternative and/or additional conditions


Customer Service

Operating manual of Confirmation check of INSPECTION CERTIFICATE

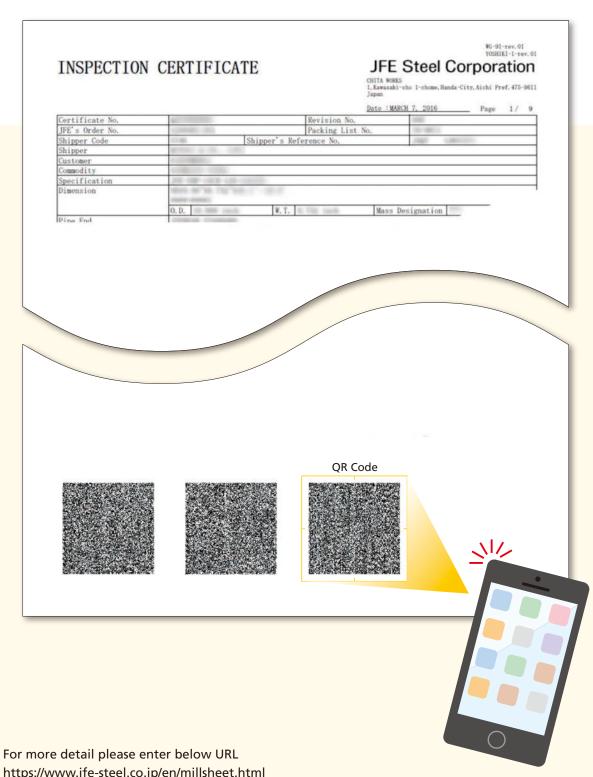
What is the Confirmation check of INSPECTION CERTIFICATE?

It is the system which allows you to check if the INSPECTION CERTIFICATE is genuine or not by using your smart phone.

Pertinent information of the Inspection certificate is encrypted and included in the QR Code.

1. Please scan the QR Code shown in the last page of the INSPECTION CERTIFICATE using the application software of your smart phone.

▶ Recommended application software for QR Code scanning (App) and web browser (Browser)


iPhone → App: DENSO Q (ver.1.7.4 or higher), Qrafter (ver.12.4 or higher)

Browser: Safari (ver.600.1.4 1or higher)

Android ⇒ App: DENSO Q (ver.1.7.4 or higher), ICONIT (ver.4.1.3P2 or higher)

Browser: Chrome (ver.18.0.1025469 or higher)

https://www.jfe-steel.co.jp/en/millsheet.html

JFE Steel Corporation

https://www.jfe-steel.co.jp/en/

HEAD OFFICE

Hibiya Kokusai Building, 2-3 Uchisaiwaicho 2-chome, Chiyodaku, Tokyo 100-0011, Japan

Phone: (81)3-3597-3111 Fax: (81)3-3597-4860

■ ASIA PACIFIC

SEOUL

JFE Steel Korea Corporation 16th Floor, 41, Cheonggyecheon-ro, Jongno-gu, Seoul, 03188 Korea

(Youngpung Building, Seorin-dong) Phone: (82)2-399-6337 Fax: (Fax: (82)2-399-6347

BEIJING

JFE Steel Corporation Beijing 2018 Beijing Fortune Building, No.5, Dongsanhuan North Road, Chaoyang District, Beijing, 100004, P.R.China

Phone: (86)10-6590-9051 Fax: (86)10-6590-9056

SHANGHAI

JFE Consulting (Shanghai) Co., Ltd.
Room 801, Building A, Far East International Plaza,
319 Xianxia Road, Shanghai 200051, P.R.China
Phone: (86)21-6235-1345 Fax: (86)21-6235-1346 Fax: (86)21-6235-1346

GUANGZHOU

JFE Consulting (Guangzhou) Co., Ltd.
Room 3901 Citic Plaza, 233 Tian He North Road,
Guangzhou, 510613, P.R.China
Phone: (86)20-3891-2467 Fax: (86)20-3891-2469

JFE Steel Corporation, Manila Office 23rd Floor 6788 Ayala Avenue, Oledan Square, Makati City, Metro Manila, Philippines Phone: (63)2-8886-7432 Fax: (63)2-8886-7315

HO CHI MINH CITY

JFE Steel Vietnam Co., Ltd. Unit 1704, 17th Floor, MPlaza, 39 Le Duan Street, Dist 1, HCMC, Vietnam Phone: (84)28-3825-8576 Fax: (84)28-3825-8562

JFE Steel Vietnam Co., Ltd., Hanoi Branch Unit 1501, 15th Floor, Cornerstone Building, 16 Phan Chu Trinh Street, Hoan Kiem Dist., Hanoi, Vietnam Phone: (84)24-3855-2266 Fax: (84)24-3533-1166

BANGKOK

JFE Steel (Thailand) Ltd. 22nd Floor, Abdulrahim Place 990, Rama IV Road, Silom, Bangrak, Bangkok 10500, Thailand Phone: (66)2-636-1886 Fax: (66)2-6 Fax: (66)2-636-1891

YANGON

JFE Steel (Thailand) Ltd., Yangon Office Unit 05-01, Union Business Center, Nat Mauk Road, Bocho Quarter, Bahan Tsp, Yangon, 11201, Myanmar Phone: (95)1-860-3352

SINGAPORE

JFE Steel Asia Pte. Ltd. 16 Raffles Quay, No.15-03, Hong Leong Building, 048581, Singapore Phone: (65)6220-1174 Fax: (65)6224-8357

JAKARTA

PT. JFE STEEL INDONESIA 6th Floor Summitmas II, JL Jendral Sudirman Kav. 61-62, Jakarta 12190, Indonesia

Phone: (62)21-522-6405 Fax: (62)21-522-6408

NEW DELHI

JFE Steel India Private Limited 806, 8th Floor, Tower-B, Unitech Signature Towers, South City-I, NH-8, Gurgaon-122001, Haryana, India Phone: (91)124-426-4981 Fax: (91)124-426-4982

JFE Steel India Private Limited, Mumbai Office 603-604, A Wing, 215 Atrium Building, Andheri-Kurla Road, Andheri (East), Mumbai-400093, Maharashtra,

Phone: (91)22-3076-2760 Fax: (91)22-3076-2764

BRISBANE

JFE Steel Australia Resources Ptv Ltd Level28, 12 Creek Street, Brisbane QLD 4000 Australia

Phone: (61)7-3229-3855 Fax: (61)7-3229-4377

■ MIDDLE EAST

DUBAI

JFE Steel Corporation, Dubai Office P.O.Box 261791 LOB19-1208, Jebel Ali Free Zone Dubai, U.A.E. Phone: (971)4-884-1833 Fax: (971)4-884-1472

■ NORTH, CENTRAL and SOUTH AMERICA

JFE Steel America, Inc. 750 Town & Country Blvd., Suite 705, Houston, TX 77024, U.S.A. Phone: (1)713-532-0052 Fax: (1)713-532-0062

MEXICO CITY

JFE Steel de Mexico S.A. de C.V. Ruben Dario #281-1002, Col. Bosque de Chapultepec, C.P. 11580, CDMX. D.F. Mexico Phone: (52)55-5985-0097

RIO DE JANEIRO

JFE Steel do Brasil LTDA Praia de Botafogo, 228 Setor B, Salas 508 & 509, Botafogo, CEP 22250-040, Rio de Janeiro-RJ, Brazil Phone: (55)21-2553-1132 Fax: (55)21-2553-3430

While every effort has been made to ensure the accuracy of the information contained within this publication, the use of the information is at the reader's risk and no warranty is implied or expressed by JFE Steel Corporation with respect to the use of information contained herein. The information in this publication is subject to change or modification without notice. Please contact the JFE Steel office for the latest information.