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a b s t r a c t

Given the importance of knowledge of species distribution for conservation and climate

change management, continuous and progressive evaluation of the statistical models pre-

dicting species distributions is necessary. Current models are evaluated in terms of eco-

logical theory used, the data model accepted and the statistical methods applied. Focus

is restricted to Generalised Linear Models (GLM) and Generalised Additive Models (GAM).

Certain currently unused regression methods are reviewed for their possible application to

species modelling.

A review of recent papers suggests that ecological theory is rarely explicitly considered.

Current theory and results support species responses to environmental variables to be uni-

modal and often skewed though process-based theory is often lacking. Many studies fail

to test for unimodal or skewed responses and straight-line relationships are often fitted

without justification.

Data resolution (size of sampling unit) determines the nature of the environmental niche

models that can be fitted. A synthesis of differing ecophysiological ideas and the use of

biophysical processes models could improve the selection of predictor variables. A better

conceptual framework is needed for selecting variables.

Comparison of statistical methods is difficult. Predictive success is insufficient and a test

of ecological realism is also needed. Evaluation of methods needs artificial data, as there is

no knowledge about the true relationships between variables for field data. However, use of

artificial data is limited by lack of comprehensive theory.

Three potentially new methods are reviewed. Quantile regression (QR) has potential and

a strong theoretical justification in Liebig’s law of the minimum. Structural equation mod-

elling (SEM) has an appealing conceptual framework for testing causality but has problems

with curvilinear relationships. Geographically weighted regression (GWR) intended to exam-

ine spatial non-stationarity of ecological processes requires further evaluation before being

used.

Synthesis and applications: explicit theory needs to be incorporated into species response
models used in conservation. For example, testing for unimodal skewed responses should

be a routine procedure. Clear statements of the ecological theory used, the nature of the

data model and sufficient details of the statistical method are needed for current models to

be evaluated. New statistical methods need to be evaluated for compatibility with ecological
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statistical method used. The potential exists for a synthesis of current species modelling
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approaches based on their differing ecological insights not their methodology.
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common set of predictors. Evaluation of the comparisons
y different authors is frequently confounded by these differ-
nces in how the methods are applied, i.e. model parameteri-
ation (Austin, 2002a). In effect, there are a number of different
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Kuhnian paradigms operating in this area of research (Kuhn,
1970; Austin, 1999a). Each paradigm consists of an agreed set
of facts (e.g. presence data on organisms), a conceptual frame-
work (e.g. niche theory; plants or animals), a restricted set of
problems (e.g. climatic control of distribution) and an accepted
array of methods (e.g. logistic regression) see also Guisan and
Zimmermann (2000). There is also a tendency for confirma-
tory studies providing supporting evidence rather than tests
of the basic assumptions of the paradigm, see Austin (1999a)
for examples in community ecology. One clear indicator of
the degree to which separate paradigms are operating in this
field is the number of common citations in two recent review
papers: precisely zero (Austin, 2002a; Rushton et al., 2004).
Communication in the widest possible sense between the sep-
arate paradigms is clearly a problem and the present author
has been one of the culprits contributing to the problem.

Better communication will contribute to progress, but solv-
ing problems of a technical or theoretical nature is also nec-
essary. In this review, a three-component framework is used
to examine quantitative methods for spatial prediction of
species distributions. The components are: (1) an ecological
model concerning the ecological theory used or assumed, (2)
a data model concerning the type of data used and method of
data collection and (3) a statistical model concerning the sta-
2 e c o l o g i c a l m o d e l l i n g 2 0 0 ( 2 0 0 7 ) 1–19

theory before use in applied ecology. Some recent work with artificial data suggests the

combination of ecological knowledge and statistical skill is more important than the precise
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Introduction

Statistical regression methods for quantitative prediction of
species distributions are central to understanding the real-
ized niche of species and to species conservation in the
face of global change. Recently, there have been two sig-
nificant conferences (Scott et al., 2002; Guisan et al., 2002),
many reviews ((Franklin, 1995; Guisan and Zimmermann,
2000; Austin, 2002a; Huston, 2002), numerous methodologi-
cal comparisons (e.g. Bio et al., 1998; Manel et al., 1999; Miller
and Franklin, 2002; Moisen and Frescino, 2002; Munoz and
Felicisimo, 2004; Thuiller, 2003; Segurado and Araujo, 2004)
and several commentaries (Lehmann et al., 2002a; Elith et
al., 2002; Ferrier et al., 2002; Rushton et al., 2004; Guisan and
Thuiller, 2005; Elith et al., 2006) on the value, use and appli-
cation of the methods. An examination of these references
and others shows that there is little agreement on appropri-
ate data, methodology or interpretation and little discussion of
the conceptual framework on which species predictive models
are based.

Comparisons of methods rarely use the same type of data
(counts or presence/absence), use the regression method in
the same way (multiple linear versus curvilinear terms) or use
tistical methods and theory applied (Austin, 2002a). I use this
framework to expand on the technical and theoretical prob-
lems limiting current practice. I then introduce some methods
that have yet to be applied widely in this area and may offer
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dvantages, and finally offer some suggestions for improving
urrent practice to better integrate ecological theory, statisti-
al modelling and conservation.

Non-statistical methods of prediction such as neural nets
Fitzgerald and Lees, 1992), GARP (Stockwell and Noble, 1992)
nd climatic envelopes (Pearson and Dawson, 2003) are not
onsidered though see Elith et al. (2006). While the major
mphasis is on terrestrial plants, similar issues apply equally
o animals (Scott et al., 2002).

. Current models for predicting species
istributions

ogistic regression is a frequently used regression method for
odelling species distributions (Guisan and Zimmermann,

000; Rushton et al., 2004). This is a particular case of Gen-
ralised Linear Models (GLM, McCullagh and Nelder, 1989).
LM has been recognised in ecology for some time as hav-

ng great advantages for dealing with data with different error
tructures particularly presence/absence data that is the com-
on type of data available for spatial modelling of species

istributions (Nicholls, 1989, 1991; Rushton et al., 2004). Gen-
ralised Additive Models (GAM, Hastie and Tibshirani, 1990),
powerful extension of GLM are increasingly used for species
odelling (Yee and Mitchell, 1991; Leathwick and Whitehead,

001). Using the three-component framework, three questions
an be asked of current papers using the regression methods
LM, and GAM:

What ecological theory is assumed or tested?
Are there any limitations imposed by the nature of the data
used?
Are the statistical procedures and methods used compatible
with ecological theory?

.1. Ecological theory

heory in recent papers on species distribution is usually
mplicit. In an arbitrary review of 20 recent papers using sta-
istical models to predict species distributions, none used the
erm theory in the text in an ecological context (Journal of
pplied Ecology 12 papers 2003–2004; Journal of Biogeogra-
hy 5 papers 2004; one paper each from Global Change Biol-
gy (2003), Ecology Letters (2004) and Global Ecology and Bio-
eography (2003), * in references). An earlier comprehensive
ntroduction to species modelling provided by Ferrier et al.
2002) does not mention theory except in a statistical con-
ext. The implicit theory assumes that species distributions
re determined at least in part by environmental variables,
nd that reasonable approximations for these variables can
e estimated. Explicit theory regarding species response to
nvironmental gradients and resources exists (Giller, 1984;
uston, 2002). Niche theory as applied to both plants and ani-
als assumes symmetric Gaussian-shaped unimodal curves.
n plant community ecology, niche theory has an intimate
elationship with the continuum concept (Austin and Smith,
989). Current evidence supports the occurrence of unimodal
esponse curves with various skewed asymmetric or symmet-
ic shapes for plants (Austin, 2005).
2 0 0 ( 2 0 0 7 ) 1–19 3

2.1.1. Shape of species response curve
Species modellers, when applying GLM use models linear in
the parameters (on the logit transformed scale), but usually
fit only linear (straight-line), quadratic or cubic polynomial
functions. Modellers using presence/absence data as part of
their data model and GLM as their statistical method often
do not recognise the need to define the type of functional
response based on ecological theory. McPherson et al. (2004)
modelling bird species in South Africa using environmental
predictors derived from satellite data do not mention the
functional form of their logistic regression. Fourteen of the 20
recent references reviewed used GLM. Five used straight-line
models without justification (e.g. Gibson et al., 2004). Five
used quadratic functions that assume symmetric unimodal
responses are ecologically appropriate and other possibilities
need not be investigated (e.g. Jeganathan et al., 2004; Venier
et al., 2004). Mathematically, u-shaped as well as bell-shaped
responses and truncated versions of these functions are
assumed possible but skewed curves are considered to be
inappropriate. Three papers used cubic polynomials (Thuiller,
2003; Bustamante and Seoane, 2004; Bhattarai et al., 2004).
This is consistent with theory, which assumes skewed curves
are possible, but cubic polynomials represent a very restricted
family of skewed curves that may not accord with ecological
expectations and have undesirable properties. The function
may fit most of the data well but predict badly towards the
limits of the data, for example, predicting a low altitude tree
species above the tree line (Austin et al., 1990). Four of the
20 recent references used GAMS to overcome the problem of
response functions being ill specified by theory beyond a uni-
modal asymmetric shape. Two were primarily concerned with
comparison of methods for modelling species distributions
(Thuiller, 2003; Segurado and Araujo, 2004) and two used the
method for specific problems (Clarke et al., 2003; Thuiller et al.,
2004). This statistical method fits a smoothing spline defined
by the data and was introduced into the ecological literature
by Yee and Mitchell (1991). GAM is now recognised as a versa-
tile method for species modelling (Guisan and Zimmermann,
2000; Guisan et al., 2002; Thuiller, 2003; Segurado and Araujo,
2004) but the ecological niche theory used is often deter-
mined by the default degrees of freedom specified for the
response rather than any explicit theory or hypothesis.
There is an urgent need for explicit statements about the
niche theory assumed in papers on species distribution
modelling.

Huntley et al. (2004) use a modified version of niche the-
ory based on Huntley et al. (1995). The approach adopted is
locally weighted regression (LOWESS Cleveland and Devlin,
1988) of presence/absence data. Their version of niche theory
derives from their choice of smoothing window. The authors
state that the consequence of their narrow smoothing window
is that the species’ response curves are “spikey” and irreg-
ular in shape. They argue that this better defines the range
limits of the species and that such a response is more realis-
tic: “Furthermore, given that the fitted surface represents the
“realized” distribution of the species as determined not only

by its own inherent responses to the environmental gradients
but also as the outcome of interactions with numerous other
species, each of which is responding in an individualistic man-
ner to these and possibly other gradients, it is likely that it is
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inherently rough. The conventional “smooth” model of species
response along ecological gradients relates to a “fundamen-
tal” property of the species that may rarely be expressed in
nature” (Huntley et al., 1995). This is a theoretical position that
deserves investigation. It is also an example of where choice of
statistical procedures can also determine the ecological theory
used, which then remains untested.

Truncation of the species response curve at the observed
upper and lower limits of the environmental predictor can
confuse discussion of the frequency of different types of
response curve, e.g. Austin and Nicholls (1997). Species posi-
tion along an environmental gradient has been shown to influ-
ence the shape of response detected (Bio, 2000; Rydgren et al.,
2003). Conclusions about the response curve of species can
only be unambiguously determined if the sampled environ-
mental gradient clearly exceeds the upper and lower limits of
the species occurrence.

2.1.2. Types of environmental response
Species responses will also depend on the nature of the envi-
ronmental predictor and the associated ecological processes.
Plant growth shows a “limiting factor” response to light and
skewed unimodal response to temperature. There is an abun-
dance of knowledge about the ecophysiological and biophys-
ical processes that govern the relationships between species
and their environment. This knowledge can be used to choose
potential variables to describe species distributions (Huntley
et al., 1995; Guisan and Zimmermann, 2000; Austin, 2005).
Three approaches can be identified from the literature: (a)
a conceptual framework based on known biophysical pro-
cesses which allows consideration and selection of appro-
priate environmental predictors recognising three types of
environmental variables indirect, direct and resource vari-
ables (Austin and Smith, 1989; Huston, 1994, 2002; Guisan
and Zimmermann, 2000); (b) an alternative framework where
choice of predictors is based on ecophysiological knowledge
emphasising frost tolerance and growing day degrees (Prentice
et al., 1992; Huntley et al., 1995); (c) environmental predictors
are selected on the basis of availability and experience that
the variables show correlations with species distributions and
may act as surrogates for more proximal variables. Many stud-
ies adopt the third approach. Reviewing the selected papers,
eight were found to have chosen environmental predictors
with the implicit assumption that they were relevant, five
had variables selected for a specific problem, e.g. predicting
animal/vehicle accidents (Malo et al., 2004), only five explic-
itly considered or asserted the relevance of the predictors.
Careful selection of predictors utilising existing knowledge
of physiology and environmental processes would improve
the interpretability and evaluation of current statistical
models.

There does not appear to be a consensus on either the
necessity for explicit ecological theory or what would con-
stitute appropriate theory, when investigating species’ geo-
graphical distributions (Austin, 1999b). Synthesis of current
concepts into a more comprehensive theoretical framework

should be possible. The complex interdependency between
theory, data and statistics is clear (Huston, 2002). In the next
section, this interdependency is examined where the choice
of data is the primary concern.
2 0 0 ( 2 0 0 7 ) 1–19

2.2. Data model

A data model may have many components including defini-
tion of sampling frame, survey design, choice of attributes,
attribute measurement and precision, compatibility with sta-
tistical methods and the roles of a relational database and
geographic information system data management. However,
four components currently figure most prominently in species
spatial modelling papers, purpose, scale of study, availabil-
ity of data and selection of attributes. Pragmatically, purpose,
availability of data and the cost of surveys limit the types of
data models that can be adopted. One strategy is to collate
plot data from existing surveys adopting a minimum com-
mon dataset (e.g. Austin et al., 1990). The dataset may then
consist of presence/absence data for tree species, i.e. species
for which identification is likely to be reliable from plots of a
specified area and known location. However, the location of
existing data is likely to be biased for the purpose of the new
study, though it is possible to supplement existing data with
new surveys designed to compensate for the bias (Cawsey et
al., 2002). A second strategy is to use location records obtained
from Herbaria, Museums or Atlases (e.g. Thuiller et al., 2003a;
Huntley et al., 2004; Venier et al., 2004; Graham et al., 2004). Of
the relevant papers in the reference set (16), seven used survey
data, six used atlas data and three used survey data aggre-
gated to grid cells. Sampling bias and the frequent restriction
to presence-only data are significant data model problems
for atlas and gridcell data. Kadmon et al. (2003, 2004) have
examined number of presences, and climatic and roadside
biases on the performance of a climatic envelope model, i.e.
using presence-only data. They conclude that 50–75 presences
are sufficient to obtain accurate estimates of species distri-
bution. Climatic bias has a negative effect on accuracy but
the impact of roadside bias is much less. However, the road
network in Israel is not climatically biased (Kadmon et al.,
2004). Elith et al. (2006) in an extensive comparison of mod-
elling methods using numerous datasets of presence data,
confirm the predictive success of using presence data. Predic-
tive success varies markedly between the datasets. Sampling
bias will vary with species and the location of the data; in some
areas climatic bias can be expected to be correlated with road-
side bias. Further work is required on the use of Herbarium
records.

2.2.1. Problem of scale and purpose
Scale and purpose are key determinants of the data model
adopted, but theoretical considerations remain important in
the choice of scale, biotic and environmental data. The scale
at which data are available can severely restrict the purposes
for which the data can be used or place caveats on the useful-
ness of the results for the intended purpose. Two important
aspects of scale are extent and resolution (Whittaker et al.,
2001; Huston, 2002; Ricklefs, 2004; Guisan and Thuiller, 2005).
Extent refers to the area over which a study is carried out,
while resolution is the size of the sampling unit at which the
data are recorded. For example, if the purpose is to investigate

the environmental realized niche of a species (Austin et al.,
1990) then the extent of the study should range beyond the
observed environmental limits of the species. If this is not the
case, then the species responses are truncated and the actual
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hape cannot be determined (Austin et al., 1994; Austin and
icholls, 1997).

Resolution governs what variables can be measured and
hat processes can be hypothesised to operate in determin-

ng species distribution and abundance. Leathwick and Austin
2001) modelled tree species distribution in New Zealand

here the extent was the three main islands, an area of ca.
70,000 km2, and the resolution was a plot size of 0.4 ha for 80%
f the 14,540 plots used, rest 0.04 ha. This level of resolution
llowed the investigation of interactions between competi-
ion from the dominant Nothofagus species and environmental
redictors. This contrasts with studies where resolution can

imit the conclusions drawn. For example, Huntley et al. (2004)
ave as their general purpose to “model relationships between
pecies distributions and climate. . . to use these models to
redict how species potential distributions may be altered

n response to potential future climate scenarios” (p. 418).
heir specific purpose is to determine “if climate is indeed
ore influential in determining the distribution of plants than

nimals” (p. 418). This follows from a conclusion by Austin
2002b, p. 81) that “The ecological theory that determines
he success of predictive species modelling differs radically
etween plant and animal ecology. . .. The physical environ-
ent in terms of climate and soils is clearly more important

or plants”. Huntley et al. (2004) compared the modelling suc-
ess of individual species models for higher plants, birds and
nsects and concluded that predictive success is independent
f trophic level and hence predictive models for plants and
nimals are not fundamentally different. Their conclusions
re correct given their purpose and the scale and nature of
heir data model. The hypothesis was tested by modelling the
eographical distribution of species in large areas of Europe.
he species presence/absence data were derived from atlases
nd the three bioclimatic variables from maps. These data
ere then estimated for 50 km by 50 km UTM grid cells. The
odelling used the theory and methods (Huntley et al., 1995)

iscussed above. Their conclusion is only applicable to the
ata model used. Using only climatic predictors at the level of
esolution of 2500 km2, only climatic effects will be detected.
he results discussed in Austin (2002b) referred to studies
here the extent was equivalent to the level of resolution of
untley et al. approximately 5000 km2, however the resolu-

ion in Austin (2002b) was 0.1 ha for plants and ca. 10 ha for
he fauna. At this resolution, plant competition and animal

obility and territories will impact on distribution and inter-
ct with climate variables. The differences in scale limit the
ypes of generalisations that can be made, and more attention
eeds to be given to this topic.

Scale is a problem which has received more attention from
cologists interested in spatial patterns of species richness;
hough see Huston (2002) for recent discussion of this topic.
wo reviews, Whittaker et al. (2001) and Ricklefs (2004), exam-
ne many issues regarding biogeographical patterns that are
lso relevant to modelling individual species.

.2.2. Selection of biotic variables

here are two aspects of the selection of biotic variables of par-

icular current interest: the nature and measurement of the
ependent biotic variable, and whether other biotic variables
hould be incorporated into the models as predictors.
2 0 0 ( 2 0 0 7 ) 1–19 5

There are three types of biotic data usually considered
in spatial prediction, various measures of abundance, pres-
ence/absence data and presence-only data. The development
of GLM and GAM regression methods has meant that most
measures of abundance and presence/absence can now be
accommodated. The use of presence data where there is no
equivalent absence data is a current technical issue of impor-
tance, given the large amounts of presence-only data available
(e.g. Hirzel et al., 2001; Hirzel et al., 2002; Zaneiwski et al.,
2002; Engler et al., 2004; Brotons et al., 2004). The potential
and pitfalls of presence-only data is the subject of much cur-
rent research, and the outcome will have important practical
implications for modelling for climate change and conserva-
tion evaluation (Graham et al., 2004; Elith et al., 2006).

One type of abundance data that is widely available
is vegetation survey data from phytosociological relevees.
However, Guisan and Harrell (2000) have shown that the
cover/abundance scales used for estimating species abun-
dance in relevees require ordinal regression techniques as the
values are ranks not continuous variates. The data can be con-
verted to presence/absence and used with logistic regression
(Coudun and Gegout, 2005). Databases with large numbers of
relevees for large regions are available, e.g. Gegout et al. (2005).
Their extent and resolution are more suitable for niche mod-
elling than data derived from atlases, allowing local soil vari-
ables and competition from dominant species to be included.
Boyce et al. (2002) emphasise that mobile animals may not be
using the entire suitable habitat at any one time and modelling
their habitat requires an appropriate data model and special
resource selection functions. The choice of attribute measure-
ment for the response variable as part of the data model is a
key issue at the present time.

One aspect of modelling the realized niche that is rarely
incorporated is the role of biotic processes, for example com-
petition and predation. While the importance of these pro-
cesses is widely recognised, their importance for modelling
the spatial distribution of species has had only limited exam-
ination. There is a long-standing debate on the importance of
extrinsic and intrinsic factors in controlling animal popula-
tions (Krebs, 2001, p. 283) and another on the importance of
trophic level interactions on population control (Krebs, 2001,
p. 495). Response to climate as an extrinsic factor can be
treated as a simple correlation analysis for prediction pur-
poses (Huntley et al., 2004), but application of the results to
changed conditions is questionable and changes in trophic
interactions may be critical for predicting responses to climate
change (Harrington et al., 1999). Where the spatial resolu-
tion is suitable, the choice of predictors may need to include
estimates of prey abundance, nesting sites and territories for
successful modelling. For example, Pausas et al. (1995) used
eucalypt foliage nutrient content as a surrogate for food qual-
ity and a tree hole index as a surrogate for nesting sites for
a model of arboreal marsupial species richness. At the reso-
lution where biotic processes become important in modelling
the species environmental niche, then biotic predictors will
be needed. However, such predictors are frequently not avail-

able as GIS layers and so cannot be used for spatial prediction.
The development of suitable spatial surrogates for such vari-
ables from more distal variables is an area that needs more
investigation.
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The use of biotic predictors for plants has mainly cen-
tred on introducing competition from other similar species.
Leathwick and Austin (2001) modelled the distribution of tree
species in New Zealand improving the fit of the GAM models
by including tree density for the dominant tree genus Nothofa-
gus as competition terms in models. They also demonstrated
that competitive influence is a function of the environment;
interaction terms between Nothofagus density and the princi-
pal environmental predictors, mean annual temperature and
water deficit, further improved the models. In this case, suit-
able GIS layers were available for predicting species distribu-
tion. Austin (2002a) discusses earlier examples of the use of
competition predictors based on dominant species in regres-
sion models; see also Leathwick (2002). Further examination
of methods for incorporating competition terms into spatial
modelling is needed.

2.2.3. Selection of environmental predictors
How predictors are selected depends on the ecological and bio-
physical processes thought to influence the biota and again
the availability of data and the purpose of the model. Two
approaches should be considered if we are to move away from
using all possible predictors and use existing knowledge to
best advantage. These are the nature of the potential predic-
tors whether indirect or direct, and whether we have suitable
ecophysiological knowledge for choosing predictors.

Recognition of indirect, direct and resource vari-
ables (Austin and Smith, 1989; Huston, 1994; Guisan and
Zimmermann, 2000) can have a profound impact on how each
variable is used in the modelling approach. Indirect variables
such as altitude and latitude can only have a correlation
with organisms through their correlation with variables such
as temperature and rainfall that can have a physiological
impact on organisms. Because the correlation between indi-
rect variables and more direct variables is location specific
and need not be linear, there is no theoretical expectation
regarding the shape of species responses to indirect variables.
Temperature and rainfall are direct variables, while resource
variables are those which are consumed by organisms, e.g.
nitrogen for plants or prey for carnivores. There are theoret-
ical expectations/hypotheses about the shapes of response
to these types of variables (Austin and Smith, 1989). Plant
response to soil nutrients is expected to be hyperbolic where
species abundance increases to a level beyond which there
is no further increase, a limiting factor response. Evaluation
of species niche models should incorporate a test of whether
the shape of the response to an environmental predictor is
consistent with expected ecological theory.

Rainfall, while having a direct effect on organisms is a
distal variable, where the proximal variable might be water
availability at the root hair for plants. Biophysical processes
link indirect variables to rainfall and from there via water
balance models to estimates of moisture stress for plants
(Austin, 2005). Recognition of the nature of the predictor helps
to define the type of response to be expected. The frequent
inclusion of slope and aspect in species modelling studies is

an example of indirect variables where the physical relation-
ship with solar radiation is well known and can be calculated
using trigonometric functions (e.g. Dubayah and Rich, 1995).
Austin (2002a) reviews earlier studies where progressive incor-
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poration of more direct and proximal predictors using water
balance models rather than slope and aspect significantly
improved regression models describing the environmental
niche of eucalypt species. Leathwick in a series of papers has
demonstrated the value of such derived proximal predictors
for examining climate change and forest equilibrium at the
scale of New Zealand (Leathwick, 1995, 1998; Leathwick et al.,
1996; Leathwick and Whitehead, 2001).

Huntley and colleagues (Huntley et al., 1995, 2004) following
Prentice et al. (1992) select their climatic predictors using a dif-
ferent physiological model. Three bioclimatic variables were
selected based on well-known roles in imposing constraints
on species distributions. The variables were mean tempera-
ture of the coldest month, annual sum of degree-days above
5 ◦C and Priestley-Taylor’s ˛ (an estimate of the annual ratio of
actual to potential evapotranspiration) (Prentice et al., 1992).
These represent direct variables acting as surrogates for cold
tolerance, growing conditions and moisture stress. Resource
variables were not included. The selection of the temperature
variables has a better physiological rationale than the usual
selection of mean annual temperature with a skewed uni-
modal response curve (cf. Austin et al., 1994). However, the
shape of these temperature responses is unspecified beyond
the possibility of a threshold effect (Huntley et al., 1995). For
example, is there an optimal number of growing day-degrees
for a species above which there is no further influence? In
addition, the predictions resulting from using either growing
degree-days or mean annual temperature may be very similar
at a regional scale as these variables are often highly corre-
lated. Growing degree-days were shown by Pausas et al. (1997)
to have a quadratic relationship to mean annual temperature
with an r2 of 0.989 for 98 meteorological stations in New South
Wales, Australia. A synthesis of the different approaches to
selection and use of environmental predictors described above
may yield more robust and ecologically more rational species
models.

Error in the environmental variables is ignored in con-
ventional regression analysis. Such error can have profound
effects on the outcomes of models. Van Neil et al. (2004) have
recently drawn attention to the influence of error in digital ele-
vation models (DEM) on environmental variables. Measures
such as slope and aspect are usually calculated from a DEM
and then incorporated into a geographical information sys-
tem (GIS) from which they are retrieved for modelling. The
authors conclude that a direct variable, solar radiation may be
less prone to error than the indirect variables from which it
is calculated aspect and slope. The influence of error in the
DEM on species models has been further investigated by Van
Neil and Austin (in press). Most studies derive their environ-
mental predictors from a GIS. The original errors generated in
producing the estimates for the GIS need careful evaluation
before predictors are used for modelling.

2.3. Statistical model

Ecologists are very dependent on collaboration with statis-

ticians for the introduction of new statistical theory and
methodology into ecology, e.g. the introduction of GAM by Yee
and Mitchell (1991). Improvements continue to be made with
respect to GAM (Wood and Augustin, 2002; Yee and Mackenzie,
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002). The number of different approaches and techniques dis-
ussed in Hastie and Tibshirani (1990) make it clear, however,
hat the full array of statistical methods has yet to be incor-
orated in the ecological modelling of species distributions,
ee also Elith et al. (2006). There are three issues regarding the
valuation of the statistical model used for spatial prediction
f plant and animal species: (1) how to compare the numerous
tatistical methods available (2) how should the success of the
odelling be assessed? (3) how should the compatibility of the

tatistical model with the ecological model be evaluated?

.3.1. Comparison and evaluation of methods
omparison of modelling methods is a problem as new meth-
ds are continually being introduced. Multivariate adaptive
egression splines (MARS, Friedman, 1991) is one method with
otential because of its handling interactions between the
redictors (Moisen and Frescino, 2002; Munoz and Felicisimo,
004). Leathwick et al. (2005) have recently compared GAM
nd MARS methods incorporating a number of novel pro-
edures applied to freshwater fish. They conclude that the
wo methods give similar results but that MARS has compu-
ational advantages. Leathwick et al. (in press) have exam-
ned the use of boosted regression trees (BRT, Friedman et al.,
000) as a method for modelling demersal species richness.
hey conclude that BRT gives superior predictive performance
ompared to GAM even when the latter incorporates interac-
ion terms. Phillips et al. (2006) have recently introduced a

aximum entropy method (MAXENT). A distinctly different
ethod, generalized dissimilarity modelling (GDM) has been

ntroduced by Ferrier et al. (2002). Elith et al. (2006) provides a
escription of each of these and other methods, further ref-
rences and information on available software. Other recent
omparisons of methods include Maggini et al. (2006), Moisen
t al. (2006), and Drake et al. (2006); all differ in data models
nd selection of statistical models.

The comparisons of methods undertaken by different
uthors are rarely if ever comparable. For example, two recent
omparisons of methods (Araujo et al., 2005; Elith et al., 2006)
ompare 4 and 16 methods respectively but only two are in
ommon. They have different purposes, evaluation of mod-
ls using presence/absence data from different time peri-
ds for predicting climate change (Araujo et al., 2005) and
sing regression methods with presence-only data to max-

mise use of herbarium and museum records of organisms.
oth use GLM with the polynomial expansion x, x2, x3, hence
ny possible comparison is based on the particular procedure
ot the general method. There is no reason why GLM could
ot have used the sequence x, square-root x, see Austin and
unningham (1981). Comparisons of GLM with other methods
re confounded with the particular polynomial function used
ith GLM in these papers. Similarly, both groups of authors
se GAM with four degrees of freedom for smoothing though
his is not the only option, see Wamelink et al. (2005) for an
xample of alternatives.

Araujo et al. (2005) emphasise the need to use indepen-
ent data for evaluation. They describe three methods of eval-

ation (they use the term validation): resubstitution where
he same data is used to calibrate the model and measure
he fit; data-splitting where the data is split into two at ran-
om, a calibration set and a evaluation set, and independent
2 0 0 ( 2 0 0 7 ) 1–19 7

validation where a totally independent data set from a dif-
ferent region is used. Data-splitting is the current preferred
method but individual observations may still show spatial
auto-correlation (Araujo et al., 2005). The third alternative does
not seem plausible. Separate regions with the same species
complement, ranges and combinations of environmental pre-
dictors and ecological history simply do not occur. Elith et al.
(2006) adopt a useful compromise. They calibrate with one set
of data then evaluate the fit with totally separate data col-
lected independently from the same region. Given their pur-
pose of evaluating the use of presence data, the calibration set
is presence-only and the evaluation set is presence/absence,
however the results can be expected to apply to other data.

The comparative evaluation of Elith et al. (2006) is the most
comprehensive to date. Three groups of methods are recog-
nised with different levels of predictive success, the newest
methods BRT, GDM and MAXENT are the best, followed by
MARS, GLM, GAM, and new version of GARP (OM-GARP), while
other methods, e.g. GARP, LIVES, BIOCLIM and DOMAIN are
less satisfactory. The evaluation is based on AUC the area
under the receiver operating characteristic (ROC) curve and
the point biserial correlation (Elith et al., 2006). Both measure
predictive success using an independent data set.

Current best practice for assessing model success for pres-
ence/absence data is AUC (Pearce and Ferrier, 2000; Rushton
et al., 2004; Thuiller, 2003), while a number of different mea-
sures are used for quantitative data (Moisen and Frescino,
2002; Moisen et al., 2006). However, all the procedures depend
on the relationship between observed and predicted values;
that is on predictive success not on explanatory value. Is the
shape of the predicted response curve for an environmen-
tal predictor ecologically rational? While this question can be
addressed for an individual species model, when large num-
bers of species are modelled in one publication, presentation
of such graphs is not possible, limiting evaluation of the mod-
elling results. Elith et al. (2006) in their online appendix do
provide maps of the predicted distributions for several mod-
els for a few species. It is apparent that models with the same
or very similar AUC value may predict very different patterns
of distribution. Reliance on AUC as a sufficient test of model
success needs to be re-examined (Termansen et al., 2006).

When maps of observed and predicted geographical distri-
butions are presented, evaluation of the environmental pre-
dictor model is still not possible (Thuiller, 2003; Thuiller et al.,
2003a; Huntley et al., 2004). Some provide the degree of the
polynomial fitted for each predictor (Bustamante and Seoane,
2004; Thuiller et al., 2003b) but not their values or signs. A few
provide the model coefficients so that the response shapes
could be reconstructed (Venier et al., 2004). Lehmann et al.
(2002a) and Elith et al. (2005) provide suggestions on practi-
cal options for presenting results graphically for evaluation.
Maggini et al. (2006) and Van Neil and Austin (in press) are
unusual in presenting both response curves and map predic-
tions. Even if predictive success is high, this does not necessar-
ily mean that the shape is rational. The fitting of a cubic poly-
nomial for predictor may account well for a skewed response

at low values but also predict high probabilities of occurrence
at high predictor values due to the second inflection point in
the curve. This will occur if observations at high predictor lev-
els are sparse even if there are no presences in that region.
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Austin et al. (2006) provide examples. Ultimately, the decision
rests on whether prediction is the sole purpose or whether
ecological rationality is needed when using models for esti-
mating the impact of climate change and similar purposes.

2.3.2. Using artificial data
The major difficulty with evaluating statistical methods and
their compatibility with ecological theory is that the true
model is unknown. Comparative evaluations on real data are
unsatisfactory because two statistical methods may give dif-
ferent models but both may be half-right. The objection to
artificial data is that current theory regarding species response
curves is simplistic and unrealistic. A statistical model which
fails to recover the correct structure even from data con-
structed on the basis of a simple theory is unlikely to recover
useful information from real data. Artificial data allows ques-
tions such as: are the correct predictor variables selected, are
the correct response shapes found, what are the most appro-
priate statistical tests to use and what are the implications
of using direct or indirect environmental predictors (Austin et
al., 2006)?

For example, Bio (2000) generated artificial data sets with
three predictors and species response shapes assuming bell-
shaped responses to examine relative performance of the
model selection criteria. She found that the likelihood ratio
test performed better than Akaike’s information criterion (AIC)
and the Bayesian information criterion at recovering the true
model. The use of AIC produced more complicated models
than the true model. This generalisation however was sensi-
tive to the position of the species on the simulated gradient.
Maggini et al. (2006) also examine this issue with similar con-
clusions.

Austin et al. (2006) consider the use of artificial data for
evaluating statistical models where the true model is known
in detail (Austin et al., 1995 provide greater detail on data
construction). They generated sets of artificial data based
on two theories of species response shape, and two sets of
predictors direct and indirect with explicit biophysical rela-
tionships between them. The two theoretical models were
Swan/ter Braak model which assumes equally spaced bell-
shaped resonse curves along environmental gradients and
the Ellenberg/Minchin model which allows for a range of
skewed response curves (Austin et al., 2006). The environmen-
tal gradients assumed were based on direct variables and their
associated indirect variables. For example, aspect and slope
determine the radiation climate of a site: using radiation (a
direct variable), or aspect, (an indirect variable) will give rise
to very different types of model. Fitting radiation as a predic-
tor may result in a unimodal quadratic response function for
a species. The equivalent model using aspect in place of radi-
ation requires a bimodal response curve for the same species
(Austin et al., 2006). Results also indicate that a random vari-
able can easily be incorporated into a GLM or GAM model as a
significant predictor. However, inspection of the shape of the
response and its standard error would lead to recognition of
the problem. The response is flat and not obviously different

from zero. Skilled analysis of results and residuals is neces-
sary to “discover” the “true model” for an individual species.
The fitting of large numbers of models for numerous species
with default settings for the method is not a process which
2 0 0 ( 2 0 0 7 ) 1–19

will find the most appropriate ecological model. Conventional
modelling with indirect variables was found to be less suc-
cessful than with direct variables and could lead to irrational
response curves.

The main conclusion from the study described above is that
successful recovery of the true model depends more on the
ecological insight and statistical skill of the modellers than
the particular statistical modelling method used (Austin et al.,
2006). However, the work raises significant issues of how to
design and evaluate comparative studies of this kind where
success is not simply based on predictive ability.

3. Alternative approaches and models

The review above concerns the current paradigms being used
in the spatial prediction of species distributions and estima-
tion of their realised environmental niche. The question needs
to be addressed, are there other approaches being used in ecol-
ogy and statistics which could improve our research? Are there
statistical methods that have been neglected but are more
consistent with ecological theory, our knowledge of biophysi-
cal processes or the problem of spatial autocorrelation? Three
approaches requiring more attention are discussed below.

3.1. Liebig’s law of the minimum and quantile
regression

Huston (2002), in an introductory essay at the conference on
“Predicting Species Occurrences: Issues of accuracy and scale”
(Scott et al., 2002), drew attention to the impact of assum-
ing Liebig’s Law of the Minimum is operating when modelling
species response to environmental predictors and then pre-
dicting their spatial distribution. Van der Ploeg et al. (1999)
provide a modern account of the origins of the Law. One state-
ment of the Law would be “plant growth will be limited by
the nutrient in shortest supply even when other nutrients are
abundant, giving rise to a hyperbolic response curves to indi-
vidual nutrients”. If other resources are less than optimal for
some observations as is usual for field observations as opposed
to experiments, observed species performance will be less
than the maximal possible response to the first resource. In
fact, typical regression analyses fitted to the mean values may
not even reflect the true shape of the response to the first
resource.

A number of authors have been addressing this type of
response problem in a variety of ecological contexts. Kaiser
et al. (1994) drew attention to the “Law of the Minimum”
problem with respect to phosphorus limitations to algal
biomass as measured by chlorophyll content in lakes, arguing
that simple least-squares linear regression was inappropri-
ate. Thomson et al. (1996) also argued that: “Conventional
correlation analysis. . . fundamentally conflicts with the basic
concept of limiting factors” in a study of the spatial distri-
bution of Erythronium grandiflorum (Glacier lily) in relation to
soil properties and gopher disturbance. Scharf et al. (1998),

in investigating patterns between prey size and predator
size in animal populations, considered a related problem
estimating the upper and lower boundaries of scatter plots
of the two variables. These three groups of authors all used
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ifferent analytical approaches, while acknowledging that
heir methods were not entirely satisfactory. Cade et al. (1999)
hen presented the use of quantile regression (see also Scharf
t al., 1998) for the purpose of estimating envelope curves
r “factor-ceiling responses” (Thomson et al., 1996). Cade
nd Noon (2003) provide a clear exposition of the statistical
ethod and its potential for ecological analysis of observa-

ional data for both plants and animals. Figure one provides
n artificial example, showing the expected response under
he equivalent of experimental conditions (Fig. 1a) and then
s expected in observational field studies (Fig. 1b). Estimates

f the slopes of the responses based on the 10th or 50th

approximates the least-squares regression) quantiles would
e much lower than those from the 90th would. Huston (2002)
hows a similar but more complex example. This approach is

ig. 1 – Artificial example of biomass relationship with
abitat condition showing 10th, 50th, 75th, 90th and 95th
uantiles estimated from quantile regression. (a)
iomass/habitat relationship uninfluenced by non-habitat

actors. (b) Biomass/habitat relationship when influenced
y non-habitat limiting factors. From Cade et al. (1999) with
ermission of Ecological Society of America.
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not simply about the failure to specify an important predictor
in the regression model but also that such variables almost
invariably reduce the abundance of the dependent variable
and may thus obscure the nature of the relationship.

Cade and Guo (2000) used quantile regression to study
seedling survival of desert annuals. By estimating envelope
response curves (95th and 99th quantiles) of final summer
seedling density against initial winter density, they were
able to interpret seedling survival as being determined
by seed supply at low initial densities and by competitive
self-thinning at high densities, consistent with a particular
mechanistic model. This result could not have been obtained
from conventional statistical analysis of the scatter plots
due to the numerous low survival values resulting from
other unrecorded limiting factors. Krause-Jensen et al. (2000)
examined Eelgrass (Zostera marina) abundance and growth
along a water depth gradient using a less satisfactory method
for estimating “upper boundaries” (Blackburn et al., 1992)
than quantile regression. They did, however, fit quadratic
functions for Eelgrass biomass and cover in relation to the
indirect environmental gradient of depth. Knight and Ackerly
(2002) investigated variation in the average nuclear DNA
content of species across a direct environmental gradient,
July maximum temperature (Fig. 2). The scatter plot (Fig. 2a)
shows a unimodal envelope curve with other limiting factors
reducing DNA content at intermediate temperatures. The
changing relationship is clearly summarised by the plot of the
changes in sign, value and significance of the quadratic term
when regressions for various quantiles are calculated (Fig. 2b).
While the normal least-squares polynomial was significant
with a negative quadratic coefficient, the strength of the
unimodal response was only captured when the small values
of DNA influenced by the other non-specified limiting factors
were down-weighted in the upper quantile regressions.

Schroder et al. (2005) apparently provide the first example
of the application of quantile regression to species abun-
dance data in relation to environmental gradients. They
compare quantile regression curves for 95% quantiles with
the mean response curves using the non-linear response
functions of Huisman et al. (1993). The response curves for
fen plant species in relation to single predictors like annual
flooding duration and phosphate show some dramatic differ-
ences between the quantile and mean curves. The quantile
response curves appear more ecologically rational without
abrupt thresholds and unexpected shapes. The authors do
not make a link with Liebig’s Law.

In fact, Liebig’s Law is not the only ecological hypothesis
that has been put forward to explain species physiological
responses to nutrients in general (Rubio et al., 2003). These
authors contrast Liebig’s Law with the “multiple limitation
hypothesis” (MLH Bloom et al., 1985) which says a plant’s
adaptive growth will result in all resources limiting plant
growth simultaneously. The basic assumption of MLH is that
resources are substitutable for each other at least to some
extent (Bloom et al., 1985; Rubio et al., 2003). Rubio et al. (2003)
tested experimentally whether responses to pairs of min-

eral nutrients were consistent with either hypothesis. They
found that it depended which pairs of nutrients were com-
pared, some showed a Liebig response, some a MLH response
and some were indeterminate. If Liebig’s law operates for
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Fig. 2 – (a) The relationship between cell nuclear DNA content (2CDNA) of species and average July maximum temperature
within the range of the species. (b) The change in value of the coefficient for the quadratic term (solid dark line) in the
progressive quantile regressions calculated for the data in (a). Note the abrupt change above the 75th quantile. The single
dashed line is the estimate for the quadratic coefficient for the least squares regression for the total data and the double
dashed lines are the 95% confidence limits. The grey area represents the 95% confidence interval for the quantile regression

of Bl
estimates. From Knight and Ackerly (2002) with permission

any predictor then there is a strong justification for quantile
regression. However, the shape of a species response when
expressed as a mathematical function implies an ecological
theory and the opportunity to test one or more associated
hypotheses. The papers of Huston, 2002, Knight and Ackerly
(2002) and Schroder et al. (2005) provide a strong case for the
use of quantile regression for modelling species environmen-
tal responses. The experimental study of Rubio et al. (2003)
contrasting ecophysiological theories demonstrates that the
choice of mathematical function should not depend on default
options in a software package, nor assume a specific theory
like Liebig’s Law applies in all cases.

3.2. Structural equation modelling (SEM)

Structural equation modelling has been advocated and used in
a variety of ecological contexts, ecological genetics and evolu-
tion (Mitchell, 1992, 1994), ecosystem function and toxicology
(Johnson et al., 1991), comparative ecophysiology (Shipley and
Lechowicz, 2000), trophic interactions (Marquez et al., 2004),
plant species recruitment (Garrido et al., 2005) and rare species
conservation (Iriondo et al., 2003). Vile et al. (2006) have applied
SEM to study changes in species functional traits during old-
field succession. Arhonditsis et al., have combined SEM with
Bayesian analysis to examine the role of abiotic and biotic pro-
cesses on phytoplankton dynamics and water clarity in two
lakes. McCune and Grace (2002) provide a detailed introduc-
tion to its use in ecology. It does not appear to have been used
to model the spatial distribution of individual species.

Shipley (2000) provides a general definition: “SEM models
represent translations of a series of hypothesised cause-effect
relationships between variables into a composite hypothesis
concerning patterns of statistical dependencies”. He presents
the advantages of SEM as “. . . can test models that include
variables that cannot be directly observed and measured
(so-called latent variables) and for which one must rely
on observed indicator variables that contain measurement

errors”. Potentially, SEM overcomes many of the problems
of conventional multiple regression. For example, in conven-
tional regression, environmental predictors are assumed to be
measured without error. By explicitly recognising that correla-
ackwell Publishers.

tions between variables may reflect causal pathways and that
such variables may have both direct and indirect effects on
a dependent variable, SEM can differentiate between alterna-
tive regression models. In fact, an SEM model of a complex
set of pathways describing how environmental variables (e.g.
Fig. 3) may affect each other and the dependent variable can be
tested for consistency with the observed data. A hypothesised
set of causal pathways can be rejected if it is not consistent
with the observations.

Shipley (2000) lists the disadvantages of SEM as functional
relationships must be linear, non-multivariate normal data
are difficult to treat, and large sample sizes are needed. SEM
would provide a means of incorporating knowledge about indi-
rect, direct and resource variables (Austin and Smith, 1989)
into a hypothesis about the causal pathways linking envi-
ronmental variables, biotic influences, e.g. competition and
herbivory with the distribution of species. The possibility of
estimating explicitly latent variables also has considerable
potential. Latent variables could be estimates of variables
more proximal in the causal path than those we can measure
(Austin, 2005) and use in multiple regressions.

However, if we equate species richness per plot to the
abundance of a species, considering it to be controlled by the
same biotic and abiotic variables then a significant example
has been published, Grace and Pugesek (1997), which is
further explained in McCune and Grace (2002). These authors
examine plant species richness as a function of plant biomass,
disturbance and abiotic variables in a coastal wetland. They
recognised that abiotic variables such as soil salinity might
have a direct effect on species richness and an indirect effect
via an effect on plant biomass per plot, which then affects
species richness, possibly by reducing light beneath the
canopy. They established an initial SEM model based on such
hypotheses (Fig. 3a), partitioning the correlations between
the variables to simultaneously fit the entire data set, not just
the dependent variable species richness. The terminology
used is complex. The following description is based on Grace

and Pugesek (1997). Measured variables (e.g. soil carbon)
are referred to as indicators of the latent variables (e.g. soil
infertility). The relationships between the indicator variables
and latent variables constitute the measurement model,



e c o l o g i c a l m o d e l l i n g 2 0 0 ( 2 0 0 7 ) 1–19 11

Fig. 3 – Structural equation model (SEM) for species richness in a coastal wetland. (a) Initial conceptual model. Latent
variables are enclosed in ellipses and indicated (estimated) by measured or indicator variables shown in boxes. Arrows
represent possible path coefficients. See Grace and Pugesek (1997) for further details. (b) Final specific model. The path
coefficients represent standardised partial regression coefficients. Arrows between latent variables and indicators represent
the degree to which indicators are correlated with latent variables. Pathways between latent variables show the direction,
sign and partial regression coefficients. The pluses and minuses behind the path coefficient for the light-to-richness path
serve as a reminder that this path has strong positive and negative components since it is the transformation of a
hump-shaped relationship. The endogenous variables biomass, light and richness are shown to have 70%, 65% and 45% of
their variance explained by the model. (Figs. 3 and 6 from Grace and Pugesek (1997) from American Naturalist with
p

w
k
v
(

ermission).
hile the relationships between the latent variables are
nown as the structural model. There are two kinds of latent
ariable, exogenous those which only predict other variables
e.g. flooding) and endogenous those which are dependent on
other variables (e.g. species richness). For further details of
the statistical procedures used, see McCune and Grace (2002).
The results of SEM based on Fig. 3a are shown in Fig. 3b. Note
that while flooding is estimated to have an indirect effect
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Fig. 4 – Relationship between normalised difference
vegetation index (NDVI) and rainfall for 1987 from North
Africa and Middle East showing a straight-line ordinary
least squares regression. Note curvilinear scatter of data
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through correlation with biomass there is no evidence that
salinity does. Disturbance has an effect only through biomass
and light at ground level. Species richness is seen as a direct
and indirect function of environmental variables, the biotic
variable biomass and its dependent variable light, plus an
indirect function of disturbance. If abundance of an individual
species were substituted for species richness in Fig. 3b, the
SEM model would appear an entirely feasible approach to
modelling individual species distribution. It would have the
added advantage of making explicit the relationships between
indirect, direct and resource variables.

The recent papers on the determinants of species rich-
ness in different plant communities (Grace and Pugesek, 1997;
Weiher, 2003; Weiher et al., 2004) provide interesting results
on the relative importance of environmental variables and
biomass in influencing species richness in different commu-
nities. However, these authors use bivariate curvilinear regres-
sion to provide functions to linearise the relationship between
the principal predictors and species richness as the depen-
dent variable prior to analysis. This assumes that no other
predictor is masking the shape of the relationship. There is
an urgent need to evaluate the impact of non-linear rela-
tionships (sensu lato) and effects arising from concepts like
the Law of the Minimum on SEM, before it is widely used in
modelling species distribution. Tests with artificial data based
on current ecological theory would provide a suitable initial
approach.

3.3. Spatial non-stationarity and geographically
weighted regression (GWR)

Spatial autocorrelation, where the abundance or occurrence
of species is correlated with presence and abundance of the
species nearby, can affect statistical modelling (Cressie, 1993).
Specific account of this has been incorporated into species
modelling (Smith, 1994; Leathwick, 1998). More recently, the
problem of whether the statistical model remains constant
over the spatial extent of a study has been raised (Osborne and
Suarez-Seoane, 2002). A statistical procedure, GWR has been
developed to examine specifically this issue (Fotheringham
et al., 2002). Biologically, this approach could be of impor-
tance as it is a local technique that allows the regression
model parameters to vary in space. If species are not in equi-
librium with their environment, or if the social behaviour
of animals changes with location, then statistical models
based on local regions may provide more information and bet-
ter predictions than a global model based on data from the
whole study area (Osborne and Suarez-Seoane, 2002; Foody,
2004).

A simple ecological example is provided by Foody (2003)
where the normalised difference vegetation index (NDVI), a
remotely sensed measure of vegetation productivity, is related
to rainfall for North Africa and the Middle East (Fig. 4). An
example of avian species richness prediction from three envi-
ronmental variables (maximum NDVI, mean annual tempera-
ture, total annual precipitation) for sub-Saharan Africa shows

marked spatial variation in regression coefficients (2004).
There are clearly major changes in the local regressions and
these vary progressively across southern Africa. There is con-
troversy over the relative importance of GWR versus global
points. (Fig. 2a from Foody (2003) Remote Sensing of
Environment with permission).

spatial regression compare Jetz and Rahbek (2002) and Foody
(2004) for the same species data and see also Jetz et al. (2005)
and Foody (2005a) This regression method has yet to be used
for modelling individual species and needs to be reviewed
carefully before being used.

I use the NDVI example (Foody, 2003) to consider some of
the problems. Figure four shows the straight-line relationship
fitted to the global data set. However, one would expect that
above a certain rainfall NDVI would be unresponsive to rain-
fall, an application of Liebig’s Law of the Minimum. An equally
parsimonious conventional least-squares regression would be
to fit a reciprocal function (1/x). This would approximate an
ecologically rational response and fit the data better (Fig. 5a).
However, as Huston (2002) has pointed out if a limiting factor
response is theoretically appropriate then quantile regression
model is the statistical model to use (Fig. 5b).

If the expected relationship is curvilinear, the application
of GWR poses a problem. Both NDVI and rainfall show spatial
autocorrelation. Fitting a suitable conventional regression
model to the variables may well result in residuals with
no remaining spatial autocorrelation, all other things being
equal. However, when a local regression is fitted with obser-
vations weighted by distance from the location, bias can
result because of the spatial autocorrelation in the predictor.
In a high rainfall location, highly weighted observations close
to the location will also have high rainfall and conversely in
low rainfall locations neighbouring observations will have
low rainfall. The consequences in the curvilinear response
model could well be as shown in Fig. 5c. In low rainfall
regions, a steep linear regression while in high rainfall areas,
a flat, non-significant regression, due not to non-stationarity
in the relationship but to a curvilinear relationship and
spatial autocorrelation in the predictor. Foody (2004, 2005b)
investigating bird species richness in Sub-Saharan Africa and

Britain, respectively, using NDVI and temperature fits only
straight-line functions. Unimodal responses are characteristic
of species responses to climatic predictors. In such circum-
stances, GWR will effectively subsample limited ranges of
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Fig. 5 – Alternative approaches to analysis of normalised difference vegetation index (NDVI) and rainfall for 1987 from North
Africa and Middle East. (a) Parsimonious curvilinear regression (y = a + b/x). (b) Possible 95% quantile parsimonious
curvilinear regression (y = a + b/x). (c) Potential linear geographical weighted regressions (GWR) from (A): low rainfall region,
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The NDVI/rainfall example captures a number of issues rel-
vant to spatial modelling of species:

1) the use of straight-line regression that is linear in the vari-
ables is inappropriate, when the data and theory suggest
a curvilinear response;

2) further consideration of the limiting factor theory clearly
relevant to NDVI suggests that quantile regression would
be the preferred statistical model;

3) methods of spatial autocorrelation and non-stationarity of
processes after allowing for curved responses require fur-
ther investigation, not least because of their importance
for testing the assumption that species distributions are
in equilibrium with current environments.

. Conclusion: best practice?
rom the papers cited in this review, it is clear that there is
o standard for current best practice when modelling species
nvironmental niche or geographical distribution, whether
ghted regressions (GWR) for a species showing a unimodal
nfall (a–c) modified from Foody (2003) see Fig. 4.

plant or animal. Numerous incompatibilities between the eco-
logical, data and statistical models can be identified. New
ideas on how to proceed, such as Huston’s (2002) suggestion
of using Liebig’s Law of the Minimum and quantile regression,
Grace and Pugesek’s (1997) ideas on the use of SEM and the
role of GWR (Foody, 2004) to investigate spatial dependency,
all require further development and investigation before they
can be used on a routine basis. Can any recommendations be
made?

There are now numerous reports that skewed response
curves are frequent (Bio et al., 1998; Ejrnaes, 2000; Rydgren et
al., 2003), supporting expectations from ecological theory. Best
practice would therefore be to test for such responses using a
GAM model or similar procedure and not assume straight line
or quadratic functions without explicit theoretical justifica-
tion. GRASP (Lehmann et al., 2002b) is one software package
that provides a series of tools for exploring possible responses
before modelling. Recent applications of new statistical proce-
dures for modelling (Moisen et al., 2006; Munoz and Felicisimo,
2004; Elith et al., 2006) expand the potential for examining

the complex curves and interactions that may be postulated
by ecological theory (Austin and Smith, 1989) or detected by
exploratory modelling. Understanding the interrelationship
between ecological theory, statistical theory and the relative
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performance of statistical models is a complex issue. Artifi-
cial data offers one means of examining these issues mak-
ing explicit both ecological and statistical assumptions (Bio,
2000; Austin et al., 2006). Their results indicate that all statis-
tical procedures should be tested with realistic artificial data
before being adopted as current practice. However, Austin et
al. (2006) also conclude that ecological insight and statistical
skill are more important than the precise methodology used
when searching for the true model in artificial data.

Defining best current practice for modelling species distri-
butions faces great problems (Huston, 2002; Cade et al., 2005).
Ecological theory suggests that environmental predictors
must be evaluated in terms of Liebig’s Law of the Minimum,
the multiple limitation hypothesis and the expected shape
of response. The Law will apply to some resource variables;
others may be substituteable (Rubio et al., 2003) However,
nutrient resources can also occur in toxic excess. Response
to the direct but distal variable, temperature may reflect frost
damage at low temperature while high temperature damage
reflects protein denaturation. Exactly how predictors are likely
to influence species will depend on whether they are indirect,
direct or resource variables, proximal or distal, abiotic or biotic
(Austin and Smith, 1989; Grace and Pugesek, 1997). Regression
modelling rarely if ever examines correlation of variables in
terms of process. Recognition of the type of variable can have
a dramatic effect on the type of response curve which might be
expected (Austin et al., 2006). Setting up a SEM with a detailed
hypothetical path analysis (Fig. 3) when selecting predictors
would make explicit the nature of the predictors and their
likely inter-dependence. The possibility of using known bio-
physical process knowledge to estimate more proximal latent
variables could be assessed against depending on indirect sur-
rogate variables such as slope.

The different ecophysiological assumptions currently
influencing selection of environmental predictors (Austin and
Smith, 1989; Huntley et al., 1995; Leathwick and Whitehead,
2001; Huston, 2002) need to be justified in more detail, e.g.
Bloom et al. (1985) and Rubio et al. (2003). The expectation is
that predictors representing light, nutrients, water and tem-
perature will influence plant distribution. Excluding predictors
for one of these factors needs to be justified. Ecological judge-
ment will have to be exercised over what to include and what
needs to be justified.

One example of exercising ecological judgement when
integrating ecological theory with statistical models is intro-
ducing competition between plant species. Logically, the most
appropriate statistical model would be simultaneous regres-
sion where interaction (competition or facilitation) coeffi-
cients between all species are estimated along with the envi-
ronmental predictors (Brzeziecki, 1987). However, the plot size
of vegetation data is usually large relative to the size of indi-
vidual plants and in most cases, rare species will not occur
adjacent to each other and hence are unable to compete. In
such circumstances, competition coefficients are inappropri-
ate and cannot be calculated. As species abundance increases
relative to plot size, the probability of species occurring as

neighbours will increase and species interactions become
more likely. Identification of the possible occurrence of com-
petition using regression models will be a function of plant
sizes, abundances and spatial pattern relative to plot size.
2 0 0 ( 2 0 0 7 ) 1–19

This reasoning provides an explanation of the success of those
regression models of a species discussed by Austin (2002a)
where the model fit increased dramatically when the veg-
etation was stratified by plant community and the abun-
dance of the dominant species of each community intro-
duced as an additional predictor of the realised niche of the
species. Leathwick (2002) has demonstrated both competitive
and facilitative interactions between the dominant Nothofagus
species conditional on environment in New Zealand forests.
However, introducing such an ecological process as competi-
tion will depend critically on the data model adopted. Choice
of plot size relative to the scale of the process and availabil-
ity of abundance data will determine the feasibility of such
modelling.

Examples of using ecological and physiological knowledge
to design the ecological, data and statistical models could
be multiplied. The outcome of applying these ideas will be
models that are more robust, include ecologically more ratio-
nal responses and better prediction. Similar progress is being
made with the data model and statistical model, but agreed
standards for best current practice appear unlikely in the near
future based on the review of literature presented here.

The three potential areas where progress might be made
have been suggested, quantile regression, SEM and GWR.
Quantile regression appears to have a sound basis in eco-
logical and statistical theory, and software is available (Cade
and Noon, 2003). A version is also available for nonparametric,
nonlinear smoothers (Yu and Jones, 1998 quoted in Cade and
Noon, 2003, see also Schroder et al., 2005). The only applica-
tion to species modelling of quantile regression by Schroder
et al. (2005) uses only a single predictor variable at a time due
to the limited amount of data. A case study of its application
to modelling of species spatial distribution using numerous
environmental predictors is needed.

Structural equation modelling has an appealing concep-
tual framework with the possibility of testing whether data is
consistent with a hypothesised causal pathway (Shipley, 1999).
The limitation of SEM to linear relationships, multivariate nor-
mal data and preferably large data sets (Shipley, 2000) seems to
restrict its potential for spatial prediction. Grace and Pugesek
(1997) and Vile et al. (2006) apply data transformations to lin-
earise individual relationships between variables. Arhonditsis
et al. (2006) claim that non-linear relationships can be accom-
modated. It is beyond the competence of the present reviewer
to review the statistical aspects of SEM, but it does appear
to have problems dealing with curvilinear relationships and
interactions (Schumacker and Marcoulides, 1998; Lee et al.,
2004). The previous discussion on GWR (Fig. 5) makes it clear
that the method cannot distinguish between non-stationarity
of process and curvilinear relationships between predictor
and dependent variables. This does not mean it cannot be
used for exploratory data analysis; regions of rapid change
of parameters still need to be investigated and understood.
Spatial autocorrelation remains an important issue for spatial
prediction of species distribution.

Improved communications between the existing research

paradigms is needed. Certain “rules of thumb” can be applied:

1. Investigate the possibility of curvilinear relationships
(sensu lato).
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environmental gradients. Proc. Ecol. Soc. Austr. 11, 109–119.
Austin, M.P., Nicholls, A.O., 1997. To fix or not to fix the species

limits, that is the ecological question: response to Jari
e c o l o g i c a l m o d e l l

. State explicitly what ecological theory is being assumed or
tested.

. Ensure that data resolution is consistent with theory and
the predictors being used.

. Examine relationships between variables for environmen-
tal process interactions in order to derive more proximal
predictors.

. Evaluate new methods with realistic artificial data, i.e. data
consistent with current ecological understanding.

. Use more than one statistical method to build the predic-
tive model.

. Do not depend solely on prediction success when evaluat-
ing species models.

. Investigate the model residuals for spatial and other pat-
terns.

. Use independent data to test the models.

Many of these “rules” should be used routinely. Others
ight use terminology that is more sophisticated when dis-

ussing analytical technique but what is important is the com-
atibility between the ecological questions and the statistical
ethodology.
These regression models test whether there is a relation-

hip between certain hypothesised environmental predictors
nd species occurrence. The models provide a predictive equa-
ion with which the data are consistent. The models do not
mply causation. There is a reasonable presumption that the
redictors are surrogates for causal processes based on ecolog-

cal knowledge. However, disproving such presumptions poses
ifficulties. Few manipulative experimental tests of regres-
ion models have been attempted. McCune et al. (2003) mod-
lled lichen distributions in relation to elevation using logistic
egression and a kernel smoother. Subsequently, Antoine and
cCune (2004) modelled the vertical height distribution of

ichens within the forest canopy. They then compared these
istribution curves with those obtained from the biomass
rowth of lichens derived from transplant experiments within
he forest canopy. Two species showed consistent responses,
bundance and growth followed similar curves. One species
obaria oregana was inconsistent. Maximum abundance was at
5–30 m but maximum growth was at 40–45 m. Two hypothe-
es were advanced, competition or establishment. Such exper-
mental tests will only be possible with certain organisms.

Process models are often advocated as an alternative
pproach to statistical models. Deductive testing of possible
rocesses without adequate description of the pattern is likely
o be inefficient. Statistical models of species occurrence offer

solution. They provide a statement of the potentially rel-
vant environmental variables that need to be included in
he process models and their relative importance. An iter-
tive procedure between the process and statistical models
s needed with each model acting as a test of the other.
his approach is implicit in the recent studies of Leath-
ick (Leathwick and Whitehead, 2001; Leathwick and Austin,

001; Leathwick, 2002) but needs to be made explicit. The
ypothesised causal path model or SEM shown in Fig. 3 rep-

esents such an explicit statement. Both Grace (in McCune
nd Grace, 2002) and Shipley (1999, 2000) have also argued
xplicitly for this approach. Yet, the potential of SEM for
esting models of species distribution will remain uncertain
2 0 0 ( 2 0 0 7 ) 1–19 15

until it is demonstrated that the approach can deal with the
numerous curvilinear responses that are commonly found
in species/environment relationships (cf. Lee et al., 2004).
Species distribution models are important in applied ecology
but progress in the development and use will require constant
evaluation.

This review is critical of our current progress in achieving
an appropriate synthesis of our ecological theory, data mod-
els and statistical methods. However, there are many good
ideas, methods and appropriate data sets in the different
research paradigms operating in the area of species modelling
which could contribute to a synthesis. Such a synthesis would
improve our predictions and hence management of our natu-
ral resources.

Acknowledgements

I thank P. Gibbons, A.O. Nicholls, C.J. Krebs and K. Van Neil
for comments on the manuscript and the CSIRO Sustainable
Systems librarians for their help with references. This paper
formed part of the Riederalp 2004 Workshop on Generalized
Regression and Spatial Prediction and I thank the organisers
A. Guisan, A. Lehmann, J. Overton, S. Ferrier and R. Aspinall
for the invitation to attend.

e f e r e n c e s*

Antoine, M.E., McCune, B., 2004. Contrasting fundamental and
realized ecological niches with epiphytic lichen transplants in
an old-growth Pseudotsuga forest. Bryologist 107, 163–173.

Araujo, M.B., Pearson, R.G., Thuiller, W., Erhard, M., 2005.
Validation of species-climate impact models under climate
change. Global Change Biol. 11, 1504–1513.

Arhonditsis, G.B., Stow, C.A., Steinberg, L.J., Kenney, M.A.,
Lathrop, R.C., McBride, S.J., Reckhow, K.H., 2006. Exploring
ecological patterns with structural equation modelling and
Bayesian analysis. Ecol. Model. 192, 385–409.

Austin, M.P., 1999a. A silent clash of paradigms: some
inconsistencies in community ecology. Oikos 86, 170–178.

Austin, M.P., 1999b. The potential contribution of vegetation
ecology to biodiversity research. Ecography 22, 465–484.

Austin, M.P., 2002a. Spatial prediction of species distribution: an
interface between ecological theory and statistical modelling.
Ecol. Model. 157, 101–118.

Austin, M.P., 2002b. Case studies of the use of environmental
gradients in vegetation and fauna modelling: theory and
practice in Australia and New Zealand. In: Scott, J.M.,
Heglund, P.J., Samson, F., Haufler, J., Morrison, M., Raphael, M.,
Wall, B. (Eds.), Predicting Species Occurrences: Issues of
Accuracy and Scale. Island Press, Covelo, California, pp. 73–82.

Austin, M.P., 2005. Vegetation and environment: discontinuities
and continuities. In: van der Maarel, E. (Ed.), Vegetation
Ecology. Blackwell Publishing, Oxford, pp. 52–84.

Austin, M.P., Cunningham, R.B., 1981. Observational analysis of
Oksanen. J. Veg. Sci. 8, 743–748.

∗ References used in review in section on current models for pre-
dicting species distributions.



l i n
16 e c o l o g i c a l m o d e l

Austin, M.P., Smith, T.M., 1989. A new model for the continuum
concept. Vegetatio 83, 35–47.

Austin, M.P., Nicholls, A.O., Margules, C.R., 1990. Measurement of
the realised qualitative niche: environmental niches of five
Eucalyptus species. Ecol. Monogr. 60, 161–177.

Austin, M.P., Belbin, L. Meyers, J.A., Doherty, M.D., Luoto, M.
(2006). Evaluation of statistical models for predicting plant
species distributions: role of artificial data and theory. Ecol.
Model., doi:10.1016/j.ecolmodel.2006.05.023, in press.

Austin, M.P., Nicholls, A.O., Doherty, M.D., Meyers, J.A., 1994.
Determining species response functions to an environmental
gradient by means of a �-function. J. Veg. Sci. 5, 215–228.

Austin, M.P., Meyers, J.A., Belbin, L., Doherty, M.D., 1995. Modelling
of landscape patterns and processes using biological data.
Subproject 5: simulated data case study. Consultancy Report
for ERIN, CSIRO Wildlife and Ecology, Canberra.

*Bhattarai, K.R., Vetaas, O.R., Grytnes, J.A., 2004. Fern species
richness along a central Himalayan elevational gradient,
Nepal. J. Biogeogr. 31, 389–400.

Bio, A.M.F., 2000. Does vegetation suit our models? Data and
model assumptions and the assessment of species
distribution in space. Faculteit Ruimtelijke Wetenschappen
Universiteit Utrecht. Nederlandse Geografische Studies 265.

Bio, A., Alkemade, R., Barendregt, A., 1998. Determining
alternative models for vegetation response analysis: a
non-parametric approach. J. Veg. Sci. 9, 5–16.

Blackburn, T.M., Lawton, J.H., Perry, J.N., 1992. A method of
estimating the slope of upper bounds of plots of body size and
abundance in natural animal assemblages. Oikos 65, 107–112.

Bloom, A.J., Chapin, F.S., Mooney, H.A., 1985. Resource
limitationin plants-an economic analogy. Ann. Rev. Ecol. Syst.
16, 363–392.

Boyce, M.S., Vernier, P.R., Nielson, S.E., Schmiegelow, F.K.A., 2002.
Evaluating resource selection functions. Ecol. Model. 157,
281–300.

Brotons, L., Thuiller, W., Araujo, M.B., Hirzel, A.H., 2004.
Presence-absence versus presence-only modelling methods
for predicting bird habitat suitability. Ecography 27, 437–448.

*Bustamante, J., Seoane, J., 2004. Predicting the distribution of
four species of raptors (Aves: Accipitridae) in southern Spain:
statistical models work better than existing maps. J. Biogeogr.
31, 295–306.

Brzeziecki, B., 1987. Analysis of vegetation–environment
relationships using a simultaneous equations model.
Vegetatio 71, 175–184.

Cade, B.S., Guo, Q., 2000. Estimating effects of constraints on plant
performance with regression quantiles. Oikos 91, 245–254.

Cade, B.S., Noon, B.R., 2003. A gentle introduction to quantile
regression for ecologists. Front. Ecol. Environ. 1, 412–420.

Cade, B.S., Noon, B.R., Flather, C.H., 2005. Quantile regression
reveals hidden bias and uncertainty in habitat models.
Ecology 86, 786–800.

Cade, B.S., Terrell, J.W., Schroeder, R.L., 1999. Estimating effects of
limiting factors with regression quantiles. Ecology 80, 311–323.

Cawsey, E.M., Austin, M.P., Baker, B.L., 2002. Regional vegetation
mapping in Australia: a case study in the practical use of
statistical modelling. Biodivers. Conserv. 11, 2239–2274.

*Clarke, E.D., Spear, L.B., McCracken, M.L., Marques, F.F.C.,
Brochers, D.L., Buckland, S.T., Ainley, D.G., 2003. Validating the
use of generalized additive models and at-sea surveys to
estimate size and temporal trends of seabird populations. J.
Appl. Ecol. 40, 278–292.

Cleveland, W.S., Devlin, S.J., 1988. Locally weighted regression: an
approach to regression analysis by local fitting. J. Am. Stat.
Assoc. 83, 596–610.
Coudun, C., Gegout, J., 2005. Ecological behaviour of herbaceous
forest species along a pH gradient: a comparison between
oceanic and semicontinental regions in northern France.
Global Ecol. Biogeogr. 14, 263–270.
g 2 0 0 ( 2 0 0 7 ) 1–19

Cressie, N.A.C., 1993. Statistics for Spatial Data. Wiley, New York.
Drake, J.M., Randin, C., Guisan, A., 2006. Modelling ecological

niches with support vector machines. J. Appl. Ecol. 43,
424–432.

Dubayah, R., Rich, P.M., 1995. Topographic solar radiation models
for GIS. Int. J. Geogr. Inf. Syst. 9, 405–419.

Elith, E., Burgman, M.A., Regan, H.M., 2002. Mapping epistemic
uncertainties and vague concepts in predictions of species
distribution. Ecol. Model. 157, 313–329.

Elith, J., Ferrier, S., Huettmann, F., Leathwick, J., 2005. The
evaluation strip: a new and robust method for plotting
predicted responses from species distribution models. Ecol.
Model. 186, 280–289.

Elith, J., et al., 2006. Novel methods improve prediction of species
distributions from occurrence data. Ecography 29, 129–151.

*Engler, R., Guisan, A., Rechsteiner, L., 2004. An improved
approach for predicting the distribution of rare and
endangered species from occurrence and pseudo-absence
data. J. Appl. Ecol. 41, 263–274.

Ejrnaes, R., 2000. Can we trust gradients extracted by detrended
correspondence analysis? J. Veg. Sci. 11,
565–572.

Ferrier, S., Watson, G., Pearce, J., Drielsma, M., 2002. Extended
statistical approaches to modelling spatial pattern in
biodiversity in northeast New South Wales. 1. Species-level
modelling. Biodivers. Conserv. 11, 2275–2307.

Fitzgerald, R.W., Lees, B.G., 1992. The application of neural
networks to the floristic classification of remote sensing and
GIS data in complex terrain. In: Proceedings of the XVII
Congress of the International Society for Photogrammetry
and Remote Sensing, Washington, USA, pp. 570–573.

Foody, G.M., 2003. Geographical weighting as a further refinement
to regression modelling: An example focused on the
NDVI-rainfall relationship. Remote Sens. Environ. 88, 283–293.

Foody, G.M., 2004. Spatial nonstationarity and scale-dependency
in the relationship between species richness and
environmental determinants for the sub-Saharan endemic
avifauna. Global Ecol. Biogeogr. 13, 315–320.

Foody, G.M., 2005a. Clarifications on local and global data
analysis. Global Ecol. Biogeogr. 14, 99–100.

Foody, G.M., 2005b. Mapping the richness and composition of
British breeding birds from coarse spatial resolution satellite
sensor imagery. Int. J. Remote Sens. 26, 3943–3956.

Fotheringham, A.S., Brunsdon, C., Charlton, M., 2002.
Geographical Weighted Regression: The Analysis of Spatially
Relationships. Wiley, Chichester.

Franklin, J., 1995. Predictive vegetation mapping: geographic
modelling of biospatial patterns in relation to environmental
gradients. Prog. Phys. Geogr. 19, 474–499.

Friedman, J.H., 1991. Multivariate adaptive regression splines.
Ann. Stat. 19, 1–141 (with discussion).

Friedman, J.H., Hastie, T., Tibshirani, R., 2000. Additve logistic
regression: a statistical view of boosting. Ann. Stat. 28,
337–407.

Garrido, J.L., Rey, P.J., Herrera, C.M., 2005. Pre- and
post-germination determinants of spatial variation in
recruitment in the perennial herb Helleborus foetidus L.
(Ranunculaceae). J. Ecol. 93, 60–66.

Gegout, J., Coudon, C., Bailly, G., Jabiol, B., 2005. EcoPlant: A forest
site database linking floristic data with soil and climate
variables. J. Veg. Sci. 16, 257–260.

*Gibson, L.A., Wilson, B.A., Cahill, D.M., Hill, J., 2004. Spatial
prediction of rufous bristlebird habitat in a coastal heathland:
a GIS-based approach. J. Appl. Ecol. 41, 213–223.

Giller, J., 1984. Community Structure and the Niche. Chapman

and Hall, London.

Grace, J.B., Pugesek, B.H., 1997. A structural equation model of
plant species richness and its application to a coastal
wetland. Am. Nat. 149, 436–460.

http://dx.doi.org/10.1016/j.ecolmodel.2006.05.023


i n g
e c o l o g i c a l m o d e l l

Graham, C.H., Ferrier, S., Huettman, F., Moritz, C., Peterson, A.T.,
2004. New developments in museum-based informatics and
applications in biodiversity analysis. Trends Ecol. Evol. 19,
497–503.

Guisan, A., Harrell, F.E., 2000. Ordinal response regression models
in ecology. J. Veg. Sci. 11, 617–626.

Guisan, A., Zimmermann, N.E., 2000. Predictive habitat
distribution models in ecology. Ecol. Model. 135, 147–186.

Guisan, A., Edwards, T.C., Hastie, T., 2002. Generalized linear and
generalized additive models in studies of species
distributions: setting the scene. Ecol. Model. 157, 89–100.

Guisan, A., Thuiller, W., 2005. Predicting species distribution:
offering more than simple habitat models? Ecol. Lett. 8,
993–1009.

Harrington, R., Woiwod, I., Sparks, T., 1999. Climate change and
trophic interactions. Trends Ecol. Evol. 14, 146–150.

Hastie, T., Tibshirani, R., 1990. Generalised Additive Models.
Chapman and Hall, London.

Hirzel, A., Helfer, V., Metral, F., 2001. Assessing habitat-suitability
models with a virtual species. Ecol. Model. 145, 111–121.

Hirzel, A.H., Hausser, J., Chessel, D., Perrin, N., 2002.
Ecological-niche factor analysis: How to compute
habitat-suitability maps without absence data? Ecology 83,
2027–2036.

Huisman, J., Olff, H., Fresco, L.F.M., 1993. A hierarchical set of
models for species response analysis. J. Veg. Sci. 4, 37–46.

Huntley, B., Berry, P.M., Cramer, W.P., McDonald, A.P., 1995.
Modelling present and potential future ranges of some
European higher plants using climate response surfaces. J.
Biogeogr. 22, 967–1001.

*Huntley, B., Green, R.E., Collingham, Y.C., Hill, J.K., Willis, S.G.,
Bartlein, P.J., Cramer, W., Hagemeijer, W.J.M., Thomas, C.J.,
2004. The performance of models relating species
geographical distributions to climate is independent of
trophic level. Ecol. Lett. 7, 417–426.

Huston, M.A., 1994. Biological Diversity: The Coexistence of
Species on Changing Landscapes. Cambridge University Press,
Cambridge.

Huston, M.A., 2002. Introductory essay: critical issues for
improving predictions. In: Scott, J.M., Heglund, P.J., Samson, F.,
Haufler, J., Morrison, M., Raphael, M., Wall, B. (Eds.), Predicting
Species Occurrences: Issues of Accuracy and Scale. Island
Press, Covelo, California, pp. 7–21.

Iriondo, J.M., Albert, M.J., Escudero, A., 2003. Structural equation
modelling: an alternative for assessing causal relationships in
threatened plant populations. Biol. Conserv. 113, 367–377.

*Jeganathan, P., Green, R.E., Norris, K., Vogiatzakis, I.N., Bartsch,
A., Wotton, S.R., Bowden, C.G.R., Griffiths, G.H., Pain, D.,
Rahmani, A.R., 2004. Modelling habitat selection and
distribution of the critically endangered Jerdon’s courser
Rhinoptilus bitorquatus in scrub jungle: an application of a new
tracking method. J. Appl. Ecol. 41, 224–237.

Jetz, W., Rahbek, C., 2002. Geographic range size and
determinants of avian species richness. Science 297,
1548–1551.

Jetz, W., Rahbek, C., Lichstein, J.W., 2005. Local and global
approaches to spatial data analysis in ecology. Global Ecol.
Biogeogr. 14, 97–98.

Johnson, M.L., Huggins, D.G., DeNoyelles, F., 1991. Ecosystem
modelling with LISREL: a new approach for measuring direct
and indirect effects. Ecol. Appl. 1, 383–398.

Kadmon, R., Farber, O., Danin, A., 2003. A systematic analysis of

factors affecting the performance of climatic envelope
models. Ecol. Appl. 13, 853–867.

Kadmon, R., Farber, O., Danin, A., 2004. Effect of roadside bias on
the accuracy of predictive maps produced by bioclimatic
models. Ecol. Appl. 14, 401–413.
2 0 0 ( 2 0 0 7 ) 1–19 17

Kaiser, M.S., Speckman, P.L., Jones, J.R., 1994. Statistical models
for limiting nutrient relations in inland waters. J. Am. Stat.
Assoc. 89, 410–423.

Knight, C.A., Ackerly, D.D., 2002. Variation in nuclear DNA
content across environmental gradients: a quantile regression
analysis. Ecol. Lett. 5, 66–76.

Krause-Jensen, D., Middelboe, A.L., Sand-Jensen, K., Christensen,
P.B., 2000. Eelgrass, Zostera marina, growth along depth
gradients; upper boundaries of the variation as a powerful
predictive tool. Oikos 91, 233–244.

Krebs, C.J., 2001. Ecology; The Experimental Analysis of
Distribution and Abundance, fifth ed. Benjamin Cummings,
San Francisco.

Kuhn, T.S., 1970. The Structure of Scientific Revolutions, second
ed. The University of Chicago Press, Chicago.

Leathwick, J.R., 1995. Climatic relationships of some New Zealand
forest tree species. J. Veg. Sci. 6, 237–248.

Leathwick, J.R., 1998. Are New Zealand’s Nothofagus species in
equilibrium with their environment? J. Veg. Sci. 9,
719–732.

Leathwick, J.R., 2002. Intra-generic competition among
Nothofagus in New Zealand’s primary indigenous forests.
Biodivers. Conserv. 11, 2177–2187.

Leathwick, J.R., Austin, M.P., 2001. Competitive interactions
between tree species in New Zealand’s old-growth indigenous
forests. Ecology 82, 2560–2573.

Leathwick, J.R., Whitehead, D., 2001. Soil and atmospheric water
deficits and the distributions of New Zealand’s indigenous
tree species. Funct. Ecol. 15, 233–242.

Leathwick, J.R., Elith, J., Hastie, T. Comparative performance of
two techniques for statistical modelling of presence–absence
data. Ecology, in press.

Leathwick, J.R., Whitehead, D., McLeod, M., 1996. Predicting
changes in the composition of New Zealand’s indigenous
forests in response to global warming: a modelling approach.
Environ. Software 11, 81–90.

Leathwick, J.R., Rowe, D., Richardson, J., Elith, J., Hastie, T., 2005.
Using multivariate adaptive splines to predict the
distributions of New Zealand’s freshwater diadromous fish.
Freshwater Biol. 50, 2034–2052.

Leathwick, J.R., Elith, J., Francis, M.P., Hastie, T., Taylor, P. Variation
in demersal fish species richness in the oceans surrounding
New Zealand: an analysis using boosted regression trees.
Marine Ecol. Prog. Ser., in press.

Lee, S.Y., Song, X.Y., Poon, W.Y., 2004. Comparison of approaches
in estimating interactions and quadratic effects of latent
variables. Multivariate Behav. Res. 39,
37–67.

Lehmann, A., Overton, J.McC., Austin, M.P., 2002a. Regression
models for spatial prediction: their role for biodiversity and
conservation. Biodivers. Conserv. 11, 2085–2092.

Lehmann, A., Overton, J.McC., Leathwick, J.R., 2002b. GRASP:
generalized regression analysis and spatial prediction. Ecol.
Model. 157, 189–207.

Maggini, R., Lehmann, A., Zimmermann, N.E., Guisan, A., 2006.
Improving generalized regression analysis for spatial
predictions of forest communities. J. Biogeogr., in press.

*Malo, J.E., Suarez, F., Diez, A., 2004. Can we mitigate
animal–vehicle accidents using predictive models? J. Appl.
Ecol. 41, 701–710.

Manel, S., Dias, J.M., Ormerod, S.J., 1999. Comparing discriminant
analysis, neural networks and logistic regression for
predicting species distributions: a case
study with Himalayan river bird. Ecol. Model. 120,
337–347.
Marquez, A.L., Real, R., Vargas, J.M., 2004. Dependence of
broad-scale geographical variation in fleshy-fruited plant
species richness on disperser bird species richness. Global
Ecol. Biogeogr. 13, 295–304.



l i n
18 e c o l o g i c a l m o d e l

McCullagh, P., Nelder, J.A., 1989. Generalized Linear Models,
second ed. Chapman and Hall, London.

McCune, B., Grace, J.B., 2002. Analysis of Ecological Communities.
MjM Software Design, Oregon, USA.

McCune, B., Berryman, S.D., Cissel, J.H., Gitelman, A.I., 2003. Use
of a smoother to forecast occurrence of epiphytic lichens
under alternative forest management plans. Ecol. Appl. 13,
1110–1123.

*McPherson, J.M., Jetz, W., Rogers, D.J., 2004. The effects of species’
range sizes on the accuracy of distribution models: ecological
phenomenon or statistical artefact? J. Appl. Ecol. 41, 811–823.

Miller, J., Franklin, J., 2002. Modeling the distribution of four
vegetation alliances using generalized linear models and
classification trees with spatial dependence. Ecol. Model. 157,
227–247.

Mitchell, R.J., 1992. Testing evolutionary and ecological
hypotheses using path analysis and structural equation
modelling. Funct. Ecol. 6, 123–129.

Mitchell, R.J., 1994. Effects of floral traits, pollinator visitation,
and plant size on Ipomopsis aggregrata fruit production. Am.
Nat. 143, 870–889.

Moisen, G.G., Frescino, T.S., 2002. Comparing five modelling
techniques for predicting forest characteristics. Ecol. Model.
157, 209–225.

Moisen, G.G., Freeman, E.A., Blackard, J.A., Zimmermann, N.E.,
Edwards Jr., T.C., 2006. Predicting tree species presence and
basal area in Utah—a comparison of generalized additive
models, stochastic gradient boosting, and tree-based
methods. Ecol. Model., in press.

Munoz, J., Felicisimo, A.M., 2004. Comparison of statistical
methods commonly used in predictive modelling. J. Veg. Sci.
15, 285–292.

Nicholls, A.O., 1989. How to make biological surveys go further
with generalized linear models. Biol. Conserv. 50, 51–76.

Nicholls, A.O., 1991. Examples of the use of generalized linear
models in analysis of survey data for conservation evaluation.
In: Margules, C.R., Austin, M.P. (Eds.), Nature Conservation:
Cost Effective Biological Surveys and Data Analysis. CSIRO,
Melbourne, pp. 191–201.

Osborne, P.E., Suarez-Seoane, S., 2002. Should data be partitioned
spatially before building large-scale distribution models? Ecol.
Model. 157, 249–259.

Pausas, J.G., Braithwaite, L.W., Austin, M.P., 1995. Modelling
habitat quality for arboreal marsupials in the South coastal
forests of New South Wales, Australia. For. Ecol. Manag. 78,
39–49.

Pausas, J.G., Austin, M.P., Noble, I.R., 1997. A forest simulation
model for predicting eucalypt dynamics and habitat quality
for arboreal marsupials. Ecol. Appl. 7, 921–933.

Pearce, J., Ferrier, S., 2000. Evaluating the predictive performance
of habitat models developed using logistic regression. Ecol.
Modell. 133, 225–245.

Pearson, R.G., Dawson, T.P., 2003. Predicting the impacts of
climate change on the distribution of species: are
bioclimate envelope models useful? Global Ecol. Biogeogr. 12,
361–371.

Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum
entropy modelling of species geographic distributions. Ecol.
Model. 190, 231–259.

Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud,
R.A., Solomon, A.M., 1992. A global biome model based on
plant physiology and dominance, soil properties and climate.
J. Biogeogr. 19, 117–134.

Ricklefs, R.E., 2004. A comprehensive framework for global

patterns in biodiversity. Ecol. Lett. 7, 1–15.

Rubio, G., Zhu, J., Lynch, J.P., 2003. A critical test of the two
prevailing theories of plant resonse to nutrient availability.
Am. J. Bot. 90, 143–152.
g 2 0 0 ( 2 0 0 7 ) 1–19

*Rushton, S.P., Ormerod, S.J., Kerby, G., 2004. New paradigms
for modelling species distributions? J. Appl. Ecol. 41,
193–200.

Rydgren, K., Okland, R.H., Okland, T., 2003. Species response
curves along environmental gradients. A case study from SE
Norwegian swamp forests. J. Veg. Sci. 14, 869–880.

Scharf, F.S., Juanes, F., Sutherland, M., 1998. Inferring ecological
relationships from the edges of scatter diagrams: comparison
of regression techniques. Ecology 79, 448–460.

Schroder, H.K., Andersen, H.E., Kiehl, K., 2005. Rejecting the
mean: estimating the response of fen plant species to
environmental factors by non-linear quantile regression. J.
Veg. Sci. 16, 373–382.

Schumacker, R.E., Marcoulides, G.A., 1998. Interaction and
Nonlinear Effects in Structural Equation Modelling. Lawrence
Erlbaum Associates, New Jersey.

Scott, J.M., Heglund, P.J., Haufler, J., Morrison, M., Raphael, M.,
Wall, B., Samson, F., 2002. Predicting Species Occurrences:
Issues of Accuracy and Scale. Island Press, Covelo, California.

*Segurado, P., Araujo, M.B., 2004. An evaluation of methods for
modelling species distributions. J. Biogeogr. 31, 1555–1568.

Shipley, B., 1999. Testing causal explanations in organismal
biology: causation, correlation and structural equation
modelling. Oikos 86, 374–382.

Shipley, B., 2000. Cause and Correlation in Biology: A User’s Guide
to Path Analysis, Structural Equations and Causal Inference.
Cambridge University Press, Cambridge.

Shipley, B., Lechowicz, M.J., 2000. The functional co-ordination of
leaf morphology, nitrogen concentration, and gas exchange in
40 wetland species. Ecoscience 7, 183–194.

Smith, P.A., 1994. Autocorrelation in logistic regression modelling
of species’ distributions. Global Ecol. Biogeogr. Lett. 4, 47–61.

Stockwell, D.R.B., Noble, I.R., 1992. Induction of sets of rules from
animal distribution data: a robust and informative method of
data analysis. Math. Comput. Simul. 33, 385–389.

Termansen, M., McClean, C.J., Preston, C.D., 2006. The use of
genetic algorithms and Baysian classification to model
species distributions. Ecol. Model. 192, 410–424.

Thomson, J.D., Weiblen, G., Thomson, B.A., Alfaro, S., Legendre, P.,
1996. Untangling multiple factors in spatial distributions:
lilies, gophers and rocks. Ecology 77, 1698–1715.

*Thuiller, W., 2003. BIOMOD-optimising predictions of species
distributions and projecting potential future shifts under
global change. Global Change Biol. 9, 1353–1362.

*Thuiller, W., Vayreda, J., Pino, J., Sabate, S., Lavorel, S., Garcia, C.,
2003a. Large-scale environmental correlates of forest tree
distributions in Catalonia (NE Spain). Global Ecol. Biogeogr. 12,
313–325.

Thuiller, W., Araujo, M.B., Lavorel, S., 2003b. Generalized models
vs. classification tree analysis: predicting spatial distributions
of plant species at different scales. J. Veg. Sci. 14, 669–680.

*Thuiller, W., Araujo, M.B., Lavorel, S., 2004. Do we need
land-cover data to model species distributions in Europe? J.
Biogeogr. 31, 353–361.

Van der Ploeg, R.R., Bohm, W., Kirkham, M.B., 1999. On the origin
of the theory of mineral nutrition of plants and the law of the
minimum. Soil Sci. Soc. Am. J. 63, 1055–1062.

Van Neil, K.P., Laffan, S.W., Lees, B.G., 2004. Effect of error in the
DEM on environmental variables for predictive vegetation
modelling. J. Veg. Sci. 15, 747–756.

Van Neil, K.P., Austin, M.P. Predictive vegetation modelling for
conservation: impact of error propagation from digital
elevation data. Ecol. Appl., in press.
*Venier, L.A., Pearce, J., McKee, J.E., McKenny, D.W., Niemi, G.J.,
2004. Climate and satellite-derived land cover for predicting
breeding bird distribution in the Great Lakes Basin. J. Biogeogr.
31, 315–331.



i n g

V

W

W

W

W

W

Y

Y

Y

Z

*Johnson, C.J., Seip, D.R., Boyce, M.S., 2004. A quantitative
approach to conservation planning: using resource selection
functions to map the distribution of mountain caribou at
multiple spatial scales. J. Appl. Ecol. 41, 238–251.
e c o l o g i c a l m o d e l l

ile, D., Shipley, B., Garnier, E., 2006. A structural equation model
to integrate changes in functional strategies during old-field
succession. Ecology 87, 504–517.

amelink, G.W.W., Goedhart, P.W., Van Dobben, H.F., Berendse, F.,
2005. Plant species as predictors of soil pH: replacing expert
judgement with measurements. J. Veg. Sci. 16, 461–470.

eiher, E., 2003. Species richness along multiple gradients:
testing a general multivariate model in oak savannas. Oikos
101, 311–316.

eiher, E., Forbes, S., Schauwecker, T., Grace, J.B., 2004.
Multivariate control of plant species richness and community
biomass in blackland prairie. Oikos 106,
151–157.

hittaker, R.J., Willis, K.J., Field, R., 2001. Scale and species
richness: towards a general, hierarchical theory of species
diversity. J. Biogeogr. 28, 453–470.

ood, S.N., Augustin, N.H., 2002. GAMs with integrated model
selection using penalized regression splines and applications
to environmental modelling. Ecol. Model. 157, 157–178.

ee, T.W., Mackenzie, M., 2002. Vector generalized additive
models in plant ecology. Ecol. Model. 157, 141–156.

ee, T.W., Mitchell, N.D., 1991. Generalized additive models in
plant ecology. J. Veg. Sci. 2, 587–602.
u, K., Jones, M.C., 1998. Local linear quantile regression. J. Am.
Stat. Assoc. 93, 228–237.

aneiwski, A.E., Lehmann, A., Overton, J., 2002. Predicting species
spatial distributions using presence-only data: a case study of
native New Zealand ferns. Ecol. Model. 157, 261–280.
2 0 0 ( 2 0 0 7 ) 1–19 19

Further reading

*Amar, A., Arroyo, B., Redpath, S., Thirgoods, S., 2004. Habitat
predicts losses of red grouse to individual hen harriers. J.
Appl. Ecol. 41, 305–314.

*Cabeza, M., Araujo, M., Wilson, R.J., Thomas, C.D., Cowley, M.J.R.,
Moilanen, A., 2004. Combining probabilities of occurrence
with spatial reserve design. J. Appl. Ecol. 41, 252–
262.

*Frair, J.L., Nielsen, S.E., Merrill, E.H., Lele, S.R., Boyce, M.S., Munro,
R.H.M., Stenhouse, G.B., Beyer, H.L., 2004. Removing GPS collar
bias in habitat selection studies. J. Appl. Ecol. 41, 201–
212.

*Heikken, R.K., Luoto, M., Virkkala, R., Rainio, K., 2004. Effects of
habitat cover, landscape structure and spatial variables on the
abundance of birds in an agricultural-forest mosaic. J. Appl.
Ecol. 41, 824–835.
∗ References used in review in section on current models for pre-
dicting species distributions.


	Species distribution models and ecological theory: A critical assessment and some possible new approaches
	Introduction
	Current models for predicting species distributions
	Ecological theory
	Shape of species response curve
	Types of environmental response

	Data model
	Problem of scale and purpose
	Selection of biotic variables
	Selection of environmental predictors

	Statistical model
	Comparison and evaluation of methods
	Using artificial data


	Alternative approaches and models
	Liebigs law of the minimum and quantile regression
	Structural equation modelling (SEM)
	Spatial non-stationarity and geographically weighted regression (GWR)

	Conclusion: best practice?
	Acknowledgements


