Markscheme

Specimen paper

Mathematics: analysis and approaches

Higher level

Paper 1

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A} 1$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies M2, A2, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct working shown, award FT marks as appropriate but do not award the final A1 in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

4
 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the answer (i.e. there is no working expected), then FT marks should be awarded if appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- Exceptions to this rule will be explicitly noted on the markscheme.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- The MR penalty can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

6 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.

7 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

8 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. There are two types of accuracy errors, and the final answer mark should not be awarded if these errors occur.

- Rounding errors: only applies to final answers not to intermediate steps.
- Level of accuracy: when this is not specified in the question the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

9 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

Section A

1. attempt to substitute into $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$

Note: Accept use of Venn diagram or other valid method.
$0.6=0.5+0.4-\mathrm{P}(A \cap B)$
$\mathrm{P}(A \cap B)=0.3$ (seen anywhere)
attempt to substitute into $\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$
$=\frac{0.3}{0.4}$
$\mathrm{P}(A \mid B)=0.75\left(=\frac{3}{4}\right)$
2. (a) attempting to expand the LHS

LHS $=\left(4 n^{2}-4 n+1\right)+\left(4 n^{2}+4 n+1\right)$
$=8 n^{2}+2(=$ RHS $)$

(b) METHOD 1

recognition that $2 n-1$ and $2 n+1$ represent two consecutive odd integers (for all odd integers n)
$8 n^{2}+2=2\left(4 n^{2}+1\right)$
valid reason eg divisible by 2 (2 is a factor)
R1
so the sum of the squares of any two consecutive odd integers is even
AG
[3 marks]

METHOD 2

recognition, eg that n and $n+2$ represent two consecutive odd integers
(for $n \in \mathbb{Z}$)
$n^{2}+(n+2)^{2}=2\left(n^{2}+2 n+2\right)$
A1
valid reason eg divisible by 2 (2 is a factor) R1
so the sum of the squares of any two consecutive odd integers
is even
3. attempt to integrate
$u=2 x^{2}+1 \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=4 x$
$\int \frac{8 x}{\sqrt{2 x^{2}+1}} \mathrm{~d} x=\int \frac{2}{\sqrt{u}} \mathrm{~d} u$

EITHER

$=4 \sqrt{u}(+C)$A1

OR

$=4 \sqrt{2 x^{2}+1}(+C)$

THEN

correct substitution into their integrated function (must have C)
$5=4+C \Rightarrow C=1$
$f(x)=4 \sqrt{2 x^{2}+1}+1$
4.

no y values below 1
horizontal asymptote at $y=2$ with curve approaching from below as $x \rightarrow \pm \infty$
A1
$(\pm 1,1)$ local minima
A1
$(0,5)$ local maximum
A1
smooth curve and smooth stationary points
5. (a) attempt to form composition
correct substitution $g\left(\frac{x+3}{4}\right)=8\left(\frac{x+3}{4}\right)+5$

$$
(g \circ f)(x)=2 x+11
$$

(b) attempt to substitute 4 (seen anywhere)
correct equation $a=2 \times 4+11$
$a=19$

A1
[3 marks]
6. (a) attempting to use the change of base rule

M1
$\log _{9}(\cos 2 x+2)=\frac{\log _{3}(\cos 2 x+2)}{\log _{3} 9}$
$=\frac{1}{2} \log _{3}(\cos 2 x+2)$
$=\log _{3} \sqrt{\cos 2 x+2}$
(b) $\quad \log _{3}(2 \sin x)=\log _{3} \sqrt{\cos 2 x+2}$

$$
\begin{array}{lr}
2 \sin x=\sqrt{\cos 2 x+2} & \text { M1 } \\
4 \sin ^{2} x=\cos 2 x+2 \text { (or equivalent) } & \text { A1 } \\
\text { use of } \cos 2 x=1-2 \sin ^{2} x & \text { (M1) } \\
6 \sin ^{2} x=3 & \\
\sin x=(\pm) \frac{1}{\sqrt{2}} & \boldsymbol{A 1} \\
x=\frac{\pi}{4} & \boldsymbol{A 1}
\end{array}
$$

Note: Award $\boldsymbol{A} \boldsymbol{O}$ if solutions other than $x=\frac{\pi}{4}$ are included.
7. attempting integration by parts, eg
$u=\frac{\pi x}{36}, \mathrm{~d} u=\frac{\pi}{36} \mathrm{~d} x, \mathrm{~d} v=\sin \left(\frac{\pi x}{6}\right) \mathrm{d} x, v=-\frac{6}{\pi} \cos \left(\frac{\pi x}{6}\right)$
(M1)
$\mathrm{P}(0 \leq X \leq 3)=\frac{\pi}{36}\left(\left[-\frac{6 x}{\pi} \cos \left(\frac{\pi x}{6}\right)\right]_{0}^{3}+\frac{6}{\pi} \int_{0}^{3} \cos \left(\frac{\pi x}{6}\right) \mathrm{d} x\right)$ (or equivalent)
A1A1

Note: Award A1 for a correct $u v$ and A1 for a correct $\int v \mathrm{~d} u$.
attempting to substitute limits
$\frac{\pi}{36}\left[-\frac{6 x}{\pi} \cos \left(\frac{\pi x}{6}\right)\right]_{0}^{3}=0$
so $\mathrm{P}(0 \leq X \leq 3)=\frac{1}{\pi}\left[\sin \left(\frac{\pi x}{6}\right)\right]_{0}^{3}$ (or equivalent)
$=\frac{1}{\pi}$
8. recognition that the angle between the normal and the line is 60° (seen anywhere)
attempt to use the formula for the scalar product
$\cos 60^{\circ}=\frac{\left(\left.\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -2 \\ p\end{array}\right) \right\rvert\,\right.}{\sqrt{9} \times \sqrt{1+4+p^{2}}}$
$\frac{1}{2}=\frac{|2 p|}{3 \sqrt{5+p^{2}}}$
$3 \sqrt{5+p^{2}}=4|p|$
attempt to square both sides
$9\left(5+p^{2}\right)=16 p^{2} \Rightarrow 7 p^{2}=45$
$p= \pm 3 \sqrt{\frac{5}{7}}$ (or equivalent)
9. (a) attempt to differentiate and set equal to zero

M1
$f^{\prime}(x)=2 \mathrm{e}^{2 x}-6 \mathrm{e}^{x}=2 \mathrm{e}^{x}\left(\mathrm{e}^{x}-3\right)=0$
minimum at $x=\ln 3$ $a=\ln 3$ A1
(b) Note: Interchanging x and y can be done at any stage.
$y=\left(\mathrm{e}^{x}-3\right)^{2}-4$
(M1)
$\mathrm{e}^{x}-3= \pm \sqrt{y+4}$ A1
as $x \leq \ln 3, x=\ln (3-\sqrt{y+4})$ R1
so $f^{-1}(x)=\ln (3-\sqrt{x+4})$ A1
domain of f^{-1} is $x \in \mathbb{R},-4 \leq x<5$

Section B

10. (a) attempt to use quotient rule
(M1)
correct substitution into quotient rule
$f^{\prime}(x)=\frac{5 k x\left(\frac{1}{5 x}\right)-k \ln 5 x}{(k x)^{2}}$ (or equivalent)
$=\frac{k-k \ln 5 x}{k^{2} x^{2}},\left(k \in \mathbb{R}^{+}\right)$
$=\frac{1-\ln 5 x}{k x^{2}}$
AG
[3 marks]
(b) $\quad f^{\prime}(x)=0$

M1
$\frac{1-\ln 5 x}{k x^{2}}=0$
$\ln 5 x=1$
$x=\frac{\mathrm{e}}{5}$
(c) $\quad f^{\prime \prime}(x)=0$
$\frac{2 \ln 5 x-3}{k x^{3}}=0$
$\ln 5 x=\frac{3}{2}$
$5 x=\mathrm{e}^{\frac{3}{2}}$
A1

A1
so the point of inflexion occurs at $x=\frac{1}{5} \mathrm{e}^{\frac{3}{2}}$

Question 10 continued
(d) attempt to integrate
$u=\ln 5 x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{x}$
$\int \frac{\ln 5 x}{k x} \mathrm{~d} x=\frac{1}{k} \int u \mathrm{~d} u$
EITHER
$=\frac{u^{2}}{2 k}$
so $\frac{1}{k} \int_{1}^{\frac{3}{2}} u \mathrm{~d} u=\left[\frac{u^{2}}{2 k}\right]_{1}^{\frac{3}{2}}$
OR
$=\frac{(\ln 5 x)^{2}}{2 k}$
so $\int_{\frac{e}{5}}^{\frac{1}{5} \mathrm{e}^{\frac{3}{2}}} \frac{\ln 5 x}{k x} \mathrm{~d} x=\left[\frac{(\ln 5 x)^{2}}{2 k}\right]_{\frac{\mathrm{e}}{5}}^{\frac{1}{5}^{\frac{3}{\mathrm{c}^{\frac{3}{2}}}} .}$

THEN

$=\frac{1}{2 k}\left(\frac{9}{4}-1\right)$
$=\frac{5}{8 k}$
setting their expression for area equal to 3
$\frac{5}{8 k}=3$
$k=\frac{5}{24}$
11. (a) attempt to find modulus
$r=2 \sqrt{3}(=\sqrt{12})$ A1
attempt to find argument in the correct quadrant
$\theta=\pi+\arctan \left(-\frac{\sqrt{3}}{3}\right)$ A1 $=\frac{5 \pi}{6}$
$-3+\sqrt{3} i=\sqrt{12} \mathrm{e}^{\frac{5 \pi i}{6}}\left(=2 \sqrt{3} \mathrm{e}^{\frac{5 \pi i}{6}}\right)$
[5 marks]
(b) attempt to find a root using de Moivre's theorem
$12^{\frac{1}{6}} \mathrm{e}^{\frac{5 \pi \mathrm{i}}{18}}$
A1
attempt to find further two roots by adding and subtracting $\frac{2 \pi}{3}$ to
the argument
M1
$12^{\frac{1}{6}} \mathrm{e}^{-\frac{7 \pi i}{18}}$
A1
$12^{\frac{1}{6}} \mathrm{e}^{\frac{17 \mathrm{ii}}{18}}$
A1
Note: Ignore labels for u, v and w at this stage.
continued...

Question 11 continued

(c) METHOD 1
attempting to find the total area of (congruent) triangles UOV, VOW and UOW
Area $=3\left(\frac{1}{2}\right)\left(12^{\frac{1}{6}}\right)\left(12^{\frac{1}{6}}\right) \sin \frac{2 \pi}{3}$
Note:Award $\boldsymbol{A} \mathbf{1}$ for $\left(12^{\frac{1}{6}}\right)\left(12^{\frac{1}{6}}\right)$ and $\boldsymbol{A} \mathbf{1}$ for $\sin \frac{2 \pi}{3}$.
$=\frac{3 \sqrt{3}}{4}\left(12^{\frac{1}{3}}\right)$ (or equivalent)

METHOD 2

$\mathrm{UV}^{2}=\left(12^{\frac{1}{6}}\right)^{2}+\left(12^{\frac{1}{6}}\right)^{2}-2\left(12^{\frac{1}{6}}\right)\left(12^{\frac{1}{6}}\right) \cos \frac{2 \pi}{3}$ (or equivalent)
$\mathrm{UV}=\sqrt{3}\left(12^{\frac{1}{6}}\right)$ (or equivalent)
attempting to find the area of UVW using Area $=\frac{1}{2} \times \mathrm{UV} \times \mathrm{VW} \times \sin \alpha$ for example
Area $=\frac{1}{2}\left(\sqrt{3} \times 12^{\frac{1}{6}}\right)\left(\sqrt{3} \times 12^{\frac{1}{6}}\right) \sin \frac{\pi}{3}$
$=\frac{3 \sqrt{3}}{4}\left(12^{\frac{1}{3}}\right)$ (or equivalent)
(d) $u+v+w=0$
$12^{\frac{1}{6}}\left(\cos \left(-\frac{7 \pi}{18}\right)+\mathrm{i} \sin \left(-\frac{7 \pi}{18}\right)+\cos \frac{5 \pi}{18}+\mathrm{i} \sin \frac{5 \pi}{18}+\cos \frac{17 \pi}{18}+\mathrm{i} \sin \frac{17 \pi}{18}\right)=0$
consideration of real parts
$12^{\frac{1}{6}}\left(\cos \left(-\frac{7 \pi}{18}\right)+\cos \frac{5 \pi}{18}+\cos \frac{17 \pi}{18}\right)=0$
$\cos \left(-\frac{7 \pi}{18}\right)=\cos \frac{7 \pi}{18}$ explicitly stated
$\cos \frac{5 \pi}{18}+\cos \frac{7 \pi}{18}+\cos \frac{17 \pi}{18}=0$
12. (a) attempting to use the chain rule to find the first derivative

M1
A1
$f^{\prime}(x)=(\cos x) \mathrm{e}^{\sin x}$ M1
attempting to use the product rule to find the second derivative
$f^{\prime \prime}(x)=\mathrm{e}^{\sin x}\left(\cos ^{2} x-\sin x\right)$ (or equivalent)
A1
attempting to find $f(0), f^{\prime}(0)$ and $f^{\prime \prime}(0)$ M1
$f(0)=1 ; f^{\prime}(0)=(\cos 0) \mathrm{e}^{\sin 0}=1 ; f^{\prime \prime}(0)=\mathrm{e}^{\sin 0}\left(\cos ^{2} 0-\sin 0\right)=1$ A1
substitution into the Maclaurin formula $f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\ldots$
so the Maclaurin series for $f(x)$ up to and including the x^{2} term is $1+x+\frac{x^{2}}{2} \boldsymbol{A 1}$
[8 marks]
(b) METHOD 1
attempting to differentiate $f^{\prime \prime}(x)$
$f^{\prime \prime \prime}(x)=(\cos x) \mathrm{e}^{\sin x}\left(\cos ^{2} x-\sin x\right)-(\cos x) \mathrm{e}^{\sin x}(2 \sin x+1)$ (or equivalent)
substituting $x=0$ into their $f^{\prime \prime \prime}(x)$
$f^{\prime \prime \prime}(0)=1(1-0)-1(0+1)=0$
so the coefficient of x^{3} in the Maclaurin series for $f(x)$ is zero

METHOD 2

substituting $\sin x$ into the Maclaurin series for e^{x}
$\mathrm{e}^{\sin x}=1+\sin x+\frac{\sin ^{2} x}{2!}+\frac{\sin ^{3} x}{3!}+\ldots$
substituting Maclaurin series for $\sin x$
$\mathrm{e}^{\sin x}=1+\left(x-\frac{x^{3}}{3!}+\ldots\right)+\frac{\left(x-\frac{x^{3}}{3!}+\ldots\right)^{2}}{2!}+\frac{\left(x-\frac{x^{3}}{3!}+\ldots\right)^{3}}{3!}+\ldots$
coefficient of x^{3} is $-\frac{1}{3!}+\frac{1}{3!}=0$
so the coefficient of x^{3} in the Maclaurin series for $f(x)$ is zero

Question 12 continued
(c) substituting $3 x$ into the Maclaurin series for e^{x}
$\mathrm{e}^{3 x}=1+3 x+\frac{(3 x)^{2}}{2!}+\frac{(3 x)^{3}}{3!}+\ldots$
substituting $\left(\mathrm{e}^{3 x}-1\right)$ into the Maclaurin series for $\arctan x$
$\arctan \left(\mathrm{e}^{3 x}-1\right)=\left(\mathrm{e}^{3 x}-1\right)-\frac{\left(\mathrm{e}^{3 x}-1\right)^{3}}{3}+\frac{\left(\mathrm{e}^{3 x}-1\right)^{5}}{5}-\ldots$
$=\left(3 x+\frac{(3 x)^{2}}{2!}+\frac{(3 x)^{3}}{3!}+\ldots\right)-\frac{\left(3 x+\frac{(3 x)^{2}}{2!}+\frac{(3 x)^{3}}{3!}+\ldots\right)^{3}}{3}+\ldots$
selecting correct terms from above
$=\left(3 x+\frac{(3 x)^{2}}{2!}+\frac{(3 x)^{3}}{3!}\right)-\frac{(3 x)^{3}}{3}$
$=3 x+\frac{9 x^{2}}{2}-\frac{9 x^{3}}{2}$
(d) METHOD 1
substitution of their series
$\lim _{x \rightarrow 0} \frac{x+\frac{x^{2}}{2}+\ldots}{3 x+\frac{9 x^{2}}{2}+\ldots}$
$=\lim _{x \rightarrow 0} \frac{1+\frac{x}{2}+\ldots}{3+\frac{9 x}{2}+\ldots}$
$=\frac{1}{3}$

METHOD 2

$$
\begin{array}{ll}
\text { use of l'Hôpital's rule } & \text { M1 } \\
\begin{array}{ll}
\lim _{x \rightarrow 0} \frac{(\cos x) \mathrm{e}^{\sin x}}{\frac{3 \mathrm{e}^{3 x}}{1+\left(\mathrm{e}^{3 x}-1\right)^{2}}} \text { (or equivalent) } & \boldsymbol{A 1} \\
=\frac{1}{3} & \boldsymbol{A 1}
\end{array}
\end{array}
$$

