
Spectral Analysis
of Linear Systems

In this chapter the central theme is the decomposition of the abstract linear
equation TX= y into sets of simple linear equations which can be solved
independently. Our initial purpose for exploring this decomposition is to
obtain conceptual simplification of the system model. It is easier to think
about the behavior of one scalar variable at a time than to think about the
behavior of a vector variable. Furthermore, the solutions to the decom-
posed pieces of the original equation usually have physical meanings which
provide insight into the behavior of the system. (See for example, P&C
4.7 or the discussion of the analysis of three-phase power systems by the
method of symmetrical components.)

There are also computational reasons for examining the decomposition
process. Generally speaking, decomposition provides an alternative to
inversion as a technique for solving or analyzing the equations which
describe a system. In particular, decomposition provides a practical
technique for computing solutions to linear differential equations with
arbitrary inputs (Section 5.5). In some instances decomposition provides
both solutions and insight at no additional computational expense as
compared to inversion. (Again, see the discussion of symmetrical
components mentioned above.)

The ability to combine the solutions to small subproblems into a
solution for the full system equation depends on the principle of linearity.
Consequently, we restrict ourselves to linear models in this chapter in
order to be able to fully develop the decomposition principle. We find that
we can decompose most linear systems into sets of simple scalar
multiplications. We refer to such “completely decomposable” systems as
“diagonalizable” systems. A few systems are not diagonalizable or are so
nearly nondiagonalizable that we cannot accurately compute fully
decomposed solutions. We still split them into as small pieces as possible.
Nondiagonalizable finite-dimensional systems are discussed in Sections 4.4
and 4.5. In Section 4.6 we explore the concept of functions of matrices for
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Sec. 4.1 System Decomposition 145

both the diagonalizable and nondiagonalizable cases. We encountered
several such matrix functions in Chapter 3; we find the need for others in
later chapters. The discussion of diagonalization of infinite-dimensional
systems and of functions of linear operators on infinite dimensional spaces
is begun in Section 4.6, but is not completed until Section 5.5.

4.1 System Decomposition

In this section we explore the subdivision of the system equation TX= y
into a set of “smaller” equations which can be solved independently. Our
ability to subdivide a linear equation in this manner is based partly on the
fact that the effect of a linear transformation T on a basis determines the
effect of T on all vectors in the space. In finding the matrix of a
transformation, for instance, we simplified the process of determining the
matrix elements by examining the effect of the transformation on the basis
vectors. Consequently, we begin our investigation of decomposition by
subdividing the vector space on which the transformation T acts. We can
think of the space as a sum of smaller subspaces.

Definition. Let %, and ?l& be subspaces of the vector space V. We call
li the direct sum %,@ “2LI-, of %, and w2 if*

(a) Y=%?4f,+W2 (%‘, and “w; span V) and
(b) w,. %-,=e@J1 and w2 are linearly independent)

Example 1. Direct Sum in Arrow Space. The two-dimensional arrow space is the
direct sum of two different lines which intersect at the origin (Figure 4.1). If the
two lines are identical, they are not independent and do not span the arrow space.

Figure 4.1. Direct sum in arrow space.

*See P&C 2.1 for definitions of the sum and intersection of subspaces.



146 Spectral Analysis of Linear Systems

This arrow space is also the sum of three lines which intersect at the origin.
However, that sum is not direct; only two of the lines can be independent.

It is apparent from Figure 4.1 that for any finite-dimensional space
every splitting of a basis into two parts determines a direct sum; that is, if

{X i,. . . ,xn} is a basis for V, span{x,,  . . .,xn} = span{x,,  . . .,x,}@span
{xk+p”., xn}. It is apparent that the two subspaces can also be subdi-
vided. Although we have not yet defined a basis for an infinite-
dimensional space, the concept of splitting a basis applies as well to direct
sums in infinite-dimensional spaces (Sections 5.3-5.5).

Example 2. Direct Sum in a Function Space. Let e ( - 1,l) be the space of
continuous functions defined on [-1,1]. Let %, be the even functions in 6?
( -1 ,1) ;  f,(- t)=fe(t). Let ‘?lF2  be  the odd funct ions in  C?(- 1,l); f,(- t)=
- fo(t). Any function f in C? (- 1,l) decomposes into even and odd components:

Thus 5!lFr and W, span e( - 1,l). The even and odd components of f are unique;
for if f, and f, are even and odd functions, respectively, such that f = f, + f,, then

Only the zero function is both even and odd; therefore, 5!lJ1  n Gw;= 6, and
~(-1,1)=WgYx~.

Example 2 demonstrates an important property of the direct sum. Using
bases for %, and ‘6!$,,  it is easily shown that Ir = %, $ “w, if and only if
each x in V decomposes uniquely into a sum, x=x1 +x2,  with xi in %J,
and x2 in %,.

It is a small step to extend the direct sum concept to several subspaces.
We merely redefine independence of subspaces: 7.K,, …, ‘?4&  are linearly
independent if each subspace is disjoint from the sum of the rest,

%&n( 2 35-j)=e
j#i

(4.1)

With the modification (4.1) we say V is the direct sum of { wi } if the
subspaces { qi } are linearly independent and span Y. We denote the
direct sum by

Y=~,mlJ*cB-@~p (4.2)

The previous comments concerning splitting of bases and unique decom-
position of vectors also extend to the direct sum of several subspaces.



Sec. 4.1 System Decomposition 147

Exercise 1. Demonstrate in the two-dimensional arrow space that pair-
wise disjointness is not sufficient to guarantee independence of
9s wp.l,“‘,

Example 3. Direct Sum of Three Subspaces. Let f r (t) = 1 + t, f2( t) = t + t2, and
f,(t)= 1+ t2 be a basis for 9’. Define G2Ici =span{f,},  i= 1,2,3. Then q3= (jN,@

“w;@  (?lS3.  Let f(t) i v1 +q2t  +q3t2  be a specific vector in 93. By the process of
determining coordinates of f relative to the basis {f,, f,, f,} for q3, we decompose f
uniquely into

a sum of vectors from G2Lci,,  %!Y2,  and 7X3,  respectively.

Projection Operators

We can express the direct-sum decomposition of a space in terms of linear
operators on the space. Suppose ‘v = Tti,  CD “rti2;  any vector x in V can be
written uniquely as x = xi +x2 with xi in wi. We define the projector (or

projection operator) P, on %, along w2 by P,x f xi (see Figure 4.1). We

call the vector x1 the projection of x on ?JJ,  along %,. Similarly P,x L x2
defines the projector on %!Y,  along ‘?,Ki.

Example 4. Projector on q3. Let fl, f2, and f3 be the functions defined in

Example 3. Redefine %I, i span{f,} and W2 i span{f,,f,}. Then q3=  %,CT3‘?K2.
In Example 3, the general vector f(t)=)), + q2t + q3t2 in CY3 is decomposed into a
linear combination of f,, f2, and f,. From that decomposition we see that the
projections of f on %, and QJ2,  respectively, are

The bases for W, and G21(;, combine to provide a basis which is particularly
appropriate for matrix representation of the projectors. Using (2.48), the matrix of

the projector P, relative to the basis $7 9 {f 1, f2, f,} is
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Similarly, the matrix of P2 with respect to 9 is

010 0
[p21as=  ~‘~‘i”‘O’

( 10:o 1

Example 4 emphasizes the fact that a projector acts like the identity
operator on its “own” subspace, the one onto which it projects, but like the
zero operator on the subspace along which it projects. The following
properties of projectors can be derived from the definition and verified by
the matrices of Example 4. Assume v = q6, @ “w;. Let Pi be the projector
on ‘%i along %!l$  (j# i), and xi = Pix. Then

(a) Pi is linear

(b) Pi2 = Pi (i.e., PiXi = Xi)

(c) PiPj = 8 (i.e., Pixj  = 8 for j# i)

(d) range (Pi) = (Ui
(4.3)

(e)

I f  l=?l!@-$ ‘U,,  we can define the projector Pi on 5!lJi along
~jzi~j,  for i= l,..., k. The properties (4.3) apply to this set of projectors
as well.

Reduced Operators

The projectors in Example 4 act like scalar multiplication on certain
vectors in Ir; Pi acts like multiplication by 1 on all vectors in the subspace
wi, and like multiplication by zero on wj, j# i. Other operators also act
in a simple manner on certain subspaces. Define the nonlinear operator G:
‘312-4R2  by

G&A,) e ((51 -t2)2+2529252)

On the subspace ‘?lF, A span{(1,0)}, G acts like the simple “squaring”

operation, G(a,0)=(a2,0).  On the subspace w2 i span{(1,1)}, G acts like
the “doubling” operation G(b,b)=(2b,2b). In point of fact, as far as
vectors in ?lJ, and %Y, are concerned we can replace G by the “simpler”

operators G, : %,+ %, defined by G,(& 0) p (t2,0) and G,: (?JJ2+  w,

defined by G2(5,n  4 2(&t). We are able to reduce G to these simpler
operators because the action of G on 55, produces only vectors in %, and
the action of G on ‘?lF2 produces only vectors in w2.
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Definition. Let G be an operator (perhaps nonlinear) on V. The subspace
‘% (of V) is invariant under G if for each x in w, Gx is also in G2l(i ; that
is, if G( ?lJ) is contained in ‘% .

Example 5. Invariance of the Nullpace and Range. Let G: ‘V-V. Then range
(G) is invariant under G, for G takes all vectors in Y, including those in range(G),
into range(G). By definition, G takes nullspace into 8. If G(8)- 8, then 8 is in
nullspace( In this case, nullspace is also invariant under G. These subspaces
are pictured abstractly in Figure 2.6.

If G: T-V,  and % is a subspace of V which is invariant under G,

then we can define a reduced operator G, : % + % by G% x h Gx for all
x in %. The operators G, and G, discussed earlier are examples of
reduced operators. The following illustration shows that the reduced
operator G, is truly different from G.

Example 6.  Reduced Linear Operators. We define T: $k2+??L2 by

(4.4)

The matrix of T relative to the standard basis & is

The subspaces %, h span{(1,0)} and ‘;II(;, p span{(3,2)} are invariant under T.

Therefore, we can define the reduced operators T,: ‘?lf,+%i  by T&O) 2 T&O)

= 2(& 0) and T2: w2+%!lf2  by T2(3&2&)  i T(3&m=4(3&2Q.  Using 5% i {(1,0)}

as a basis for %, and 9 A {(3,2)} as a basis for G2LT2 we find

[T,l, c = ([T,(M01,)  = (2)

fT21,  % = ([T,(3,2)],)  = (4)

The reduced operators T, and T2 are scalar operators, represented by 1 X 1
matrices. They are very different from T, which is represented by a 2X2  matrix.
Clearly the domain and range of definition of a transformation are necessary parts
of its definition.

Solution of Equations by Decomposition

The combination of three basic concepts—direct sum, invariance, and
linearity—leads to the spectral decomposition, a decomposition of an
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operator or an equation into a set of scalar multipliers or scalar single-
variable equations. The decomposition provides considerable insight into
the nature of linear models. It also provides a technique for solving
equations which is an alternative to inverting the equations.

If T is a linear operator on Ir, if V = W, $ . . - 83 WP, and if each ‘?.6i is
invariant under T, then the set { wi } of subspaces decomposes T into a set

of reduced linear operators T,: ‘?$, + %,. defined by Tix p TX for all x in
pi. Analysis of a system represented by T reduces to analysis of a set of
independent subsystems represented by {Ti}  ; that is, we can solve the
equation TX = y by the following process.

The Spectral Decomposition Process (4.5)
1. Using the direct sum, decompose y into the unique combination

2. Using the invariance of Wi under T, solve the subsystems

Txi = yi i= 1,2,...,p

(in effect solving the reduced equations Tixi = y,).
3. Using the linearity of T, get the solution x by adding

x=x1 + * * * +xp

If the reduced operators Ti are simple scalar multipliers like those of
Example 6, then solution of the subsystem equations is trivial; that is, if
TXi = AiXi for each xi in ‘?JJi , then hiXi  = yi and parts (2) and (3) of (4.5) can
be expressed as

(4.6)

If we know the invariant subspaces pi and the scalars Ai, the primary
effort required to carry out this procedure is that in decomposing Y-

Example 7. Solution of an Equation by Decomposition. Let T: %‘+a2  be as in
(4.4):

T(t,, 52)  i @t, + %2,%2)

From Example 6 ,  we know the subspaces  (%‘I  A span{(1 ,0))  and %2 A

span{(3,2)} are invariant under T; furthermore, T acts like T,x h 2x for x in W,,

and like T2x p 4x for x in a2. Also Ir = %, @ ‘?lJ2.  Therefore, we can solve the
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equation

Tx=y A (711,112)

by the process (4.5). We decompose y by solving (7),,q2) = c,(l,O) + c,(3,2) to find

(q1,q2)=(ql-  F) (Lo)+(p) (33

A Y*+Y2

By (4.6)

The procedure (4.5) is essentially the one we use to determine the
steady-state solution of a constant-coefficient differential equation by
Fourier series. It is well known that a continuous function f can be
expanded uniquely as a Fourier series of complex exponentials of the form
e i2nk*/b,  where i = m and b is the length of the interval over which f is
defined. Each such exponential spans a subspace %!, . The Fourier series
expansion is possible because the space of continuous functions is in some
sense the direct sum of { GzII‘k  }. But each subspace %, is invariant under
any linear constant-coefficient differential operator; for instance, (D2 + D)
e”*=(  p2+ p)eN, a scalar multiple of e p*  Thus the solution to certain.
differential equations can be found by an extension of (4.6). See P&C 5.35.

The Spectrum

The real goal of most systems analyses is insight into the system structure.
Most linear models have a structure which permits decomposition into a
set of scalar operations. It is not yet clear what effect the subdivision of a
linear operator T has on the overall computation. In fact, since one result
of the decomposition is valuable insight into the structure of the system
represented by T, perhaps we should expect an increase in total
computation. Although this expectation is justified, we find that under
certain circumstances the decomposition information is known a priori.
Then decomposition can also lead to reduced computation (Section 5.2).

Definition. An eigenvalue (or characteristic value) of a linear operator T
on a vector space ?r is a scalar A such that TX =xX for some nonzero
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vector x in v. Any nonzero x for which TX = Ax is called an eigenvector of
T associated with the eigenvalue A.

The eigenvector x spans a subspace of Y. Each member of this sub-
space (or eigenspace) is also an eigenvector for the same eigenvalue. In
fact, because T is linear, any one-dimensional subspace which is invariant
under T must be an eigenspace of T. The identity operator I clearly has
only one eigenvalue; the whole space ‘v is the eigenspace for A = 1.
Similarly, for the zero operator 9, V is the eigenspace for A = 0. If
V = %, Cl3 ‘X2, then for the projector Pi of (4.3), pi is the eigenspace for
A = 1 and %ij  is the eigenspace for A= 0.

The eigenvectors of an operator which acts on a function space are often
called eigenfunctions. We will refer to the eigenvalues and eigenvectors (or
eigenfunctions) of T as the eigendata for T. The eigendata usually have
some significant physical interpretation in terms of the system represented
by T.

Example 8. Eigendata for a Transformation in a2. The operator T: 9L2-+5L2  of
(4.4) is

T& 52) p (XI+ 3&, 452)

It has two eigenvalues: A, = 2 and A, = 4. The corresponding eigenspaces are
span{(1,0)} for Ai and span{(3,2)} for AZ.

Example 9. Eigendata for Differential  Operators. The exponential function e@
and its multiples form an eigenspace for any linear constant-coefficient differential
operator without boundary conditions. For instance, since

d” p-1
peN+aldtn-Le*+---  -#-aneM= (j.k’+alpn-‘+---  +an)eP’

for any complex scalar p, the differential operator Dn + a,D”- ’ + - - - + an1 has the
eigenfunction e p corresponding to the eigenvalue X = pn + a1 pn- ’ + e - - + a,. A
differential operator without boundary conditions possesses a continuum of
eigenvalues.

Example 10. An Operator Without Eigenvalues. A linear differential operator
with homogeneous boundary conditions need not have any eigenvalues. For
example, the only vector that satisfies

df( 0
- =Af(t),dt f(0) = 0

is the zero function, regardless of the value we try for the eigenvalue A. Thus the
operator D acting on the space of differentiable functions f which satisfy f(O)=0
has no eigenvalues. Furthermore, any nth order linear differential operator with n

boundary conditions is without eigenvalues.independent one-point homogeneous
[See the discussion following (3.28).]
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The problem of finding eigenvalues for a linear operator T: V+V is
basically the problem of determining values of A for which the equation

(T-AI)x=  8 (4.7)

has nonzero solutions x; that is, we seek the values of X for which the
operator T - AI is singular. Once we have a specific eigenvalue, say, A,,
obtaining the corresponding eigenvectors involves the determination of
nullspace(T-  A,I)  —the solution of (4.7) with A =X,. The determination of
eigendata and the use of eigendata in practical analysis are explored for
finite-dimensional systems in Section 4.2 and for infinite-dimensional
systems in Section 4.3.

4.2 Spectral Analysis in Finite-Dimensional Spaces

In this section we convert (4.7) to a matrix equation for the case where li
is finite-dimensional. We also examine the spectral (eigendata) properties
of matrix equations. Practical computation of eigendata for finite-
dimensional problems, a more difficult task than appears on the surface, is
discussed at the end of the section.

In Section 2.5 we found we could convert any equation involving a
linear operator on a finite-dimensional space into an equivalent matrix
equation. If T: Ir+V, we simply pick a basis % for Ir. The basis
converts the equation TX = y into the equation [T],% [xl%  = [y]% . We gener-

ally define A A [T],,, and use the simpler matrix notation A[x],  =[y]%.
The eigenvalues and eigenvectors for T are then specified by the matrix
equivalent of (4.7):

G=wl~ = PI, (4.8)

The values of h for which (4.8) has nonzero solutions constitute the
eigenvalues of T. We also refer to them as the eigenvalues of the matrix A.

From Section 1.5 we know that the square-matrix equation (4.8) has
nonzero solutions if and only if

det(A-hI)=O (4.9)

Equation (4.9) is known as the characteristic equation of the matrix A (or of
the operator T which A represents). If A is an n x n matrix, then

c(X) A det(XI-A)=(-  l)“det(A-XI) (4.10)
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is an nth order polynomial in A called the characteristic polynomial of A (or
of T). An nth order polynomial has precisely n (possibly complex) roots.
(This fact follows from the fundamental theorem of algebra.) The set

iA r, . . . ,&} of roots of c(A)  constitutes the complete set of eigenvalues of A
(or T); the set is called the spectrum of A (or T). We often refer to an
analysis which involves eigenvalues as a spectral analysis. Since A= Ai
makes A- AI singular, there must be at least one nonzero eigenvector for
each different eigenvalue. A solution [xl%  of (4.8) for X=Xi  is an
eigenvector of A for Xi. The corresponding vector x is an eigenvector of T
for Xi.

Example 1. Finding Eigendata from [Tj. Let T: CR.‘+  (X2 be defined as in (4.4) by

T(5,, 52)  4 (25, + 352,452)

Using the standard basis E for a2 as in Example 6, (4.8) becomes

((; ~)-A(:, !$I~ =Wl,

or

( 2;h 43x)M6 =( 3

The characteristic equation is

I
2-x

0
4!AI=(2-A)(4-h)‘0

The eigenvalues of A (and T) are X1  = 2 and A, = 4. We find the eigenvectors of A
for Xi by solving (4.8) with A=&:

The scalars cl and d, are arbitrary; there is a one-dimensional eigenspace for each
eigenvalue. The eigenvectors of T for & are found from the relationship between a
vector and its coordinates relative to the basis & :

[Xl& =( E;) w x=c,(1,o)+c~(o, 1)

Therefore, the eigenvectors of T corresponding to h, and A2 are

xt=c*(1,0)+0(0,1)=c,(1,0)

X,=3d,(1,0)+2dI(0,1)=d,(3,2)
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In our previous discussions of vector spaces we have been able to allow
freedom in the type of scalars which we use. We have thought primarily in
terms of real numbers. However, in the discussion of eigenvalues this
freedom in choice of scalars can cause difficulty. A real polynomial need
not have real roots. Thus an operator on a space with real scalars may not
have real eigenvalues; on the other hand, a complex eigenvalue has no
meaning for such a space. The usual engineering practice is to accept the
complex scalars whenever they appear, and assign them an appropriate
meaning if necessary. We follow this approach, and assume, whenever we
speak of eigenvalues, that the characteristic equation has a full set of roots.

Exercise 1. Define the operator T on a2 by

‘I’(&&)=  (51cos+-52sin+,  ~2~~~++~1sin+) (4.11)

This operator describes “rotation through the angle +” in ?7L2. Show that
the eigendata for T are

A, =cos++ isin+= e’*, x1=(1,-i)

A,=cos@-  isin+=  em’*, x2=(1,i)

where i=m. The vector (1, sfr i) is not a real 2-tuple; it is not in 9L2.
We could have used any basis in Example 1. The eigenvalues and

eigenvectors of T are properties of T; they do not depend upon the basis.
Suppose we use the invertible change of coordinate matrix S-i to convert
(4.8) from the % coordinate system to a new coordinate system % as in
(2.54):

P& =s-l[~lz:

The effect of the change of coordinates on the matrix of T is represented
by the similarity transformation (2.62): [T],, = S[T],, S-i. Recalling that
A= [T],,, we find that (4.8) can be expressed as ([T],,  -xI)[x]z
= (S[T],, S- ’ - hI)[x]%  = S([T],, - AI)S ‘[xls = [ 61,. Multiplying by
the invertible matrix S - ‘, we find

(4.12)

Clearly, any h which is an eigenvalue of A is also an eigenvalue of any
other matrix [T],, which represents T. The similarity transformation,
[T],, = S- ‘AS, results in a change in the coordinates of the eigenvectors
of T corresponding to h, but it does not change either the eigenvectors of T
or the characteristic polynomial of T.
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Example 2. Invariance of Eigenvalues under a Change of Coordinates. The
transformation T: 9L2+%2 of Example 1 is

T(E,, (2‘2)  p (%I + %2&2)

The eigenvectors (1,0) and (3,2) found for T in Example 1 form a basis for 9L2;
denote this basis by ‘5X.  With respect to this basis,

[T]ec = [T(l,O)ln i [‘WI,)(

=2 0
( 10 4

Then

The characteristic polynomial and the eigenvalues are those found in Example 1.

Diagonalization

It is apparent that the matrix of any linear operator T with respect to a
basis of eigenvectors for T is of the form demonstrated in Example 2. If %
is a basis of eigenvectors, [T],, has the eigenvalues of T on its diagonal;
the rest of the matrix is zero. We call a linear operator T: v+‘v
diagonalizable if there is a basis % for T which is composed of
eigenvectors of T. We refer to the diagonal matrix [T],, as the spectral
matrix of T, and denote it by the symbol A. If A is the matrix of T relative
to some other basis, say %, for V, we will also refer to A as the diagonal
form of A.

A basis of eigenvectors converts the operator equation TX= y to the
matrix equation

WI, = [Yin (4.13)

Equation (4.13) is actually a matrix version of the process (4.5) for solving
an equation by decomposition. Finding an eigenvector basis %
corresponds to finding a direct-sum decomposition of the space into
subspaces wi which are invariant under T. Finding a coordinate matrix
[y]% is equivalent to the decomposition of y in (4.5). Inverting the diagonal
(or “uncoupled”) matrix A amounts to solving the reduced equations,
Tixi = hixi = yi. When we find x from the coordinates [xl,, we are merely
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combining the subsystem solutions as in (4.6). The process of computing
eigenvalues and eigenvectors of matrices has been automated using a
digital computer. Furthermore, the process of diagonalizing a matrix
equation is more mnemonic than the decomposition process (4.5); the
visual manner in which the eigenvalues and eigenvectors interact is easy to
remember. Equation (4.13) is a clear and simple model for the system it
represents.

What types of linear operators are diagonalizable? That is, for what
finite-dimensional systems is there a basis of eigenvectors for the space?
Since the existence of an eigenvalue 4 implies the existence of a
corresponding eigenvector Xi, we expect the eigenvectors of an operator T
on an n-dimensional space V to form a basis if its n eigenvalues are
distinct. We verify that the n eigenvectors are independent if the
eigenvalues are distinct by the test (2.1 I). Let

CIX, + $x2+ - * ’ + CnXn  = 8

where Xi is an eigenvector of T for the eigenvalue &. Operating with
(T - X,I) we obtain

CAL )
-A, x,+C2(h2-hl)x~+“’ +cn(x,-X,)x,=8
0

Successively operating with (T - &I), . . . , (I’ - Xn _ ,I) eliminates all terms
but

since h,#Aj,  Cn = 0. By backtracking, we can successively show that cn- i
=... =c 1 = 0; the eigenvectors are independent and form a basis for the
n -dimensional space.

In the above proof we applied the operator
&,- iI) to a general vector in the space 31tnx ’ (i.e., to a linear combination,
x = Z cixi, of the eigenvectors in the basis). Suppose we operate once more,
using the factor (T-&I).  Then, for any x, we obtain

That is,

(4.14)

Recall from (4.10) that if A is a matrix of T, the characteristic polynomial
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for T is c(A)=  det @I-A)=@  -A,)*  * . (A-X,,).  Thus (4.14) is an operator
analogue of c(A)  which we denote by c(T). The characteristic polynomial
in T annihilates all vectors in the space. This fact is commonly known as
the Cayley-Hamilton theorem. It applies as well to matrices—a square
matrix satisfies its own characteristic equation:

c(A)=8 (4.15)

Although we have proved the theorem only for an operator which is diagonal-
izable, it holds for all square matrices [see (4.85)].

Example 3. A Nondiagonalizable Matrix. Suppose

Then

c(A)=det(XI-A)

=(X-h,)*

The only eigenvalue for A is A = X, . Using (4.8) we solve for the associated
eigenvectors of A:

(A-Vhl, p (; ;)( f)=( ;)

o r

Ma =spm(  (i))

There are not enough independent eigenvectors
The characteristic polynomial in A is

of A to form a basis for 37&2x1 .

c(A)=(A-&I)*

=o 2*43
( )0 0

It is apparent that the Cayley-Hamilton theorem also applies to matrices which do
not possess distinct eigenvalues.

Although repeated eigenvalues can signal difficulty, it is possible for the
eigenvectors to form a basis even though the eigenvalues are not distinct.
A notable example is the identity operator; any vector in the space is an
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eigenvector for the eigenvalue h = 1. In Section 4.4 we discuss further those
operators that are not diagonalizable.

Most matrices have distinct eigenvalues, and are thus diagonalizable.
For a diagonalizable matrix A, the eigenvalues by themselves (or the
equivalent spectral matrix A) give a rough idea of the manner in which the
system operates. However, in order to be specific about the operation of
the system, we need to know what A does to specific vectors [xl% on which
it operates. Thus we need the eigenvectors of A. In the process of finding
the eigenvectors, we relate A and A. A change of basis is the key. Let T act

on a finite-dimensional space ?r. Assume A= [T],,  . Let % f {x,, . . . ,xn}
be a basis for V composed of eigenvectors of T. Let {[xi],, . . . ,[x,], } be
the corresponding basis for ‘YR,’  x ’ composed of eigenvectors of A. Define
the change of basis matrix S by

W% = [xl* (4.16)

Then, by (2.55),

(4.17)

Furthermore, by (2.62),

Plwx =S-‘[T&S

=S-‘AS

=A (4.18)

We call the matrix S, the columns of which are eigenvectors of A, a modal
matrix for A.* Of course, the definition of S in (4.16) is arbitrary; the roles
of S and S-l can be reversed. In order to help keep in mind which of the
matrices S and S- ’ is the modal matrix, we note that A in (4.18) multiplies
the eigenvectors of A in the modal matrix.

An engineer often generates a system model directly in matrix form. The
matrix form follows naturally from the use of standard models and
standard physical units. When the underlying transformation is not ex-
plicitly stated, it becomes cumbersome to carry the coordinate notation
[xl, for the vectors on which the n x n matrix A operates. Under these
circumstances, we will change the notation in (4.8) to

(A-hI)x=  9 (4.19)

*In some contexts the eigenvectors are referred to as modes of the system.



160 Spectral Analysis of Linear Systems

where x is a vector in %’ x ‘. This new notation can cause confusion—we
are using the same notation x for both a vector (on which T operates) and
its coordinate matrix (which A multiplies.) We must keep in mind that A
and x may be representatives of an underlying transformation T and a
vector x on which it operates.

Example 4. Diagonalization of a Matrix. Let

A=( -4-I ;)

Then c(A)=det(AI-A)=(A-5)2  (A+ l)=O. The eigenvalues of A are Al=% x2=5,
As= -1. The eigenvectors for h = 5 satisfy

or 5s = & + 2t2. The eigenspace of A for A = 5 is two-dimensional; one basis for this
space is

xl=( ;), x2=( 9

The eigenvectors for A= -1 satisfy

(A+I)x= (-f -2 @)=(;)

or, by row reduction, 5, = - 5s and t2 = - 25,.  The eigenspace of A for A = -1 is
one-dimensional. We choose

as a basis for this eigenspace. We use the eigenvectors x1, x2, and x3 of the matrix A
as the columns of a modal matrix S for A. We find S-l from S by row reduction:
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The diagonal form of A is:
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The eigenvalues appear on the diagonal of A in the same order as their correspond-
ing eigenvectors appear in the modal matrix.

Eigendata and Inverse Operators

If T is an invertible operator and x is an eigenvector of T for the
eigenvalue A, it follows from the definition (TX =hx) that

(4.20)

That is, x is also an eigenvector for T-l corresponding to the eigenvalue
1 /h. Furthermore, T is invertible if and only if h = 0 is not an eigenvalue of
T. This fact is easily seen if T acts on a finite-dimensional space: suppose
A is a matrix of T (relative to some basis). Then A = 0 is an eigenvalue of T
if and only if

det(A-OI)=O (4.21)

But (4.21) is just the condition for noninvertibility of A (and T). If A is a
diagonal form of A, the relationship between the eigenvalues and inverti-
bility is even more transparent. If A= 0 is an eigenvalue of A, then A has a
zero row, and A and T are not invertible.

Example 5. Eigendata for an Inverse Matrix. The inverse of the matrix A of
Example 4 is

Using the spectral matrix A and the modal matrix S for A (from Example 4), we
find the spectral matrix for A- ' by

o r
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Thus A and
matrices).

A-’ have inverse eigenvalues, but the same eigenvectors (modal

Computation of Eigendata for Matrices

Computation of the eigenvalues and eigenvectors of a square matrix
appears straightforward. We need only solve for the roots Xi of the
characteristic polynomial, c(A)  = det (AI - A), then solve the equation (A -
X,1)x=  8 for the eigenvectors associated with &. For the selected low-order
matrices used in the examples and in the Problems and Comments, the
eigendata can be computed exactly using this approach. As a practical
matter, however, the process is difficult for an arbitrary diagonalizable
matrix. For a matrix larger than, say, 3 X3, we resort to the digital
computer.

Determination of the characteristic polynomial of the matrix by comput-
ing the determinant of AI-A is an expensive process. Computation of a
simple n x n determinant requires n3/3  multiplications, without the com-
plication of the unspecified variable A. * A more efficient approach for
finding c(A) is Krylov’s method, which is based on the Cayley-Hamilton
theorem (4.15).† The characteristic equation for the n x n matrix A can be
written

c(h)=X”+b,h”-‘+...  +b,=O (4.22)

where the coefficients { bi} are, as yet, unknown. By (4.15),

c(A)=A”+b,A”-‘+..*  +b,A=8

Then for an arbitrary vector x in ‘Snx ‘,

A”x+ b,A”-‘x+ . . l + b,,x=8 (4.23)

For a specific x, the vector equation (4.23) can be solved by row reduction
to obtain the coefficients { bi}. Note that the powers of A need not be
formed. Rather, x is multiplied by A n times. The method requires
approximately n3 multiplications to compute (4.23), then n3/3 multiplica-
tions to solve for the coefficients {bi} by Gaussian elimination.

Example 6. Computing c(h) by Krylov’s Method Let A be the system matrix of
Example 1, Section 3.4:

*See Appendix 1 for a discussion of determinants and their evaluation.
†Ralston [4.13]. Refer also to P&C 1.3c .
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The characteristic equation is second order:

c(h)=X2+bJ+b2=0

c(A)=A’+  b,A+ b,I=8

Let x = (1 1)T. Then

A2x+ b&x+ b2x=8

o r

(-;)+h( -:)+b2(  :)=(:)

The solution to these equations is b, = 1, b2=0. Therefore,

c(X)=A2+X

Suppose that in Example 6 we had let x=(1 - l)T, the eigenvector of A
for X= -1. Then (4.23) would have been

(-;)+b’( -~)+b~(-:)=(FJ
an underdetermined set of equations. The difficulty arises because A+ I,
one of the two factors of c(A), is sufficient to annihilate x. If we use an
eigenvector of A in (4.23), we can determine only those factors of c(A) that
annihilate the eigenvector. Thus is it possible to make a poor choice for x
in (4.23); try another! If the eigenvalues are not distinct, similar difficulties
arise. (Try Krylov’s method for A=I.)

Once we have c(A),  we still need a scheme for finding its roots. A
suitable method for finding the real roots is the iterative technique known
as Newton’s method. This method is discussed in detail in Section 8.1. If
we need only the eigenvalues of A [as in evaluating functions of matrices
by (4.108)], and if these eigenvalues are real, Krylov’s method together
with Newton’s method is a reasonable approach to obtaining them.

Denote the eigenvalue of A which is of largest magnitude by A,. If A, is
real, the power method obtains directly from A both its largest eigenvalue
A, and a corresponding eigenvector XL. The method relies on the “domi-
nance” of the eigenvalue h,. Suppose eigenvectors of an n x n matrix A
form a basis {x1,. . . , xn} for Wx ‘. Then any vector x in 9Vx ’ can be
expressed as x= XI= r CiXi.  Repeated multiplication of x by A yields Akx
=~~=IciAkXi= Zy= I ciAFxi.  If one of the eigenvalues A, is larger in magni-
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tude that the rest, then for large enough k, Akx~cLhFxL,  an eigenvector for
h,. Furthermore, X, is approximately equal to the ratio of the elements of
Ak+ lx to those of Akx. We explore the use of the power method in P&C
4.17. The method can be extended, by a process known as deflation, to
obtain all the eigendata for A. However, computational errors accumulate;
the method is practical only for a few dominant eigenvalues. See Wilkin-
son [4.19].

Practical computation of the full set of eigenvectors of an arbitrary
matrix is more difficult than is computation of the eigenvalues. The
eigenvalues {A,},  by whatever method they are obtained, will be inexact, if
only because of computer roundoff. Therefore, (A -41) is not quite singu-
lar; we need to compute the “near nullspace” of (A-41) (i.e., the “near
solution” to (A - AiI)x = 0). In Section 2.4 we describe the inverse iteration
method for determining a vector in the “near nullspace” of a nearly
singular matrix. We now justify that method. If a matrix B is nearly
singular, its near nullspace is precisely the eigenspace for its smallest (least
dominant) eigenvalue, A,. Then the near nullspace of B is also the eigen-
space for the largest (dominant) eigenvalue l/h, of B- *. If X, is real, we
can determine an eigenvector x, corresponding to X, by applying the power
method to B- ‘. We pick an arbitrary vector zO,  and repetitively determine
zk+ i = B- ‘zk;  for large enough k, the vector zk is a good approximation to
xs; the ratio of the components of zk to those of zk+ , is essentially A,. Thus
the inverse iteration method is just the power method applied to the
inverse matrix. In practice, rather than explicitly computing B- ‘, we would
repetitively solve Bz, + 1 = zk, a less expensive operation.

The inverse iteration method can be used to obtain the eigenvectors of a
matrix A which correspond to a previously computed real eigenvalue 4.
Just repetitively solve (A-X,I)z,+  i =zk for some initial vector zO; after
several iterations, zk will approximate an eigenvector Xj corresponding to
4. The ratio of the elements of zk+r to those of zk will approximate l/A,
where h, is the smallest eigenvalue of the matrix B = A - 41. The eigenvalue

is a measure of the nonsingularity of B and, therefore, the inaccuracy in
Ai; a better approximation to the eigenvalue of A is Ai +h,. A highly
accurate value of pi implies a low value of X, and, consequently, rapid
convergence. Of course, small A, also implies an ill-conditioned matrix
(A- X,.1); yet, as discussed in Section 2.4, the resulting uncertainty in the
solution will be a vector in nullspace (A-41).  The inverse iteration
method works well as long as the eigenvalue 4 is “isolated.” Any method
will have trouble distinguishing between eigenvectors corresponding to
nearly equal eigenvalues. *

*Wilkinson [4.19].
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Example 7. Computing Eigenvectors by Inverse Iteration. Let A be the following
matrix

The exact eigendata of A are

&=l, xi= f ,
0

A*=-1,  x*= y
0

Suppose we have computed the eigenvalue 1, = 1 + c, perhaps by means of Krylov’s
method and Newton’s method. The equation (A-X$)x= 8 has no nonzero solu-
tion. We use inverse iteration with the matrix (A-x,1) to approximate the true
eigenvector x1. Denote zk = (qi~)~ and zk+ 1 =(& 52)‘.  Then

has the exact solution

Let ze=(l l)T. Then

This sequence rapidly approaches a true eigenvector for A, even if the approximate
eigenvalue Xi contains significant error. If e = 0.1, for instance, z1 = -10 (1 .52)T

and q= 100 (1 .501)T. The smallest eigenvalue of (A-X& is clearly A,= - E, which
approaches zero as the error in xi approaches zero. It is apparent that for small e,
the elements of zk would soon become very large. Practical computer implementa-
tions of the inverse iteration method avoid large numbers by normalizing zk at each
iteration.

If A is symmetric, the eigenvalues of A are real (P&C 5.28) and there is a
basis of eigenvectors for the space. * The most efficient and accurate
algorithms for determination of the full set of eigendata for a symmetric
matrix avoid computation of the characteristic polynomial altogether.
Rather, they perform a series of similarity transformations on A, reducing
the matrix to its diagonal form A; the eigenvalues appear on the diagonal.
Since A = S- ‘AS,  where S is a matrix of eigenvectors, the sequence of

*See Section 5.4.



166 Spectral Analysis of Linear Systems

similarity transformations determines the eigenvectors of A. See P&C 4.11
for an example of such a method.

Because methods that produce the full set of eigendata for a matrix
must, in effect, determine both S and S- ‘, we should expect the accuracy
of the results to be related to the invertibility of the modal matrix S. In
point of fact, it can be shown that if S is ill-conditioned, the eigenvalues
are difficult to compute accurately; some of the eigenvalues are sensitive
functions of the elements of A. As a general rule, symmetric matrices have
easily determined eigenvalues, whereas unsymmetric matrices do not. For
a full discussion of computer techniques for computing eigendata, see
Wilkinson [4.19] and Forsythe [4.6].

Application of Spectral Decomposition-Symmetrical Components

Since a sinusoid of specified frequency is completely determined by two
real numbers, its amplitude and phase, we can represent it by a single
complex number; for example, the function 2 sin(ot + +) is equivalent to

the complex number 2ei+, where i = m . Therefore, complex numbers
adequately represent the steady-state 60-Hz sinusoidal voltages and cur-
rents in an electric power system (assuming physical units of volts and
amperes, respectively).

Figure 4.2 is a simplified description of a three-phase electric power
system. The complex amplitudes of the generated voltages, load voltages,
and load currents are denoted by Ei, Vi,  and Ii, respectively. These voltages
and currents are related by the following matrix equations:

E-V=ZI (4.24)

V=WI (4.25)

Figure 4.2. A three-phase electric power system.
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where E = (E, E2 E3)T,  V = ( V, V2 V3)=, I = (I, 1Z 13)T,  and Z and W are
3 x 3 impedance matrices. In a typical power system, the generating system
is balanced; that is, Z has the form

(4.26)

A useful approach to analyzing a three-phase power system is to change
coordinates in (4.24)-(4.25) in order to diagonalize (4.24). The method is
known to power system engineers as the method of symmetrical com-
ponents.

Exercise 2. Show (or verify) that the eigenvalues hi and corresponding
eigenvectors xi of Z are

A,=z,+2z,  x, =z,-z2 A- =zi-z2

x*=( 1) x+=( i2) x-=( $i
(4.27)

(4.28)

where a = ei2v’3,  a 120” counterclockwise rotation in the complex plane.
(Note that a2+ a + 1 = 0.) Let S =(xg i x, i x-).  Show (or verify) that

(4.29)

Each of the eigenvectors (4.28) represents the complex amplitudes of a
symmetrical three-phase sinusoidal quantity (voltage or current). The sub-
scripts indicate the relative placement of the elements of each vector in the
complex plane. The generated voltage vector E typically has the form of
x,. The eigenvalues (4.27) can be interpreted as impedances associated
with the symmetrical (eigenvector) components of the voltage and current
vectors.

The engineer usually needs to analyze the generation and distribution
system under various loads. If the load impedance matrix W is an arbitrary
matrix, it need not simplify during diagonalization. However, system loads
are usually of a more specialized nature. For example, if the load is
balanced (a goal of system planners), W is of the same form as Z. both
(4.24) and (4.25) diagonalize simultaneously, only positive sequence quanti-
ties appear in the equations, and the matrix equations reduce to two scalar
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equations. Certain unbalanced loads (such as a line-to-line fault) also lead
to specialized forms of W for which symmetrical component analysis is
useful. A more complete discussion of symmetrical component analysis
can be found in Rothe [4.15].

4.3 Spectral Analysis in Function Spaces

Spectral analysis is at least as helpful for understanding differential sys-
tems as it is for matrix equations. Furthermore, for many distributed
systems (those described by partial differential equations) it provides the
only reasonable approach to the determination of solutions. This section is
devoted primarily to a discussion of spectral analysis of differential sys-
tems. We found in Example 9 of Section 4.1 that for a differential operator
without boundary conditions, every scalar is an eigenvalue. The differen-
tial operators of real interest, however, are the ones we use in modeling
systems. These ordinarily possess an appropriate number of boundary
conditions. Suppose

(4.30)

It is convenient to decompose this differential system into two pieces:

Lf = u with & (f) = 0, i = 1 n,a-*, (4.3 1)

and

Lf = 8 with /3i (f) = cri, j = 1 n,**., (4.32)

Equation (4.32) is essentially finite dimensional in nature-by substituting
for f the complementary function f, = clvl + - - l + c,,vn of (3.19), we con-
vert (4.32) to the matrix equation

(4.33)

We examined the eigendata for matrix operators in Section 4.2. We focus
now on the infinite-dimensional problem (4.31).

We seek the eigenvalues and eigenfunctions for the system T defined by
L together with the homogeneous boundary conditions of (4.31). That is,
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we only allow L to operate on functions which satisfy these boundary
conditions. The equation which defines the eigendata is (4.7); thus

(L-AI)f=  8

&(f)=O  l,...,ni = (4.34)

We introduce, by means of an example, a procedure for obtaining from
(4.34) the eigenvalues and eigenfunctions associated with (4.31). The ar-

mature-controlled motor of (3.40)-(3.41) is modeled by L+ 4 D2++ D+,

with pi(+)  f +(O) and p2(+)  4 +(b).  For this specific L and { pi}, (4.34)
becomes

(4.35)

We first  obtain a fundamental set of solutions for (L-XI). The
characteristic equation for (L-AI), found by inserting +(t) = e@, is

y2+p-A=0

with roots

I f λ = −λ = − $, then the fundamental solutions are

vi(t) = e-*i2 v2( t) = te -r/Z

Any nonzero solutions to (4.35) for A = - $ must be of the form f = c,vi +
c2v2  and must satisfy the boundary conditions:

The boundary condition matrix is invertible; c, = c2=0.  There are no
nonzero solutions for h = - 4, and A = - $ is not an eigenvalue.

If A# - $, a pair of fundamental solutions is
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A different but equivalent pair is

We let g= erg, + c2g2, and again invoke the boundary conditions:

There is a nonzero solution g (or nonzero coefficients { ci})  if and only if
the boundary condition matrix is singular; thus, denoting the boundary
condition matrix by B(A),

det (B(A))  = embj2exp
-(‘+;)‘/“) _ e-b,2exp(  (’ +4;)1’26)  =o

o r

(4.36)

By analogy with the finite-dimensional case, we are inclined to refer to
det (B(X))  = 0 as the characteristic equation for the operator T (L with the
homogeneous boundary conditions). However, the term characteristic
equation is commonly used in reference to the equation (in the variable EC)
used earlier to determine the fundamental solutions for L. Therefore, we
call det(B(X))=  0 the eigenvalue equation for T. We may also refer to it as
the eigenvalue equation for L if it is clear which homogeneous boundary
conditions are intended. The eigenvalue equation (4.36) is a transcendental
equation in X. To find the roots, recall from the theory of complex
variables that*

ln(ea+iY)= a + iy + i2l&, k=O, _+l, +2, . . .

for real scalars cr and y. Thus (4.36) becomes

(l+4X)‘/2b+i29rJz=0 k=O, 21, 22, . . .

*See Chapter 14 of Wylie [4.18].
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and the eigenvalues (for which nonzero solutions exist) are

x,=-+ $
( 1

2
k= 1, 2, 3, . . . (4.37)

Note that k = 0 has been deleted; it corresponds to X = - $, for which case
g, and g, are not a fundamental set of solutions. Since k is squared, the
positive and negative values of k yield identical values of A; thus, the
positive values are sufficient.

We obtain the eigenfunctions & corresponding to the eigenvalue Ak by
solving (4.35) with A=&. The solutions involve the roots pk of the
characteristic equation:

Since these roots are complex, we use the sinusoidal form {hi} for the
fundamental solutions:

+k(t)=c,e-‘/2COS  F +c,e-‘/‘sin(  $0
( 1

The boundary conditions yield

It follows that ci =0 and c2 is arbitrary. Letting c2= 1, we obtain the
eigenfunction

(4.38)

corresponding to the eigenvalue A&.
The eigenfunctions for the two-point boundary value operator of (4.35)

are analogous to the modes of oscillation of a string which is tied at both
ends. The modes are harmonics of the fundamental or lowest-order mode,
e -‘/2sin(nt/  b);  that is, the frequencies of oscillation are integral multiples
of the lowest-order frequency. The number p& is the complex “natural
frequency” of the kth mode. The eigenvalue A& can be thought of as a
“characteristic number” for the kth mode. It is not clear whether or not T
is a diagonalizable operator. The eigenvalues are distinct; the set of
eigenfunctions are suggestive of the terms of a Fourier series; however, we
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wait until Chapter 5 to determine that there are sufficient eigenfunctions
{+&,  k = 1,2, . . . } to form a basis for the space of functions f on which T (or
L) operates. (See Example 3, Section 5.3.)

Finding Eigendata for Differential Operators

For general differential equations of the form (4.30) we find eigendata by
following the procedure used for the specific operator of (4.35). We first
seek values of A (or eigenvalues) for which (4.34) has nonzero solutions
(eigenfunctions). Then we determine the corresponding eigenfunctions. We
occasionally refer to the eigendata for the differential equation when we
really mean the eigendata for the differential operator which determines
the equation. Let the functions vi(A),  . . . , v,(A)  be a fundamental set of
solutions for (L -AI);  note that the functions depend on X. The solutions to
(4.34) consist in linear combinations

which satisfy the boundary conditions. The coefficients are determined by
the boundary condition matrix, whose A dependency we denote explicitly
by B(A):

(4.39)

There are nonzero solutions to (4.34) [or nonzero coefficients { Ci} in (4.39)]
only for X such that

det (B(h)) = 0 (4.40)

As discussed beneath (4.36), we call (4.40) the eigenvalue equation for T (or
for L with its boundary conditions). Its roots constitute the spectrum of T
(or of L with its boundary conditions).

Determining the complementary function for T-XI is not necessarily a
simple task. But it is the fundamental problem of differential equation
analysis-standard techniques apply. The eigenvalue equation (4.40) is
generally transcendental. Its solution, perhaps difficult, is a matter of
algebra. Once we have determined a specific eigenvalue h& we return to
(4.39) to determine those combinations of the fundamental solutions which
are eigenfunctions for A&.  The eigenfunctions are

f, = c1v,(&) + - ’ - + c,,v,(&) (4.41)
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where the scalars cr, . . . , cn satisfy

As noted in the discussion following (3.28), the boundary condition
matrix for a one-point boundary value problem is always invertible. Thus
if the boundary conditions for L are all initial conditions, (4.40) has no
roots, and the system T has no eigenvalues.

Exercise 1. Seek the eigenvalues for the operator L of (4.35) with the
initial conditions +(O) = #(O) = 0.

Example 1. Eigendata for a Heat-How Problem. Equation (3.1) is a steady-state
description of a system wherein the heat generated within an insulated bar of
length b diffuses toward heat sinks at the surfaces t = 0 and t = b. We now modify
the second boundary condition. At t = b we withdraw heat from the system by
convection. The equation and
distribution f are as follows:

modified boundary conditions for the temperature

Mt)
&f)(t) p - ----&- -u(t)

(4.42)

h(f) p f(O)= al, a(f) % f’(b)+f(b)-a2

The characteristic equation for (L-M) is

- +A=0

with roots p= -t ifl. We pick as a fundamental set of solutions (for A # 0):

vl(t)=COS  vx t, v,(t)=sinVX  t

The eigenvalue equation is

or

tanfib=-- (4.43)
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Making the substitution r p fi b, (4.43) becomes

tanr=-; (4.44)

Figure 4.3 shows the two halves of the eigenvalue equation plotted versus r for
b=2. If {r&=0, 21, +2 ,... } are the roots of (4.44), then the eigenvalues for
(4.42) are

k= 1,2,3,... (4.45)

The root r. has been eliminated. It corresponds to A= 0, for which the sinusoids are
not a fundamental set of solutions. That A=0 is not an eigenvalue is easily seen by
repeating the above, using a fundamental set of solutions for (L - OI). Since

the negative values of k are unnecessary. We find the eigenfunctions f, for Ak by
(4.41):

or cl = 0 and c2 is arbitrary. Therefore, letting c2= 1, we obtain only one indepen-
dent eigenvector,

fk(t)=sin z t
( )

(4.46)

for each eigenvalue hk = ri’/ b2, k = 1,2,3,….
In this example, the modes are not harmonic; the frequencies ri/b2 are not integral
multiples of the lowest frequency. Although the operator of (4.42) is diagonalizable
(the eigenvectors (4.46) form a basis for the domain of L), we are not presently
prepared to show it.

Eigendata for Integral Operators

We found in (4.20) that if an operator T is invertible and TX =hx, then
T- lx= (l/A)x. That is, the eigenvectors of T and T- ’ are identical and
correspond to reciprocal eigenvalues. From (4.40) we know that a differen-
tial system T has the eigenvalue h =0 if and only if det (B(A))  = det (B(0))
= 0. But this is just the opposite of the condition (3.28) for invertibility of
T. Thus a differential system T is invertible if and only if A=0 is not an
eigenvalue for T. If we think in terms of a diagonalized (cc x co) matrix
representation of T, it is clear that a zero eigenvalue is equivalent to
singularity of the operator. Thus if A=0 is an eigenvalue of T, then the
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Figure 4.3. Roots of the eigenvalue equation (4.44) for b = 2.

Green’s function for T does not exist. Invertible differential and integral
equations come in pairs, one the inverse of the other. Because the proper-
ties of integration are theoretically and computationally less troublesome
than those of differentation, we use the integral form to derive useful
information about the eigenfunctions of operators and the solutions of
equations (Sections 5.4 and 5.5). We also use the integral form for
approximate numerical solution of equations. Yet because integral equa-
tions are difficult to solve, we often return to the differential form and
standard differential equation techniques to determine the eigenfunctions
of specific operators or the solutions of specific equations. In the following
example, we obtain the eigendata for an integral operator from its differen-
tial inverse.

Example 2. Eigendata for an Integral Operator. The eigendata for the system T
represented by the differential operator L = D* + D with +(O) = 0 and +(b) = 0 are
given in (4.37) and (4.38). They are

Note that A- 0 is not an eigenvalue. The Green’s function for this operator is
(3.42). Using this Green’s function, we write the inverse of the differential system
a s

+(+ l-e%+
Jeb-1 0

*(es - l)U(S)ds+  F/“(es- eb)u(s)&
-1 t

= (T- ‘u)(t) (4.47)
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We expect the eigenfunctions of T- ’ to be the same as those of T. Operating on +k
with T-l, a complicated integration, we find

(4.48)

The eigenvalues of the integral operator T- ’ are clearly { I/&}.

Eigenvalue Problems in State Space

We introduced the state space model for dynamic systems in Section 3.4.
We reproduce it here:

k(t) = Ax( t) + Bu( t) x(0) = ~0 (4.49)

where A is an n x n matrix multiplying the n X 1 state vector x(t), and B is
an n x m matrix multiplying the m x 1 input vector u(t).  We know the
differential system of (4.49) has no eigenvalues—it is an initial-value
problem.* However, there is a meaningful and interesting eigenvalue
problem associated with (4.49). It has to do with the system matrix A. We
introduce the relationship between the eigendata for the system matrix and
the solutions of (4.49) by examining the system matrix for the nth-order
constant-coefficient differential equation, the companion matrix of (3.36).
The eigenvalues of A are the roots of the equation det (AI  -A) = 0.

Exercise 2. Show that if A is the companion matrix for the n th-order
constant-coefficient differential equation

D”f+a,D”-‘f+...  +a,f=u (4.50)

then the characteristic equation for A is

det(XI-A)=(A”+a,X”-‘+  ... +a,,)=0 (4.51)

*If the
solution,

initial condition
x(t) = 8.

vector is x(0) = 8, then x(t)--(t) - Ax(t)  = 0 has only the zero
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From (4.51), we see that if A is the system matrix corresponding to an
nth-order constant-coefficient differential equation, the characteristic
equation for A is the same as the characteristic equation (3.37) for the
underlying nth-order differential equation. The eigenvalues of the system
matrix are the exponents for a fundamental set of solutions to the differen-
tial equation. They are sometimes referred to as poles of the system. This
relationship between the eigenvalues of the system matrix and the funda-
mental set of solutions to the underlying set of differential equations holds
for any system matrix A, not just for those in companion matrix form. [See
the discussion below (4.94); refer also to P&C 4.16] Thus in the state-space
equation (4.49) the concepts of matrix transformations and differential
operators merge in an interesting way. The origin of the term “char-
acteristic equation for the differential equation” is apparent. Fortunately,
the state-space formulation is not convenient for boundary value problems.
Thus eigenvalues of a system matrix and eigenvalues of a differential
equation usually do not appear in the same problem.

Suppose we use the eigenvectors of the system matrix A as a new basis
for the state space, assuming, of course, that A is diagonalizable. We
change coordinates as in (4.16)-(4.18). (We can think of the state vector
x(t) in 9vx1 as representing itself relative to the standard basis for
9vX1.) If {Xl,..., xn} is a basis of eigenvectors for A corresponding to the
eigenvalues {Xi,. . .,&I, we transform X(Z)  into the new coordinates y(t) by
the transformation

y(t)=S-'x(t) (4.52)

where S is the modal matrix for A:

Then, by (4.18), (4.49) becomes

sy( t) = ASy( t) + Bu( t), SY(O)  = x0

jr(t)=S-‘ASy(t)+S-h(l)

=Ay(t)+S-‘Bu(t), y(0) = s- lx()

(4.53)

(4.54)

Equation (4.54) is a set of n uncoupled first-order differential equations
which can be solved independently. The eigenvectors (or modes) of A in a
sense express natural relationships among the state variables [the elements
of x(t)] at each instant t. By using these eigenvectors as a basis, we
eliminate the interactions-the new state variables [the elements of y(t)]  do
not affect each other.
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Example 3. Diagonalizing a State Equation The state equation for the armature
controlled dc motor of (3.40) was obtained in Example 1 of Section 3.4.
It is

a)=( 8 -:)x(0+(  !f)u(‘), x(0)=(  Z;)

The eigendata for the system matrix are

x1=0, A*= -1 xl=(;) x2=( -1)

The modal matrix is its own inverse

s-1=(:,  $4

The decoupled state equation is

P(t)=(;  j)Y(‘)+( -;)u(t), y(O)=( “““a:)

(4.55)

(4.56)

(4.57)

(4.58)

Denote the new state variables [elements of y(t)] by gl(t) and g*(t). We can solve
independently for g, and g2. On the other hand, we can use (3.79) with x, A, and B
replaced by y, A, and S- ‘B, respectively. By either approach the result is

YW i ($)=i’( !e-,-sJu(s)~+(;  f-*)( “1::;) (4.59)

Then

x(t)=s-‘y(t)

(4.60)

Compare this result with (3.80).

Note that the modal matrix in Example 3 is the Vandermond matrix for
the system. Whenever the system matrix is in companion matrix form and
the poles of the system are distinct, the Vandermond matrix is a modal
matrix; then the eigenvectors of A need not be calculated, but follow
directly from the eigenvalues. See P&C 4.16.



Sec. 4.4 Nondiagonalizable Operators and Jordan Form 179

Eigenvalue Problems and Partial Differential Equations

As we found in Example 10 of Section 4.1, not all differential operators
have eigenvalues. This statement applies to both ordinary and partial
differential operators. However, the most common analytical method for
solving partial differential equations, separation of variables, generally
introduces an eigenvalue problem even if the partial differential operator
itself does not have eigenvalues. In point of fact, an analytical solution to a
partial differential equation and its associated boundary conditions is
usually obtainable only by summing eigenfunctions of a related differential
operator. See Wylie [4.18]. On the other hand, some partial differential
operators do have eigenvalues. One example is the Laplacian operator V2,
defined by

V2f(s,t)  p --$-  -
a %(s, t) + a 2f(s, t)

at2
(4.61)

together with the “many-point” boundary conditions

f(s,t)=O on I? (4.62)

where I is a closed curve in the (s, t) plane,

Exercise 3. Let I? be the boundary of the rectangle with sides at s = 0,
s = a, t = 0, and t = b. Show (by separation of variables) or verify that the
eigenvalues and eigenfunctions for v2 together with the boundary condi-
tions (4.62) are:

(4.63)

Notice that A = 0 is not an eigenvalue of (4.61)-(4.62). Therefore the
operator must be invertible, and we can expect to find a unique solution to
Poisson’s equation, V2f=u,  together with the boundary conditions of
Example 3.

4.4 Nondiagonalizable Operators and Jordan Form

Most useful linear transformations are diagonalizable. However, there
occasionally arises in practical analysis a system which is best modeled by
a nondiagonalizable transformation. Probably the most familiar example is
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a dynamic system with a pair of nearly equal poles. We use such an
example to introduce the concept of nondiagonalizability.

Suppose we wish to solve the undriven differential equation (D + l)(D +
1 + e)f = 0 with the boundary conditions f(0) = cyr and f’(0) = (Ye, where c is
a small constant. The solution is of the form

f(t)= c,e-‘+c,e-(‘+‘)’ (4.64)

Applying the boundary conditions, we find

Since e is small, this equation is ill-conditioned; it is difficult to compute
accurately the multipliers cr and c2 (see Section 1.5). The difficulty occurs
because the poles of the system (or roots of the characteristic equation) are
nearly equal; the functions e-’ and e + +‘N are nearly indistinguishable
(see Figure 4.4). We resolve this computational difficulty by replacing e-*
and e-(l+c)t  by a more easily distinguishable pair of functions; (4.64)
becomes

(4.65)

where d, =c,+c, and d2=-Ec2. Since e is small, the functions e - ’ and
te-’ span essentially the same space as e-’ and e-(‘+‘)‘;  yet this new pair
of functions is clearly distinguishable (Figure 4.4b). The “new” function

Figure 4.4. Alternative pairs of solutions to (D + l)(D + 1 + r)f = 8.
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te-’ is essentially the difference between
The boundary conditions now require

the two nearly equal exponentials.

o r  f(t)=a,e-‘+(a,+az)te-f. We have eliminated the computational
difficulty by equating the nearly equal poles of the system. When the roots
of the characteristic equation are equal, (4.65) is the exact complementary
function for the differential operator.

It is enlightening to view the differential system in state-space form. By
writing the differential equation in the form (D2 + (2 + e)D + (1 + c)I)f = 8,
we recognize from (3.63) that the state equation is

x(t)=
(

0
-(l+e)  -(i+e)  X(Q1

x(O)= ;;
( )

The nearly equal poles of the system appear now as nearly equal eigen-
values of the system matrix, A, = - l,h, = -(1 + e). We know from P&C
4.16 that the modal matrix is the Vandermond matrix;

s=(l* i2)=( 4 -(:+c))

Since this matrix is ill-conditioned, we would have computational difficulty
in finding S-l in order to carry out a diagonalization of the system matrix
A. However, if we equate the eigenvalues (as we did above), the system
matrix becomes

which is not diagonalizable. Moreover, the earlier computational difficulty
arose because we tried to diagonalize a “nearly nondiagonalizable” matrix.

The above example has demonstrated the need for dealing with nondi-
agonalizable transformations. In this section we explore nondiagonalizable
finite-dimensional operators in detail. We discover that they can be repre-
sented by simple, nearly diagonal matrices which have the eigenvalues on
the diagonal. Thus the conceptual clarity associated with the decoupling of
system equations extends, to a great extent, to general linear operators.

To avoid heavy use of the cumbersome coordinate matrix notation, we
focus throughout this section on matrices. However, we should keep in
mind that an n x n matrix A which arises in a system model usually
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represents an underlying linear operator T. The eigenvectors of A are the
coordinates of the eigenvectors of T. Thus when we use a similarity
transformation, S- ‘AS, to convert A to a new form, we are merely
changing the coordinate system for the space on which T operates.

Generalized Nullspace and Range

Unlike a scalar, a linear operator U is generally neither invertible nor zero.
It lies in a “gray region” in between; U takes some vectors to zero (acting
like the zero operator); others it does not take to zero (thereby acting
invertible). Perhaps even more significant is the fact that the nullspace and
range of U may overlap. The second and higher operations by U may
annihilate additional vectors. In some ways, the subspace annihilated by
higher powers of U is more characteristic of the operator than is nullspace

(u)-

Example 1. Overlapping Nullspace and Range. Define the operator U on 9R,3x i

by Ux p Bx, where

Then U has the following effect on a general vector in 9R3x ‘:

(k)+)~qi$ u

9,3x1 range(U) range( U2)

The vectors annihilated by various powers of U are described by

The nullspace and range of Uk for k > 2 are the same as the nullspace and range of
U2.

Definition. The generalized nullspace “JtB (U) of a linear operator U acting
on an n-dimensional space Ir is the largest subspace of Ir annihilated by
powers of U. Since V is finite dimensional, the annihilation must
terminate. Let q be that power of U required for maximum annihilation.
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We call 4 the index of annihilation for U. Then %g (U)=nullspace(Uq).
The generalized range %g (U) of the operator U is defined by a*(U)
=range(Uq).  Since multiplication by a square matrix is a linear operator,
we speak also of the generalized nullspace and generalized range of square
matrices.

In Example 1, the index of annihilation is 4 = 2. The generalized range
and generalized nullspace are

Notice that Ir is the direct sum of the generalized range and the genera-
lized nullspace of U. It is proved in Theorem 1 of Appendix 3 that any
linear operator on an n-dimensional space splits the space in this manner.
It is further shown in that theorem that both “Jt8 (U) and ?i& (U) are
invariant under U, and that U acts like a reduced invertible operator on
the generalized range of U. These facts are verified by Example 1. An
operator (or a square matrix) some power of which is zero is said to be
nilpotent; U acts like a reduced nilpotent operator on the generalized
nullspace of U.

Exercise 1. Let U be the operator of Example 1. Define U,: ag (U)
+ %g (U) by U,x 4 Ux for all x in %s (U); define UZ: %g (U)+ sg (U) by

U2x  p Ux for all x in $$ (U). Pick as bases for %g (U),  !!)&(U),  and
%,3x ’ the standard bases

%l=((;)},  %=((g),(g)),  a n d %={%%)

respectively. Show that

What are the characteristics of U, and U,? Why is the matrix of U in
“block-diagonal” form? (See P&C 4.3.)
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The characteristic polynomial of an n X n matrix A can be expressed in the
form

c(X)=det(XI-A)=(X-X,)m’(h-A,)m2*  l * (A-$,)- (4.66)

where p is the number of distinct eigenvalues, and m, + - - - + mP = n. We
call m,+ the algebraic multiplicity of 4. The eigenspace for Xi is nullspace
(A-&I).  The dimension of this eigenspace, the nullity of (A - hiI),  we
denote by ki. We call ki the geometric multiplicity of &; it is the number of
independent eigenvectors of A for 4. If the geometric multiplicity equals
the algebraic multiplicity for each eigenvalue, it is reasonable to believe
that there is a basis for w xl composed of eigenvectors for A, and that A
is diagonalizable.

If hi is deficient in eigenvectors (ki < mi), we say A is defective at hi. If A
has any defective eigenvalues, we must pick noneigenvectors to complete
the basis. We seek (mi- ki) additional independent vectors from the
subspace associated with —from the generalized nullspace of (A-&I).
Define

qJi A generalized nullspace of (A - X,1)

= nullspace(A  - X,1)” (4.67)

where 4i is the index of annihilation for (A-&I).  It is shown in Theorem 2
of Appendix 3 that

dim( pi) = mi (4.68)

We will think of all vectors in the generalized nullspace of (A-&I)  as
generalized eigenvectors of A for &. Specifically, we call x, a generalized
eigenvector of rank r for Xi if

(A-A,I)~X,=  8
(4.69)

(A-hiI)‘-‘X,#  8

If x, is a generalized eigenvector of rank r for &, then (A-&1)X, is a
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generalized eigenvector of rank r - 1; for (4.69) can be rewritten

(A-A,I)‘-‘(A-~I)Xr=  8

(A-X,I)r-2(A-A,I)Xr#  8

Thus each vector in wi is a member of some chain of generalized
eigenvectors generated by repeated multiplication with (A-&I);  the last
member of each chain is a true eigenvector (of rank 1). We think of 6211‘i  as
the generalized eigenspace for 4; pi contains precisely the mi independent
vectors associated with & that we intuitively expect in a basis for ?Rnx ‘.

In Theorem 3 of Appendix 3 we show that

nt“XLqp...@q$ (4.70)

Therefore, any bases which we pick for { wi } combine to form a basis for
9lL nX ‘. Any basis for ‘%Ji consists in m, generalized eigenvectors.
Furthermore, ki of these mi generalized eigenvectors can be true eigen-
vectors for Xi.

Jordan Canonical Form

If A is diagonalizable, we can diagonalize it by the similarity transforma-
tion S- ‘AS, where the columns of S are a basis for w x * composed of
eigenvectors of A. Suppose A is not diagonalizable. What form can we
expect for the matrix S -‘AS  if the columns of S are a basis of generalized
eigenvectors of A? It depends on the way we pick the bases for the
subspaces { pi }. We demonstrate, by example, a way to pick the bases
which results in as simple a form for the matrix S- ‘AS as we can possibly
get in the presence of multiple eigenvalues. In order that the form be as
nearly diagonal as possible, we include, of course, the true eigenvectors for
Xi in the basis for pi.

Let

(4.71)
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Then c(A)=@-2)‘(h-31,  orp=2,  A,=2, m,=5, A,=3, and m,=l.  Also,

It is apparent that

(4.72)

The indices of annihilation for (A-h,I)  and (A- A,I),  respectively, are
q1=3 a n d  q2=1. The five-dimensional subspace W,, the generalized



Sec. 4.4 Nondiagonalizable Operators and Jordan Form 187

eigenspace for A,, consists in vectors of the form (cr t2 c3 &, & O)=;  vectors
in “w;, the generalized eigenspace for A,, are of the form (0 0 0 0 0 &)‘.
[Note that (4.68) and (4.70) are verified in this example.]

Any eigenvector for h= 3 will form a basis && for ‘?$,. Clearly, a basis
6Z1  for ‘?l!, must contain five vectors. Since there are only two independent
true eigenvectors (of rank 1), three of the vectors in the basis must be
generalized eigenvectors of rank greater than 1.

Assume we pick a basis which reflects the nullity structure of (4.72); that
is, we pick two generalized eigenvectors of rank 1 for X =2, two of rank 2
for h = 2, one of rank 3 for A = 2, and one of rank 1 for X = 3. Also assume
we pick the basis vectors in chains; that is, if x is a vector of rank 3 for
A = 2, and x is in the basis, (A - 21)x  and (A - 2I)2x will also be in the basis.
We express both the nullity structure and chain structure by the following
subscript notation:

(4.73)

This nullity and chain structure is expressed mathematically by the follow-
ing equations:

(4.74)

We propose the union of the sets &?,. as a basis, denoted & , for %6x ‘. It
can be shown that a set of vectors of this form can be constructed and is a
basis for 9?Lsx ’ (see Friedman [4.7]). Using the basis 6?, we form the
change of coordinates matrix as in (4.17):

S=(X,  ; X12  : Xl3  : X2 : X22 i X3) (4.75)

As in (4.18), this change of coordinates transforms A into the matrix
A= S- ‘AS.  Recasting this similarity relation into the form AS = SA, we
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recognize that

(4.76)

The form of A is as simple and as nearly diagonal a representation of A as
we can expect to obtain. The eigenvalues are on the diagonal. The
off-diagonal l’s specify in a simple manner the “rank structure” or “chain
structure” inherent in A.

It is apparent that whenever the columns of S form a basis for wx ’
composed of generalized eigenvectors of A, and these basis vectors consist
in chains of vectors which express the nullity structure of A as in (4.73)-
(4.74), then S- ‘AS will be of the simple form demonstrated in (4.76). It
will consist in a series of blocks on the diagonal; each block will be of the
form

By analogy with (4.16)-(4.18) in our discussion of diagonalization, we call
S the modal matrix for A. We also call the near-diagonal matrix A the
spectral matrix for A (or for the underlying transformation T). The spectral
matrix is also referred to as the Jordan canonical form of A. Each square
block consisting in a repeated eigenvalue on the diagonal and an unbroken
string of l’s above the diagonal is called a Jordan block. There is one
Jordan block in A for each chain of generalized eigenvectors in the basis.
The dimension of each block equals the length of the corresponding chain.
Thus we can tell from the nullity structure (4.71) alone, the form of the
basis (4.73) and the precise form of A (4.76). Observe that the Jordan form
is not unique. We can choose arbitrarily the order of the Jordan blocks by
choosing the order in which we place the generalized eigenvectors in the
basis.
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Example 2. Nullities Determine the Jordan Form Suppose A is a 9 x 9 matrix for
which

~(h)=det(A1-A)=(X-Ai)~@-X~)~(A-h,)

nullity(A-h,I) -3

nullity(A-AII)2= 5

nullity(A-X,I)3=6

nullity(A - X21)  = 1

nullity(A - h,I)2 = 2

nullity(A - X31)  = 1

From (4.68), the factored characteristic polynomial, and the nullities stated
above, we know that

mi=dim(U,)=6,  ki=3

mz=dim(W2)=2,  k,= 1

m,=dim(%s)=  1, k,= 1

It follows that q1 =3, 42=2, and 43= 1; higher powers than (A- hiI>’  do not have
higher nullities. The form of the basis of generalized eigenvectors of A which will
convert A to its Jordan form is

The Jordan form of A is
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Bases of Generalized Eigenvectors

We now generate a specific basis for Xsxl which is composed of genera-
lized eigenvectors of the matrix A of (4.71). That is, we find a basis of the
form (4.73) by satisfying (4.74). We use (4.69) to find the highest rank
vector in each chain. We first seek the vector xi3 of (4.73). All five of the
basis vectors in &i satisfy (A - 21)3x  = 8. But only xi3 satisfies, in addition,
(A - 21)2x#  8. Therefore, we let xi3 = (ci c2 c3 cq c5 O)T, the general solution
to (A - 21)3x  = 9. Then

(4.77)

or c3 # 0. Thus any vector in %6x ’ which has a zero sixth element and a
nonzero third element is a generalized eigenvector of rank 3 for X = 2. We
have a lot of freedom in picking xi3. Arbitrarily, we let c3= 1, and
c EC EC cc1 2 4 5 = 0. Then

x13=  (Ij 3 x,~=(A-~I)x,,=  jlj , +=(A-21)x,,=  [I

(4.78)

Notice that in (4.77) we looked at the eigenvector, xi = (A- 21)2x,3,  at the
end of the chain in order to determine the vector xi3 at the head of the
chain.

To find the remaining vectors of 6?i, we look for the vector xZ2 at the
head of the second chain. By (4.69), all vectors (d, d2 d3 d4 d, d6>’ of rank 2
or less satisfy
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or d6 = d3 = 0. The vectors which are precisely of rank 2 also satisfy

(4.79)

Again we are looking at the eigenvector at the end of the chain as we pick
the constants. We must pick d2 and d,, not both zero, such that x2 is
independent of the eigenvector xi selected above (i.e., d2 = 1, d, = 0 will not
do). Arbitrarily, we let d, = 1, d, = d, = d, = 0; d3 is already zero. Thus

(4.80)

The five vectors of (4.78) and (4.80) satisfy (4.73), and they are a basis for
%,. The equation (A - 3I)x= 0 determines the form of eigenvectors for
A= 3: x = (0 0 0 0 0 b&)=’  We arbitrarily let b6 = 1 to get

a basis for w,. By (4.76), this basis of generalized eigenvectors generates
the modal matrix S:
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The spectral matrix is

(4.81)

as we concluded earlier in (4.76).
Clearly, the chains of generalized eigenvectors which make up a basis

are not unique. In fact, many different chains end in the same true
eigenvector. It can be shown that any set of chains which possesses the
structure of (4.73)-(4.74) will constitute a basis for s6”’ if the eigenvec-
tors at the ends of the chains are independent. Because of this fact, we
might be led to find the true eigenvectors xi and x2 first, and then find the
rest of the basis by “backing up” each chain. This approach need not
work. The vectors x1 = (1 0 0 1 0 0)T and z2 = (l 0 0 -1 0 0)T are
independent eigenvectors of A. However, they are both of the form (4.79)
of eigenvectors at the end of chains of length 2. Neither is of the form
(4.77) of an eigenvector at the end of a chain of length 3. Although these
two eigenvectors can be used as part of a basis for X6” *, the basis cannot
be of the form (4.73).

Exercise 2. Attempt to determine a basis for %6x1 which is of the form
(4.73) and yet includes the eigenvectors xi = (1 0 0 1 0 0)T and x2= (1 0 0
-1 0 0)T.

Procedure for Construction of the Basis

We summarize the procedure for generating a basis of generalized eigen-
vectors. Suppose the n x n matrix A has the characteristic polynomial
(4.66). Associated with the eigenvalue hi is an mi -dimensional subspace (Vi
(Theorem 1, Appendix 3). This subspace contains ki independent eigen-
vectors for 4. Assume the basis vectors are ordered by decreasing chain
length, with each chain ordered by increasing rank. We denote this basis
for pi by

(4.82)
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where 4 is the length of the jth chain for hi and qi is the index of
annihilation for (A-&I);  thus qi is the length of the longest chain. The
nullities of various powers of (A-Q determine the structure of (4.82) just
as (4.73) is determined by (4.72). The procedure for construction of the
basis 6?i is as follows:

1. Determine the form of vectors of rank qi or less by solving (A-
XiI)“X= 8.

2. Observe the true eigenvectors (A-IQ)%- ‘x; choose from the vectors
found in (1) a total of (nullity(A-&I)*-  nullity(A-&I)“-  *) vectors which
lead to independent eigenvectors. These vectors are of rank qi, and are the
highest rank generalized eigenvectors in their respective chains.

3. Multiply each vector chosen in (2) by (A-&I),  thereby obtaining a
set of generalized eigenvectors of rank(q,.  - l), which is part of the set of
basis vectors of rank (e - 1).

4. Complete the set of basis vectors of rank(q,  - 1) by adding enough
vectors of rank (4i - 1) to obtain a total of (nullity(A -hiI)%- ’ - nullity(A -
h,I)qm2) vectors which lead to independent eigenvectors. This step requires
work equivalent to steps I and 2 with qi replaced by (qi - 1). The vectors
which are added are highest rank vectors in new chains.

5. Repeat steps 3 and 4 for lower ranks until a set of ki eigenvectors is
obtained.

Because wxl=%,@..* @wp, we can obtain a basis & for Xnx ’
consisting of generalized eigenvectors of A by merely combining the bases
for the subspaces %,. :

@ = ( @,,  . . . , @$}

Proceeding as in the example of (4.71), we can use the basis & to convert
A to its nearly diagonal Jordan canonical form A.

Example 3. A Basis of Generalized Eigenvectors. Let

The process of finding and factoring
We merely state it in factored form:

the characteristic polynomial is complicated.

c(A)=det(hI-A)=(A-3)‘(X-2)
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Therefore, X1  = 3, ml = 5, X, = 2, and m2 = 1. Furthermore,

Clearly, nullity(A-3I)=3  and nullity(A-31)2=5=  ml. It is also apparent that
nullity(A- 31j3 = 5. Thus k, = 3, ql = 2, and dim{ a,) = 5. Moreover,

(A-21)=

and nullity(A - 21) = 1. As a result, k, = 1, q2=1,  and dim(GW2)=  1. [Note that
dim (‘Xi) + dim (Gzlr,) = dim ( S6” ‘).I From the nullity information above, we know
that the Jordan form of A is

We find a basis 4? for 9lL6x ’ consisting in chains of generalized eigenvectors with
the following structure:

We first seek xl2 and x22, the vectors at the heads of the two longest chains. All
generalized eigenvectors for A= 3 satisfy (A- 3I)%= 8. The solutions to this equa-
tion are of the form x=(ci c2 c3 c4 c5 QT. The vectors of rank 2 also satisfy

(A- 31) (J =&--c,j  ( i)+cc4-c3j  (/) # (g

We are looking at the true eigenvector at the end of the most general chain of
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length 2. We must select two different sets of constants in order to specify both xl2
and x22. Furthermore, we must specify these constants in such a way that the
eigenvectors xl and x2 (which are derived from xl2 and xz2,  respectively) are
independent. It is clear by inspection of the above equation that precisely two
independent eigenvectors are available. By choosing c2 = 1 and ct = c3 = c4 = c5 = 0,
we make

x12 = and xi=

By selecting c4 = 1 and cl = c2 = c3 = c5 = 0 we get

Of course, many other choices of xl2 and x22 would yield the same xl and x2.
Furthermore, other choices of xl and x2 would also have been appropriate. We now
seek x3, a third true eigenvector for A= 3 which is independent of xl and x2. The
eigenvectors for A = 3 satisfy (A- 31) = 8. From the matrix A- 31 we recognize that

Cl = c2 and c3 = c4, as well as c5 = c6 for all eigenvectors for x = 3. Letting cl = c2= c3
=c4=0  and c5=c6=  1, we obtain

an eigenvector independent of the other two. It is a simple matter to determine x4,
an eigenvector for A-2; we choose

Exercise 3. Continuing Example 3, let

Show that A= S-‘AS.
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Generalized Eigenvectors in Function Spaces

Our discussion of generalized eigenvectors has been directed primarily
toward matrices and, through matrices of transformations, toward any
linear operator on an n-dimensional vector space. However, the concepts
apply also to transformations on infinite-dimensional spaces. We have
already noted that for the operator D acting on the space &?‘(O, l), any
scalar X is an eigenvalue, and that exr is a corresponding eigenfunction.
Furthermore, there is no other eigenfunction for X which is independent
from —the geometric multiplicity of X is one.

We have not to this point explored the generalized nullspace for X. In
point of fact, powers of (D-AI) do annihilate additional functions. Specifi-
cally, (D-AI)’  annihilates the r-dimensional subspace of functions of the
form cleh’ + c,teh’ + c,t2ex’  + . 6 - + c,t r-‘eX’ The annihilation does not.
terminate as r increases; the index of annihilation is infinite. It is apparent
that the following functions constitute an infinite chain of generalized
eigenfunctions of D for the eigenvalue X:

e”, tehr, 12ht 1pe, F t3e”‘, . . . (4.83)
. .

Generally, differential operators are accompanied by boundary condi-
tions. The eigenvalues of a differential operator L (with its boundary
conditions) are the roots of the eigenvalue equation (4.40), det(B(A))=O.
As in (4.41), the eigenfunctions corresponding to the eigenvalue hi are
linear combinations of a set of fundamental solutions for L, where the
multipliers in the linear combination satisfy

The algebraic multiplicity of the eigenvalue hi is the multiplicity of & as a
root of the eigenvalue equation. The nullity of B(Xi) equals the number of
independent eigenfunctions of L for the single eigenvalue Ai; we call this
number the geometric multiplicity of 4. It can be shown that ki < mi, just as
we found for matrices (see Ince [4.10]). In the above example, where no
boundary conditions were applied to the operator D, these definitions do
not apply. However, it seems appropriate in that case to assume that
m,=oo  a n d  ki= 1 for each scalar &, since there is an infinite string of
generalized eigenfunctions associated with each Xi. See P&C 4.12d for a
differential operator (with boundary conditions) which possesses multiple
eigenvalues.
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The Minimal Polynomial
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We showed in (4.15) that if an n X n matrix A has distinct roots, its
characteristic polynomial in A is 8; that is, c(A) = (A -A$).  * . (A-&I)  = 8.
We are now in a position to extend this result to all square matrices. The
fact that wxl= %,CB... CB wP is proved in Theorem 3 of Appendix 3.
By definition (4.67), (A -hI)*  annihilates qKi. Furthermore, ~j is in-
variant under (A - &.I)$  if j # i. Therefore, the matrix

(A - x,1)“.  . - (A - $,I>”

annihilates the whole space 4m”” ‘. We call

the minimal polynomial for A. The minimal polynomial in A satisfies

m(A) k (A-X,1)“* * * (A-$,I)“=9 (4.84)

If r 4 4, + * * * + qP, then m(A) = A’+ alA’-  * + . . l + a,I, an rth-order
polynomial in A. In fact, m(A)  is the lowest-order polynomial in A which
annihilates the whole space. It is apparent that polynomials in A which
include higher powers of (A-&I)  also annihilate the space. For instance,
recalling that mi > qi, the characteristic polynomial in A satisfies

c(A)=(A-h,I)“‘*..  (A-~I)“=@ (4.85)

for any square matrix A. Equation (4.85) is the Cayley-Hamilton theorem.
Equations (4.84) and (4.85) find considerable use in computing. See, for
example, Krylov’s method (4.23) for finding the characteristic equation;
see also the computation of functions of matrices via (4.108).

Example 4. A Minimal PolynomiaL Let

A=

Then p = 1, hi= 1, and c(A)=@- 1)3.  Since

and (A-1)‘=8,  4i=2, and m(h)=@-  1)2.  It is apparent that c(A)=m(A)=e.
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4.5 Applications of Generalized Eigendata

The concept of the Jordan form of a matrix is useful partly because it is
mnemonic—it helps us remember and categorize the fundamental proper-
ties of the matrix (or the linear transformation which the matrix repre-
sents). The diagonal form of a diagonalizable matrix is merely a special
case of the Jordan form. Whether an operator is diagonalizable or not, a
complete eigenvalue analysis-obtaining eigenvalues and eigenvectors—is
a computationally expensive process. Thus computational efficiency alone
does not ordinarily justify the use of spectral decomposition (decomposi-
tion by means of eigenvectors) as a technique for solving an operator
equation. However, our reason for analyzing an operator is usually to gain
insight into the input-output relation which it describes. Spectral analysis
of a model does develop intuitive insight concerning this input-output
relation. In some instances a basis of eigenvectors is known a priori, and it
need not be computed (e.g., the symmetrical components of (4.28), the
Vandermond matrix of P&C 4.16, and the complex exponential functions
of Fourier series expansions). In these instances, we gain the insight of
spectral decomposition with little more effort than that involved in solu-
tion of the operator equation.

Nearly Equal Eigenvalues

True multiple eigenvalues rarely appear in physical systems. But nearly
equal eigenvalues are often accompanied by near singularity of the linear
operator and, therefore, by computational difficulty. This difficulty can
sometimes be avoided by equating the nearly equal eigenvalues and
computing generalized eigenvectors in the manner described earlier.

Example 1. Nearly Equal Eigenvalues. In the introduction to Section 4.4 we
described a dynamic system with nearly equal poles: (D + 1) (D + 1 + E)f = 8 with
f(0)  = ai and f’(0) = (Ye. As we found in our earlier discussion, the near equality of
the poles causes computational difficulty which we remove by equating the poles.
But equating the nearly equal poles is equivalent to replacing the nearly dependent
set of solutions {e-‘,  e --(I++1 by the easily distinguishable pair of functions
{ e - ‘, te - ’ }. Since the poles are made identical (E = 0), the state-space representation
of the system becomes i= Ax, where

A= -‘:( -: 1
(4.86)

This system matrix is not diagonalizable. The pair of vectors x1 = (1 -l)T and
x12=(+ i)’ is a two-vector chain of generalized eigenvectors of A for the single
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eigenvalue X = -1. This pair of vectors is a basis for the state space. Therefore, the
matrix

(4.87)

is a modal matrix for the system. Note that S is well conditioned. There will be no
computational difficulty in inverting S. The nondiagonal spectral matrix for the
system is

(4.88)

Example 1 demonstrates the practical value of the concepts of genera-
lized eigenvectors and Jordan form. Even though these concepts are
important, the full generality of the Jordan form is seldom, if ever, needed.
We are unlikely to encounter, in practice, a generalized eigenspace more
complex than that characterized by the single two-vector chain of genera-
lized eigenvectors of Example 1. In Example 1, the system matrix A is
nondiagonalizable only for e = 0. We focused on this nondiagonalizable
case because it characterizes the situation for small e better than does the
true barely diagonalizable case. * It seems that diagonalizability is the rule
in models which represent nature, except at the boundary between certain
regions or at the limit of certain approximations. In Example 1, diagona-
lizability broke down completely only at the boundary between the two
regions defined by E > 0 and e < 0. Yet from a practical point of view the
boundary is a fuzzy, “small E” transition region.

Pease [4.12, p. 81] presents a spectral analysis of the transmission of
electrical signals through a 2-port system. His analysis illustrates the way
that nondiagonalizability characterizes the boundary between different
regions. The 2 X2 system matrix which describes the transmission of
signals through the 2-port network is diagonalizable for all sinusoidal
signals except signals at the upper or lower cutoff frequencies. At these two
frequencies the spectral analysis breaks down because of nondiagonaliza-
bility of the matrix of 2-port parameters. However, the analysis can be
salvaged by using generalized eigenvectors. Even for frequencies near the
cutoff frequencies, the spectral analysis is aided by the use of generalized
eigenvectors because of the near nondiagonalizability of the system matrix.

* Forsythe [4.6] explores other problems in which accuracy is improved by treating near
singularity as true singularity.
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Application of Jordan Form—Feedback Control

The most common model for a linear time-invariant dynamic system is the
state equation (3.67):

k(t)=Ax(t)+Bu(t), x(0) given (4.89)

where x(r) is the state (or condition) of the system at time t, and u(t) is the
control (or input) at time t; A and B are arbitrary a n d
matrices, respectively. In (3.79) we inverted the state equation, obtaining

x(t) = eAtx(0) + ~teA(‘-g)B~(s)di
0

(4.90)

where the state transition matrix (or matrix exponential) e*’  is defined as
the sum of an infinite series of matrices (3.72).

Equations (4.89) and (4.90) are generalizations of the simple first-order
linear constant-coefficient differential equation

i(t) = af(t) + h(t), f(0) given (4.91)

which has the solution

f(t) = eutf(0)  + Jt”(‘-‘)bu(s)ds
0

Another approach to the solution of (4.91) is through frequency domain
analysis.* Taking the Laplace transform of (4.91), we obtain

SF(~) -f(O) = aF(s) + NJ(s)

w = (&)w + (&Jw (4.92)

where the symbols F and U are the Laplace transforms of f and u,
respectively. The function is known as the transfer function of the
system (4.91). The pole of the transfer function (s= a) characterizes the
time response of the system. In fact, the transfer function is the Laplace
transform of the impulse response of the system, ear.

The relationships among the variables in a linear equation can be
represented pictorially by means of a signal flow graph. A signal flow

*For an introduction to frequency domain analysis, see Appendix 2. Refer also to Schwartz
and Friedland [4.16] or DeRusso, Roy, and Close [4.3].
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graph for (4.91) is shown in Figure 4.5. The variables in the system are
associated with nodes in the graph. The arrows indicate the flow of
information (or the relationships among the variables). The encircled
symbols contained in each arrow are multipliers. Thus the variable f(t) is
multiplied by a as it flows to the node labeled i(t). The symbol 1/s
represents an integration operation on the variable f (multiplication of the
Laplace transform of f by l/s yields the Laplace transform of f). Nodes
are treated as summing points for all incoming signals. Thus the node
labeled i(t) is a graphic representation of the differential equation (4.91).
The primary information about the system, the position of the pole, is
contained in the feedback path. The signal flow graph focuses attention on
the feedback nature of the system represented by the differential equation.

We can also obtain a transformed equation and a signal flow graph
corresponding to the vector state equation (4.89). Suppose the state
variables [or elements of x(t)] are denoted by fi(t), i= 1,. . .,n. Then we
define the Laplace transform of the vector x of (4.89) by

(4.93)

Exercise 1. Show that l? (Ax)  =A c(x) for any n X n matrix A.

Using definition (4.93) and Exercise 1, we take the Laplace transform of
(4.89):

sX(s)-x(O)=AX(s)+BU(s)

Solving for X(s), we obtain the following generalization of (4.92):

X(s)=(sI-A)-‘x(O)+(sI-A)-‘BU(s) (4.94)

The matrix (sI- A)-* is called the matrix transfer function for the system
represented by (4.89). The poles of the transfer function are those values of

Figure 4.5. Signal flow graph for (4.91).
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s for which (sI-A) is singular. Therefore, the poles of the system are the
eigenvalues of the system matrix A, a fact which we discovered for a
restricted class of system matrices in (4.51). Because of the formal similar-
ity between the results for the first-order system equation and for the
n-dimensional state equation, we suspect that

(4.95)

Equation (4.95) is easily verified by comparing (4.90) and (4.94). We can
think of the state transition matrix eAt as a matrix impulse response [see
(3.77)-(3.78)]. The vector signal flow graph is formally the same as that for
the scalar equation (Figure 4.6). However, individual nodes now represent
vector variables. Again, the feedback nature of the system is emphasized
by the flow graph model. The feedback path in Figure 4.6 contains all the
information peculiar to the particular system, although the poles of the
system are stated only implicitly as the eigenvalues of A. The graph would
be more specific if we were to use a separate node for each element of each
vector variable; however, the diagram would be much more complicated.
We draw such a detailed flow graph for a special case in Figure 4.8.

Figure 4.6. Vector signal flow graph for (4.89).

In order to obtain as much insight concerning the feedback nature of the
state equation as we did for the scalar case, we change to a coordinate
system which emphasizes the poles of the system. Let x = Sz, where S is an
invertible n x n matrix. Then z(t) describes the state of the system relative
to a new set of coordinates, and (4.89) becomes

i(t)=S-‘ASz(t)+S-‘Bu(t), z(0) = S- ‘x(0) given (4.96)

We choose S so that S- ‘AS = A, the spectral matrix (or Jordan form) of A.
Thus S consists in a basis for the state space composed of generalized
eigenvectors of A as in (4.76). The new signal flow graph is Figure 4.7.

In order to see that this new signal flow graph is particularly informa-
tive, we must examine the interconnections between the individual ele-
ments of z(t). We do so for a particular example.
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Figure 4.7. Signal flow graph for (4.96).

Example 2. A Specific Feedback System. Let the system and input matrices be

It is easily verified that the Jordan form of A is

and that this nearly decoupled spectral matrix can be obtained using

s=( / 8 d) s-q-g 8 A)

There is only one element u(t) in the input vector (B is 3 X 1). Letting fi and Vi
represent the elements of x and z, respectively, the flow graph corresponding to
Figure 4.7 can be given in detail (Figure 4.8). We will refer to the new variables
Vi(t) as the canonical state variables [as contrasted with the state variables fi(t)].

Figure 4.8. A detailed signal flow graph.
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In the flow graph of Figure 4.8 the vector system is viewed as a set of nearly
uncoupled scalar systems. The poles of the system (the eigenvalues of A) appear in
the main feedback paths in the graph. The only other feedback paths are those
corresponding to the off-diagonal l’s in A. It is these off-diagonal l’s that give rise
to nonexponential terms (te2’) in the response of the system. Specifically, if the
input function u is zero,

The extra term in v1 arises because the scalar system which determines v1 is driven

by v2.

It is evident that the Jordan form of a system matrix is a convenient
catalog of the information available concerning the system. The modal
matrix S describes the interconnections between the canonical variables
and the state variables. Suppose the above system is undriven [u(t) = 0] and
the initial values of the canonical variables are v,(O) =v,(O) = 0 and ~~(0)
= 1. Then vl(t)=v2(l)=0  and v3(t)= e .2t The corresponding output vector
x(t) is

x(t)=( i!!:$)=( Ij=e2*(a)

At each instant, the output vector is proportional to the third column of S,
one of the eigenvectors of A. Under these circumstances, we say only one
“mode of response” of the system has been excited. There is one mode of
response corresponding to each canonical variable; corresponding to the
variable vi(t) is the mode where x(t) is proportional to the i  column of S.

We call the system represented by (4.89) controllable if there is some
input u(t) that will drive the system [z(t) or x(t)] from one arbitrary state to
another arbitrary state in a finite amount of time. It should be apparent
from Example 2 that in order to be able to control all the canonical state
variables in the system, the input variables must be coupled to the inputs
of each chain in the flow graph, namely, if*(t) and ir3(t) in Figure 4.8. If in
the above example B = (0 1 0)T, u(t) is not coupled to (and has no
influence on) v3( t). On the other hand, if B = (1 0 0)T, the input is coupled
to all the canonical state variables; the system appears to be controllable.
However, the variables v,(t) and v3(t) respond identically to —they are
associated with identical poles. As a result, v2(t) and vj(t)  cannot be
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controlled independently. In point of fact, we cannot consider the single
input system of Example 2 fully controllable regardless of which input
matrix B we use. A system can be fully controlled only if we can influence
identical subsystems independently. In Example 2, the use of a pair of
inputs with the input matrix

yields a controllable system.
In physical systems we may not be able to measure the state variables

directly. Perhaps we can only measure variables { gi(t)}  which are related
to the state variables by

y(t)  = Cx(t)

where y(t) = (gi(t) = . . g,(t)’  and C is p x n. The matrix C would appear in
the flow graph of Figure 4.8 as a set of connections between the state
variables {fi(t)} and the output (or measurable) variables {gi(t)}.  Clearly,
we cannot fully determine the state of the system from the measurements
unless the output variables are coupled to the output of each chain;
namely, vi(t) and v3(t). Furthermore, in this specific example, measure-
ment of a single output variable gi(t)  is not sufficient to distinguish
between the variables v2( t) and v3(f),  because their behavior is identical. In
general, we call a system observable if by observing the output y(t) of the
undriven system for a finite interval of time, we get enough information to
determine the initial state x(O). See Brown [4.2] or Zadeh and Desoer [4.20]
for convenient tests for controllability and observability.

4.6 Functions of Matrices and Linear Operators

In previous examples we have encountered several functions of square
matrices; namely, Ak, eAr, and (~1 -A)- ‘. In later sections we encounter
additional matrix functions. The actual computation of such functions of
matrices is a problem of practical importance, especially in the analysis of
dynamic systems. In this section we develop a definition for functions of
matrices which applies in essentially all situations where we might expect
such functions to be meaningful. The definition applies to diagonalizable
and nondiagonalizable matrices, and also to the linear operators that these
matrices represent. (Functions of diagonalizable linear operators on infin-
ite-dimensional spaces are considered in Section 5.5.) Much of this section
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is devoted to the development of techniques for analyzing and evaluating
functions of matrices.

Two of the matrix functions mentioned above, Ak and ($1  -A)-‘,  are
defined in terms of ordinary matrix operations-addition, scalar multipli-
cation, and inversion. The third matrix function, e**,  represents the sum of
an infinite polynomial series in A, as defined in (3.72). This latter function
suggests an approach to the definition of general functions of the square
matrix A. Polynomial functions of matrices are clearly defined; they can
be evaluated by matrix multiplications and additions. Suppose the non-
polynomial function f can be expanded in the power series*

f(A)=  5 akXk
k-0

One reasonable way to define f (A) is by using the same power series in A,

f(A) a 5 a,Ak
k=O

(4.97)

Each term of the series can be evaluated using ordinary matrix operations.
Of course, the definition (4.97) is useful only if the series converges and we
can evaluate the sum of the series. We explore the question of convergence
of (4.97) shortly. The essential properties of A are displayed in its spectral
matrix A and its modal matrix S. Substituting A= SRS-’ into (4.97) we
find

about the origin. The matrix
or Laurent series expansion

*The power series used in (4.97) is a Taylor series expansion
function could have been defined in terms of a Taylor series
about some other point in the complex plane. See Wylie [4.18] a discussion of such power
series expansions.
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(We are able to take the similarity transformation outside the infinite sum
because matrix multiplication is a continuous operator; see Section 5.4.)
Thus if f(A) as given in (4.97) is well-defined, then evaluation of f(A)
reduces to evaluation of We again apply the power series definition
to determine If A is diagonalizable, then A is diagonal, and

(4.99)

On the other hand, if A is not diagonalizable, f(A)  differs from (4.99) only
as a result of the off-diagonal l’s in A. By the same logic, we can express
f(A)  as

(4.100)

where Jj is the ith Jordan block in A. Thus calculation of reduces to
the determination of
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We explore f (Ji) by means of an example. For a 4 x 4 Jordan block we
have

Observe that in each matrix the element which appears on the j th
“superdiagonal” is (l/j!) times the jth derivative (with respect to A) of the
element on the main diagonal. Thus, continuing the example,

f(J) = c akJk
k

Relying on the term-by-term differentiability of power series (Kaplan [4.11,
p. 353]), we take all derivatives outside the summations to obtain

(4.101)
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Corresponding to each Jordan block Ji of A (with eigenvalue Xi),  f(A)
contains a block which has f (Ai) on the main diagonal. The upper elements
in the block are filled with appropriately scaled derivatives off (evaluated
at Ai). The elements on the jth super-diagonal are

1 d’f(Ai>--
j! dAj

Surprisingly, f(A)  is not in Jordan form.

Example 1. Matrix Inversion as a Matrix Function. Suppose f(A) = 1 /A. If A is
an invertible n x n matrix, we use (4.98) and (4.99) to find

A-‘=SA--‘S-1

Suppose

Then S=S-‘=I,  and

It is clear that A- ’ does not exist if zero is an eigenvalue of A. The function l/A is
not defined at A = 0, and (4.99) cannot be evaluated.

Example 2. A Function of a Nondiagonalizable Matrix. As in Example 1, if
A=SAS-l,A-l=SA-lS-l. Suppose

Letting f(X)= l/A we find that f’(A)= - l/A* and f “(h)/2!  = 1/A3.  Thus, using
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(4.101) for each Jordan block,

An Alternative Definition

Although we have used (4.97) to define f(A), we have used (4.98) and
(4.100) to perform the actual evaluation of f(A). [Note that (4.99) is a
special case of (4.100).] It can be shown that our original definition of f(A),
(4.97), converges if and only if f is analytic in a circle of the complex plane
which contains all the eigenvalues of A.*  Yet (4.98) and (4.100), which we
derived from (4.97), provide a correct evaluation of f(A) in cases which do
not satisfy this criterion. For example,

ifA=(i -i) then A-‘= d -y
( 1

The function f(A) =h - ’ is not analytic at X = 0. No circle encloses the
points 2 and -2 while excluding the point 0, yet (4.98) and (4.99) provide
the correct inverse. It is apparent that (4.98)-(4.101) provide a more general
definition of f(A) than does (4.97).

The definition (4.98)-(4.101) applies to all functions f and matrices A for
which f(Ji) can be evaluated for each Jordan block Ji. If A is diagonaliz-
able, this evaluation requires only that f be defined on the spectrum; that is,
that f be defined at all the eigenvalues of A. If A is not diagonalizable, the
evaluation of f(A) requires the existence of derivatives of at some of the
eigenvalues of A. Thus the definition of f(A) given in (4.98)-(4.101)
certainly applies to all f and A for which f is not only defined on the
spectrum of A but also analytic at those eigenvalues of A for which A is
defective (i.e., for which the corresponding Jordan blocks Ji are larger than
1 x 1). In every case where the definition (4.97) applies, the evaluation of

f(A) which results is identical to the evaluation provided by (4.98)-(4.101).
As illustrated in (4.101), the actual evaluation of f(A) leads to evaluation

of

f(hi),f’(hi),  . . .p fqi-  “@i)9 i = ” ’ * ’ ”

*Rinehart [4.14]. A function is said to be analytic at h, if it is differentiable
of a complex variable h) in a neighborhood of h, (see Wylie [4.18]).

(as a

(4.102)

function
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We refer to this set of evaluations as evaluation on the spectrum of A. It is
apparent that any two functions that have the same evaluation on the
spectrum lead to the same function of A.

Exercise 1. Compare f(A)  and g(A) for f(A)  4 4A- 8, g(X)  i A2 -4, and

Equations (4.98)-(4.101) provide a suitable definition of f(A) for most
choices of f and A. Rinehart [4.14] shows that with this definition of f(A)
and with single-valued functions g and h for which g(A) and h(A) exist,

If g or h is not single valued, then the matrix f(A) depends upon which
branches of g and h are used in the evaluation on the spectrum of A. From
these properties it follows that scalar functional identities extend to
matrices. For example, sin2(A) + cos’(A)  = I and elnA = A.

The Fundamental Formula for Matrices

Let A be a 3 X 3 diagonalizable matrix with only two distinct eigenvalues;
that is, c(A)  = (X - h1)2(h - XJ, and the eigenspace for X, is two-dimensional.
Suppose also that the function f is defined at h, and h,. Then we can
express f(A)  in the manner of Example 1:

(

f(x,)  O O

f(A)=  O f(h) O
0 0 f (x2) )

In order to express f(A)  in a manner that clearly separates the essential
properties of A from those off, we introduce the following notation. Let
Ei be a matrix which has a one wherever f(A)  has f (Ai), and zeros
elsewhere. (The second subscript, “0,” is used only to provide consistency
with the nondiagonalizable case introduced later.) Specifically,
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Then we can express by

f (n> =f &)Gl +f (A,)eo

S i n c e  f(A)=  S S-1 to obtain f(A) we simply perform the similarity
transformations EF, = SE$,S-  ’ to obtain

f(A) =f (w%+f (~,)%I

It is evident that we can express any well-defined function of the specific
matrix A  by means of this formula. Once we have the matrices E$,,
evaluation of requires only evaluation off on the spectrum of A. By a
derivation similar to that above, we can show that for any n x n diagonaliz-
able matrix A and any f defined on the spectrum of A, f(A) can be
expressed as

f(A>= 5 f(Ai)Ei (4.103)
i=l

where p is the number of distinct eigenvalues of A. We call (4.103) the
fundamental formula for f(A). The matrices E$ are called the constituent
matrices (or components) of A. (We drop the superscript A when confusion
seems unlikely.) Notice that (4.103) separates the contributions of and A.
In fact, (4.103) is a satisfactory definition of f(A), equivalent to (4.98-
(4.99).

The definition of the fundamental formula (4.103) can be extended to
nondiagonalizable matrices as well. Suppose f is analytic at hi and defined
at X2.  Then we can write for the matrix A of Example 2 as

In order to separate the essential properties of A from those off, we define
Eh, to be a matrix which has a one wherever has (1 /k!) f ‘k’(hi), k = 0,
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1, and 2, and zeros elsewhere. Thus
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Then we can express f(A)  by

f “(4)
f(A) =f (QEk +f’(h)E:: + 7% +f (~2%.

As in the diagonalizable case, we perform the similarity transformations
EC = SE$- ’ to obtain

f”(h)
f(A)  =f (w;o +f’(h)E;,  + TE;, +f @2Eo.

We can compute any well-defined function of the matrix A of Example 2
by means of this formula. By a derivation similar to that above, we can
show that for any n x n matrix A and any f which is defined on the
spectrum of A and analytic at eigenvalues where A is defective, f (A) can be
expressed as

(4.104)

where p is the number of distinct eigenvalues of A, and qi is the index of
annihilation for Xi [see (4.66) and (4.67)]. Equation (4.104) is the general
form of the fundamental formula for f (A). Again, we refer to the matrices
Ei as constituent matrices (or components) of A .*

*The constituent matrices are sometimes defined as Ei/j!.
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The fundamental formula can be used to generate a spectral decomposi-
tion of A. If we let f(x) = X in (4.104), we obtain

A= 5 (h,E;o+E;J (4.105)
i = 1

If A is diagonalizable, qi = 1 for each i, and (4.105) becomes

A = i Y&Et0
i = 1

It is apparent that in the diagonalizable case E$, describes the projection
onto the eigenspace associated with Ai. That is, if x = xi + . . . + xp, where xi
is the component of x in the eigenspace for Xi, then Xi =E$K and A acts
like Xi on xi. In the nondiagonalizable case, EFo  describes the projection
onto the generahzed eigenspace for hi. Furthermore, Ek acts like the
nilpotent operator (A-X,Qk  on the generalized eigenspace for Ai;  that is,
EA, = (A - h,IjkE;.

Exercise 2. Verify that the matrices Efo and EC0 of Example 2 satisfy the
properties (4.3) for projectors. Show also that EA, = (A - h,I)kE~o.

Functions of Linear Operators

The fundamental formula also serves to define functions of the underlying
operator represented by A. If T operates on an n-dimensional vector space
Ir, if Pi0 is the operator which projects onto (?gi (the generalized eigen-

space for &) along Zjzi Wj, and if Pik b (T - ~J.I)~P,,  then the fundamental
formula for f (T) is

(4.106)

If ‘% is a basis for ‘Ir and we define A k [T],,, then E$=[P,],,.  As a
result, (4.104) and (4.106) require that [f(T)],,  = f ([T],,). For diagona-
lizable T (T for which there exists a basis for Ir composed of eigenvectors
for T), (4.106) simplifies to f (“I’)  = XTp  if (Ai)Pio.  This simple result is
extended to certain infinite-dimensional operators in (5.90).
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Example 3. A Function of a Linear Operator. Consider D: T3-+93. We first find

the eigendata for D (as an operator on (Y3). The set 6% A {f,.(t)=  timl, i= 1, 2, 3) is
a basis for 9’. In Example 2 of Section 2.5 we found that

This matrix has only one eigenvalue, A, = 0; a basis of generalized eigenvectors for

PI,, is

xl=( it), x12=(  iJ x13=(  9

Thus

The generalized eigenfunctions of D corresponding to x1, x12, and xl3 are

l&(t) = 1, l!32(0 = t,
t2

g,&) = 2

Because the chain of generalized eigenvectors is of length 3, q1 = 3. Therefore, in
order to evaluate f(D), we must determine three operators: P,,, PI1, and Pi,. Since
the generalized eigenspace of D for Ai = 0 is the whole space 9’, the projector P,,
onto the generalized eigenspace for A, is P,,= I. We find the other two operators by

P,,=(D-A,I)P,,=DI=D

By (4.106), if f is analytic at A = 0,

f(D)=f(o)I+f’@)D+  2
f “60 DZ

Let f(A) = A. Then f(D) reduces to

D=(0)I+(l)D+(O)D2

which verifies the formula for f(D). Let f (A) = e’. Then

eD = eq + e% + le”D22

=I+D+  $D”
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Returning to A = [D],,  , we generate those functions of A which correspond to the
functions  D, and eD above. By inspection of A we find that

Using the similarity transformation Et = SE$-  r, we obtain

These constituents of A are [P,,],,, [PI ,Jss, and [P,&,,  respectively.  By
(4.104),

f(A)=f(O)I+f’(O)A+  PA2

If f(A) = A, we find

A=(0)I+(1)A+(O)A2

Let f @I = e’. Then

We easily verify that e* = [e*]%%  . These results are consistent with the definition
(3.72) of e**, because Ak=8 for k>2.

Computation of Functions of Matrices

We have already derived a method for computing f(A) which relies on a
complete eigenvalue analysis of A. We summarize the method.

Computation of f (A) by eigenvalue analysis of A (4.107)
1. Determine the Jordan form A, the modal matrix S, and S-’ such that

A=SAS-?
2. Determine Et by inspection of A.
3. Determine EC by the similarity transformation E$ = SE$-  ‘.
4. Evaluate f on the spectrum of A;
5. Determine f (A) from the fundamental formula, (4.103) or (4.104).
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Example 4. Computing eAr Using Complete Eigenvalue Analysis Let f(X) = eA*.
Let A be the matrix of Example 2, Section 4.5:

A =

Then f(A) = e** is the state transition matrix for that example. We found in that
example that

(1) A=(;...;.;.!), s=( / 8 I$ s-1=( -y 8 j)

Following the other steps outlined above,

(2) E%=($;;)7  Eh=(.~...$.~.)

(4) f (2) = e2?, f’(2) = te2’

(5) e*’ = e2’Eto  + te2’ E*1 1

(

e2r - te2’ te2’ 0
= - te2’ e2’ + te2’ 0

- te” te2’ e21 )

Determination of f (A) using complete eigenvalue analysis is lengthy and
computationally expensive. The eigenvalue analysis serves only to deter-
mine constituents of A. [Of course, it provides considerable insight into the
structure of the matrix A in addition to producing f (A)].  We can eliminate
most of this computation by employing the fundamental formula in
evaluating the constituents. If we substitute several different functions into
(4.103)-(4.104), we obtain several equations involving the constituents as
unknowns. By a judicious choice of functions, we can obtain equations
that allow us to determine each constituent independently. If the minimal
polynomial m(A) is evaluated on the spectrum, the evaluations are all zero.
If one factor is cancelled from m(A) and the resulting polynomial evaluated
on the spectrum, precisely one evaluation is nonzero; if we evaluate this
same polynomial in A, precisely one constituent will remain in the funda-
mental formula. By successively cancelling factors from m(A),  and evaluat-
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ing the resulting polynomials in A, we obtain the constituents in an
efficient manner.*

Computation of f (A) by evaluating factors of m(A) (4.108)
1. Find and factor m(X),  the minimal polynomial for A.
2. Cancel one factor from m(X).  Denote the resulting polynomial g,(X).

Evaluating g,(A)  will determine precisely one constituent matrix.
3.  Cancel an additional factor from m(X).  Let g,.(A) denote the

polynomial which results from cancelling i factors from m(X).  Evaluation
of gi(A) determines precisely one constituent matrix in terms of previously
determined constituents. This step is repeated until all the constituents I?;
are known.

4. Evaluate f on the spectrum of A.
5. Compute f (A) from the fundamental formula, (4.103) or (4.104).

Example 5. Computing eAt by Evaluating Factors of the Minimal Polynomial. Let
f @I= eh. Assume A is the matrix given in Example 4. We compute the state
transition matrix e** by the steps outlined above:

1. The characteristic polynomial for A is c(A) = det(XI-  A) = (h - 2)3.  The only
eigenvalue is X, = 2. By investigating the nullities of (A-2I) and (A -21)2, we find
that 4, = 2 and m(h) = (A - 2)2.  Thus

f(A) =f (2% +f’@)%

2. g,(X)  = (X - 2) and g;(A) = 1. Therefore,

g&A) h (A-21) = g1(2)%,  + g; (2)Ef,

= (O)J%+  Cl)%,

and ET, =A-21.
3. g2(h)  = 1 and g;(h) = 0. Then,

e(A) A I= g2(2)% + g;(2)%,

= (1% + (O)E?,

and Et,-, = I.
4. f (2) = e2’, and f’(2)  = te2’.

5. eAr = e2’I  + te2r (A - 21)

e2t- te2’ te2’

(

0
= - te2’ e2t+ te2’ 0

- te” te2’ 1e2’

*From Zadeh and Desoer [4.20].
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Evaluating factors of m(h) is probably the most efficient known method
for computing A suitable sequence of functions can also be obtained
by successively cancelling factors from the characteristic polynomial c(A),
thereby avoiding determination of the nullities of powers of (A- A,I). If
c(h) had been used in Example 5, we would have found that E& =8.

From our computation of f(A) by evaluating factors of the minimal
polynomial, we recognize that each of the constituents EC equals a
polynomial in A; the order of the polynomial is, in each case, less than that
of the minimal polynomial. Therefore, by the fundamental formula, f(A) is
also equal to a polynomial in A. Since powers of A, and thus polynomials
in A, commute with each other, functions of A commute with each other
also. See P&C 4.29 for properties of commuting matrices. Additional
techniques for computing f(A)  are given in P&C 4.25-4.27.

Application of Functions of Matrices—Modes of Oscillation

Figure 4.9 is an idealized one-dimensional representation of a piece of
spring-mounted equipment. The variables vr, v2, and u represent the
positions, relative to their respective references, of the two identical masses
(labeled m) and the frame which holds the equipment. The three springs
have identical spring constants k. We treat the position (or vibration) of
the frame as an independent variable; we seek the motions, v&t) and v2( t),
of the spring-mounted objects. The dynamic equations which describe
these motions are

m+,(t)  = -2kv,(t)+ kv,(t)+  ku(t)
(4.109)

mV,( t) = kv,( t) - 2kv2( t) + ku( t)

We could convert (4.109) to a four-dimensional first-order state equa-
tion. However, emboldened by the formal analogy which we found be-
tween the solution to the state equation and its scalar counterpart, we
develop a second-order vector equation which is equivalent to (4.109) and
which keeps explicit the second-order nature of the individual equations.

Figure 4.9. A model for spring-mounted equipment.
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Let x = (v, vJT. Then (4.109) becomes

Spectral Analysis of Linear Systems

5(t) +
2k/m +yx(t)=(  y)“(t)  (4.110)
-k/m 2k/m

The 2 X 2 matrix in (4.110) is known as the stiffness matrix for the system.
Equation (4.110) is a special case of the general vector equation

ji(t)+Ax(t)=Bu(t) (4.111)

where x(t) is n X 1, u(t) is m X 1, B is n X m, and A is an n X n diagonaliz-
able matrix with positive eigenvalues.* Equation (4.111) is a convenient
way to express many conservative systems; for example, a frictionless
mechanical system which contains n masses coupled by springs; or a
lossless electrical network containing interconnected inductors and ca-
pacitors. We solve (4.110) and (4.111) by analogy with the scalar case.

The scalar counterpart of (4.111) is

i(t)+df(t)=u(t) (4.112)

We found in P&C 3.6 that the inverse of (4.112), in terms of the initial
conditions f(0) and i(O),  is

m
f(t) = f(0) cos ot + - sin ot + I

f sino(t--s)

0 0
u(s)ds ( 4 . 1 1 3 )

0

The solution consists in an undamped oscillation of frequency o plus a
term affected by the input vibration u.

Comparing (4.111) and (4.112), we recognize that x is the vector analog
of f, and A plays the same role as o2. Therefore, we expect the solution to
(4.111) to be

x(t) = cos( CT t)x(O) + (VX )- ’ sin( VA t)*(O)

+
I0

I(m)-‘sin[  a (t-s)]Bu(s)ds (4.114)

By a we mean any matrix whose square equals A. As with the scalar

square root, a is not unique. The fundamental formula (4.103) indicates

that fi depends on the square roots of the eigenvalues of A. We use in

*The matrix A is symmetric and positive definite. Such a matrix necessarily has positive real
eigenvalues. See P&C 5.9 and 5.28.
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(4.114) the principal square root of A—the one involving positive square
roots of the eigenvalues (P&C 4.28). Recall from the discussion following
Example 5 that functions of A commute with each other; the order of

multiplication of (a )- ’ and sin(fi t) is arbitrary.
Equation (4.114) can be derived by finding a matrix Green’s function

and matrix boundary kernel for (4.111) (P&C 4.32). Or it can be verified
by showing that it is a solution to the differential equation (4.111).

Exercise 3. Verify (4.114) by substituting x(t)  into (4.111). Hint:

5 f (At) =Af(At) (P&C 4.30)

d r
dtas g(t,s)dr=

s
‘a g(t,s)ds+g(t,t)

a at

We now evaluate the solution (4.114) for the specific case (4.110) using
the techniques derived for determining functions of matrices.

Exercise 4. Show that the eigendata for the 2 X2 stiffness matrix A of
(4.110) are

Al=;, h2=3 x1=($ x2=( 3

Exercise 5. Show that for A of (4.110),

fw=f(x,(:  [)+f(E)( -; -I)

It follows from Exercise 5 that

i

COSdiqYl  t + cost t cost t -cost t

cosvx t =
2 2

cost t-cod%pY t cosvzpi t +cos~ mt
2 2

1

sindklm  t + sind3k/m  t sinvk/m  t sin- t

(VT)-lsinVK  t=
2Vz7G 2lhz7G 2lh7G - 2vTi7G

sinvk/m t sinVm t- sinV* t + sin- t

2Vi7.G 2v%7% 2V7+ 2vG77l

(a)-‘sin[fi  (t-s)]B= w sinl/w (t-s)( :)
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These three matrices can be substituted into (4.114) to obtain x(t)  explicitly
as a complicated function of the input data u(t),  x(O),  and x(0).

Even though the general form of x(t) is complicated, we can provide a
simple physical interpretation of the eigendata of the stiffness matrix of
(4.110). Let x(0) =x1,  k(O)  = 8, and u(t)  =O. Then recalling that A and
have the same eigenvectors,

x(t) A ( ~~~;;)=cosvx  t( ~)=cos~ t( ;)

The first eigenvector initial condition excites a sinusoidal oscillation of

frequency vw = 6 . In this first mode of oscillation, both masses
move together-the center spring is not stressed. The system acts like a
single mass with a spring-mass ratio of 2k/2m = k/m=h,.  A second
mode of oscillation can be excited by the conditions x(0)=x2,  i(0) = 8,
u(t)=O;

x(t) A ( ;~~~;)=cosm(  ~~)=cos~t(  -;)

The second eigenvector initial condition excites a sinusoidal oscillation of

frequency d- = 6 . In this mode of oscillation, the masses move
in opposite directions-the midpoint of the center spring does not move.
The system acts like a pair of mirror images, each with a spring-mass ratio
of (k + 2k)m = 3 k/m =X2.  Thus the eigenvectors and eigenvalues of A are
natural modes of oscillation and squares of natural frequencies of oscilla-
tion, respectively.

The initial conditions f(0)  =x1 or k(O)  =x2 also excite the above two
natural modes of oscillation. We note that for this particular example Bu(t)
is of the form of x1. The motion excited by the input vibration u(t) can
only be proportional to x1. Whether or not the motion is a sinusoidal
oscillation is determined by the form of u(t).

4.7 Problems and Comments

4.1 Let %,=span{(l,O,  1)) and %2=span{(l,0,0),  (O,l,O)}  in a3.
(a) Show that an arbitrary vector x in C&3 can be decomposed

into a unique pair of components xi and x2 from 62$,  and ‘?ll‘,,
respectively.

(b) Let P, be the projector onto %i along qK,, and P, the
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projector onto O2Ip, along qti,. Let & be the standard basis for
S3. Find [P,],, and [ P21xX.

4.2 Let the linear operator T defined by TX A Ax operate on the space
9lLnx ‘. Let the subspaces ‘?$, and G2ui,  of 9Kn x ’ be composed of
vectors of the form

and

respectively. Determine the form of A if
(a) zl(i, is invariant under T.
(b) w2 is invariant under T.
(c) Both %, and G’Iui, are invariant under T.
Hint: investigate an example where m = 1, n = 3.

4.3 The Cartesian product is useful for building up complicated vector
spaces from simple ones. The direct sum, on the other hand, is
useful for subdividing complicated vector spaces into smaller sub-
spaces.

*(a) Define Ta . s2-+ tit2 by T, (51, t-2) 4 (51-  5&.
Let %, = {(1,0), (0,l)}. Find [T,]%  K .

Define T,: %‘-+C%’  by T,(t3)  g (p,J,
Let %, = ((1)).  Find [TblXbXb.

(b) If we do not distinguish between (([t,t2), (t3)) and (c1,t2,t3),
t h e n  $k3= $h2X  3’. D e f i n e  T: cR3+ a3 by T((t,,&),

(t3)) ’ (Ta (513  t2;>,  Tb (53)).  Let 9C = { CC1  7 O)9 Co>)9  (Co9 I), (O)),
((QO), (1))). F ind  [Lax. What is the relationship between

[T15X5X~  [Tal%a 5X0 [TblX, fXb?
(c) Let %, = S2 x {(0)} and “w; = {(0,0)} x 3’. Then Ck3 = ‘?6, CI3

%,. Appropriate bases for %‘,  and q$, are %, = {((1,0), (0)),
((0,1), (0))) and X2= {((0,0), (1))). Define T,: qti,-+%!K,  by

T1(51,52,0)  A (51-5‘2,t1,0). Define T2: qg2+qK2  by T2NJ,&)

A (0,0, -&).  Find [T,],,  XxI  and [T2]% %. What is the re-
lationship between [T],,,  [T,],,  %,, and [T2]% a?
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(d) In general, if V = %, @. . . G3 ?l$, with each subspace ‘?tii
invariant under T, then { qtii } decomposes T into {Ti: G2uii
+zir;.}. Let Xi be a basis for Wi. Then % ={ Xi,..., ‘?$.,}  is
a basis for Ir. If Ir is finite-dimensional, then

with zeros everywhere except in the blocks on the diagonal.
Show that the transformation T: Gjt3--+  s3 defined by

T(t,, 52, ‘t3)  ’ (& + t2, 25, + t2 - t3,t1 + t3) is decomposed by 96,
and “w;, where ‘?Ki consists in vectors of the form ([,,t2,  ti +
t2) and %, consists in vectors of the form (,$i,ti,<i).  Note that
there is no Cartesian product which corresponds to this in-
variant direct-sum decomposition in the same manner as (b)
corresponds to (c).

4.4 Find the eigenvalues and eigenvectors of the following matrices:

4.5 Let A be an n X n matrix. Denote the characteristic polynomial for
A by c(A)=X”+b,h”-l+~~~ + b,. The trace of a matrix is defined
as the sum of its diagonal elements, an easily computed quantity.
An iterative method based on the trace function has been proposed
for computing the coefficients { bi} in the characteristic polynomial
[4.3, p. 296]. The iteration is:

b,= - Trace(A)

b,= - i [ b, Trace(A)  + Trace(

b3=-f [ b, Trace(A)  + b, Trace(A2) + Trace(A3)]

bn+ [b,,-  1 Trace(A)  + - - . + b i Trace(A”  - ‘) + Trace(  A”) ]

(a) How many multiplications are required to compute the
characteristic polynomial by means of this trace iteration?
Compare the iteration with Krylov’s method.
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(b) Compute the characteristic polynomial by Krylov’s method
and by the trace iteration for the matrix

A=

*4.6 Let A be an n X n matrix with eigenvalues X,, . . . ,Xn. Then
(a) Det(A)=A,.h,.  . . . $,

(b) Trace(A) A alI +a,,+ + * * + %l =A, +A,+ * * * +A,
(c) If A is triangular (i.e, if all elements to one side of the main

diagonal are zero), then the diagonal elements of A are
A, = hi.

4.7 Three men are playing ball. Every two seconds the one who has the
ball tosses it to one of the others, with the probabilities shown in the
diagram. Let p,(i) be the probability that the ball is held by the i th
player (or is in the ith state) after the nth toss. Let pii be the
probability with which player j throws the ball to player i. The
theory of conditional probability requires that

pJi)=  5 pgpn-,(j) f o r  i=1,2,3
j=l

Let x, i (p,(l) p,(2) p,(3))=.  We call x, a state probability vector.
Let Q denote the set of all possible 3 x 1 state probability vectors.
The elements of each vector in Q are non-negative and sum to one.
Note that Q is a subset of wx i, rather than a subspace. The game
is an example of a Markov process. The future state probability
vectors depend only on the present state, and not on the past
history.
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(a) A matrix whose columns are members of Q is called a transition
probability matrix. Find the transition probability matrix A
such that x, = Ax,- i. Note that x, = A’$,; we refer to A” as the
n -step transition probability matrix.

(b) Determine the eigenvalues and eigenvectors of A. What do
they tell us about the game? (Hint: X = 1 is an eigenvalue.)

(c) Find the spectral matrix A and the modal matrix S such that
A = SAS-  ‘. Show that every transition probability matrix has
A = 1 as an eigenvalue.

(d) In the game described previously, the state probability vector
x, becomes independent of the initial state as n becomes large.
Find the form of the limiting state probability vector. (Hint:
find limn+mA” using the substitution A=SAS-I.)  We note that
the eigenvalues of every transition probability matrix satisfy
A, < 1 [4.4, p. 4291.

(e) A transition probability matrix wherein the elements of each
row also sum to one is called a stochastic matrix. What is the
limiting state probability vector, limn+a,~,,  if the transition
probabilities in the above game are modified to yield a
stochastic matrix?

4.8 Let

Find a matrix S for which S- ‘AS is a diagonal matrix.

4.9 Find a nondiagonal matrix A which has as its diagonal form the
matrix

What are eigenvectors of A?

4.10 We wish to compute the eigendata of the matrix

Assume that numerical computations have produced the following
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approximations to the eigenvalues: X,%0.99 and h2x - 1.01. Use
the inverse iteration method to compute more accurate eigenvalues
and corresponding eigenvectors. Start the iterations with the initial
vector z. =(I - 1)‘.

4.11 The Jacobi method for determining the eigenvalues and eigenvec-
tors of a symmetric matrix A consists in performing a sequence of
similarity transformations which reduce the off-diagonal elements
of A to zero. In order to avoid a sequence of matrix inversions, we
perform the similarity transformations with orthogonal matrices
(matrices for which S-’ = ST). Thus we let A, = STAS,  and A,
=SLA,-,S,  for k=2, 3 ,.... The eigenvalues of a matrix are not
changed by similarity transformations. Consequently, the resulting
diagonal matrix must be the spectral matrix (with the eigenvalues
of A on its diagonal); that is,

lim A,=
k+ca

k”“, (S,S,- - - S,)=A(S,S2-  . - Sk)  =A
+

Furthermore, the matrix S = lim,,,(S,S,. . . Sk) must be a modal
matrix for A (with the eigenvectors of A as its columns). Let
au = (Ak- l)q. It is shown in [4.13] that ati and aji can be driven to
zero simultaneously by a similarity transformation which uses the
orthogonal matrix Sk which differs from the identity matrix only in
the following elements:

where a!= -au,  /3=(aij-aji)/2,  and y=(a2+/3 )2 ‘i2.  (Multiplica-
tion by the matrix Sk can be interpreted as a rotation of the axes
of the i and j coordinates through an angle +.) In the Jacobi
method we pick an Sk of the above form which drives the largest
pair of off-diagonal elements of A,- i to zero. Although later
transformations will usually make these elements nonzero again,
the sum of the squares of the off-diagonal elements is reduced at
each iteration.
(a) Use the Jacobi method to compute (to slide rule accuracy) the

eigenvalues and eigenvectors of the matrix
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(b) Calculate the eigenvalues of A by solving the characteristic
polynomial. Determine the corresponding eigenvectors. Com-
pare the results with (a).

4.12 Let L be the differential operator defined by Lf 4 f”. Assume L
acts on the subspace of functions in e2(0,~)  which satisfy the
boundary conditions PI(f) = p2(f) = 0. Find all the eigenvalues and
corresponding eigenfunctions of L for each of the following defini-
tions of the boundary conditions:

(4 P,(f)  = f(O), Pz(f) = fbTT)
(b) Pltf)=fto)+ft~), P2(f) = r(0) - fy 72)
w Pl(f> = f(O)  + w>7 P2(f)  = f’(0)  - 2f’(  77)
(4 P’(f)  = f(O) - W? P2(f)  = f’(O)  - fw

4.13 Find the eigenvalues and eigenfunctions associated with the
differential system f” - cf=u, f(O)=f’(l)=O.  Hint: ln(- l)=i(~+
2kr), k=O, t 1, +2 ,.... For what values of the constant c is the
system invertible?

4.14 Let V be a space of functions f whose values f(n)  are defined only
for integer values of n. Define the forward difference operator A on

?f by

(Af)(n) 4 f(n+ 1)-f(n)

(This operator can be used to approximate the differential operator
D.) Find the eigenvalues and eigenfunctions of A.

4.15 Define V2f(s,  t) A (a ‘f/ 3s’) + (a ‘f/ at2) in the rectangular region
0 < s < a and 0 Q t < b. Let f satisfy the boundary conditions

$(O,t)=  $(a,t)=  $(s,O)=  z(s,b)=O

Show that the partial differential operator V2 and the given
boundary conditions have the eigendata

for k,m=0,1,2  ,....
* 4   Let A be the companion matrix for an n th order constant-..16

coefficient differential operator. Denote the eigenvalues of A by
x h1,“” n’
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(a) Show that the vector Zi =( 1 hi A,! l l * Ain  - l)T is an eigen-
vector of A for the eigenvalue 4. Show further that there is
only one independent eigenvector for each distinct eigenvalue.

@I Show that the Vandermond matrix

is a modal matrix for A if and only if the eigenvalues of A are
all distinct.

*4.17 The power method: the inverse of the differential operator L= D2
with the boundary conditions f(0) =f(l)=O  is the integral operator
T defined by

(Tu)(t)= l’(t- l)su(s)ds+ ft(s- l)u(s)ds
0 t

The functions f,(t) = sinnrt,  n = 1,2,. . . , are eigenfunctions for both
the differential and integral operators. We can find the dominant
eigenvalue and the corresponding eigenfunction of T by the power
method. We just compute the sequence of functions uk = T’u,,, for
some initial function ue, until uk is a sufficiently good approxima-
tion to the dominant eigenfunction.
(a) Let u,,(t) = 1, and compute ui and u2.
(b) Compare ut and u2 with the true dominant eigenfunction. Use

the iterates {II,}  to determine an approximation to the
dominant eigenvalue.

4.18 (a) Determine an ordered basis of generalized eigenvectors for
the matrix

Hint: det(A - h1) = (4 -x>5 (2 -A).
(b) Determine the Jordan canonical form of A [relative to the

basis found in (a)].
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(c) Determine the “change of coordinates” matrix S which would
be used in a similarity transformation on A in order to obtain
the Jordan form found in (b). (Obtain only the obvious
matrix, not its inverse.)

4.19 Find a matrix S such that S- ‘BS is in Jordan form, for

Hint: c(h) = (2 - h)3(3 - h).
4.20 The minimal polynomial m(X)  and the characteristic polynomial

c(h) are useful for reducing effort in matrix computations. Assume
f(A) is a polynomial in the n x n matrix A, and f(A) includes
powers of A higher than n. We divide f(X) by m(X) to determine a
quotient g(A)  and a remainder r(h); that is, f(A)=g(A)  m(A)+  r(A).
If we replace h by A, and use the fact that m(A) = 8, we observe
that f(A) = r(A). The remainder r(A)  is of lower degree (in A) than
m(A), regardless of the degree of f(A). Consequently, r(A) is easier
to compute than is f(A). The same procedure can be carried out
using the more easily determined characteristic polynomial rather
than the minimal polynomial. Use this “remainder” method to
compute the matrix A5 for

4.21 Assume f is analytic at the eigenvalues of the matrix A. Find the
component matrices of A and express f(A) as a linear combination
of these components for:

(a) A=(: a i) (b) A=(: b 9)
4.22 The gamma function IQ) is defined for all positive values of the

scalar p. If p is a positive integer, r(p)  = (p - l)! Find r(A), where
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4.23 Let

A (A - c)2, X>C

and

(a) Find f (A).
(b) Consider various values of c. Is the resulting matrix what you

would expect?

4.24 If A is invertible, the inverse can be computed by evaluating f(A)

for!(A) A l/X. By modifying f, we can compute a “pseudoinverse”
for a matrix which has zero eigenvalues. We merely change the
definition of f to

=* 0, A=0

(See P&C 6.22 for an interpretation of this “pseudoinverse.“)
(a) Find the inverse of the matrix A of P&C 4.21 a by evaluating

f(A)*
(b) Find the “pseudoinverse” of the following matrix by evaluat-

ing t(B):

4.25 The constituent matrices of a square matrix A can be determined
by partial fraction expansion of the resolvant matrix, (sI- A)- ’ (the
resolvant matrix is the Laplace transform of eAt).  Let



232 Spectral Analysis of Linear Systems

(a) Determine the resolvant matrix (s1 -A)-’  by inverting (sI-
4

(b) Perform a partial fraction expansion of (sI- A)-‘;  that is,
perform a partial fraction expansion of each term of (sI-
A)-‘,  and arrange the expansion into a sum of terms with
multipliers which are constant 3 x 3 matrices.

(c) Let f(A) 4 l/(s -X); then f(A) = (sI- A).- ’ Express the
fundamental formula for f(A) in terms of {E$}, the con-
stituent matrices for A. (The form of the fundamental formula
is determined by the minimal polynomial for A.) Determine
the constituent matrices by comparing the fundamental for-
mula for f(A) with the partial fraction expansion obtained in
uo-

(d) Use the fundamental formula and the constituent matrices to
evaluate A5.

4.26 Let f be a scalar-valued function of a scalar variable. Assume f is
defined on the spectrum of the n X n matrix A. Then f(A) can be
expressed as a polynomial in A of lower degree than the minimal
polynomial for A. That is, if r is the degree of the minimal
polynomial, then f(A) = a,$+ a,A + - - - + a,- ,A’- ‘. The
coefficients {ai} can be determined by evaluating the correspond-
ing scalar equation, f(A)= a,+ a,A+  0 - - + a,- ,h’- ‘, on the
spectrum of A; the resulting equations are always solvable.
(a) Find the minimal polynomial for the matrix

(b) For the matrix A introduced in (a), evaluate the matrix

function f(A) A A5 by the technique described above.

4.27 Let the n x n matrix A be diagonalizable. Then, the fundamental
formula is f(A) = IX:= ,f(A,)E&  where p is the number of distinct
eigenvalues. The constituent matrix E$ is the projector on the
eigenspace for & along the sum of the other eigenspaces. It can be
expressed as

%=II(qj#i
(Ei^,  acts like I on the eigenspace for 4 and like 9 on the eigenspace
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for Xj.) The scalar equivalent of the fundamental formula,

f@)=  f: f@ilII( 2)
l=l j#j

is known as the Lagrange interpolation formula for the data points

x a-l”‘?
(a) Let

Find the constituent matrices E$ by evaluating the poly-
nomial expressions given above.

(b) Use the fundamental formula to evaluate the matrix exponen-
tial, e**,  for the matrix A given in (a).

4.28 Use the fundamental formula to find four square roots of the
matrix

*4.29 (a) Commuting matrices: if A and B commute (i.e., AB = BA), then

(A+B)“= 2 ( :)A.-,,~, n=0,1,2  ,...
k=()

where

That is, the binomial theorem is satisfied.
(b) The algebra of matrices is essentially the same as the algebra

of scalars if the matrices commute with each other. Therefore,
a functional relation which holds for scalars also holds for
commuting matrices if the required matrix functions are de-
fined. For example, eA+B  = eAeB, cos(A + B) = cos A cos B -

the binominal theorem is satisfied; etc.
(c) If A and B are diagonalizable, then they are commutable if

and only if they are diagonalizable by the same similarity
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transformation (i.e., if and only if they have the same eigen-
vectors).

4.30 Use the fundamental formula to show that (d/dt)f(At)=  Af(At)
for any square matrix A and any function f which is analytic on the
spectrum of A.

4.31 Let f”+W+5f=u, f(O)=f’(O)=O.
(a) Express the differential system in state-space form.
(b) Diagonalize the state equation found in (a).
(c) Draw a signal flow diagram which relates the original state

variables, the canonical state variables, and the input.
(d) Find the state transition matrix and invert the state equation.

4.32 Let x + Ax = Bu, where x(t) is n X 1, u(t) is m X 1, B is n X m, and A is
n x n with positive eigenvalues. Assume x(0)  and x(0)  are known.
(a) Use the power series method of Frobenius to show that the

complementary function for this vector differential equation is

F,(t)=cos(fi  t)C,+(fi)-‘sin(fi t)c,

where Co and C, are arbitrary n X n matrices.
(b) The inverse of the differential equation is of the form

x(t)= l”K(t,s)Bu(s)&+R,(t)x(O)+R,(t)%(O)

Show that the Green’s function K(t,s) and boundary kernel
Rj( t) satisfy:

d2>K(t,s)+AK(t,s)=S(t-s)I

K(Q) = -$K(O,s)=e

$R,(t)+AR,(r)=e, j= 1,2

R,(O) = I, k,(O)  = 8

R2(0) = 8, k,(O) = I
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(c) Show that
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K(u) =e, t<s

=(a)-‘sin(CG  (t-s)), t>s

R,(t)=cosfi  t

R2(t)=(a)-‘sin(fi  t)

4.33 In optimal control problems we often need to solve a pair of
simultaneous state equations. Suppose the equations are i= Ax-
BB’X and A = - ATX,  where

A=(: -:) a n d B=(y)

(a) Write the pair of equations as a single state equation y = Qy,

where y g
( )5t.

(b) Find the eigenvalues and-constituent matrices of Q.
(c) Find the solution y to the state equation as a function of y(0).
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