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Fourier Spectral Methods

Finite Differences

Consider grid {x1, . . . , xN} with uniform spacing h and corresponding
data values {u1, . . . , uN}.
For simplicity, assume periodicity u0 := uN and uN+1 := u1.

Let pj be the unique polynomial of degree ≤ 2 with pj(xj−1) = uj−1,
and pj(xj+1) = uj+1, and pj(xj) = uj .

Set wj = p′j(xj). This is the second-order, centered, approximation to
u′(xj).

Discrete differentiation (a finite dimensional linear operator)
representable by a matrix.

Tridiagonal, Toeplitz, circulant matrix.



Fourier Spectral Methods

Comparison of Finite Difference, Finite Element, and
Spectral Methods



Fourier Spectral Methods

From Finite Differences to Spectral Methods

Higher order finite difference schemes have matrices of higher
bandwidth.

Spectral methods: “infinite order” finite difference methods with
matrices of infinite bandwidth (on unbounded/periodic domains).



Fourier Spectral Methods Fourier Transforms

Continuous Fourier Transforms

Fourier transform:

û(k) =

∫ ∞
−∞

u(x)e−ikxdx , k ∈ R

Inverse Fourier transform:

u(x) =
1

2π

∫ ∞
−∞

û(k)e ikxdk , x ∈ R

continuous, unbounded ↔ unbounded, continuous



Fourier Spectral Methods Fourier Transforms

Semidiscrete Fourier Transforms

Wavenumber domain a bounded interval of length 2π/h, where h is
uniform grid spacing

Semidiscrete Fourier transform:

v̂(k) = h
∞∑

j=−∞
vje
−ikxj , k ∈ [−π/h, π/h]

Inverse Semidiscrete Fourier transform:

vj =
1

2π

∫ π/h

−π/h
v̂(k)e ikxj dk, j ∈ Z

discrete, unbounded ↔ bounded, continuous



Fourier Spectral Methods Fourier Transforms

Aliasing

Consider f and g over R defined by f (x) = e ik1x and g(x) = e ik2x .

f and g are equal over R iff k1 = k2.

Consider restrictions of f and g to hZ defined by fj = e ik1xj and
gj = e ik2xj .

f and g are equal over hZ iff k1 − k2 is an integer multiple of 2π/h.

For any Fourier mode e ikx there are infinitely many others (known as
its “aliases”) that match it on a uniform grid.



Fourier Spectral Methods Fourier Transforms

Discrete Fourier Transforms

Assume N, number of grid points, even.

Assume function u periodic with period 2π on [0, 2π].

Assume uniform grid spacing h = 2π/N.

Discrete Fourier transform (DFT):

v̂k = h
N∑
j=1

vje
−ikxj , k ∈ {−N/2 + 1, . . . ,N/2}

Inverse Discrete Fourier transform:

vj =
1

2π

N/2∑
k=−N/2+1

v̂ke ikxj , j ∈ {1, . . . ,N}

discrete, bounded ↔ bounded, discrete



Fourier Spectral Methods Fourier Transforms

Fourier Transforms, cont’d

Physical space: unbounded discrete bounded
l l l

Fourier space: continuous bounded discrete



Fourier Spectral Methods Trigonometric Polynomial Interpolants

Band-Limited Interpolant for Discrete Case

“Think globally. Act locally.”

Define a trigonometric interpolant by evaluating the formula for
inverse discrete Fourier transform for x ∈ R rather than just
xj ∈ {h, 2h, . . . , 2π − h, 2π} and correct the asymmetry in highest
wavenumber by noting that v̂(−N/2) = v̂(N/2) (due to periodicity)
to get:

p(x) =
1

2π

′N/2∑
k=−N/2

v̂ke ikx , x ∈ [0, 2π]

Prime means divide first and last terms by two. That will produce a
cos(Nx/2).



Fourier Spectral Methods Trigonometric Polynomial Interpolants

Band-Limited Interpolant for Discrete Case, cont’d

Periodic grid function as a linear combination of periodic Kronecker
delta functions: vj =

∑N
m=1 vmδj−m.

Band-limited trigonometric interpolant of periodic Kronecker delta
(previous sum for v̂k = h)

pδ(x) =
sin(πx/h)

(2π/h)tan(x/2)
=: psincN(x)

Band-limited interpolant in terms of psinc:
p(x) =

∑N
m=1 vm psincN(x − xm)

Set wj = p′(xj). This is an spectral approximation to u′(xj).

Differentiation operator matrix in Cartesian basis DN =
toeplitz 1

2 [· · · , cot(2h/2),−cot(1h/2), 0, cot(1h/2),−cot(2h/2), · · · ].



Fourier Spectral Methods FFT

FFT Implementation of Fourier Spectral Methods

Compute v̂ from v .

Define ŵj = (ik)r v̂k (Fourier diagonalizes differentiation) but
ŵN/2 = 0 if r is odd.

Compute w from v̂ .

Note: FFTW, used in Matlab and many other packages, stores
wavenumbers in a different order than used here; that order in this
notation becomes: 0:N/2-1 0 -N/2+1:-1



Fourier Spectral Methods FFT

FFT Fun Facts

FFT should probably be called “FGT.” What we now know as FFT
was discovered by Gauss when he was 28 (in 1805). Fourier
completed his first big article two years after that! Gauss wrote on
the subject but he did not publish it.

Cooley and Tukey rediscovered FFT in 1965.



Fourier Spectral Methods Regularity and Fourier Spectral Accuracy

Regularity of Function and Accuracy of Fourier Spectral
Methods

Regularity transforms to decay, because more regularity means slower
changes in the function, which in turn mean less energy at higher
wavenumbers.

A rapidly decaying Fourier transform means small errors due to
discretizations, because these errors are caused by aliasing of higher
wavenumbers to lower ones.



Fourier Spectral Methods Regularity and Fourier Spectral Accuracy

Regularity Transforms to Decay

(a) If u has r − 1 continuous derivatives in L2(R) for some r ≥ 0 and
an r th derivative of bounded variation, then û(k) = O(|k |−r−1) as
|k| → ∞.

(b) If u has infinitely many continuous derivatives in L2(R), then
û(k) = O(|k|−m) as |k| → ∞.

(c) If there exist a, c > 0 such that u can be extended to an analytic
function in the complex strip | Im z | < a with ‖u(.+ iy)‖ ≤ c
uniformly for all y ∈ (−a, a), then ua ∈ L2(R), where
ua(k) = ea|k|û(k). The converse also holds.

(d) If u can be extended to an entire function and there exist a > 0
such that |u(z)| = o(ea|z|) as |z | → ∞ for all z ∈ C, then û has
compact support contained in [−a, a].



Fourier Spectral Methods Regularity and Fourier Spectral Accuracy

Regularity Transforms to Decay, Examples

(a) with r = 0 s(x) = 1
2χ[−1,1] ŝ(k) = sin(k)/k

(a) with r = 1 s ∗ s(x) ŝ ∗ s(k) = (sin(k)/k)2

(c) and (a) with r = 1 u(x) = σ
x2+σ2 û(k) = πe−σ|k|

“between” (c) and (d) e−x
2/2σ2

û(k) = σ
√
π/2e−σ

2k2/2



Fourier Spectral Methods Regularity and Fourier Spectral Accuracy

Spectral Approximation to Derivatives of Hat Function and

esin(x)



Fourier Spectral Methods Regularity and Fourier Spectral Accuracy

Finite Difference Approximation to Derivative of esin(x)



Fourier Spectral Methods Regularity and Fourier Spectral Accuracy

Fourier Spectral Approximation to Derivative of esin(x)



Fourier Spectral Methods Regularity and Fourier Spectral Accuracy

Theorem

Poisson summation (aka Aliasing) Let u ∈ L2(R) have a first derivative
of bounded variation, and let v be the grid function on hZ defined by
vj = u(xj). Then for all k ∈ [−π/h, π/h],

v̂(k) =
∞∑

j=−∞
û(k + 2πj/h)

Bring û(k) to LHS. All other modes amount to aliasing error.



Fourier Spectral Methods Regularity and Fourier Spectral Accuracy

Accuracy of Fourier Spectral Derivative

Let u ∈ L2(R) have a νth derivative (ν ≥ 1) of bounded variation and let
w be the νth spectral derivative of u on the grid hZ. The following hold
uniformly on the grid.

(a) If u has r − 1 continuous derivatives in L2(R) for some r ≥ ν + 1
and an rth derivative of bounded variation, then
|wj − u(ν)(xj)| = O(|h|r−ν) as h→ 0.

(b) If u has infinitely many continuous derivatives in L2(R), then
|wj − u(ν)(xj)| = O(|h|m) as h→ 0, for every m ≥ 0.

(c) If there exist a, c > 0 such that u can be extended to an analytic
function in the complex strip | Im z | < a with ‖u(.+ iy)‖ ≤ c
uniformly for all y ∈ (−a, a), then |wj − u(ν)(xj)| = O(e−π(a−ε)/h) as
h→ 0 for every ε > 0.

(d) If u can be extended to an entire function and there exist a > 0
such that |u(z)| = o(ea|z|) as |z | → ∞ for all z ∈ C, then, provided
h ≤ π/a, wj = u(ν)(xj).



Fourier Spectral Methods Regularity and Fourier Spectral Accuracy



Fourier Spectral Methods Wave PDE

Variable Coefficient Wave Equation

Consider ut + c(x)ux = 0, c(x) = 1/5 + sin2(x − 1) for x ∈ [0, 2π],
t > 0, with periodic boundary conditions and initial condition
u(x , 0) = e−100(x−1)

2
.

For time derivative use a leap frog scheme and approximate spatial
derivatives spectrally.

Leap frog needs two initial conditions to start. PDE gives one. For
simplicity, extrapolate backwards assuming constant wavespeed of
1/5. (Could use a one-step formula like Runge–Kutta to start off leap
frog.)



Fourier Spectral Methods Wave PDE

Wave PDE, Spectral Spatial Discretization and Leap Frog
Time Marching Code

N = 128; h = 2∗pi/N; x = h∗(1:N); t = 0; dt = h/4;

c = .2 + sin(x−1).ˆ2;
v = exp(−100∗(x−1).ˆ2); vold = exp(−100∗(x−.2∗dt−1).ˆ2);

tmax = 8; tplot = .15; clf, drawnow

plotgap = round(tplot/dt); dt = tplot/plotgap;

nplots = round(tmax/tplot);

data = [v; zeros(nplots,N)]; tdata = t;



Fourier Spectral Methods Wave PDE

Wave PDE Code, Cont’d

for i = 1:nplots

for n = 1:plotgap

t = t+dt;

v hat = fft(v);

w hat = 1i∗[0:N/2−1 0 −N/2+1:−1] .∗ v hat;

w = real(ifft(w hat));

vnew = vold − 2∗dt∗c.∗w; vold = v; v = vnew;

end

data(i+1,:) = v; tdata = [tdata; t];

end



Fourier Spectral Methods Wave PDE

Wave Propagation
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System Modeling Direct vs. Inverse

Direct vs. Inverse Modeling

Direct: Based on First Principles (Fundamental/Constitutive laws).

Inverse: Data Driven (Process Control, Fault Diagnosis, Reverse
Engineering of Gene Regulatory Networks).



System Modeling Direct vs. Inverse

Drawbacks of Direct Modeling

Not all first principles known for complex systems.

Full set of Initial/Boundary Conditions not available.

Discrepancy between prediction of model and behavior of system due
to simplifying assumptions (Inadequate Parameters) in modeling.



System Modeling PDE Reconstruction

PDE Reconstruction based on Regression

Regression: Parameter equations derived from discretized PDE
directly.

Benefits: Relatively low computational cost; generalizability to
multiple dimensions.

Downsides: Relatively high resolution data demands; noise prune.



System Modeling PDE Reconstruction

Identification of Partial Differential Equations

Mathematical structure: a nonlinear monomial basis PDE containing
all linear combinations of the monomials up to a certain derivative
order and nonlinearity degree (Volterra Model).

Temporal and spatial discretization, the latter using spectral methods,
leads to an over-determined system of linear algebraic equations
Aα = b whose unknowns α are the parameters we seek.



System Modeling PDE Reconstruction

Structure Selection using Least Squares with QR
Decomposition

With zero mean white noise, this gives maximum-likelihood estimate
(MLE) of parameters.

Orthonormal basis vectors in Q allow error reduction resulting from
each parameter to be calculated independently.

With no parameters maximum (squared) error would be bTb.

Addition of every parameter αj leads to an error reduction of β2j
where Rα = β and Qβ = b.

Error Reduction Ratio (ERR) β2j /bTb.



System Modeling PDE Reconstruction

Reconstruction of Kuramoto–Sivashinsky PDE

ut = −uux − uxx − εuxxx , (x , t) ∈ I × R+

u(x , 0) = u0(x), u(x + L, t) = u(x , t)

I = [0, L), L = 32π, ε = 1, u0(x) = cos(x/16)(1 + sin(x/16))

Simulated till t = 150s with exponential time differencing for time
marching and spectral methods for spatial discretization.

Assume a degree of nonlinearity 2 and a highest order of spatial
derivative of 4, giving a total number of 28 monomials in the model
structure. Structure selection (SS), aka model reduction, means omit
parameters with ERR less than a threshold. Here ERR threshold
0.5%.



System Modeling PDE Reconstruction

KS Evolution



System Modeling PDE Reconstruction

KS Parameters Identified
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Chebyshev Spectral Methods Algebraic Polynomial Interpolation

Algebraic Polynomial Interpolation

Fourier was for periodic domains. What to do for nonperiodic
domains?

Periodic extension? Not unless solutions is exponentially close to a
constant, because smooth becomes nonsmooth leading to global
contamination (Gibbs phenomenon)—error in interpolant O(1), error
in derivative O(N), etc.

Solution: Replace trigonometric polynomials with algebraic ones.
What about the grid? Equispaced leads to Runge’s phenomenon. Use
clustered grids with density asymptotic to µ(x) = N/π

√
1− x2.

Distance between adjacent nodes approximately 1/µ(x). Average
spacing O(N−2) near end points and O(N−1) in the interior.



Chebyshev Spectral Methods Algebraic Polynomial Interpolation

Chebyshev Polynomials

Explicit equation Tn(x) = cos(ncos−1(x))

Extrema at x = cos(kπ/n), k = 0 : n

Zeros at x = cos((k + 1/2)π/n), k = 0 : n − 1

Difference equation Tn(x) = 2xTn−1(x)− Tn−2(x),
T0(x) = 1,T1(x) = x



Chebyshev Spectral Methods Algebraic Polynomial Interpolation

Chebyshev Polynomial Graphs in [−1, 1]



Chebyshev Spectral Methods Algebraic Polynomial Interpolation

Algebraic Polynomial Interpolation in Equispaced and
Chebyshev Points for u(x) = 1/(1 + 16x2)



Chebyshev Spectral Methods Potential Theory

Node Density and Potential Function

|p(z)| = eNφN(z), where φN(z) = N−1
∑N

j=1 log |z − zj |

φ(z) =
∫ 1
−1 ρ(x)log |z − x |dx

Equispaced nodes, uniform distribution ρ(x) = 1/2, x ∈ [−1, 1].
φ(0) = −1 and φ(±1) = −1 + log(2)

Chebyshev nodes, Chebyshev distribution
ρ(x) = 1/π

√
1− x2, x ∈ [−1, 1]. φ(x) = −log(2) for all x ∈ [−1, 1]



Chebyshev Spectral Methods Potential Theory

Polynomials and their Equipotential Curves



Chebyshev Spectral Methods Chebyshev Spectral Derivative Matrix

Chebyshev Spectral Derivative Matrix



Chebyshev Spectral Methods Chebyshev Spectral Derivative Matrix

Chebyshev Spectral Derivative Matrix, Values

D5 =

8.5000 -10.4721 2.8944 -1.5279 1.1056 -0.5000

2.6180 -1.1708 -2.0000 0.8944 -0.6180 0.2764

-0.7236 2.0000 -0.1708 -1.6180 0.8944 -0.3820

0.3820 -0.8944 1.6180 0.1708 -2.0000 0.7236

-0.2764 0.6180 -0.8944 2.0000 1.1708 -2.6180

0.5000 -1.1056 1.5279 -2.8944 10.4721 -8.5000



Chebyshev Spectral Methods Chebyshev Spectral Derivative Matrix

Chebyshev Spectral Derivative Matrix, Bar Plot



Chebyshev Spectral Methods Chebyshev Spectral Derivative Matrix

Chebyshev Spectral Derivative of exsin(5x)



Chebyshev Spectral Methods Regularity and Chebyshev Spectral Accuracy

Accuracy of Chebyshev Spectral Derivative

Define φ[−1,1] = sup{φ(x) : x ∈ [−1, 1]}
If there exists a constant φu > φ[−1,1] such that u is analytic
throughout the closed region {z ∈ C : φ(z) ≤ φu}, then there exists a
constant C > 0 such that for all x ∈ [−1, 1] and all N,

|u(ν)(x)− p
(ν)
n (x)| ≤ e−N(φu−φ[−1,1]), for any ν ≥ 0



Chebyshev Spectral Methods Regularity and Chebyshev Spectral Accuracy

Accuracy of Chebyshev Spectral Derivative



Chebyshev Spectral Methods Allen–Cahn PDE

Allen–Cahn Reaction–Diffusion PDE

ut = auxx + u − u3, u(−1, t) = −1, u(1, t) = 1

Direct: a = 0.01,N = 100, t = 70,∆t = 1/8

Inverse: Use states up to t = 35; assume degree of nonlinearity 3 and
order 2, leading to 20 terms to be identified.



Chebyshev Spectral Methods Allen–Cahn PDE

Allen–Cahn PDE, Solution



Chebyshev Spectral Methods Allen–Cahn PDE

Allen–Cahn PDE, Identification



Chebyshev Spectral Methods Allen–Cahn PDE

Allen–Cahn PDE, Error in Dominant Coefficients vs. Error
Reduction Ratio



Chebyshev Spectral Methods Allen–Cahn PDE

Allen–Cahn PDE, Prediction and Prediction Error



Chebyshev Spectral Methods Allen–Cahn PDE

References to Check

Boyd, Chebyshev and Fourier Spectral Methods

Canuto, Hussaini, Quarteroni, and Zang, Spectral Methods in Fluid
Dynamics

Fornberg, A Practical Guide to Pseudospectral Methods

Trefethen, Spectral Methods in Matlab
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