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Preface

A textbook presents far more material than any professor can cover in class.
These lecture notes present only somewhat more than I covered during the
half-semester course Spectral Theory of Partial Differential Equations (Math
595 STP) at the University of Illinois, Urbana–Champaign, in Fall 2011.

I make no claims of originality for the material presented, other than some
originality of emphasis — I emphasize computable examples before develop-
ing the general theory. This approach leads to occasional redundancy, and
sometimes we use ideas before they are properly defined, but I think students
gain a better understanding of the purpose of a theory after they are first
well grounded in specific examples.

Please email me with corrections, and suggested improvements.

Richard S. Laugesen Email: Laugesen@illinois.edu
Department of Mathematics
University of Illinois at Urbana–Champaign, U.S.A.
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Prerequisites and notation

We assume familiarity with elementary Hilbert space theory: inner product,
norm, Cauchy–Schwarz, orthogonal complement, Riesz Representation The-
orem, orthonormal basis (ONB), bounded operators, and compact operators.

All functions are assumed to be measurable. We use the function spaces

L1 = integrable functions,

L2 = square integrable functions,

L∞ = bounded functions,

but we have no need of general Lp spaces.
Sometimes we employ the L2-theory of the Fourier transform,

f̂(ξ) =

∫
Rd

f(x)e−2πiξ·x dx.

Only the basic facts are needed, such as that the Fourier transform preserves
the L2 norm and maps derivatives in the spatial domain to multipliers in the
frequency domain.

We use the language of Sobolev spaces throughout. Readers unfamiliar
with this language can proceed unharmed: we mainly need only that

H1 =W1,2 = {L2-functions with 1 derivative in L2},

H2 =W2,2 = {L2-functions with 2 derivatives in L2},

and

H10 =W
1,2
0 = {H1-functions that equal zero on the boundary}.

(These characterizations are not mathematically precise, but they are good
enough for our purposes.) Later we will recall the standard inner products
that make these spaces into Hilbert spaces.

For more on Sobolev space theory, and related concepts of weak solutions
and elliptic regularity, see [Evans].
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Introduction

Spectral methods permeate the theory of partial differential equations. One
solves linear PDEs by separation of variables, getting eigenvalues when the
spectrum is discrete and continuous spectrum when it is not. Linearized
stability of a steady state or traveling wave of a nonlinear PDE depends on
the sign of the first eigenvalue, or on the location of the continuous spectrum
in the complex plane.

This minicourse aims at highlights of spectral theory for selfadjoint par-
tial differential operators, with a heavy emphasis on problems with discrete
spectrum.

Style of the course. Research work differs from standard course work.
Research often starts with questions motivated by analogy, or by trying to
generalize special cases. Normally we find answers in a nonlinear fashion,
slowly developing a coherent theory by linking up and extending our scraps
of known information. We cannot predict what we will need to know in
order to succeed, and we certainly do not have enough time to study all
relevant background material. To succeed in research, we must develop a
rough mental map of the surrounding mathematical landscape, so that we
know the key concepts and canonical examples (without necessarily knowing
the proofs). Then when we need to learn more about a topic, we know where
to begin.

This course aims to develop your mental map of spectral theory in partial
differential equations. We will emphasize computable examples, and will be
neither complete in our coverage nor completely rigorous in our approach.
Yet you will finish the course having a much better appreciation of the main
issues and techniques in the subject.

Closing thoughts. If the course were longer, then we could treat topics
such as nodal patterns, geometric bounds for the first eigenvalue and the
spectral gap, majorization techniques (passing from eigenvalue sums to spec-
tral zeta functions and heat traces), and inverse spectral problems. And we
could investigate more deeply the spectral and scattering theory of opera-
tors with continuous spectrum, giving applications to stability of traveling
waves and similarity solutions. These fascinating topics must await another
course. . .
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Part I

Discrete Spectrum
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Chapter 1

ODE preview

Goal

To review the role of eigenvalues and eigenvectors in solving 1st and 2nd order
systems of linear ODEs; to interpret eigenvalues as decay rates, frequencies,
and stability indices; and to observe formal analogies with PDEs.

Notational convention

Eigenvalues are written with multiplicity, and are listed in increasing order
(when real-valued):

λ1 ≤ λ2 ≤ λ3 ≤ · · ·

Spectrum of a real symmetric matrix

If A is a real symmetric d × d matrix (e.g. A = [ a bb c ] when d = 2) or
Hermitian matrix then its spectrum is the collection of eigenvalues:

spec(A) = {λ1, . . . , λd} ⊂ R

(see the figure). Recall that

Avj = λjvj

where the eigenvectors {v1, . . . , vd} can be chosen to form an ONB for Rd.
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specHAL

C

Λ1 Λ2 Λ3 Λ4
´ ´ ´ ´

Observe A : Rd → Rd is diagonal with respect to the eigenbasis:

A
(∑

cjvj
)
=
∑

λjcjvj

λ1 0
. . .

0 λd


c1...
cd

 =

λ1c1...
λdcd


What does the spectrum tell us about linear ODEs?

Example 1.1 (1st order). The equation

dv

dt
= −Av

v(0) =
∑

cjvj

has solution

v(t) = e−Atv(0)
def
=
∑

e−λjtcjvj.

Notice λj =decay rate of the solution in direction vj if λj > 0, or growth
rate (if λj < 0).

Long-time behavior: the solution is dominated by the first mode, with

v(t) ∼ e−λ1tc1v1 for large t,

assuming λ1 < λ2 (so that the second mode decays faster than the first). The
rate of collapse onto the first mode is governed by the spectral gap λ2 − λ1
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since

v(t) = e−λ1t
(
c1v1 +

d∑
j=2

e−(λj−λ1)tcjvj
)

∼ e−λ1t
(
c1v1 +O(e

−(λ2−λ1)t).

Example 1.2 (2nd order). Assume λ1 > 0, so that all the eigenvalues are
positive. Then

d2v

dt2
= −Av

v(0) =
∑

cjvj

v′(0) =
∑

c′jvj

has solution

v(t) = cos(
√
At)v(0) +

1√
A

sin(
√
At)v′(0)

def
=
∑

cos(
√
λjt)cjvj +

∑ 1√
λj

sin(
√
λjt)c

′
jvj.

Notice
√
λj =frequency of the solution in direction vj.

Example 1.3 (1st order imaginary). The equation

i
dv

dt
= Av

v(0) =
∑

cjvj

has complex-valued solution

v(t) = e−iAtv(0)
def
=
∑

e−iλjtcjvj.

This time λj =frequency of the solution in direction vj.
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What does the spectrum tell us about nonlinear ODEs?
In/stability!

Example 1.4 (1st order nonlinear). Suppose

dv

dt
= F(v)

where the vector field F satisfies F(0) = 0, with first order Taylor expansion

F(v) = Bv+O(|v|2)

for some matrix B having d linearly independent eigenvectors v1, . . . , vd and
corresponding eigenvalues λ1, . . . , λd ∈ C. (The eigenvalues come in complex
conjugate pairs, since B is real.)

Clearly v(t) ≡ 0 is an equilibrium solution. Is it stable? To investigate,
we linearize the ODE around the equilibrium to get dv

dt
= Bv, which has

solution
v(t) = eBtv(0) =

∑
eλjtcjvj.

Notice v(t) → 0 as t → ∞ if Re(λj) < 0 for all j, whereas |v(t)| → ∞ if
Re(λj) > 0 for some j (provided the corresponding coefficient cj is nonzero,
and so on). Hence the equilibrium solution v(t) ≡ 0 is:

• linearly asymptotically stable if spec(B) ⊂ LHP,

specHBL

C

´

´

´ ´

• linearly unstable if spec(B) ∩ RHP 6= ∅.

The Linearization Theorem guarantees that the nonlinear ODE indeed be-
haves like the linearized ODE near the equilibrium solution, in the stable
and unstable cases.
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specHBL

C

´

´

´ ´

The nonlinear ODE’s behavior requires further investigation in the neu-
trally stable case where the spectrum lies in the closed left half plane and
intersects the imaginary axis (Re(λj) ≤ 0 for all j and Re(λj) = 0 for some
j).

specHBL

C

´

´

´ ´

For example, if B =
[
0 −1
1 0

]
(which has eigenvalues ±i), then the phase

portrait for dv
dt

= Bv consists of circles centered at the origin, but the phase
portrait for the nonlinear system dv

dt
= F(v) might spiral in towards the origin

(stability) or out towards infinity (instability), or could display even more
complicated behavior.

Looking ahead to PDEs

Now suppose A is an elliptic operator on a domain Ω ⊂ Rd. For simplic-
ity, take A = −∆. Assume boundary conditions that make the operator
self-adjoint (we will say more about boundary conditions later). Then the
eigenvalues λj and eigenfunctions vj(x) of the Laplacian satisfy

−∆vj = λjvj in Ω

and the spectrum increases to infinity:

λ1 ≤ λ2 ≤ λ3 ≤ · · ·→∞.
12



The eigenfunctions form an ONB for L2(Ω).
Substituting A = −∆ into the ODE Examples 1.1–1.3 transforms them

into famous partial differential equations for the function v(x, t). We solve
these PDEs formally by separation of variables:

• Example 1.1 — diffusion equation vt = ∆v. Separation of variables
gives the solution

v = e∆tv(·, 0) def
=
∑

e−λjtcjvj

where the initial value is v(·, 0) =
∑
cjvj. Here λj =decay rate.

• Example 1.2 — wave equation vtt = ∆v. Separation of variables gives

v = cos(
√
−∆t)v(·, 0) + 1√

−∆
sin(
√
−∆t)vt(·, 0)

def
=
∑

cos(
√
λjt)cjvj +

∑ 1√
λj

sin(
√
λjt)c

′
jvj.

So
√
λj =frequency and vj =mode of vibration.

• Example 1.3 — Schrödinger equation ivt = −∆v. Separation of vari-
ables gives

v = ei∆tv(·, 0) def
=
∑

e−iλjtcjvj.

Here λj =frequency or energy level, and vj =quantum state.

We aim in what follows to analyze not just the Laplacian, but a whole
family of related operators including:

A = −∆ Laplacian,

A = −∆+ V(x) Schrödinger operator,

A = (i∇+ ~A)2 magnetic Laplacian,

A = (−∆)2 = ∆∆ biLaplace operator.

The spectral theory of these operators will help us understand the stability
of the different kinds of “equilibria” for evolution equations: steady states,
standing waves, traveling waves, and similarity solutions.
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Chapter 2

Laplacian — computable
spectra

Goal

To develop a library of explicitly computable spectra, which we use later to
motivate and understand the general theory.

References [Strauss] Chapters 4, 10; [Farlow] Lesson 30.

Notation

Let Ω be a bounded domain in Rd, d ≥ 1. Fix L > 0.

Abbreviate “boundary condition” as “BC”:

• Dirichlet BC means u = 0 on ∂Ω,

• Robin BC means ∂u
∂n

+ σu = 0 on ∂Ω (where σ ∈ R is the Robin
constant),

• Neumann BC means ∂u
∂n

= 0 on ∂Ω.

Spectra of the Laplacian

∆ = ∇ · ∇ =
( ∂
∂x1

)2
+ · · ·+

( ∂
∂xd

)2
14



Eigenfunctions satisfy −∆u = λu , and we order the eigenvalues in increas-
ing order as

λ1 ≤ λ2 ≤ λ3 ≤ · · ·→∞.
To get an ONB one should normalize the eigenfunctions in L2, but we will
not normalize the following examples.

One dimension −u′′ = λu

1. Circle T = R/2πZ, periodic BC: u(−π) = u(π), u′(−π) = u′(π).

Eigenfunctions eijx for j ∈ Z, or equivalently 1, cos(jx), sin(jx) for j ≥ 1.
Eigenvalues λj = j

2 for j ∈ Z, or λ = 02, 12, 12, 22, 22, . . .

2. Interval (0, L)

(a) Dirichlet BC: u(0) = u(L) = 0.

Eigenfunctions uj(x) = sin(jπx/L) for j ≥ 1.
Eigenvalues λj = (jπ/L)2 for j ≥ 1, e.g. L = π ⇒ λ = 12, 22, 32, . . .

Dirichlet spectrum

ΛL2
�Π2

´ ´ ´

Dirichlet modes

L�2 L

(b) Robin BC: −u′(0) + σu(0) = u′(L) + σu(L) = 0.

Eigenfunctions uj(x) =
√
ρj cos(

√
ρjx) + σ sin(

√
ρjx).

Eigenvalues ρj = jth positive root of tan(
√
ρL) =

2σ
√
ρ

ρ−σ2
for j ≥ 1.

(c) Neumann BC: u′(0) = u′(L) = 0.

Eigenfunctions uj(x) = cos(jπx/L) for j ≥ 0 (note u0 ≡ 1).
Eigenvalues µj = (jπ/L)2 for j ≥ 0, e.g. L = π ⇒ λ = 02, 12, 22, 32, . . .
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Robin spectrum

ΡL2
�Π2

´ ´ ´ ´

Robin modes

L�2 L

Neumann spectrum

ΜL2
�Π2

´ ´ ´ ´

Neumann modes

L�2 L

Spectral features in 1 dim
i. Scaling: eigenvalue must balance d2/dx2, and so λ ∼ (length scale)−2.

Precisely, λj([0, tL]) = λj([0, L])/t
2.

ii. Asymptotic: eigenvalues grow at a regular rate, λj ∼ (const.)j2

iii. Robin spectrum lies between Neumann and Dirichlet:

Neumann
σ→0←−−− Robin

σ→∞−−−−→ Dirichlet

as one sees formally by letting σ approach 0 or∞ in the Robin BC ∂u
∂n

+σu =
0.

Two dimensions −∆u = λu

1. Rectangle Ω = (0, L)× (0,M) (product of intervals).
Separate variables using rectangular coordinates x1, x2. See the figures at

the end of the chapter!
(Note that every rectangle can be reduced to a rectangle with sides par-

allel to the coordinate axes because the Laplacian, and hence its spectrum,
is rotationally and translationally invariant.)

(a) Dirichlet BC: u = 0
Eigenfunctions ujk(x) = sin(jπx1/L) sin(kπx2/M) for j, k ≥ 1.

16



Eigenvalues λjk = (jπ/L)2 + (kπ/M)2 for j, k ≥ 1,
e.g. L =M = π ⇒ λ = 2, 5, 5, 8, 10, 10, . . .

(b) Neumann BC: ∂u
∂n

= 0
Eigenfunctions ujk(x) = cos(jπx1/L) cos(kπx2/M) for j, k ≥ 0.
Eigenvalues µjk = (jπ/L)2 + (kπ/M)2 for j, k ≥ 0,
e.g. L =M = π ⇒ λ = 0, 1, 1, 2, 4, 4, . . .

2. Disk Ω = {x ∈ R2 : |x| < R}.
Separate variables using polar coordinates r, θ.

(a) Dirichlet BC: u = 0
Eigenfunctions

J0(rj0,m/R) for m ≥ 1,
Jn(rjn,mr/R) cos(nθ) and Jn(rjn,mr/R) sin(nθ) for n ≥ 1,m ≥ 1.

Notice the modes with n = 0 are purely radial, whereas when n ≥ 1 the
modes have angular dependence.

Eigenvalues λ = (jn,m/R)
2 for n ≥ 0,m ≥ 1, where

Jn = Bessel function of order n, and

jn,m = m-th positive root of Jn(r) = 0.

The eigenvalue λn,m has multiplicity 2 when n ≥ 1, associated to both cosine
and sine modes.

From the graphs of the Bessel functions J0, J1, J2 we can read off the first
4 roots:

j0,1 ' 2.40, j1,1 ' 3.83 j2,1 ' 5.13 j1,2 ' 5.52.
These roots generate the first 6 eigenvalues (remembering the eigenvalues are
double when n ≥ 1).
(b) Neumann BC: ∂u

∂n
= 0

Use roots of J′n(r) = 0. See [Bandle, Chapter III].

3. Equilateral triangle of sidelength L.
Separation of variables fails, but one may reflect repeatedly to a hexagonal

lattice whose eigenfunctions are trigonometric.
Dirichlet eigenvalues λjk =

16π2

9L2
(j2 + jk+ k2) for j, k ≥ 1.

Neumann eigenvalues µjk =
16π2

9L2
(j2 + jk+ k2) for j, k ≥ 0.

See [Mathews & Walker, McCartin].
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J0HrL
J1HrL

J2HrL

2 4 6 8 10

Spectral features in 2 dim

i. Scaling: eigenvalue must balance ∆, and so λ ∼ (length scale)−2.
Precisely, λj(tΩ) = λj(Ω)/t2.

ii. Dirichlet and Neumann spectra behave quite differently when the
domain degenerates. Consider the rectangle, for example. Fix one side length
L, and let the other side length M tend to 0. Then the first positive Dirichlet
eigenvalue blows up: taking j = k = 1 gives eigenvalue (π/L)2 + (π/M)2 →∞. The first positive Neumann eigenvalue is constant (independent of M):
taking j = 1, k = 0, gives eigenvalue (π/L)2.

iii. Asymptotic: eigenvalues of the rectangle grow at a regular rate.

Proposition 2.1. (Weyl’s law for rectangles) The rectangle (0, L)× (0,M)
has

λj ∼ µj ∼
4πj

Area
as j→∞,

where Area = LM is the area of the rectangle and λ1, λ2, λ3, . . . and µ1, µ2, µ3, . . .
are the Dirichlet and Neumann eigenvalues respectively, in increasing order.

Proof. We give the proof for Dirichlet eigenvalues. (The Neumann case is
similar.) Define for α > 0 the eigenvalue counting function

N(α) = #{eigenvalues ≤ α}

= #
{
j, k ≥ 1 : j2

αL2/π2
+

k2

αM2/π2
≤ 1
}

= #
{
(j, k) ∈ N× N : (j, k) ∈ E

}
where E is the ellipse (x/a)2 + (y/b)2 ≤ 1 and a =

√
αL/π, b =

√
αM/π.
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We associate each lattice point (j, k) ∈ E with the square

S(j, k) = [j− 1, j]× [k− 1, k]

whose upper right corner lies at (j, k). These squares all lie within E, and so
by comparing areas we find

N(α) ≤ (area of E in first quadrant) =
1

4
πab =

Area

4π
α.

On the other hand, a little thought shows that the union of the squares covers
a copy of E shifted down and left by one unit:

∪(j,k)∈E S(j, k) ⊃
(
E− (1, 1)

)
∩ (first quadrant).

Comparing areas shows that

N(α) ≥ 1
4
πab− a− b

=
LM

4π
α−

L+M

π

√
α

=
Area

4π
α−

Perimeter

2π

√
α.

Combining our upper and lower estimates shows that

N(α) ∼
Area

4π
α

as α → ∞. To complete the proof we simply invert this last asymptotic,
with the help of the lemma below.

Lemma 2.2. (Inversion of asymptotics) Fix c > 0. Then:

N(α) ∼
α

c
=⇒ λj ∼ cj.
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Proof. Formally substituting α = λj and N(α) = j takes us from the first
asymptotic to the second. The difficulty with making this substitution rig-
orous is that if λj is a multiple eigenvalue, then N(λj) can exceed j.

To circumvent the problem, we argue as follows. Given ε > 0 we know
from N(α) ∼ α/c that

(1− ε)
α

c
< N(α) < (1+ ε)

α

c

for all large α. Substituting α = λj into the right hand inequality implies
that

j < (1+ ε)
λj

c

for all large j. Substituting α = λj − δ into the left hand inequality implies
that

(1− ε)
λj − δ

c
< j

for each large j and 0 < δ < 1, and hence (by letting δ→ 0) that

(1− ε)
λj

c
≤ j.

We conclude that
1

1+ ε
<
λj

cj
≤ 1

1− ε

for all large j, so that

lim
j→∞

λj

cj
= 1

as desired.

Later, in Chapter 11, we will prove Weyl’s Asymptotic Law that

λj ∼ 4πj/Area

for all bounded domains in 2 dimensions, regardless of shape or boundary
conditions.

Question to ask yourself What does a “typical” eigenfunction look like,
in each of the examples above? See the following figures.
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Dirichlet square HL=M=ΠL
´ ´́ ´ ´́

Neumann square HL=M=ΠL
´ ´́ ´ ´́ ´́ ´ ´́ ´́ ´́

Dirichlet disk HR= Π ,A=Π2L
´ ´́ ´́ ´ ´́
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Chapter 3

Schrödinger — computable
spectra

Goal

To study the classic examples of the harmonic oscillator (1 dim) and hydrogen
atom (3 dim).

References [Strauss] Sections 9.4, 9.5, 10.7; [GustafsonSigal] Section 7.5,
7.7

Harmonic oscillator in 1 dimension −u′′ + x2u = Eu

Boundary condition: u(x) → 0 as x → ±∞. (Later we give a deeper per-
spective, in terms of a weighted L2-space.)

Eigenfunctions uk(x) = Hk(x)e
−x2/2 for k ≥ 0, where Hk = k-th Hermite

polynomial.
Eigenvalues Ek = 2k+ 1 for k ≥ 0, or E = 1, 3, 5, 7, . . .

Examples. H0(x) = 1,H1(x) = 2x,H2(x) = 4x
2−2,Hk(x) = (−1)kex

2(d
dx

)k
e−x

2

Ground state: u0(x) = e
−x2/2 = Gaussian. (Check: −u′′0 + x

2u0 = u0)

Quantum mechanical interpretation

If u(x, t) solves the time-dependent Schrödinger equation

iut = −u′′ + x2u

22



Harmonic osc. spectrum

´ ´ ´ ´ ´ ´

VHxL=x2

-3 3
1
3
5
7

Harmonic oscillator modes

with potential V(x) = x2 and u has L2 norm equal to 1, then |u|2 represents
the probability density for the location of a particle in a quadratic potential
well.

The k-th eigenfunction uk(x) is called the k-th excited state, because it
gives a “standing wave” solution

u(x, t) = e−iEktuk(x)

to the time-dependent equation. The higher the frequency or “energy” Ek of
the excited state, the more it can spread out in the confining potential well,
as the solution plots show.

Harmonic oscillator investigations

Method 1: ODEs Since u0(x) = e
−x2/2 is an eigenfunction, we guess that all

eigenfunctions decay like e−x
2/2. So we try the change of variable u = we−x

2/2.
The eigenfunction equation becomes

w′′ − 2xw′ + (E− 1)w = 0,

which we recognize as the Hermite equation. Solving by power series, we
find that the only appropriate solutions have terminating power series: they
are the Hermite polynomials. (All other solutions grow like ex

2
at infinity,

violating the boundary condition on u.)

Method 2: Raising and lowering Define

h+ = −
d

dx
+ x (raising or creation operator),

h− =
d

dx
+ x (lowering or annihilation operator).
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WriteH = −d2

dx2
+x2 for the harmonic oscillator operator. Then one computes

that

H = h+h− + 1

= h−h+ − 1

Claim. If u is an eigenfunction with eigenvalue E then h±u is an eigenfunc-
tion with eigenvalue E± 2. (In other words, h+ “raises” the energy, and h−

“lowers” the energy.)

Proof.

H(h+u) = (h+h− + 1)(h+u)

= h+(h−h+ + 1)u

= h+(H+ 2)u

= h+(E+ 2)u

= (E+ 2)h+u

and similarly H(h−u) = (E− 2)h−u (exercise).

The only exception to the Claim is that h−u will not be an eigenfunction
if h−u ≡ 0, which occurs precisely when u = u0 = e

−x2/2. Thus the lowering
operator annihilates the ground state.

Relation to classical harmonic oscillator

Consider a classical oscillator with mass m = 2, spring constant k = 2, and
displacement x(t), so that 2ẍ = −2x. The total energy is

ẋ2 + x2 = const. = E.

To describe a quantum oscillator, we formally replace the momentum ẋ with
the “momentum operator” −id

dx
and let the equation act on a function u:

[(
− i

d

dx

)2
+ x2

]
u = Eu.

This is exactly the eigenfunction equation −u′′ + x2u = Eu.
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Harmonic oscillator in higher dimensions −∆u+ |x|2u = Eu

Here |x|2 = x21+ · · ·+x2d. The operator separates into a sum of 1 dimensional
operators, and hence has product type eigenfunctions

u = uk1(x1) · · ·ukd(xd), E = (2k1 + 1) + · · ·+ (2kd + 1).

Hydrogen atom in 3 dimensions −∆u− 2
|x|
u = Eu

Here V(x) = −2/|x| is an attractive electrostatic (“Coulomb”) potential cre-
ated by the proton in the hydrogen nucleus. (Notice the gradient of this
potential gives the correct |x|−2 inverse square law for electrostatic force.)

Boundary conditions: u(x)→ 0 as |x|→∞ (we will say more later about
the precise formulation of the eigenvalue problem).

Eigenvalues: E = −1,− 1
4
,− 1

9
, . . . with multiplicities 1, 4, 9, . . .

That is, the eigenvalue E = −1/n2 has multiplicity n2.
Eigenfunctions: e−r/nL`n(r)Y

m
` (θ,φ) for 0 ≤ |m| ≤ n − 1, where Ym` is a

spherical harmonic and L`n equals r` times a Laguerre polynomial.
(Recall the spherical harmonics are eigenfunctions of the spherical Lapla-

cian in 3 dimensions, with −∆sphereY
m
` = `(` + 1)Ym` . In 2 dimensions the

spherical harmonics have the form Y = cos(kθ) and Y = sin(kθ), which

satisfy − d2

dθ2
Y = k2Y.)

Examples. The first three purely radial eigenfunctions (` = m = 0, n =
1, 2, 3) are e−r, e−r/2(1− r

2
), e−r/3(1− 2

3
r+ 2

27
r2).

Hydrogen atom spectrum
without multiplicities

´ ´ ´
-1

-
1

4
-

1

9

uHxL=e- x

E=-1

VHxL=-2�ÈxÈ

1

Hydrogen atom: radial n=1

The corner in the graph of the eigenfunction at r = 0 is caused by the
singularity of the Coulomb potential.
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uHxL=e- x �2H1-
1

2
ÈxÈL

E=-

1

4

VHxL=-2�ÈxÈ

1

Hydrogen atom: radial n=2

uHxL=e- x �3H1-

2

3
ÈxÈ+ 2

27
Èx 2L

E=-

1

9

VHxL=-2�ÈxÈ

1

Hydrogen atom: radial n=3

Continuous spectrum Eigenfunctions with positive energy E > 0 do ex-
ist, but they oscillate as |x| → ∞, and thus do not satisfy our boundary
conditions. They represent “free electrons” that are not bound to the nu-
cleus. See our later discussion of continuous spectrum, in Chapter 18.
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Chapter 4

Discrete spectral theorem

Goal

To state the spectral theorem for an elliptic sesquilinear form on a dense,
compactly imbedded Hilbert space; and to apply this discrete spectral theo-
rem to the Dirichlet, Robin and Neumann Laplacians.

References [Showalter] Section III.7

PDE preview — weak eigenfunctions

Consider the eigenfunction equation −∆u = λu for the Laplacian, in a do-
main Ω. Multiply by a function v ∈ H10(Ω), so that v equals 0 on ∂Ω, and
integrate to obtain

−

∫
Ω

v∆udx = λ

∫
Ω

uvdx.

Green’s theorem and the boundary condition on v imply∫
Ω

∇u · ∇v dx = λ〈u, v〉L2(Ω), ∀v ∈ H10(Ω).

We call this condition the “weak form” of the eigenfunction equation. To
prove existence of ONBs of such weak eigenfunctions, we first generalize to
a Hilbert space problem.
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Hypotheses

Consider two infinite dimensional Hilbert spaces H and K over R (or C).
H: inner product 〈u, v〉H, norm ‖u‖H
K: inner product 〈u, v〉K, norm ‖u‖K

Assume:
1. K is continuously and densely imbedded in H, meaning there exists a

continuous linear injection ι : K→ H with ι(K) dense in H.
2. The imbedding K ↪→ H is compact, meaning if B is a bounded subset

of K then B is precompact when considered as a subset of H. (Equivalently,
every bounded sequence in K has a subsequence that converges in H.)

3. We have a map a : K×K→ R (or C) that is sesquilinear, continuous,
and symmetric, meaning

u 7→ a(u, v) is linear, for each fixed v,

v 7→ a(u, v) is linear (or conjugate linear), for each fixed u,

|a(u, v)| ≤ (const.)‖u‖K‖v‖K
a(v, u) = a(u, v) (or a(u, v))

4. a is elliptic on K, meaning

a(u, u) ≥ c‖u‖2K ∀u ∈ K,

for some c > 0. Hence a(u, u) � ‖u‖2K.
Consequence of symmetry and ellipticity:

a(u, v) defines an inner product whose norm is equivalent to the
‖·‖K-norm.

Spectral theorem

Theorem 4.1. Under the assumptions above, there exist vectors u1, u2, u3, . . . ∈
K and numbers

0 < γ1 ≤ γ2 ≤ γ3 ≤ · · ·→∞
such that:

• uj is an eigenvector of a(·, ·) with eigenvalue γj, meaning

a(uj, v) = γj〈uj, v〉H ∀v ∈ K, (4.1)

28



• {uj} is an ONB for H,

• {uj/
√
γj} is an ONB for K with respect to the a-inner product.

The idea is to show that a certain “inverse” operator associated with a
is compact and selfadjoint on H. This approach makes sense in terms of
differential equations, where a would correspond to a differential operator
such as −∆ (which is unbounded) and the inverse would correspond to an
integral operator (−∆)−1 (which is bounded, and in fact compact, on suitable
domains). Indeed, we will begin by solving the analogue of −∆u = f weakly,
in our Hilbert space setting.

Proof. We first claim that for each f ∈ H there exists a unique u ∈ K such
that

a(u, v) = 〈f, v〉H ∀v ∈ K. (4.2)

Furthermore, the map

B :H→ K
f 7→ u

is linear and bounded. To prove this claim, fix f ∈ H and define a bounded
linear functional F(v) = 〈v, f〉H on K, noting for the boundedness that

|F(v)| ≤ ‖v‖H‖f‖H
≤ (const.)‖v‖K‖f‖H since K is imbedded in H
≤ (const.)a(v, v)1/2‖f‖H

by ellipticity. Hence by the Riesz Representation Theorem on K (with respect
to the a-inner product and norm on K), there exists a unique u ∈ K such
that F(v) = a(v, u) for all v ∈ K. That is,

〈v, f〉H = a(v, u) ∀v ∈ K,

as desired for (4.2). Thus the map B : f 7→ u is well defined. Clearly it is
linear. And

a(u, u) = |F(u)| ≤ (const.)a(u, u)1/2‖f‖H.

Hence a(u, u)1/2 ≤ (const.)‖f‖H, so that B is bounded from H to K, which
proves our initial claim.
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Next, B : H → K → H is compact, since K imbeds compactly into H.
Further, B is selfadjoint on H, since for all f, g ∈ H we have

〈Bf, g〉H = 〈g, Bf〉H
= a(Bg, Bf) by definition of B,

= a(Bf, Bg) by symmetry of a,

= 〈f, Bg〉H by definition of B,

which implies B∗ = B.
Hence the spectral theorem for compact, self-adjoint operators [Evans,

App. D] provides an ONB for H consisting of eigenvectors of B, with

Buj = γ̃juj

for some eigenvalues γ̃j → 0.
The eigenvalues are all nonzero, because B is injective: Bf = 0 would

imply 〈f, v〉H = 0 for all v ∈ K by (4.2), so that f = 0 (using density of K in
H).

Since we may divide by the eigenvalue, we deduce that uj = B(uj/γ̃j)
belongs to the range of B, and hence uj ∈ K.

The eigenvalues are all positive, in fact, since

γ̃ja(uj, v) = a(Buj, v) = 〈uj, v〉H ∀v ∈ K

and choosing v = uj ∈ K and using ellipticity shows that γ̃j > 0. Thus we

see that the reciprocal numbers 0 < γj
def
= 1/γ̃j →∞ satisfy

a(uj, v) = γj〈uj, v〉H ∀v ∈ K,

which is (4.1).
Finally, we have a-orthonormality of the set {uj/

√
γj}:

a(uj, uk) = γj〈uj, uk〉H
= γjδjk

=
√
γj
√
γk δjk.

This orthonormal set is complete in K, because if a(uj, v) = 0 for all j then
〈uj, v〉H = 0 for all j, by (4.1), so that v = 0.
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Remark. Eigenvectors corresponding to distinct eigenvalues are automat-
ically orthogonal, since

(γj − γk)〈uj, uk〉H = γj〈uj, uk〉H − γk〈uk, uj〉H
= a(uj, uk) − a(uk, uj)

= 0

by symmetry of a.
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Chapter 5

Application: ONBs of Laplace
eigenfunctions

Goal

To apply the spectral theorem from the previous chapter to the Dirichlet,
Robin and Neumann Laplacians, and to the fourth order biLaplacian.

Laplacian

Dirichlet Laplacian

−∆u = λu in Ω

u = 0 on ∂Ω

Ω =bounded domain in Rd.
H = L2(Ω), inner product 〈u, v〉L2 =

∫
Ω
uvdx.

K = H10(Ω) =Sobolev space, which is the completion of C∞
0 (Ω) (smooth

functions equalling zero on a neighborhood of the boundary) under the inner
product

〈u, v〉H1 =

∫
Ω

[∇u · ∇v+ uv]dx.

Density: H10 contains C∞
0 , which is dense in L2.
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Continuous imbedding H10 ↪→ L2 is trivial:

‖u‖L2 =
( ∫

Ω

u2 dx
)1/2

≤
( ∫

Ω

[ |∇u|2 + u2]dx
)1/2

= ‖u‖H1

Compact imbedding: H10 ↪→ L2 compactly by the Rellich–Kondrachov
Theorem [GilbargTrudinger, Theorem 7.22].

Sesquilinear form: define

a(u, v) =

∫
Ω

∇u · ∇v dx+
∫
Ω

uvdx = 〈u, v〉H1 , u, v ∈ H10(Ω).

Clearly a is symmetric and continuous on H10(Ω).
Ellipticity: a(u, u) = ‖u‖2

H1

The Spectral Theorem 4.1 gives an ONB {uj} for L2(Ω) and corresponding
eigenvalues which we denote γj = λj + 1 > 0 satisfying

〈uj, v〉H1 = (λj + 1)〈uj, v〉L2 ∀v ∈ H10(Ω).

Equivalently, ∫
Ω

∇uj · ∇v dx = λj
∫
Ω

ujv dx ∀v ∈ H10(Ω).

That is,
−∆uj = λjuj

weakly, so that uj is a weak eigenfunction of the Laplacian with eigenvalue λj.
Elliptic regularity theory gives that uj is C∞-smooth inΩ [GilbargTrudinger,
Corollary 8.11], and hence satisfies the eigenfunction equation classically.
The boundary condition uj = 0 is satisfied in the sense of Sobolev spaces
(since H10 is the closure of C∞

0 ), and is satisfied classically on any smooth
portion of ∂Ω, again by elliptic regularity.

The eigenvalues are nonnegative, with

λj =

∫
Ω
|∇uj|2 dx∫
Ω
u2j dx

≥ 0,
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as we see by choosing v = uj in the weak formulation.
Further, λj > 0 because: if λj = 0 then |∇uj| ≡ 0 by the last formula,

so that uj ≡ 0 by the Sobolev inequality for H10 [GilbargTrudinger, Theorem
7.10], but uj cannot vanish identically because it has L2-norm equal to 1.
Hence

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · ·→∞.
Aside. The Sobolev inequality we used is easily proved: for u ∈ H10(Ω),

‖u‖2L2 =
∫
Ω

u2 dx

= −

∫
Ω

2xiu
∂u

∂xi
dx by parts

≤ 2(max
x∈Ω

|x|)‖u‖L2‖∂u/∂xi‖L2

≤ (const.)‖u‖L2‖∇u‖L2

so that we have a Sobolev inequality

‖u‖L2 ≤ (const.)‖∇u‖L2 ∀u ∈ H10(Ω),

where the constant depends on the domain Ω. Incidentally, this Sobolev
inequality provides another proof that λj > 0 for the Dirichlet Laplacian.

Neumann Laplacian

−∆u = µu in Ω

∂u

∂n
= 0 on ∂Ω

Ω =bounded domain in Rd with Lipschitz boundary.
H = L2(Ω)
K = H1(Ω) =Sobolev space, which is the completion of C∞(Ω) under

the inner product 〈u, v〉H1 (see [GilbargTrudinger, p. 174]).
Argue as for the Dirichlet Laplacian. The compact imbedding is provided

by the Rellich–Kondrachov Theorem [GilbargTrudinger, Theorem 7.26], which
relies on Lipschitz smoothness of the boundary.

One writes the eigenvalues in the Spectral Theorem 4.1 as γj = µj+1 > 0
and finds ∫

Ω

∇uj · ∇v dx = µj
∫
Ω

ujv dx ∀v ∈ H1(Ω), (5.1)
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which implies that
−∆uj = µjuj

weakly (and hence classically). In fact (5.1) says a little more, because it
holds for all v ∈ H1(Ω), not just for v ∈ H10(Ω) as needed for a weak
solution. We will use this additional information in the next chapter to show
that eigenfunctions automatically satisfy the Neumann boundary condition
(even though we never imposed it)!

Choosing v = uj proves µj ≥ 0. The first Neumann eigenvalue is zero:
µ1 = 0, with a constant eigenfunction u1 ≡ const. 6= 0. (This constant
function belongs to H1(Ω), although not to H10(Ω).) Hence

0 = µ1 ≤ µ2 ≤ µ3 ≤ · · ·→∞.
Robin Laplacian

−∆u = ρu in Ω

∂u

∂n
+ σu = 0 on ∂Ω

Ω =bounded domain in Rd with Lipschitz boundary.
H = L2(Ω)
K = H1(Ω)
σ > 0 is the Robin constant.
The density and compact imbedding conditions are as in the Neumann

case above.
Before defining the sesquilinear form, we need to make sense of the bound-

ary values of u. Sobolev functions do have well defined boundary values.
More precisely, there is a bounded linear operator (called the trace operator)
T : H1(Ω)→ L2(∂Ω) such that

‖Tu‖L2(∂Ω) ≤ τ‖u‖H1(Ω) (5.2)

for some τ > 0, and with the property that if u extends to a continuous
function on ∂Ω, then Tu = u on ∂Ω. (Thus the trace operator truly captures
the boundary values of u.) Further, if u ∈ H10(Ω) then Tu = 0, meaning that
functions in H10 “equal zero on the boundary”. For these trace results, see
[Evans, Section 5.5] for domains with C1 boundary, or [EvansGariepy, §4.3]
for the slightly rougher case of Lipschitz boundary.
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Sesquilinear form:

a(u, v) =

∫
Ω

∇u · ∇v dx+ σ
∫
∂Ω

uvdS(x) +

∫
Ω

uvdx

(where u and v on the boundary should be interpreted as the trace values
Tu and Tv). Clearly a is symmetric and continuous on H1(Ω).

Ellipticity: a(u, u) ≥ ‖u‖2
H1 , since σ > 0.

One writes the eigenvalues in the Spectral Theorem 4.1 as γj = ρj+1 > 0
and finds∫

Ω

∇uj · ∇v dx+ σ
∫
∂Ω

ujv dS(x) = ρj

∫
Ω

ujv dx ∀v ∈ H1(Ω),

which implies that

−∆uj = ρjuj

weakly and hence classically. For the weak solution here we need (by defini-
tion) only to use trial functions v ∈ H10(Ω) (functions equalling zero on the
boundary). In the next chapter we use the full class v ∈ H1(Ω) to show that
the eigenfunctions satisfy the Robin boundary condition.

Choosing v = uj proves

ρj =

∫
Ω
|∇uj|2 dx+ σ

∫
∂Ω
u2j dS(x)∫

Ω
u2j dx

≥ 0,

using again that σ > 0. Further, ρj > 0 because: if ρj = 0 then |∇uj| ≡ 0 so
that uj ≡ const., and this constant must equal zero because

∫
∂Ω
u2j dS(x) = 0;

but uj cannot vanish identically because it has L2-norm equal to 1. Hence
when σ > 0 we have

0 < ρ1 ≤ ρ2 ≤ ρ3 ≤ · · ·→∞.
Negative Robin constant: σ < 0. Ellipticity more difficult to prove
when σ < 0. We start by controlling the boundary values in terms of the
gradient and L2 norm. We have∫

∂Ω

u2 dS(x) ≤ (const.)

∫
Ω

|∇u||u|dx+ (const.)

∫
Ω

u2 dx,
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as one sees by inspecting the proof of the trace theorem ([Evans, §5.5] or
[EvansGariepy, §4.3]). An application of Cauchy-with-ε gives∫

∂Ω

u2 dS(x) ≤ ε‖∇u‖2L2 + C‖u‖
2
L2

for some constant C = C(ε) > 0 (independent of u). Let us choose ε =
1/2|σ|, so that

a(u, u) ≥ 1
2
‖u‖2H1 − C|σ| ‖u‖2L2 .

Hence the new sesquilinear form ã(u, v) = a(u, v) + C|σ|〈u, v〉L2 is elliptic.
We apply the discrete spectral theorem to this new form, and then obtain the
eigenvalues of a by subtracting C|σ| (with the same ONB of eigenfunctions).

Eigenfunction expansions in the L2 and H1 norms

The L2-ONB of eigenfunctions {uj} of the Laplacian satisfies

f =
∑
j

〈f, uj〉L2 uj (5.3)

with convergence in L2(Ω), for all f in the following spaces:

f ∈


H10(Ω) for Dirichlet,

H1(Ω) for Neumann,

H1(Ω) for Robin.

Importantly, this expansion (5.3) converges not only in the L2-norm, but also
in the H1-norm.

Proof. In the Dirichlet case we have

〈f, uj〉L2 =
1

λj + 1
a(f, uj)

by choosing v = f in the eigenfunction equation. Hence

〈f, uj〉L2 uj = a(f, uj/
√
λj + 1)uj/

√
λj + 1.

We know {uj/
√
λj + 1} is an ONB for K = H10(Ω) under the a-inner product,

by Theorem 4.1, and so expansion (5.3) converges in the H1-norm. The ar-
gument is exactly the same for the Neumann and Robin applications, except
using H1(Ω).
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Invariance of eigenvalues under translation, rotation and reflection,
and scaling under dilation

Eigenvalues of the Laplacian remain invariant when the domain Ω is trans-
lated, rotated or reflected, as one sees by a straightforward change of variable
in either the classical or weak formulation of the eigenvalue problem. Physi-
cally, this invariance simply means that a vibrating membrane is unaware of
any coordinate system we impose upon it.

Dilations do change the eigenvalues, of course, by a simple rescaling rela-
tion: λj(tΩ) = t−2λj(Ω) for each j and all t > 0, and similarly for the Robin
and Neumann eigenvalues. We understand the scale factor t−2 physically by
recalling that large drums vibrate at low tones.

BiLaplacian — vibrating plates

The fourth order wave equation φtt = −∆∆φ describes the transverse vibra-
tions of a rigid plate. (In one dimension, this equation simplifies to the beam
equation: φtt = −φ′′′′). After separating out the time variable, one arrives
at the eigenvalue problem for the biLaplacian:

∆∆u = Λu in Ω.

We will prove existence of an orthonormal basis of eigenfunctions. For sim-
plicity, we treat only the Dirichlet case, which has boundary conditions

u = |∇u| = 0 on ∂Ω.

(The Neumann “natural” boundary conditions are rather complicated, for
the biLaplacian.)

Ω =bounded domain in Rd
H = L2(Ω)
K = H20(Ω) = completion of C∞

0 (Ω) under the inner product

〈u, v〉H2 =

∫
Ω

[

d∑
m,n=1

uxmxnvxmxn +

d∑
m=1

uxmvxm + uv ]dx.

Density: H20 contains C∞
0 , which is dense in L2.

Compact imbedding: H20 ↪→ H10 ↪→ L2 and the second imbedding is com-
pact.
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Sesquilinear form: define

a(u, v) =

∫
Ω

[

d∑
m,n=1

uxmxnvxmxn + uv ]dx, u, v ∈ H20(Ω).

Clearly a is symmetric and continuous on H20(Ω).
Ellipticity: ‖u‖2

H2 ≤ (d+ 1)a(u, u), because integration by parts gives∫
Ω

d∑
m=1

u2xm dx = −

d∑
m=1

∫
Ω

uxmxmudx

≤
d∑

m=1

∫
Ω

[u2xmxm + u2 ]dx

≤ a(u, u)d.

The Spectral Theorem 4.1 gives an ONB {uj} for L2(Ω) and corresponding
eigenvalues which we denote γj = Λj + 1 > 0 satisfying

a(uj, v) = (Λj + 1)〈uj, v〉L2 ∀v ∈ H20(Ω).

Equivalently,∫
Ω

d∑
m,n=1

(uj)xmxnvxmxn dx = Λj

∫
Ω

ujv dx ∀v ∈ H20(Ω).

That is,
d∑

m,n=1

(uj)xmxmxnxn = Λjuj

weakly, which says
∆∆uj = Λjuj

weakly. Hence uj is a weak eigenfunction of the biLaplacian with eigenvalue
Λj. Elliptic regularity gives that uj is C∞-smooth, and hence satisfies the
eigenfunction equation classically. The boundary condition uj = |∇uj| = 0 is
satisfied in the sense of Sobolev spaces (since uj and each partial derivative
(uj)xm belong to H10), and the boundary condition is satisfied classically on
any smooth portion of ∂Ω, again by elliptic regularity.
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The eigenvalues are nonnegative, with

Λj =

∫
Ω
|D2uj|

2 dx∫
Ω
u2j dx

≥ 0,

as we see by choosing v = uj in the weak formulation and writing D2u =
[uxmxn ]

d
m,n=1 for the Hessian matrix.

Further, Λj > 0 because: if Λj = 0 then (uj)xmxn ≡ 0 by the last formula,
so that (uj)xm ≡ 0 by the Sobolev inequality for H10 applied to (uj)xm , and
hence uj ≡ 0 by the same Sobolev inequality, which gives a contradiction.
Hence

0 < Λ1 ≤ Λ2 ≤ Λ3 ≤ · · ·→∞.
Compact resolvents

The essence of the proof of the Spectral Theorem 4.1 is to show that the
inverse operator B is compact, which means for our differential operators that
the inverse is a compact integral operator. For example, in the Neumann
Laplacian application we see that (−∆ + 1)−1 is compact from L2(Ω) to
H1(Ω). So is (−∆ + α)−1 for any positive α, but α = 0 does not give an
invertible operator because the Neumann Laplacian has nontrivial kernel,
with −∆(c) = 0 for every constant c.

Thus for the Neumann Laplacian, the resolvent operator

Rλ = (−∆− λ)−1

is compact whenever λ is negative.
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Chapter 6

Natural boundary conditions

Goal

To understand how the Neumann and Robin boundary conditions arise “nat-
urally” from the weak eigenfunction equation.

Dirichlet boundary conditions

are imposed directly by our choice of function space H10(Ω), since each func-
tion in that space is a limit of functions with compact support in Ω.

Neumann boundary conditions

The weak form of the Neumann eigenequation for the Laplacian, from
Chapter 5, is: ∫

Ω

∇u · ∇v dx = µ
∫
Ω

uvdx ∀v ∈ H1(Ω). (6.1)

From this formula we showed that −∆u = µu weakly and hence classically,
by using only functions v that vanish on the boundary, meaning v ∈ H10(Ω).

To deduce the Neumann boundary condition ∂u/∂n = 0, we will take v
not to vanish on the boundary. Assume for simplicity that the boundary is
smooth, so that u extends smoothly to Ω. Green’s formula (integration by
parts) applied to (6.1) implies that∫

Ω

(−∆u)v dx+

∫
∂Ω

∂u

∂n
vdS =

∫
Ω

(µu)v dx ∀v ∈ C∞(Ω).
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Since −∆u = µu, we deduce∫
∂Ω

∂u

∂n
vdS = 0 ∀v ∈ C∞(Ω).

One may choose v ∈ C∞(Ω) to equal the normal derivative of u on the bound-
ary (meaning v|∂Ω = ∂u

∂n
), or alternatively one may use density of C∞(Ω)

∣∣
∂Ω

in L2(∂Ω); either way one concludes that

∂u

∂n
= 0 on ∂Ω,

which is the Neumann boundary condition.
Note. If the boundary is only piecewise smooth, then one merely applies

the above reasoning on the smooth portions of the boundary, to show the
Neumann condition holds there.

Robin boundary conditions
Integrating by parts in the Robin eigenfunction equation∫

Ω

∇u · ∇v dx+ σ
∫
∂Ω

uvdS = ρ

∫
Ω

uvdx ∀v ∈ H1(Ω)

(that is, applying Green’s formula to this equation) and then using that
−∆u = ρu gives that∫

∂Ω

(∂u
∂n

+ σu
)
v dS = 0 ∀v ∈ C∞(Ω).

Like above, we obtain the Robin boundary condition

∂u

∂n
+ σu = 0 on ∂Ω,

at least on smooth portions of the boundary.

BiLaplacian — natural boundary conditions
Natural boundary conditions for the biLaplacian can be derived similarly

[Chasman, §5]. They are much more complicated than for the Laplacian.
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Chapter 7

Application: ONB of
eigenfunctions for the
Laplacian with magnetic field

Goals

To apply the spectral theorem from Chapter 4 to the magnetic Laplacian
(the Schrödinger operator for a particle in the presence of a classical magnetic
field).

Magnetic Laplacian

Take a bounded domain Ω in Rd, with d = 2 or d = 3. We seek an ONB
of eigenfunctions and eigenvalues for the magnetic Laplacian

(i∇+ ~A)2 u = βu in Ω,

u = 0 on ∂Ω,

where u(x) is complex-valued and

~A : Rd → Rd

is a given bounded vector field.
Physically, ~A represents the vector potential, whose curl equals the mag-

netic field: ∇ × ~A = ~B. Note that in 2 dimensions, one extends ~A =
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(A1, A2) to a 3-vector (A1, A2, 0) before taking the curl, so that the field
~B = (0, 0, ∂A2

∂x1
− ∂A1

∂x2
) cuts vertically through the plane of the domain. For a

brief explanation of how the magnetic Laplacian arises from the correspon-
dence between classical energy functions and quantum mechanical Hamilto-
nians, see [ReedSimon2, p. 173].

Now we choose the Hilbert spaces and sesquilinear form. Consider only
the Dirichlet boundary condition, for simplicity:

H = L2(Ω;C) (complex valued functions), with inner product

〈u, v〉L2 =
∫
Ω

uvdx.

K = H10(Ω;C) with inner product

〈u, v〉H1 =

∫
Ω

[∇u · ∇v+ uv ]dx

Density: K contains C∞
0 , which is dense in L2.

Continuous imbedding H10 ↪→ L2 is trivial, since ‖u‖L2 ≤ ‖u‖H1 , and the
imbedding is compact by the Rellich–Kondrachov Theorem [GilbargTrudinger,
Theorem 7.22].

Sesquilinear form: define

a(u, v) =

∫
Ω

(i∇+ ~A)u · (i∇+ ~A)v dx+ C

∫
Ω

uvdx, u, v ∈ H10(Ω;C),

with constant C = ‖~A‖2L∞ + 1
2
. Clearly a is symmetric and continuous on H10.

Ellipticity:

a(u, u) =

∫
Ω

[
|∇u|2 + 2Re(i∇u · ~Au) + |~A|2|u|2 + C|u|2

]
dx

≥
∫
Ω

[
|∇u|2 − 2|∇u||~A||u|+ 2|~A|2|u|2 + 1

2
|u|2

]
dx

≥
∫
Ω

[ 1
2
|∇u|2 + 1

2
|u|2

]
dx

=
1

2
‖u‖2H1
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The Spectral Theorem 4.1 gives an ONB {uj} for L2(Ω;C) and corre-
sponding eigenvalues which we denote γj = βj + C > 0 satisfying∫

Ω

(i∇+ ~A)uj · (i∇+ ~A)v)dx = βj

∫
Ω

ujv dx ∀v ∈ H10(Ω;C).

In particular,
(i∇+ ~A)2 uj = βjuj

weakly (and hence classically, assuming smoothness of the vector potential
~A), so that uj is an eigenfunction of the magnetic Laplacian (i∇+ ~A)2 with
eigenvalue βj. We have

β1 ≤ β2 ≤ β3 ≤ · · ·→∞.
The eigenvalues satisfy

βj =

∫
Ω
|(i∇+ ~A)uj|

2 dx∫
Ω
|uj|2 dx

,

as we see by choosing v = uj in the weak formulation. Hence the eigenvalues
are all nonnegative.

In fact β1 > 0 if the magnetic field vanishes nowhere, as we will show by
proving the contrapositive. If β1 = 0 then (i∇ + ~A)u1 ≡ 0, which implies
~A = −i∇ logu1 wherever u1 is nonzero. Then ∇ × ~A = 0 wherever u1 is
nonzero, since the curl of a gradient vanishes identically. (Here we assume
u1 is twice continuously differentiable.) Thus the magnetic field vanishes
somewhere, as we wanted to show.

Aside. The preceding argument works regardless of the boundary condi-
tion. In the case of Dirichlet boundary conditions, one need not assume the
magnetic field is nonvanishing, because the above argument and the reality
of ~A together imply that if β1 = 0 then |u1| is constant, which is impossible
since u1 = 0 on the boundary.

Gauge invariance
Many different vector potentials can generate the same magnetic field.

For example, in 2 dimensions the potentials

~A = (0, x1), ~A = (−x2, 0), ~A =
1

2
(−x2, x1),
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all generate the same (constant) magnetic field: ∇ × ~A = (0, 0, 1). Indeed,
adding any gradient vector ∇f to the potential leaves the magnetic field
unchanged, since the curl of a gradient equals zero. This phenomenon goes
by the name of gauge invariance.

How is the spectral theory of the magnetic Laplacian affected by gauge
invariance? The sesquilinear form definitely changes when we replace ~A with
~A + ∇f. Fortunately, the new eigenfunctions are related to the old by a
unitary transformation, as follows. Suppose f is C1-smooth on the closure of
the domain. For any trial function u ∈ H10(Ω;C) we note that the modulated
function eifu also belongs to H10(Ω;C), and that

(i∇+ ~A)u = (i∇+ ~A+∇f)(eifu).

Thus if we write a for the original sesquilinear form and ã for the analogous
form coming from the vector potential ~A+∇f, we deduce

a(u, v) = ã(eifu, eifv)

for all trial functions u, v. Since also 〈u, v〉L2 = 〈eifu, eifv〉L2 , we find that
the ONB of eigenfunctions uj associated with a transforms to an ONB of
eigenfunctions eifuj associated with ã. The eigenvalues (energy levels) βj
are unchanged by this transformation.

For geometric invariance of the spectrum with respect to rotations, re-
flections and translations, and for a discussion of the Neumann and Robin
situations, see [LaugesenLiangRoy, Appendix A].

Higher dimensions

In dimensions d ≥ 4 we identify the vector potential ~A : Rd → Rd with a
1-form

A = A1 dx1 + · · ·+Ad dxd
and obtain the magnetic field from the exterior derivative:

B = dA.

Apart from that, the spectral theory proceeds as in dimensions 2 and 3.
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Chapter 8

Application: ONB of
eigenfunctions for Schrödinger
in a confining well

Goal

To apply the spectral theorem from Chapter 4 to the harmonic oscillator and
more general confining potentials in higher dimensions.

Schrödinger operator with potential growing to infinity

We treat a locally bounded, real-valued potential V(x) on Rd that grows
at infinity:

−C ≤ V(x)→∞ as |x|→∞,

for some constant C > 0. For example, V(x) = |x|2 gives the harmonic
oscillator.

We aim to prove existence of an ONB of eigenfunctions and eigenvalues
for

(−∆+ V)u = Eu in Rd

u→ 0 as |x|→∞
Ω = Rd
H = L2(Rd), inner product 〈u, v〉L2 =

∫
Rd uvdx.
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K = H1(Rd) ∩ L2(|V |dx) under the inner product

〈u, v〉K =

∫
Rd

[∇u · ∇v+ (1+ |V |)uv ]dx.

Density: K contains C∞
0 , which is dense in L2.

Continuous imbedding K ↪→ L2 is trivial, since ‖u‖L2 ≤ ‖u‖K. To prove
the imbedding is compact:

Proof that imbedding is compact. Suppose {fk} is a bounded sequence in K,
say with ‖fk‖K ≤M for all k. We must prove the existence of a subsequence
converging in L2(Rd).

The sequence is bounded in H1(B(R)) for each ball B(R) ⊂ Rd that is cen-
tered at the origin. Take R = 1. The Rellich–Kondrachov theorem provides
a subsequence that converges in L2

(
B(1)

)
. Repeating with R = 2 provides a

sub-subsequence converging in L2
(
B(2)

)
. Continue in this fashion and then

consider the diagonal subsequence, to obtain a subsequence that converges
in L2

(
B(R)

)
for each R > 0.

We will show this subsequence converges in L2(Rd). Denote it by {fk`}.
Let ε > 0. Since V(x) grows to infinity, we may choose R so large that
V(x) ≥ 1/ε when |x| ≥ R. Then∫

Rd\B(R)

f2k` dx ≤ ε
∫
Rd\B(R)

f2k`V dx

≤ ε‖fk`‖2K
≤ εM2

for all `. Since also {fk`} converges on B(R), we have

lim sup
`,m→∞ ‖fk` − fkm‖L2(Rd) = lim sup

`,m→∞ ‖fk` − fkm‖L2(Rd\B(R)) ≤ 2
√
εM.

Therefore {fk`} is Cauchy in L2(Rd), and hence converges.

Sesquilinear form: define

a(u, v) =

∫
Rd

[∇u · ∇v+ Vuv ]dx+ (2C+ 1)

∫
Rd

uvdx, u, v ∈ K.

Clearly a is symmetric and continuous on K.
Ellipticity: a(u, u) ≥ ‖u‖2K, since V + 2C+ 1 ≥ 1+ |V |.
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The Spectral Theorem 4.1 gives an ONB {uj} for L2(Rd) and correspond-
ing eigenvalues which we denote γj = Ej + 2C+ 1 > 0 satisfying∫

Rd

[∇uj · ∇v+ Vujv]dx = Ej
∫
Rd

ujv dx ∀v ∈ K.

In particular,
−∆uj + Vuj = Ejuj

weakly (and hence classically, assuming smoothness of V), so that uj is an
eigenfunction of the Schrödinger operator −∆ + V , with eigenvalue Ej. We
have

E1 ≤ E2 ≤ E3 ≤ · · ·→∞.
The boundary condition uj → 0 at infinity is interpreted to mean, more

precisely, that uj belongs to the space H1(Rd) ∩ L2(|V |dx). This condition
suffices to rule out the existence of any other eigenvalues for the harmonic
oscillator, for example, as one can show by direct estimation [Strauss].

The eigenvalues satisfy

Ej =

∫
Rd

(
|∇uj|2 + Vu2j

)
dx∫

Rd u
2
j dx

,

as we see by choosing v = uj in the weak formulation. Hence if V ≥ 0 then
the eigenvalues are all positive.
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Chapter 9

Variational characterizations of
eigenvalues

Goal

To obtain minimax and maximin characterizations of the eigenvalues of the
sesquilinear form in Chapter 4.

References [Bandle] Section III.1.2

Motivation and hypotheses. How can one estimate the eigenvalues if the
spectrum cannot be computed explicitly? We will develop two complemen-
tary variational characterizations of eigenvalues. The intuition for these char-
acterizations comes from the special case of eigenvalues of a Hermitian (or
real symmetric) matrix A, for which the sesquilinear form is a(u, v) = Au ·v
and the first eigenvalue is

λ1 = min
v 6=0

Av · v
v · v

.

We will work under the assumptions of the discrete spectral theorem in
Chapter 4, for the sesquilinear form a. Recall the ordering

λ1 ≤ λ2 ≤ λ3 ≤ · · ·→∞.
Poincaré’s minimax characterization of the eigenvalues
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Define the Rayleigh quotient of u to be

a(u, u)

〈u, u〉H
.

We claim λ1 equals the minimum value of the Rayleigh quotient:

λ1 = min
f∈K\{0}

a(f, f)

〈f, f〉H
. (9.1)

This characterization of the first eigenvalue is the Rayleigh principle.
More generally, each eigenvalue is given by a minimax formula known as

the Poincaré principle:

λj = min
S

max
f∈S\{0}

a(f, f)

〈f, f〉H
(9.2)

where S ranges over all j-dimensional subspaces of K.

Remark. The Rayleigh and Poincaré principles provide upper bounds on
eigenvalues, since they expresses λj as a minimum. More precisely, we obtain
an upper bound on λj by choosing S to be any j-dimensional subspace and
evaluating the maximum of the Rayleigh quotient over f ∈ S.

Proof of Poincaré principle. First we prove the Rayleigh principle for the
first eigenvalue. Let f ∈ K. Then f can be expanded in terms of the ONB of
eigenvectors as

f =
∑
j

cjuj

where cj = 〈f, uj〉H. This series converges in both H and K (as we proved in
Chapter 4). Hence we may substitute it into the Rayleigh quotient to obtain

a(f, f)

〈f, f〉H
=

∑
j,k cjcka(uj, uk)∑
j,k cjck〈uj, uk〉H

=

∑
j |cj|

2λj∑
j |cj|

2
(9.3)

since the eigenvectors {uj} are orthonormal in H and the collection {uj/
√
λj}

is a-orthonormal in K (that is, a(uj, uk) = λjδjk). The expression (9.3) is
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obviously greater than or equal to λ1, with equality when f = u1, and so we
have proved the Rayleigh principle (9.1).

Next we prove the minimax formula (9.2) for j = 2. (We leave the case
of higher j-values as an exercise.) Choose S = {c1u1+ c2u2 : c1, c2 scalars} to
be the span of the first two eigenvectors. Then

max
f∈S\{0}

a(f, f)

〈f, f〉H
= max

(c1,c2) 6=(0,0)

∑2
j=1 |cj|

2λj∑2
j=1 |cj|

2
= λ2.

Hence the minimum on the right side of (9.2) is ≤ λ2.
To prove the opposite inequality, consider an arbitrary 2-dimensional sub-

space S ⊂ K. This subspace contains a nonzero vector g that is orthogonal to
u1 (since given a basis {v1, v2} for the subspace, we can find scalars d1, d2 not
both zero such that g = d1v1+d2v2 satisfies 0 = d1〈v1, u1〉H+d2〈v2, u1〉H =
〈g, u1〉H). Then c1 = 0 in the expansion for g, and so by (9.3),

a(g, g)

〈g, g〉H
=

∑∞
j=2 |cj|

2λj∑∞
j=2 |cj|

2
≥ λ2.

Hence

max
f∈S\{0}

a(f, f)

〈f, f〉H
≥ a(g, g)
〈g, g〉H

≥ λ2,

which implies that the minimum on the right side of (9.2) is ≥ λ2.

Variational characterization of eigenvalue sums. The sum of the
first n eigenvalues has a simple “minimum” characterization, similar to the
Rayleigh principle for the first eigenvalue, but now involving pairwise orthog-
onal trial functions:

λ1 + · · ·+ λn (9.4)

= min
{a(f1, f1)
〈f1, f1〉H

+ · · ·+ a(fn, fn)

〈fn, fn〉H
: fj ∈ K \ {0}, 〈fj, fk〉H = 0 when j 6= k

}
.

See Bandle’s book for the proof and related results [Bandle, Section III.1.2].

Courant’s maximin characterization
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The eigenvalues are given also by a maximin formula known as the Courant
principle:

λj = max
S

min
f∈S⊥\{0}

a(f, f)

〈f, f〉H
(9.5)

where this time S ranges over all (j− 1)-dimensional subspaces of K.

Remark. The Courant principle provide lower bounds on eigenvalues, since
it expresses λj as a maximum. The lower bounds are difficult to compute,
however, because S⊥ is an infinite dimensional space.

Sketch of proof of Courant principle. The Courant principle reduces to
Rayleigh’s principle when j = 1, since in that case S is the zero subspace
and S⊥ = K.

Now take j = 2 (we leave the higher values of j as an exercise). For
the “≤” direction of the proof, we choose S to be the 1-dimensional space
spanned by the first eigenvector u1. Then every f ∈ S⊥ has c1 = 〈f, u1〉H = 0
and so

λ2 ≤ min
f∈S⊥\{0}

a(f, f)

〈f, f〉H
by expanding f =

∑∞
j=2 cjuj and computing as in our proof of the Poincaré

principle.
For the “≥” direction of the proof, consider an arbitrary 1-dimensional

subspace S of K. Then S⊥ contains some vector of the form f = c1u1 + c2u2
with at least one of c1 or c2 nonzero. Hence

min
f∈S⊥\{0}

a(f, f)

〈f, f〉H
≤
∑2

j=1 |cj|
2λj∑2

j=1 |cj|
2
≤ λ2,

as desired.

Eigenvalues as critical values of the Rayleigh quotient

Even if we did not know the existence of an ONB of eigenvectors we could still
prove the Rayleigh principle, by the following alternative approach. Define
λ∗ to equal the infimum of the Rayleigh quotient:

λ∗ = inf
f∈K\{0}

a(f, f)

〈f, f〉H
.
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We will prove λ∗ is an eigenvalue.
First, choose an infimizing sequence {fk} normalized with ‖fk‖H = 1, so

that
a(fk, fk)→ λ∗.

By weak compactness of closed balls in the Hilbert space K, we may suppose
fk converges weakly in K to some u ∈ K. Hence fk also converges weakly in
H to u (because if F(·) is any bounded linear functional on H then it is also
a bounded linear functional on K). We may further suppose fk converges in
H to some v ∈ H (by compactness of the imbedding K ↪→ H) and then fk
converges weakly in H to v, which forces v = u. To summarize: fk ⇀ u

weakly in K and fk → u in H. In particular, ‖u‖H = 1. Therefore we have

0 ≤ a(fk − u, fk − u)
= a(fk, fk) − 2Rea(fk, u) + a(u, u)→ λ∗ − 2Rea(u, u) + a(u, u) using weak convergence fk ⇀ u

= λ∗ − a(u, u)

≤ 0

by definition of λ∗ as an infimum.
We have shown that the infimum defining λ∗ is actually a minimum,

λ∗ = min
f∈K\{0}

a(f, f)

〈f, f〉H
,

and that the minimum is attained when f = u.
Our second task is to show u is an eigenvector with eigenvalue λ∗. Let

v ∈ K be arbitrary and use f = u + εv as a trial function in the Rayleigh
quotient; since u gives the minimizer, the derivative at ε = 0 must equal zero
by the first derivative test from calculus:

0 =
d

dε

a(u+ εv, u+ εv)

〈u+ εv, u+ εv〉H

∣∣∣∣
ε=0

= 2Rea(u, v) − λ∗2Re〈u, v〉H.

The same equation holds with Im instead of Re, as we see by replacing v with
iv. (This last step is unnecessary when working with real Hilbert spaces, of
course.) Hence

a(u, v) = λ∗〈u, v〉H ∀v ∈ K,
which means u is an eigenvector for the sesquilinear form a, with eigenvalue
λ∗.
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Aside. The higher eigenvalues (λj for j > 1) can be obtained by a similar
process, minimizing the Rayleigh quotient on the orthogonal complement of
the span of the preceding eigenfunctions (u1, . . . , uj−1).
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Chapter 10

Monotonicity properties of
eigenvalues

Goal

To apply Poincaré’s minimax principle to the Laplacian and related opera-
tors, and hence to establish monotonicity results for Dirichlet and Neumann
eigenvalues of the Laplacian, and a diamagnetic comparison for the magnetic
Laplacian.

References [Bandle]

Laplacian, biLaplacian, and Schrödinger operators

Applying the Rayleigh principle (9.1) to the examples in Chapters 5–8 gives:

λ1 = min
f∈H1

0(Ω)

∫
Ω
|∇f|2 dx∫
Ω
f2 dx

Dirichlet Laplacian on Ω,

ρ1 = min
f∈H1(Ω)

∫
Ω
|∇f|2 dx+ σ

∫
∂Ω
f2 dS∫

Ω
f2 dx

Robin Laplacian on Ω,

µ1 = min
f∈H1(Ω)

∫
Ω
|∇f|2 dx∫
Ω
f2 dx

Neumann Laplacian on Ω,
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Λ1 = min
f∈H2

0(Ω)

∫
Ω

∑d
m,n=1 f

2
xmxn

dx∫
Ω
f2 dx

Dirichlet biLaplacian on Ω

= min
f∈H2

0(Ω)

∫
Ω
(∆f)2 dx∫
Ω
f2 dx

,

β1 = min
f∈H1

0(Ω)

∫
Rd |i∇f+ ~Af|2 dx∫

Rd |f|2 dx
magnetic Laplacian

E1 = min
f∈H1(Rd)∩L2(|V |dx)

∫
Rd

(
|∇f|2 + Vf2

)
dx∫

Rd f2 dx
Schrödinger with potential

V(x) growing to infinity.

The Poincaré principle applies too, giving formulas for the higher eigenvalues
and hence implying certain monotonicity relations, as follows.

Neumann ≤ Robin ≤ Dirichlet

Free membranes give lower tones than partially free and fixed membranes:

Theorem 10.1 (Neumann–Robin–Dirichlet comparison). LetΩ be a bounded
domain in Rd with Lipschitz boundary, and fix σ > 0.

Then the Neumann eigenvalues of the Laplacian lie below their Robin
counterparts, which in turn lie below the Dirichlet eigenvalues:

µj ≤ ρj ≤ λj ∀j ≥ 1.
Proof. Poincaré’s minimax principle gives the formulas

µj = min
U

max
f∈U\{0}

∫
Ω
|∇f|2 dx∫
Ω
f2 dx

ρj = min
T

max
f∈T\{0}

∫
Ω
|∇f|2 dx+ σ

∫
∂Ω
f2 dS∫

Ω
f2 dx

λj = min
S

max
f∈S\{0}

∫
Ω
|∇f|2 dx∫
Ω
f2 dx

where S ranges over all j-dimensional subspaces of H10(Ω), and T and U range
over all j-dimensional subspaces of H1(Ω).

Clearly µj ≤ ρj. Further, every subspace S is also a valid T , sinceH10 ⊂ H1.
Thus the minimum for ρj is taken over a larger class of subspaces. Since for
f ∈ H10 the boundary term vanishes in the Rayleigh quotient for ρj, we
conclude that ρj ≤ λj.
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Domain monotonicity for Dirichlet spectrum

Making a drum smaller increases its frequencies of vibration:

Theorem 10.2. Let Ω and Ω̃ be bounded domains in Rd, and denote the
eigenvalues of the Dirichlet Laplacian on these domains by λj and λ̃j, respec-
tively.

If Ω ⊃ Ω̃ then

λj ≤ λ̃j ∀j ≥ 1.

Proof. Poincaré’s minimax principle gives that

λj = min
S

max
f∈S\{0}

∫
Ω
|∇f|2 dx∫
Ω
f2 dx

λ̃j = min
S̃

max
f∈S̃\{0}

∫
Ω̃
|∇f|2 dx∫
Ω̃
f2 dx

where S ranges over all j-dimensional subspaces of H10(Ω) and S̃ ranges over

all j-dimensional subspaces of H10(Ω̃).

Every subspace S̃ is also a valid S, since H10(Ω̃) ⊂ H10(Ω) (noting that

any approximating function in C∞
0 (Ω̃) belongs also to C∞

0 (Ω) by extension

by 0.) Therefore λj ≤ λ̃j.

Restricted reverse monotonicity for Neumann spectrum

The monotonicity proof breaks down in the Neumann case because H1(Ω̃) is
not a subspace of H1(Ω). More precisely, while one can extend a function in

H1(Ω̃) to belong to H1(Ω), the extended function must generally be nonzero

outside Ω̃, and so its L2 norm and Dirichlet integral will differ from those of
the original function.

Furthermore, counterexamples to domain monotonicity are easy to con-
struct for Neumann eigenvalues, as the figure below shows with a rectangle
contained in a square. In that example, the square has side length 1 and hence
µ2 = π

2, while the rectangle has side length
√
2(0.9) and so µ̃2 = π

2/(1.62),
which is smaller than µ2.

Nonetheless, monotonicity does holds in a certain restricted situation,
although the inequality is reversed — the smaller drum has lower tones:
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Theorem 10.3. Let Ω and Ω̃ be bounded Lipschitz domains in Rd, and
denote the eigenvalues of the Neumann Laplacian on these domains by µj
and µ̃j, respectively.

If Ω̃ ⊂ Ω and Ω \ Ω̃ has measure zero, then

µ̃j ≤ µj ∀j ≥ 1.

One might imagine the smaller domain Ω̃ as being constructed by remov-
ing a hypersurface of measure zero from Ω, thus introducing an additional
boundary surface. Reverse monotonicity then makes perfect sense, because
the additional boundary, on which values are not specified for the eigenfunc-
tions, enables the eigenfunctions to “relax” and hence lowers the eigenvalues.

W
�

W

Introducing additional boundary surfaces to a Dirichlet problem would
have the opposite effect: the eigenfunctions would be further constrained,
and the eigenvalues raised.
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Proof. Poincaré’s minimax principle gives that

µj = min
S

max
f∈S\{0}

∫
Ω
|∇f|2 dx∫
Ω
f2 dx

µ̃j = min
S̃

max
f∈S̃\{0}

∫
Ω
|∇f|2 dx∫
Ω
f2 dx

where S ranges over all j-dimensional subspaces of H1(Ω) and S̃ ranges over

all j-dimensional subspaces of H1(Ω̃).

Every subspace S is also a valid S̃, since each f ∈ H1(Ω) restricts to a

function in H1(Ω̃) that has the same H1-norm (using here that Ω \ Ω̃ has
measure zero). Therefore µ̃j ≤ µj.

Diamagnetic comparison for the magnetic Laplacian

Imposing a magnetic field always raises the ground state energy.

Theorem 10.4 (Diamagnetic comparison).

β1 ≥ λ1
First we prove a pointwise comparison.

Lemma 10.5 (Diamagnetic inequality).

|(i∇+ ~A)f| ≥
∣∣∇|f|∣∣

Proof of Lemma 10.5. Write f in polar form as f = ReiΘ. Then

|i∇f+ ~Af|2 = |ieiΘ∇R− ReiΘ∇Θ+ ~AReiΘ|2

= |i∇R− R∇Θ+ ~AR|2

= |∇R|2 + R2|∇Θ− ~A|2

≥ |∇R|2 =
∣∣∇|f|∣∣2.

Proof of Theorem 10.4. The proof is immediate from the diamagnetic in-
equality in Lemma 10.5 and the Rayleigh principles for β1 and λ1 at the
beginning of this chapter. Note we can assume f ≥ 0 in the Rayleigh prin-
ciple for λ1, since the first Dirichlet eigenfunction can be taken nonnegative
[GilbargTrudinger, Theorem 8.38].
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Chapter 11

Weyl’s asymptotic for high
eigenvalues

Goal

To determine the rate of growth of eigenvalues of the Laplacian.

References [Arendt]; [CourantHilbert] Section VI.4

Notation

The asymptotic notation αj ∼ βj means

lim
j→∞

αj

βj
= 1.

Write Vd for the volume of the unit ball in d-dimensions.

Growth of eigenvalues

The eigenvalues of the Laplacian grow at a rate cj2/d where the constant
depends only on the volume of the domain, independent of the boundary
conditions.
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Theorem 11.1 (Weyl’s law). Let Ω be a bounded domain in Rd with piece-
wise smooth boundary. As j→∞ the eigenvalues grow according to:

λj ∼ ρj ∼ µj ∼


(πj/|Ω|)2 (d = 1)

4πj/|Ω| (d = 2)(
6π2j/|Ω|

)2/3
(d = 3)

and more generally,

λj ∼ ρj ∼ µj ∼ 4π
2

(
j

Vd|Ω|

)2/d
(d ≥ 1).

Here |Ω| denotes the d-dimensional volume of the domain, in other words its
length when d = 1 and area when d = 2.

In 1 dimension the theorem is proved by the explicit formulas for the
eigenvalues in Chapter 2. We will prove the theorem in 2 dimensions, by
a technique known as “Dirichlet–Neumann bracketing”. The higher dimen-
sional proof is similar.

An alternative proof using small-time heat kernel asymptotics can be
found (for example) in the survey paper by Arendt et al. [Arendt, §1.6].

Proof of Weyl aymptotic — Step 1: rectangular domains. In view of the Neu-
mann–Robin–Dirichlet comparison (Theorem 10.1), we need only prove Weyl’s
law for the Neumann and Dirichlet eigenvalues. We provided a proof in
Proposition 2.1, for rectangles.

Proof of Weyl aymptotic — Step 2: finite union of rectangles. Next we sup-
pose R1, . . . , Rn are disjoint rectangular domains and put

Ω̃ = ∪nm=1Rm ,

Ω = Int
(
∪nm=1Rm

)
.

W
�

W
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For example, if R1 and R2 are adjacent squares of side length 1, then Ω̃ is
the disjoint union of those squares whereas Ω is the 2×1 rectangular domain
formed from the interior of their union.

Admittedly Ω̃ is not connected, but the spectral theory of the Laplacian
remains valid on a finite union of disjoint domains: the eigenfunctions are
simply the eigenfunctions of each of the component domains extended to
be zero on the other components, and the spectrum equals the union of
the spectra of the individual components. (On an infinite union of disjoint
domains, on the other hand, one would lose compactness of the imbedding
H1 ↪→ L2, and the zero eigenvalue of the Neumann Laplacian would have
infinite multiplicity.)

Write λ̃j and µ̃j for the Dirichlet and Neumann eigenvalues of Ω̃.

Then by the restricted reverse Neumann monotonicity (Theorem 10.3),
Neumann–Robin–Dirichlet comparison (Theorem 10.1) and Dirichlet mono-
tonicity (Theorem 10.2), we deduce that

µ̃j ≤ µj ≤ ρj ≤ λj ≤ λ̃j ∀j ≥ 1.

Hence if we can prove Weyl’s law

µ̃j ∼ λ̃j ∼
4πj

|Ω|
(11.1)

for the union-of-rectangles domain Ω̃, then Weyl’s law will follow for the
original domain Ω.

Define the eigenvalue counting functions of the rectangle Rm to be

NNeu(α;Rm) = #{j ≥ 1 : µj(Rm) ≤ α},
NDir(α;Rm) = #{j ≥ 1 : λj(Rm) ≤ α}.

We know from Weyl’s law for rectangles (Step 1 of the proof above) that

NNeu(α;Rm) ∼ NDir(α;Rm) ∼
|Rm|

4π
α (11.2)

as α→∞.

The spectrum of Ω̃ is the union of the spectra of the Rm, and so (here

comes the key step in the proof!) the eigenvalue counting functions of Ω̃
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equal the sums of the corresponding counting functions of the rectangles:

NNeu(α; Ω̃) =

n∑
m=1

NNeu(α;Rm),

NDir(α; Ω̃) =

n∑
m=1

NDir(α;Rm).

Combining these sums with the asymptotic (11.2) shows that

NNeu(α; Ω̃) ∼

(
n∑
m=1

|Rm|

4π

)
α =

|Ω|

4π
α

and similarly

NDir(α; Ω̃) ∼
|Ω|

4π
α

as α→∞. We can invert these last two asymptotic formulas with the help
of Lemma 2.2, thus obtaining Weyl’s law (11.1) for Ω̃.

Proof of Weyl aymptotic — Step 3: approximation of arbitrary domains. Lastly
we suppose Ω is an arbitrary domain with piecewise smooth boundary. The
idea is to approximate Ω with a union-of-rectangles domain such as in Step
2, such that the volume of the approximating domain is within ε of the vol-
ume of Ω. We refer to the text of Courant and Hilbert for the detailed proof
[CourantHilbert, §VI.4.4].
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Chapter 12

Pólya’s conjecture and the
Berezin–Li–Yau Theorem

Goal

To describe Polya’s conjecture about Weyl’s law, and to state the “tiling
domain” and “summed” versions that are known to hold.

References [Kellner, Laptev, Pólya]

Pólya’s conjecture

Weyl’s law (Theorem 11.1) says that

λj ∼
4πj

|Ω|
∼ µj as j→∞,

for a bounded plane domainΩ with piecewise smooth boundary. (We restrict
to plane domains, in this chapter, for simplicity.)

Pólya conjectured that these asymptotic formulas hold as inequalities.

Conjecture 12.1 ([Pólya], 1960).

λj ≥
4πj

|Ω|
≥ µj ∀j ≥ 1.

The conjecture remains open even for a disk.
Pólya proved the Dirichlet part of the inequality for tiling domains [Pólya],

and Kellner did the same for the Neumann part [Kellner]. Recall that a
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“tiling domain” covers the plane with congruent copies of itself (transla-
tions, rotations and reflections). For example, parallelograms and triangles
are tiling domains, as are many variants of these domains (a fact that M. C.
Escher exploited in his artistic creations).

Pólya and Kellner’s proofs are remarkably simple, using a rescaling argu-
ment together with Weyl’s law.

For arbitrary domains, Pólya’s conjecture has been proved only for λ1, λ2
(see [Henrot, Th. 3.2.1 and (4.3)]) and for µ1, µ2, µ3 (see [Girouard]). The
conjecture remains open for j ≥ 3 (Dirichlet) and j ≥ 4 (Neumann).

Berezin–Li–Yau results

The major progress for arbitrary domains has been on a “summed” version of
the conjecture. (Quite often in analysis, summing or integrating an expres-
sion produces a significantly more tractable quantity.) Li and Yau [LiYau]
proved that

j∑
k=1

λk ≥
2πj2

|Ω|
,

which is only slightly smaller than the quantity (2π/|Ω|)j(j+1) that one gets
by summing the left side of the Pólya conjecture. An immediate consequence
is a Weyl-type inequality for Dirichlet eigenvalues:

λj ≥
2πj

|Ω|

by combining the very rough estimate jλj ≥
∑j

k=1 λk with the Li–Yau in-
equality. The last formula has 2π whereas Pólya’s conjecture demands 4π,
and so we see the conjecture is true up to a factor of 2, at worst.

Similar results hold for Neumann eigenvalues.
A somewhat more general approach had been obtained earlier by Berezin.

For more information, consult the work of Laptev [Laptev] and a list of open
problems from recent conferences [AIM].
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Chapter 13

Case study: stability of steady
states for reaction–diffusion
PDEs

Goal

To linearize a nonlinear reaction–diffusion PDE around a steady state, and
study the spectral theory of the linearized operator by time-map methods.

References [Schaaf] Section 4.1

Reaction–diffusion PDEs

Assume throughout this section that f(y) is a smooth function on R. Let
X > 0. We study the reaction–diffusion PDE

ut = uxx + f(u) (13.1)

on the interval (0, X) with Dirichlet boundary conditions u(0) = u(X) = 0.
Physical interpretations include: (i) u =temperature and f =rate of heat
generation, (ii) u =chemical concentration and f =reaction rate of chemical
creation.

Intuitively, the 2nd order diffusion term in the PDE is stabilizing (since
ut = uxx is the usual diffusion equation), whereas the 0th order reaction
term can be destabilizing (since solutions to ut = f(u) will grow, when f is
positive). Thus the reaction–diffusion PDE features a competition between
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stabilizing and destabilizing effects. This competition leads to nonconstant
steady states, and interesting stability behavior.

Steady states. If U(x) is a steady state, then

U′′ + f(U) = 0, 0 < x < X. (13.2)

More than one steady state can exist. For example if f(0) = 0 then U ≡ 0
is a steady state, but nonconstant steady states might exist too, such as
U(x) = sin x when X = π and f(y) = y.

Linearized PDE

We perturb a steady state by considering

u = U+ εφ

where the perturbation φ(x, t) is assumed to satisfy the Dirichlet BC φ = 0
at x = 0, L, for each t. Substituting u into the equation (13.1) gives

0+ εφt = (Uxx + εφxx) + f(U+ εφ)

= Uxx + εφxx + f(U) + f
′(U)εφ+O(ε2).

The leading terms, of order ε0, equal zero by the steady state equation for
U. We discard terms of order ε2 and higher. The remaining terms, of order
ε1, give the linearized equation:

φt = φxx + f
′(U)φ. (13.3)

That is,
φt = −Lφ

where L is the symmetric linear operator

Lw = −wxx − f
′(U)w.

Separation of variables gives (formally) solutions of the form

φ =
∑
j

cje
−τjtwj(x),
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where the eigenvalues τj and Dirichlet eigenfunctions wj satisfy

Lwj = τjwj

with wj(0) = wj(X) = 0.
Thus the steady state U of the reaction–diffusion PDE is

linearly unstable if τ1 < 0

because the perturbation φ grows to infinity, whereas the steady state is

linearly stable if τ1 ≥ 0

because φ remains bounded in that case.
To make these claims rigorous, we study the spectrum of L.

Spectrum of L

We take:
Ω = (0, X)

H = L2(0, X), inner product 〈u, v〉L2 =
∫X
0
uvdx

K = H10(0, X), inner product

〈u, v〉H1 =

∫X
0

(u′v′ + uv)dx

Compact imbedding H10 ↪→ L2 by Rellich–Kondrachov
Symmetric sesquilinear form

a(u, v) =

∫X
0

(
u′v′ − f′(U)uv+ Cuv

)
dx

where C > 0 is chosen larger than ‖f′‖L∞ + 1. Proof of ellipticity:

a(u, u) ≥
∫X
0

(
(u′)2 + u2

)
dx = ‖u‖2H1

by choice of C.

The Spectral Theorem 4.1 now yields an ONB of eigenfunctions {wj} with
eigenvalues γj such that

a(wj, v) = γj〈wj, v〉L2 ∀v ∈ H10(0, X).
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Writing γj = τj + C we get∫X
0

(
w′jv

′ − f′(U)wjv
)
dx = τj

∫X
0

wjv dx ∀v ∈ H10(0, X).

These eigenfunctions satisfy Lwj = τjwj weakly, and hence also classically.

Stability of the zero steady state.

Assume f(0) = 0, so that U ≡ 0 is a steady state. Its stability is easily
determined, as follows.

The linearized operator is Lw = −w′′ − f′(0)w, which on the interval
(0, X) has Dirichlet eigenvalues

τj =
( jπ
X

)2
− f′(0).

Thus the zero steady state is linearly unstable if and only if(π
X

)2
< f′(0).

Thus we may call the reaction–diffusion PDE “long-wave unstable” when
f′(0) > 0, because then the zero steady state is unstable with respect to per-
turbations of sufficiently long wavelength X. On short intervals, the Dirichlet
BCs are strong enough to stabilize the steady state.

Sufficient conditions for linearized instability of nonconstant steady
states

Our first instability criterion is structural, meaning it depends on properties
of the reaction function f rather than on properties of the particular steady
state U.

Theorem 13.1. Assume the steady state U is nonconstant, and that f(0) =
0, f′′(0) = 0 and f′′′ > 0. Then τ1 < 0.

For example, the theorem shows that nonconstant steady states are un-
stable when f(y) = y3.
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Proof. First we collect facts about boundary values, to be used later in the
proof when we integrate by parts:

U = 0 at x = 0, X by the Dirichlet BC,

f(U) = 0 at x = 0, X since f(0) = 0,

U′′ = 0 at x = 0, X because U′′ = −f(U)

f′′(U) = 0 at x = 0, X since f′′(0) = 0.

The Rayleigh principle for L says that

τ1 = min
{∫X

0

(
(w′)2 − f′(U)w2

)
dx∫X

0
w2 dx

: w ∈ H10(0, X)
}
.

We choose a trial function
w = U′′,

which is not the zero function, since U is nonconstant. Then the numerator
of the Rayleigh quotient for w is∫X

0

(
(U′′′)2 − f′(U)(U′′)2

)
dx

=

∫X
0

(
−U′′′′ − f′(U)U′′

)
U′′ dx by parts

=

∫X
0

f′′(U)(U′)2U′′ dx by the steady state equation (13.2)

=
1

3

∫X
0

f′′(U)
[
(U′)3

]′
dx

= −
1

3

∫X
0

f′′′(U)(U′)4 dx by parts

< 0

since f′′′ > 0 and U is nonconstant. Hence τ1 < 0, by the Rayleigh principle.

Motivation for the choice of trial function. Our trial function w = U′′ corre-
sponds to a perturbation u = U+ εφ = U+ εU′′, which tends (when ε > 0)
to push the steady state towards the constant function. The opposite per-
turbation (ε < 0) would tend to make the solution grow even further away
from the constant steady state.
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The next instability criterion, rather than being structural, depends on
particular properties of the steady state.

Theorem 13.2 ([Schaaf, Proposition 4.1.2]). Assume the nonconstant steady
state U changes sign on (0, X). Then τ1 < 0.

For example, suppose f(y) = y so that the steady state equation is U′′ +
U = 0. If X = 2π then the steady state U = sin x is linearly unstable, by
the theorem. Of course, for that example we can compute the spectrum of
L exactly: the lowest eigenfunction is w = sin(x/2) with eigenvalue τ1 =(
1
2

)2
− 1 < 0.

Proof. If U changes sign then it has a positive local maximum and a negative
local minimum in (0, X), recalling that U = 0 at the endpoints. Obviously
U′ must be nonzero at some point between these local extrema, and so there
exist points 0 < x1 < x2 < X such that

U′(x1) = U
′(x2) = 0

and U′ 6= 0 on (x1, x2). Define a trial function

w =

{
U′ on (x1, x2),

0 elsewhere.

(We motivate this choice of trial function at the end of the proof.) Then
w is piecewise smooth, and is continuous since w = U′ = 0 at x1 and x2.
Therefore w ∈ H10(0, X), and w 6≡ 0 since U′ 6= 0 on (x1, x2).

The numerator of the Rayleigh quotient for w is∫X
0

(
(w′)2 − f′(U)w2

)
dx =

∫ x2
x1

(
−w′′ − f′(U)w

)
wdx by parts

= 0

since

−w′′ = −U′′′ =
(
f(U)

)′
= f′(U)U′ = f′(U)w. (13.4)

Hence τ1 ≤ 0, by the Rayleigh principle for the first eigenvalue.
Suppose τ1 = 0, so that the Rayleigh quotient of w equals τ1. Then

w must be an eigenfunction with eigenvalue τ1 (because substituting w =
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∑
j cjwj into the Rayleigh quotient would give a value larger than τ1, if cj

were nonzero for any term with eigenvalue larger than τ1).
Since the eigenfunction w must be smooth, the slopes of w from the left

and the right at x2 must agree, which means w′(x2) = w′(x2+) = 0. Thus
w(x2) = w′(x2) = 0 and w satisfies the second order linear ODE (13.4) on
(x1, x2). Therefore w ≡ 0 on (x1, x2), by uniqueness, which contradicts our
construction of w. We conclude τ1 < 0.

Motivation for the choice of trial function. The steady state equation reads
U′′ + f(U) = 0, and differentiating shows that U′ lies in the nullspace of the
linearized operator L:

LU′ = −(U′)′′ − f′(U)U′ = 0.

In other words, U′ is an eigenfunction with eigenvalue 0, which almost proves
instability (since instability would correspond to a negative eigenvalue). Of
course, the eigenfunction U′ does not satisfy the Dirichlet boundary condi-
tions at the endpoints, and hence we must restrict to the subinterval (x1, x2),
in the proof above, in order to obtain a valid trial function.

Time maps and linearized stability

Next we derive instability criteria that are almost necessary and sufficient.
These conditions depend on the time map for a family of steady states.

Parameterize the steady states by their slope at the left endpoint: given
s 6= 0, write Us(x) for the steady state on R (if it exists) satisfying

Us(0) = 0, U′s(0) = s, Us(x) = 0 for some x > 0.

Define the time map to give the first point or “time” x at which the steady
state hits the axis:

T(s) = min{x > 0 : Us(x) = 0}.

If Us exists for some s 6= 0 then it exists for all nonzero s-values in a
neighborhood, and the time map is smooth on that neighborhood [Schaaf,
Proposition 4.1.1]. The time map can be determined numerically by plotting
solutions with different initial slopes, as the figures below show. In the first
figure the time map is decreasing, whereas in the second it increases.

Monotonicity of the time maps determines stability of the steady state:

73



Uxx+U3
=0

1 2 3 4 5

Uxx+tanhHU L=0

1 2 3 4 5

Theorem 13.3 ([Schaaf, Proposition 4.1.3]). The steady state Us is lin-
early unstable on the interval (0, T(s)) if sT ′(s) < 0, and is linearly stable if
sT ′(s) > 0.

Proof. We begin by differentiating the family of steady states with respect
to the parameter s, and obtaining some properties of that function. Then
we treat the “instability” and “stability” parts of the theorem separately.

Write s0 6= 0 for a specific value of s, in order to reduce notational con-
fusion. Let X = T(s0). Define a function

v =
∂Us

∂s

∣∣∣
s=s0

on (0, X), where we use that Us(x) is jointly smooth in (x, s). Then

v′′ + f′(U)v = 0 (13.5)

as one sees by differentiating the steady state equation (13.2) with respect
to s, and writing U for Us0 .

At the left endpoint we have

v(0) = 0, v′(0) = 1,

because Us(0) = 0,U
′
s(0) = s for all s.

We do not expect v to vanish at the right endpoint, but we can calculate
its value there to be

v(X) = s0T
′(s0),

as follows. First, differentiating the equation 0 = Us(T(s)) gives that

0 =
∂

∂s
Us(T(s))

=
∂Us

∂s

(
T(s)

)
+U′s(T(s))T

′(s)

= v
(
T(s)

)
+U′s(T(s))T

′(s).
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Note the steady state Us is symmetric about the midpoint of the interval
(0, T(s)) (exercise; use that Us = 0 at both endpoints and that the steady
state equation is invariant under x 7→ −x, so that steady states must be
symmetric about any local maximum point). Thus U′s(T(s)) = −U′s(0) =
−s, and evaluating the last displayed formula at s = s0 then gives that
0 = v(X) − s0T

′(s0), as we wanted.

Proof of instability. Assume s0T
′(s0) < 0. Then v(X) < 0. Since v′(0) = 1

we know v(x) is positive for small values of x, and so some x2 ∈ (0, X) exists
at which v(x2) = 0. Define a trial function

w =

{
v on [0, x2),

0 elsewhere.

Then w is piecewise smooth, and is continuous since v = 0 at x2. Note
w(0) = 0. Therefore w ∈ H10(0, X), and w 6≡ 0.

Hence τ1 < 0 by arguing as in the proof of Theorem 13.2, except with
x1 = 0.

[Motivation for the choice of trial function. Differentiating the steady state
equation U′′+ f(U) = 0 with respect to s shows that ∂U/∂s is an eigenfunc-
tion with eigenvalue zero:

L
(∂U
∂s

)
= −

(∂U
∂s

)′′
− f′(U)

∂U

∂s
= 0.

In other words, ∂U/∂s lies in the nullspace of the linearized operator. It does
not satisfy the Dirichlet boundary condition at the right endpoint, but we
handled that issue in the proof above by restricting to the subinterval (0, x2),
in order to obtain a valid trial function.]

Proof of stability. Assume s0T
′(s0) > 0, so that v(X) > 0. Define σ =

−v′(X)/v(X). Then

v(0) = 0, v′(X) + σv(X) = 0,

which is a mixed Dirichlet–Robin boundary condition. We will show later
that v is a first eigenfunction for L, under this mixed condition, with eigen-
value is ρ1 = 0 (since Lv = 0 by (13.5)).

By adapting our Dirichlet-to-Robin monotonicity result (Theorem 10.1)
one deduces that

τ1 ≥ ρ1 = 0,
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which gives linearized stability of the steady state U.
To show v is a first eigenfunction for L, as used above, we first show v is

positive on (0, X). Apply the steady state equation (13.2) to Us, and multiply
by U′s and integrate to obtain the energy equation

1

2
(U′s)

2 + F(Us) =
1

2
s2, (13.6)

where F is an antiderivative of f chosen with F(0) = 0. Differentiating with
respect to s at s = s0 gives that

U′v′ + f(U)v = s0.

Hence if v vanishes at some x0 ∈ (0, X) then U′v′ = s0 6= 0 and so v′(x0) 6=
0. Thus at any two successive zeros of v, we know v′ has opposite signs.
Therefore U′ has opposite signs too, because U′v′ = s0 at the zeros. It is
straightforward to show from (13.6) thatU increases on [0, X/2] and decreases
on [X/2, X], and so after the zero of v at x = 0 the next zero (if it exists) can
only be > X/2, and the one after that must be > X. Since we know v(x) is
positive for small x and that v(X) > 0, we conclude v has no zeros in (0, X)
and hence is positive there.

The first eigenfunction of L with mixed Dirichlet–Robin boundary con-
dition is positive, and it is the unique positive eigenfunction (adapt the ar-
gument in [GilbargTrudinger, Theorem 8.38]). Since the eigenfunction v is
positive, we conclude that it is the first Dirichlet–Robin eigenfunction, as
desired.
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Chapter 14

Case study: stability of steady
states for thin fluid film PDEs

Goal

To linearize a particular nonlinear PDE around a steady state, and develop
the spectral theory of the linearized operator.

References [LaugesenPugh1, LaugesenPugh2]

Thin fluid film PDE

The evolution of a thin layer of fluid (such as paint) on a flat substrate (such
as the ceiling) can be modeled using the thin fluid film PDE :

ht = −
(
f(h)hxxx

)
x
−
(
g(h)hx

)
x

where h(x, t) > 0 measures the thickness of the fluid, and the smooth, posi-
tive coefficient functions f and g represent surface tension and gravitational
effects (or substrate-fluid interactions). For simplicity we assume f ≡ 1, so
that the equation becomes

ht = −hxxxx −
(
g(h)hx

)
x
. (14.1)

We will treat the case of general g, but readers are welcome to focus on the
special case g(y) = yp for some p ∈ R.
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Solutions are known to exist for small time, given positive smooth initial
data. But films can “rupture” in finite time, meaning h(x, t)↘ 0 as t↗ T ,
for some coefficient functions g (for example, for g ≡ 1).

Intuitively, the 4th order “surface tension” term in the PDE is stabilizing
(since ht = −hxxxx is the usual 4th order diffusion equation) whereas the
2nd order “gravity” term is destabilizing (since ht = −hxx is the backwards
heat equation). Thus the thin film PDE features a competition between
stabilizing and destabilizing effects. This competition leads to nonconstant
steady states, and interesting stability behavior.

Periodic BCs and conservation of fluid. Fix X > 0 and assume h is
X-periodic with respect to x. Then the total volume of fluid is conserved,
since

d

dt

∫X
0

h(x, t)dx = −

∫X
0

(
hxxxx +

(
g(h)hx

)
x

)
dx

= −
(
hxxx + g(h)hx

)∣∣∣x=X
x=0

= 0

by periodicity.

Nonconstant steady states. Every constant function is a steady state
of (14.1). We discuss the stability of these steady states at the end of the
chapter.

To find nonconstant steady states, substitute h = H(x) and solve:

−Hxxxx − (g(H)Hx)x = 0 (14.2)

Hxxx + g(H)Hx = α

Hxx +G(H) = β+ αx

Hxx +G(H) = β

where G is an antiderivative of g; here α = 0 is forced because the left side of
the equation (Hxx+G(H)) is periodic. This last equation describes a nonlin-
ear oscillator, and it is well known how to construct solutions (one multiplies
by Hx and integrates). For example, when g ≡ (2π/X)2 we have steady states
H(x) = (const.) + cos(2πx/X). For the general case see [LaugesenPugh1].

Assume from now on thatH(x) is a nonconstant steady state with period X.
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Linearized PDE

We perturb a steady state by considering

h = H+ εφ

where the perturbationφ(x, t) is assumed to have mean value zero
∫X
0
φ(x, t)dx =

0), so that fluid is conserved. Substituting h into the equation (14.1) gives

0+ εφt = −(Hxxxx + εφxxxx) −
(
g(H+ εφ)(Hx + εφx)

)
x

= −Hxxxx −
(
g(H)Hx

)
x
− ε
[
φxxx + g(H)φx + g

′(H)Hxφ
]
x
+O(ε2).

The leading terms, of order ε0, equal zero by the steady state equation for
H. We discard terms of order ε2 and higher. The remaining terms, of order
ε1, give the linearized equation:

φt = −
[
φxx + g(H)φ

]
xx
. (14.3)

Unfortunately, the operator on the right side is not symmetric (meaning it
does not equal its formal adjoint). To make it symmetric, we “integrate up”
the equation, as follows. Write

φ = ψx

where ψ is X-periodic (since φ has mean value zero). We may suppose ψ
has mean value zero at each time, by adding to ψ a suitable function of t.

Substituting φ = ψx into (14.3) gives that

ψtx = −
[
ψxxx + g(H)ψx

]
xx

ψt = −
[
ψxxx + g(H)ψx

]
x

(noting the constant of integration must equal 0, by integrating both sides
and using periodicity). Thus

ψt = −Lψ

where L is the symmetric operator

Lw = wxxxx +
(
g(H)wx

)
x
.
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Separation of variables gives (formally) solutions of the form

ψ =
∑
j

cje
−τjtwj(x), φ =

∑
j

cje
−τjtw′j(x),

where the eigenvalues τj and periodic eigenfunctions wj satisfy

Lwj = τjwj.

We conclude that the steady state H of the thin fluid film PDE is

linearly unstable if τ1 < 0

because the perturbation φ grows to infinity, whereas the steady state is

linearly stable if τ1 ≥ 0

because φ remains bounded in that case. Remember these stability claims
relate only to mean zero (volume preserving) perturbations.

To make these claims more rigorous, we need to understand the eigenvalue
problem for L.

Spectrum of L

We take:
Ω = T = R/(XZ) = torus of length X, so that functions on Ω are X-

periodic
H = L2(T), inner product 〈u, v〉L2 =

∫X
0
uvdx

K = H2(T) ∩ {u :
∫X
0
udx = 0}, with inner product

〈u, v〉H2 =

∫X
0

(u′′v′′ + u′v′ + uv)dx

Compact imbedding K ↪→ L2 by Rellich–Kondrachov
Symmetric sesquilinear form

a(u, v) =

∫X
0

(
u′′v′′ − g(H)u′v′ + Cuv

)
dx

where C > 0 is a sufficiently large constant to be chosen below.
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Proof of ellipticity: The quantity a(u, u) has a term of the form −(u′)2,
whereas for ‖u‖2

H2 we need +(u′)2. To get around this obstacle we “hide”
the −(u′)2 term inside the terms of the form (u′′)2 and u2. Specifically,∫X

0

(u′)2 dx = −

∫X
0

u′′udx

≤
∫X
0

(
δ(u′′)2 + (4δ)−1u2

)
dx (14.4)

for any δ > 0. Here we used “Cauchy-with-δ, which is the observation that
for any α,β ∈ R,

0 ≤
(√
δα± (4δ)−1/2β

)2
=⇒ |αβ| ≤ δα2 + (4δ)−1β2.

Next,

a(u, u)

≥
∫X
0

(
(u′′)2 −

(
‖g(H)‖L∞ +

1

2

)
(u′)2 +

1

2
(u′)2 + Cu2

)
dx

≥
∫X
0

([
1−

(
‖g(H)‖L∞ +

1

2

)
δ
]
(u′′)2 +

1

2
(u′)2 +

[
C−

(
‖g(H)‖L∞ +

1

2

)
(4δ)−1

]
u2
)
dx

by (14.4)

≥ 1
2
‖u‖2H2

provided we choose δ sufficiently small (depending on H) and then choose C
sufficiently large. Thus ellipticity holds.

The Spectral Theorem 4.1 now yields an ONB of eigenfunctions {wj} with
eigenvalues γj such that

a(wj, v) = γj〈wj, v〉L2 ∀v ∈ K.

Writing γj = τj + C we get∫X
0

(
w′′j v

′′ − g(H)w′jv
′)dx = τj ∫X

0

wjv dx ∀v ∈ K.

These eigenfunctions satisfy Lwj = τjwj weakly, and hence also classically
(by elliptic regularity, since H and g are smooth).
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Zero eigenvalue due to translational symmetry. We will show that
τ = 0 is always an eigenvalue, with eigenfunction u = H − H, where the
constant H equals the mean value of the steady state H. Indeed,

Lu = L(H−H) = Hxxxx +
(
g(H)Hx

)
x
= 0

by the steady state equation (14.2).

This zero eigenvalue arises from a translational perturbation of the steady
state, because choosing

h = H(x+ ε) = H(x) + εH′(x) +O(ε2)

gives rise to φ = H′ and hence ψ = H−H.

Sufficient condition for linearized instability of nonconstant steady
state H

Theorem 14.1 ([LaugesenPugh2, Th. 3]). If g is strictly convex then τ1 < 0.

For example, the theorem shows that nonconstant steady states are un-
stable with respect to volume-preserving perturbations if g(y) = yp with
either p > 1 or p < 0.

Incidentally, the theorem is essentially the same as Theorem 13.1 for
the reaction–diffusion PDE, simply writing g instead of f′ and noting that
our periodic boundary conditions take care of the boundary terms in the
integrations by parts.

Proof. The Rayleigh principle for L says that

τ1 = min
{∫X

0

(
(w′′)2 − g(H)(w′)2

)
dx∫X

0
w2 dx

: w ∈ H2(T) \ {0},
∫X
0

wdx = 0
}
.

We choose

w = H′,

which is not the zero function since H is nonconstant, and note w has mean
value zero (as required), by periodicity of H. Then the numerator of the

82



Rayleigh quotient for w is∫X
0

(
(H′′′)2 − g(H)(H′′)2

)
dx

=

∫X
0

(
−H′′′′ − g(H)H′′

)
H′′ dx by parts

=

∫X
0

g′(H)(H′)2H′′ dx by the steady state equation (14.2)

=
1

3

∫X
0

g′(H)
[
(H′)3

]′
dx

= −
1

3

∫X
0

g′′(H)(H′)4 dx by parts

< 0

by convexity of g and since H′ 6≡ 0. Hence τ1 < 0, by the Rayleigh principle.

Motivation for the choice of trial function. Our trial function w = H′ corre-
sponds to a perturbation φ = H′′. This perturbation h = H+εφ = H+εH′′

tends to push the steady state towards the constant function. The oppo-
site perturbation would tend to push the steady state towards a “droplet”
solution that equals 0 at some point. Thus our instability proof in Theo-
rem 14.1 suggests (in the language of dynamical systems) that a heteroclinic
connection might exist between the nonconstant steady state and the con-
stant steady state, and similarly between the nonconstant steady state and
a droplet steady state.

Linear stability of nonconstant steady states. It is more difficult to
prove stability results, because lower bounds on the first eigenvalue are more
difficult to prove (generally) than upper bounds.

See [LaugesenPugh2, §3.2] for some results when g(y) = yp, 0 < p ≤ 3/4,
based on time-map monotonicity ideas from the theory of reaction diffusion
equations (see Chapter 13).

Stability of constant steady states.

Let H > 0 be constant. Then H ≡ H is a constant steady state. Its stability
is easily determined, as follows.
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Linearizing gives
φt = −φxxxx − g(H)φxx

by (14.3), where the right side is linear and symmetric with constant coeffi-
cients.

We substitute the periodic Fourier mode φ = e−τt exp(2πikx/X), where
k ∈ Z (and k 6= 0 since our perturbations have mean value zero), obtaining
the eigenvalue

τ =
(2πk
X

)2((2πk
X

)2
− g(H)

)
.

If g ≤ 0 (which means the second order term in the thin film PDE behaves
like a forwards heat equation), then τ ≥ 0 for each k, and so all constant
steady states are linearly stable.

If g > 0 and
(
2π
X

)2 ≥ g(H) then τ ≥ 0 for each k, and so the constant

steady states H is linearly stable.

If g > 0 and
(
2π
X

)2
< g(H) then the constant steady states H is linearly

unstable with respect to the k = 1 mode (and possibly other modes too). In
particular, this occurs if X is large enough. Hence we call the thin film PDE
“long-wave unstable” if g > 0, since constant steady states are then unstable
with respect to perturbations of sufficiently long wavelength.

84



Part II

Continuous Spectrum
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Looking ahead to continuous
spectrum

The discrete spectral theory in Part I of the course generated, in each appli-
cation,

• eigenfunctions {uj} with “discrete” spectrum λ1, λ2, λ3, . . . satisfying
Luj = λjuj where L is a symmetric differential operator, together with

• a spectral decomposition (or “resolution”) of each f ∈ L2 into a sum of
eigenfunctions: f =

∑
j〈f, uj〉uj.

These constructions depended heavily on symmetry of the differential opera-
tor L (which ensured symmetry of the sesquilinear form a) and on compact-
ness of the imbedding of the Hilbert space K into H.

For the remainder of the course we retain the symmetry assumption on
the operator, but drop the compact imbedding assumption. The resulting
“continuous” spectrum leads to a decomposition of f ∈ L2 into an integral of
“almost eigenfunctions”.

We begin with examples, and later put the examples in context by de-
veloping some general spectral theory for unbounded, selfadjoint differential
operators.
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Chapter 15

Computable example:
Laplacian (free Schrödinger) on
all of space

Goal

To determine for the Laplacian on Euclidean space its continuous spectrum
[0,∞), and the associated spectral decomposition of L2.

Spectral decomposition

The Laplacian L = −∆ on a bounded domain has discrete spectrum, as we
saw in Chapters 2 and 5. When the domain expands to be all of space,
though, the Laplacian has no eigenvalues at all. For example in 1 dimension,
solutions of −u′′ = λu are linear combinations of e±i

√
λx, which oscillates

if λ > 0, or is constant if λ = 0, or grows in one direction or the other if
λ ∈ C \ [0,∞). In none of these situations does u belong to L2. (In all
dimensions we can argue as follows: if −∆u = λu and u ∈ L2 then by taking
Fourier transforms, 4π2|ξ|2û(ξ) = û(ξ) a.e., and so û = 0 a.e. Thus no
L2-eigenfunctions exist.)

A fundamental difference between the whole space case and the case of
bounded domains is that the imbedding H1(Rd) ↪→ L2(Rd) is not compact.
For example, given any nonzero f ∈ H1(R), the functions f(·−k) are bounded
in L2(R), but have no L2-convergent subsequence as k → ∞. Hence the
discrete spectral theorem (Theorem 4.1) is inapplicable.
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Nevertheless, the Laplacian −∆ on Rd has:

1. generalized eigenfunctions

vω(x) = e
2πiω·x, ω ∈ Rd,

(note that vω is bounded, but it is not an eigenfunction since vω 6∈ L2)
which satisfy the eigenfunction equation −∆vω = λvω with generalized
eigenvalue

λ = λ(ω) = 4π2|ω|2,

Generalized eigenfn: Re v2HxL

2. and a spectral decomposition

f =

∫
Rd

〈f, vω〉 vω dω, ∀f ∈ L2(Rd).

Proof of spectral decomposition. Since

〈f, vω〉 =
∫
Rd

f(x)e−2πiω·x dx = f̂(ω),

the spectral decomposition simply says

f(x) =

∫
Rd

f̂(ω)e2πiω·x dω,

which is the Fourier inversion formula.
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Application of spectral decomposition

One may solve evolution equations by separating variables: for example, the
heat equation ut = ∆u with initial condition h(x) has solution

u(x, t) =

∫
Rd

ĥ(ω)e−λ(ω)tvω(x)dω.

Note the analogy to the series solution by separation of variables, in the case
of discrete spectrum.

Aside. Typically, one evaluates the last integral (an inverse Fourier trans-
form) and thus obtains a convolution of the initial data h and the fundamen-
tal solution of the heat equation (which is the inverse transform of e−λ(ω)t).

Continuous spectrum = [0,∞)

The generalized eigenvalue λ ≥ 0 is “almost” an eigenvalue, in two senses:

• the eigenfunction equation (−∆− λ)u = 0 does not have a solution in
L2, but it does have a solution vω ∈ L∞,

• a Weyl sequence exists for −∆ and λ, meaning there exist functions
wn such that

(W1) ‖(−∆− λ)wn‖L2 → 0 as n→∞,

(W2) ‖wn‖L2 = 1,
(W3) wn ⇀ 0 weakly in L2 as n→∞.

We prove existence of a Weyl sequence in the Proposition below. Later we
will define the continuous spectrum to consist of those λ-values for which
a Weyl sequence exists. Thus the continuous spectrum of −∆ is precisely
the nonnegative real axis. Recall it is those values of λ that entered into our
spectral decomposition earlier in the chapter.

Remark. Existence of a Weyl sequence ensures that (−∆− λ) does not have
a bounded inverse from L2 → L2, for if we write fn = (−∆− λ)wn then

‖(−∆− λ)−1fn‖L2
‖fn‖L2

=
‖wn‖L2

‖(−∆− λ)wn‖L2
→∞

as n→∞, by (W1) and (W2). In this way, existence of a Weyl sequence is
similar to existence of an eigenfunction, which also prevents invertibility of
(−∆− λ).
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specH-DL

C

Proposition 15.1 (Weyl sequences for negative Laplacian). A Weyl se-
quence exists for −∆ and λ ∈ C if and only if λ ∈ [0,∞).

Proof. “⇐=” Fix λ ∈ [0,∞) and choose ω ∈ Rd with 4π|ω|2 = λ. Take a
cut-off function κ ∈ C∞

0 (Rd) such that κ ≡ 1 on the unit ball B(1) and κ ≡ 0
on Rd \ B(2). Define a cut-off version of the generalized eigenfunction, by

wn = cnκ(
x

n
)vω(x)

where the normalizing constant is

cn =
1

nd/2‖κ‖L2
.

Weyl approx. eigenfn. w4HxL

First we prove (W1). We have

(λ+ ∆)wn

= cn(λvω + ∆vω)κ(
x

n
) + 2

cn

n
∇vω(x) · (∇κ)(

x

n
) +

cn

n2
vω(x)(∆κ)(

x

n
).

The first term vanishes because ∆vω = −4π|ω|2vω pointwise. In the third
term, note that vω is a bounded function, and that a change of variable shows

cn

n2
‖(∆κ)( ·

n
)‖L2 =

1

n2
‖∆κ‖L2
‖κ‖L2

→ 0.
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The second term similarly vanishes in the limit, as n → ∞. Hence (λ +
∆)wn → 0 in L2, which is (W1).

For (W2) we simply observe that |vω(x)| = 1 pointwise, so that ‖wn‖L2 =
1 by a change of variable, using the definition of cn.

To prove (W3), take f ∈ L2 and let R > 0. We decompose f into “near”
and “far” components, as f = g + h where g = f1B(R) and h = f1Rd\B(R).
Then

〈f,wn〉L2 = 〈g,wn〉L2 + 〈h,wn〉L2 .
We have ∣∣〈g,wn〉L2∣∣ ≤ cn‖κ‖L∞‖g‖L1 → 0

as n→∞, since cn → 0. Also, by Cauchy–Schwarz and (W2) we see

lim sup
n→∞

∣∣〈h,wn〉L2∣∣ ≤ ‖h‖L2 .
This last quantity can be made arbitrarily small by letting R → ∞, and so
limn→∞〈f,wn〉L2 = 0. That is, wn ⇀ 0 weakly.

“=⇒” Assume λ ∈ C \ [0,∞), and let

δ = dist
(
λ, [0,∞)

)
so that δ > 0.

Suppose (W1) holds, and write gn = (−∆− λ)wn. Then

ĝn(ξ) = (4π2|ξ|2 − λ)ŵn(ξ)

ŵn(ξ) =
1

(4π2|ξ|2 − λ)
ĝn(ξ)

|ŵn(ξ)| ≤ δ−1|ĝn(ξ)|

and hence

‖wn‖L2 = ‖ŵn‖L2 ≤ δ−1‖ĝn‖L2
= δ−1‖gn‖L2→ 0

by (W1). Thus (W2) does not hold.

(Aside. The calculations above show, in fact, that (−∆−λ)−1 is bounded
from L2 → L2 with norm bound δ−1, when λ /∈ [0,∞).)
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Chapter 16

Computable example:
Schrödinger with a bounded
potential well

Goal

To show that the Schrödinger operator

L = −d2

dx2
− 2 sech2 x

in 1 dimension has a single negative eigenvalue (discrete spectrum) as well
as nonnegative continuous spectrum [0,∞). The spectral decomposition will
show the potential is reflectionless.

-3 3

-1

-2

-2 sech2x potential

specHLL
´

-1

C

Reference [Keener] Section 7.5
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Discrete spectrum = {−1}

We claim −1 is an eigenvalue of L with eigenfunction sech x. This fact can
be checked directly, but we will proceed more systematically by factoring the
Schrödinger operator with the help of the first order operators

L+ = −
d

dx
+ tanh x,

L− =
d

dx
+ tanh x.

We compute

L+L− − 1 =
(
−
d

dx
+ tanh x

)( d
dx

+ tanh x
)
− 1

= −
d2

dx2
− (tanh x)′ + tanh2 x− 1

= −
d2

dx2
− 2 sech2 x

= L

since (tanh)′ = sech2 and 1− tanh2 = sech2. Thus

L = L+L− − 1. (16.1)

It follows that functions in the kernel of L− are eigenfunctions of L with
eigenvalue λ = −1. To find the kernel we solve:

L−v = 0

v′ + (tanh x)v = 0

(cosh x)v′ + (sinh x)v = 0

(cosh x)v = const.

v = c sech x

Clearly sech x ∈ L2(R), since sech decays exponentially. Thus −1 lies in the
discrete spectrum of L, with eigenfunction sech x.

Are there any other eigenvalues? No! Argue as follows. By composing
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sechHxL
-3 3

-1

Bound state, with energy -1

L+ and L− in the reverse order we find

L−L+ − 1 =
( d
dx

+ tanh x
)(

−
d

dx
+ tanh x

)
− 1

= −
d2

dx2
+ (tanh x)′ + tanh2 x− 1

= −
d2

dx2
. (16.2)

From (16.1) and (16.2) we deduce

−
d2

dx2
L− = L−L.

Thus if Lv = λv then −d2

dx2
(L−v) = L−Lv = λ(L−v). By solving for L−v in

terms of e±i
√
λx, and then integrating to obtain v, we conclude after some

thought (omitted) that the only way for v to belong to L2(R) is to have
L−v = 0 and hence v = c sech x, so that λ = −1.

Continuous spectrum ⊃ [0,∞)

Let λ ∈ [0,∞). Generalized eigenfunctions with Lv = λv certainly exist:
choose ω ∈ R with λ = 4π2ω2 and define

v(x) = L+(e2πiωx) = (tanh x− 2πiω)e2πiωx,
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which is bounded but not square integrable. We compute

Lv = (L+L− − 1)L+(e2πiωx) by (16.1)

= L+(L−L+ − 1)(e2πiωx)

= −L+
d2

dx2
(e2πiωx) by (16.2)

= L+(4π2ω2e2πiωx)

= λv,

which verifies that v(x) is a generalized eigenfunction.
We can further prove existence of a Weyl sequence for L and λ by adapting

Lemma 15.1 “⇐=”, using the same Weyl functions wn(x) as for the free
Schrödinger operator −∆. The only new step in the proof, for proving ‖(L−
λ)wn‖L2 → 0 in (W1), is to observe that

|2 sech2 xwn(x)| = 2cn|κ(
x

n
)e2πiωx| sech2 x

≤ 2cn‖κ‖L∞ sech2 x→ 0

in L2(R) as n → ∞, because cn → 0. (Note. This part of the proof works
not only for the sech2 potential, but for any potential belonging to L2.)

We have shown that the continuous spectrum contains [0,∞). We will
prove the reverse inclusion at the end of the chapter.

Generalized eigenfunctions as traveling waves. The eigenfunction
(“bound state”) v(x) = sech x with eigenvalue (“energy”) −1 produces a
standing wavefunction

u = eit sech x

satisfying the time-dependent Schrödinger equation

iut = Lu.

The generalized eigenfunction

v(x) = (tanh x− 2πiω)e2πiωx (16.3)

with generalized eigenvalue λ = 4π2ω2 similarly produces a standing wave

u = e−i4π
2ω2t(tanh x− 2πiω)e2πiωx.
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Gen. eigenfn, Ω=
1

16
: Re vHxL

More usefully, we rewrite this formula as a traveling plane wave multiplied
by an x-dependent amplitude:

u = (tanh x− 2πiω)e2πiω(x−2πωt). (16.4)

The amplitude factor serves to quantify the effect of the potential on the
traveling wave: in the absence of a potential, the amplitude would be identi-
cally 1, since the plane wave e2πiω(x−2πωt) solves the free Schrödinger equation
iut = −∆u.

Reflectionless nature of the potential, and a nod to scattering the-
ory. One calls the potential −2 sech2 x “reflectionless” because the right-
moving wave in (16.4) passes through the potential with none of its energy
reflected into a left-moving wave. In other words, the generalized eigenfunc-
tion (16.3) has the form ce2πiωx both as x → −∞ and as x → ∞ (with
different constants, it turns out, although the constants are equal in magni-
tude).

This reflectionless property is unusual. A typical Schrödinger potential
would produce generalized eigenfunctions equalling approximately

cIe
2πiωx + cRe

−2πiωx as x→ −∞
and

cTe
2πiωx as x→∞

(or similarly with the roles of ±∞ interchanged). Here |cI| is the amplitude
of the incident right-moving wave, |cR| is the amplitude of the left-moving
wave reflected by the potential, and |cT | is the amplitude of the right-moving
wave transmitted through the potential. Conservation of L2-energy demands
that

|cI|
2 = |cR|

2 + |cT |
2.
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For a gentle introduction to this “scattering theory” see [Keener, Section 7.5].
Then one can proceed to the book-length treatment in [ReedSimon3].

Spectral decomposition of L2

Analogous to an orthonormal expansion in terms of eigenfunctions, we have:

Theorem 16.1.

f =
1

2
〈f, sech〉 sech+

∫
R
〈f, L+vω〉L+vω

dω

1+ 4π2ω2
, ∀f ∈ L2(R),

where L+vω(x) = (tanh x − 2πiω)e2πiωx is the generalized eigenfunction at
frequency ω.

The discrete part of the decomposition has the same form as the contin-
uous part, in fact, because sech = −L+(sinh).

Proof. We will sketch the main idea of the proof, and leave it to the reader
to make the argument rigorous.

By analogy with an orthonormal expansion in the discrete case, we assume
that f ∈ L2(R) has a decomposition in terms of the eigenfunction sech x and
the generalized eigenfunctions L+vω in the form

f = c〈f, sech〉 sech+

∫
R
mf(ω)〈f, L+vω〉L+vω dω,

where the coefficient c and multiplier mf(ω) are to be determined.

Taking the inner product with sech x implies that c = 1
2
, since ‖sech‖2

L2(R) =

2 and 〈L+vω, sech〉 = 〈vω, L− sech〉 = 0.
Next we annihilate the sech term by applying L− to both sides:

L−f = L−
( ∫

R
mf(ω)〈f, L+vω〉L+vω dω

)
.

Note that by integration by parts,

〈f, L+vω〉 = 〈L−f, vω〉 = (̂L−f)(ω).

97



Hence

L−f = L−
( ∫

R
mf(ω)(̂L−f)(ω)L+vω dω

)
=

∫
R
mf(ω)(̂L−f)(ω)L−L+vω dω

=

∫
R
mf(ω)(̂L−f)(ω)(1+ 4π2ω2)vω dω

by (16.2). Thus the multiplier should be mf(ω) = 1/(1 + 4π2ω2), in order
for Fourier inversion to hold. This argument shows the necessity of the
formula in the theorem, and one can show sufficiency by suitably reversing
the steps.

The theorem implies a Plancherel type identity.

Corollary 16.2.

‖f‖2L2 =
1

2
|〈f, sech〉|2 +

∫
R
|〈f, L+vω〉|2

dω

1+ 4π2ω2
, ∀f ∈ L2(R).

Proof. Take the inner product of f with the formula in Theorem 16.1.

Continuous spectrum = [0,∞)

Earlier we showed that the continuous spectrum contains [0,∞). For the
reverse containment, suppose λ /∈ [0,∞) and λ 6= −1. Then L−λ is invertible
on L2, with

(L− λ)−1f = −
1

λ+ 1

1

2
〈f, sech〉 sech+

∫
R

〈f, L+vω〉
4π2ω2 − λ

L+vω
dω

1+ 4π2ω2

as one sees by applying L − λ to both sides and recalling Theorem 16.1. To
check the boundedness of this inverse, note that

‖(L− λ)−1f‖2L2 =
1

|λ+ 1|2
1

2
|〈f, sech〉|2 +

∫
R

|〈f, L+vω〉|2

|4π2ω2 − λ|2
dω

1+ 4π2ω2

≤ 1

|λ+ 1|2
1

2
|〈f, sech〉|2 + 1

dist
(
λ, [0,∞)

)2 ∫
R
|〈f, L+vω〉|2

dω

1+ 4π2ω2

≤ (const.)‖f‖2L2 ,
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where we used Corollary 16.2.
The boundedness of (L−λ)−1 implies that the Weyl conditions (W1) and

(W2) cannot both hold. Thus no Weyl sequence can exist for λ, so that λ
does not belong to the continuous spectrum.

Next suppose λ = −1. If a Weyl sequence wn exists, then

〈wn, sech〉L2 → 0 as n→∞,

by the weak convergence in (W3). Hence if we project away from the λ = −1
eigenspace by defining

yn = wn −
1

2
〈wn, sech〉L2 sech and zn = yn/‖yn‖L2 ,

then we find ‖yn‖L2 → 1 and ‖zn‖L2 = 1, with 〈zn, sech〉L2 = 0. Also

(L+ 1)zn = (L+ 1)yn/‖yn‖L2 = (L+ 1)wn/‖yn‖L2 → 0

in L2. Thus zn satisfies (W1) and (W2) and lies in the orthogonal com-
plement of the eigenspace spanned by sech. A contradiction now follows
from the boundedness of (L+ 1)−1 on that orthogonal complement (with the
boundedness being proved by the same argument as above for λ 6= −1). This
contradiction shows that no such Weyl sequence wn can exist, and so −1
does not belong to the continuous spectrum.

Note. The parallels with our derivation of the continuous spectrum for
the Laplacian in Chapter 15 are instructive.
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Chapter 17

Selfadjoint, unbounded linear
operators

Goal

To develop the theory of unbounded linear operators on a Hilbert space, and
to define selfadjointness for such operators.

References [GustafsonSigal] Sections 1.5, 2.4
[HislopSigal] Chapters 4, 5

Motivation

Now we should develop some general theory, to provide context for the ex-
amples computed in Chapters 15 and 16.

We begin with a basic principle of calculus:

integration makes functions better, while differentiation makes
them worse.

More precisely, integral operators are bounded (generally speaking), while
differential operators are unbounded. For example, e2πiinx has norm 1 in
L2[0, 1] while its derivative d

dx
e2πiinx = 2πine2πinx has norm that grows with

n. The unboundedness of such operators prevents us from applying the
spectral theory of bounded operators on a Hilbert space.

Further, differential operators are usually defined only on a (dense) sub-
space of our natural function spaces. In particular, we saw in our study
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of discrete spectra that the Laplacian is most naturally studied using the
Sobolev space H1, even though the Laplacian involves two derivatives and
H1-functions are guaranteed only to possess a single derivative.

To meet these challenges, we will develop the theory of densely defined,
unbounded linear operators, along with the notion of adjoints and selfad-
jointness for such operators.

Domains and inverses of (unbounded) operators

Take a complex Hilbert space H with inner product 〈·, ·〉. Suppose A is a
linear operator (not necessarily bounded) from a subspace D(A) ⊂ H into
H:

A : D(A)→ H.
Call D(A) the domain of A.

An operator B with domain D(B) is called the inverse of A if

• D(B) = Ran(A), D(A) = Ran(B), and

• BA = idRan(B), AB = idRan(A).

Write A−1 for this inverse, if it exists. Obviously A−1 is unique, if it exists,
because in that case A is bijective.

Further say A is invertible if A−1 exists and is bounded on H (mean-
ing that A−1 exists, Ran(A) = H, and A−1 : H → H is a bounded linear
operator).

Example. Consider the operator A = −∆+1 with domain H2(Rd) ⊂ L2(Rd).
Invertibility is proved using the Fourier transform: let D(B) = L2(Rd), and
define a bounded operator B : L2 → L2 by

B̂f(ξ) = (1+ 4π2|ξ|2)−1f̂(ξ).

One can check that Ran(B) = H2(Rd) = D(A). Notice BA = idH2 , AB =
idL2 . The second identity implies that Ran(A) = L2 = D(B).

Adjoint of an (unbounded) operator

Call A symmetric if

〈Af, g〉 = 〈f,Ag〉, ∀f, g ∈ D(A). (17.1)
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Symmetry is a simpler concept than selfadjointness, which requires the
operator and its adjoint to have the same domain, as we now explain.

First we define a subspace

D(A∗) = {f ∈ H : the linear functional g 7→ 〈f,Ag〉 is bounded on D(A)}.

Assume from now on that A is densely defined, meaning D(A) is dense in
H. Then for each f ∈ D(A∗), the bounded linear functional g 7→ 〈f,Ag〉 is
defined on a dense subspace of H and hence extends uniquely to a bounded
linear functional on all of H. By the Riesz Representation Theorem, that
linear functional can be represented as the inner product of g against a unique
element of H, which we call A∗f. Hence

〈f,Ag〉 = 〈A∗f, g〉, ∀f ∈ D(A∗), g ∈ D(A). (17.2)

Clearly this operator A∗ : D(A∗)→ H is linear. We call it the adjoint of A.

Lemma 17.1. If A is a densely defined linear operator and λ ∈ C, then
(A− λ)∗ = A∗ − λ.

We leave the (easy) proof to the reader. Implicit in the proof is that
domains are unchanged by subtracting a constant: D(A − λ) = D(A) and
D
(
((A− λ)∗

)
= D(A∗).

The kernel of the adjoint complements the range of the original operator,
as follows.

Proposition 17.2. If A is a densely defined linear operator then Ran(A)⊕
ker(A∗) = H.

Proof. Clearly ker(A∗) ⊂ Ran(A)⊥, because if f ∈ ker(A∗) then A∗f = 0 and
so for all g ∈ D(A) we have

〈f,Ag〉 = 〈A∗f, g〉 = 0.

To prove the reverse inclusion, Ran(A)⊥ ⊂ ker(A∗), suppose h ∈ Ran(A)⊥.
For all g ∈ D(A) we have 〈h,Ag〉 = 0. In particular, h ∈ D(A∗). Hence

〈A∗h, g〉 = 〈h,Ag〉 = 0 ∀g ∈ D(A),

and so from density of D(A) we conclude A∗h = 0. That is, h ∈ ker(A∗).
We have shown Ran(A)⊥ = ker(A∗), and so (since the orthogonal com-

plement is unaffected by taking the closure) Ran(A)
⊥
= ker(A∗). The propo-

sition follows immediately.
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We will need later that the graph of the adjoint, {(f,A∗f) : f ∈ D(A∗)},
is closed in H×H.

Theorem 17.3. If A is a densely defined linear operator then A∗ is a closed
operator.

Proof. Suppose fn ∈ D(A∗) with fn → f,A∗fn → g, for some f, g ∈ H. To
prove the graph of A∗ is closed, we must show f ∈ D(A∗) with A∗f = g.

For each h ∈ D(A) we have

〈f,Ah〉 = lim
n
〈fn, Ah〉 = lim

n
〈A∗fn, h〉 = 〈g, h〉.

Thus the map h 7→ 〈f,Ah〉 is bounded for h ∈ D(A). Hence f ∈ D(A∗), and
using the last calculation we see

〈A∗f, h〉 = 〈f,Ah〉 = 〈g, h〉

for all h ∈ D(A). Density of the domain implies A∗f = g, as we wanted.

Selfadjointness

Call A selfadjoint if A∗ = A, meaning D(A∗) = D(A) and A∗ = A on their
common domain.

Selfadjoint operators have closed graphs, due to closedness of the adjoint
in Theorem 17.3. Thus:

Proposition 17.4. If a densely defined linear operator A is selfadjoint then
it is closed.

The relation between selftadjointness and symmetry is clear:

Proposition 17.5. The densely defined linear operator A is selfadjoint if
and only if it is symmetric and D(A) = D(A∗).

Proof. “=⇒” If A∗ = A then the adjoint relation (17.2) reduces immediately
to the symmetry relation (17.1).

“⇐=” The symmetry relation (17.1) together with the adjoint relation
(17.2) implies that 〈Af, g〉 = 〈A∗f, g〉 for all f, g ∈ D(A) = D(A∗). Since
D(A) is dense in H, we conclude Af = A∗f.

For bounded operators, selfadjointness and symmetry are equivalent.
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Lemma 17.6. If a linear operator A is bounded on H, then it is selfadjoint
if and only if it is symmetric.

Proof. Boundedness of A ensures that D(A∗) = H = D(A), and so the
adjoint relation (17.2) holds for all f, g ∈ H. Thus A∗ = A is equivalent to
symmetry.

Example: selfadjointness for Schrödinger operators

Let L = −∆ + V be a Schrödinger operator with potential V(x) that is
bounded and real-valued. Choose the domain to be D(L) = H2(Rd) in the
Hilbert space L2(Rd). This Schrödinger operator is selfadjoint.

Proof. Density of D(L) follows from density in L2 of the smooth functions
with compact support.

Our main task is to determine the domain of L∗. Fix f, g ∈ H2(Rd).
From the integration by parts formula 〈f, ∆g〉L2 = 〈∆f, g〉L2 (which one may
alternatively prove with the help of the Fourier transform), one deduces that

|〈f, ∆g〉L2 | = |〈∆f, g〉L2 | ≤ ‖f‖H2‖g‖L2 .

Also |〈f, Vg〉L2 | ≤ ‖f‖L2‖V‖L∞‖g‖L2 . Hence the linear functional g 7→ 〈f, Lg〉L2
is bounded on g ∈ D(L). Therefore f ∈ D(L∗), which tells us H2(Rd) ⊂
D(L∗).

To prove the reverse inclusion, fix f ∈ D(L∗). Then

|〈f, Lg〉L2 | ≤ (const.)‖g‖L2 , ∀g ∈ D(L) = H2(Rd).

Since the potential V is bounded, the last formula still holds if we replace V
with 1, so that

|〈f, (−∆+ 1)g〉L2 | ≤ (const.)‖g‖L2 , ∀g ∈ H2(Rd).

Taking Fourier transforms gives

|〈f̂, (1+ 4π2|ξ|2)ĝ〉L2 | ≤ (const.)‖ĝ‖L2 , ∀g ∈ H2(Rd).

In particular, we may suppose ĝ = h ∈ C∞
0 (Rd), since every such ĝ gives

g ∈ H2(Rd). Hence

|〈(1+ 4π2|ξ|2)f̂, h〉L2 | ≤ (const.)‖h‖L2 , ∀h ∈ C∞
0 (Rd).
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Taking the supremum of the left side over all h with L2-norm equal to 1
shows that

‖(1+ 4π2|ξ|2)f̂‖L2 ≤ (const.)

Hence (1+ |ξ|)2 f̂ ∈ L2(Rd), which means f ∈ H2(Rd). Thus D(L∗) ⊂ H2(Rd).
Now that we know the domains of L and L∗ agree, we have only to check

symmetry, and that is straightforward. When f, g ∈ H2(Rd) we have

〈Lf, g〉 = −〈∆f, g〉L2 + 〈Vf, g〉L2
= −〈f, ∆g〉L2 + 〈f, Vg〉L2
= 〈f, Lg〉L2

where we integrated by parts and used that V(x) is real-valued.
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Chapter 18

Spectra: discrete and
continuous

Goal

To develop the spectral theory of selfadjoint unbounded linear operators.

References [GustafsonSigal] Sections 2.4, 5.1
[HislopSigal] Chapters 1, 5, 7
[Rudin] Chapter 13

Resolvent set, and spectrum

Let A be a densely defined linear operator on a complex Hilbert space H,
as in the preceding chapter. The operator A− λ has domain D(A), for each
constant λ ∈ C. Define the resolvent set

res(A) = {λ ∈ C : A− λ is invertible (has a bounded inverse defined on H)}.

For λ in the resolvent set, we call the inverse (A − λ)−1 the resolvent op-
erator.

The spectrum is defined as the complement of the resolvent set:

spec(A) = C \ res(A).

For example, if λ is an eigenvalue of A then λ ∈ spec(A), because if Af = λf
for some f 6= 0, then (A − λ)f = 0 and so A − λ is not injective, and hence
is not invertible.
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Proposition 18.1 ([HislopSigal, Theorem 1.2]). The resolvent set is open,
and hence the spectrum is closed.

We omit the proof.
The next result generalizes the fact that Hermitian matrices have only

real eigenvalues.

Theorem 18.2. If A is selfadjoint then its spectrum is real: spec(A) ⊂ R.

Proof. We prove the contrapositive. Suppose λ ∈ C has nonzero imaginary
part, Im λ 6= 0. We will show λ ∈ res(A).

The first step is to show A− λ is injective. For all f ∈ D(A),

‖(A− λ)f‖2 = ‖Af‖2 − 2(Re λ)〈f,Af〉+ |λ|2‖f‖2

and so

‖(A− λ)f‖2 ≥ ‖Af‖2 − 2|Re λ|‖f‖‖Af‖+ |λ|2‖f‖2

=
(
‖Af‖− |Re λ|‖f‖

)2
+ | Im λ|2‖f‖2

≥ | Im λ|2‖f‖2. (18.1)

The last inequality implies that A−λ is injective, using here that | Im λ| > 0.
That is, ker(A− λ) = {0}.

Selfadjointness (A∗ = A) now gives ker(A∗−λ) = 0, and so Ran(A− λ) =
H by Proposition 17.2. That is, A− λ has dense range.

Next we show Ran(A− λ) = H. Let g ∈ H. By density of the range, we
may take a sequence fn ∈ D(A) such that (A − λ)fn → g. The sequence fn
is Cauchy, in view of (18.1). Hence the sequence (fn, (A − λ)fn) is Cauchy
in H × H, and so converges to (f, g) for some f ∈ H. Note each ordered
pair (fn, (A − λ)fn) lies in the graph of A − λ, and this graph is closed
by Proposition 17.4 (relying here on selfadjointness again). Therefore (f, g)
belongs to the graph of A− λ, and so g ∈ Ran(A− λ). Thus A− λ has full
range.

To summarize: we have shown A− λ is injective and surjective, and so it
has an inverse operator

(A− λ)−1 : H→ D(A) ⊂ H.

This inverse is bounded with

‖(A− λ)−1g‖ ≤ | Im λ|−1‖g‖, ∀g ∈ H,

by taking f = (A−λ)−1g in estimate (18.1). The proof is thus complete.
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Characterizing the spectrum

We will characterize the spectrum in terms of approximate eigenfunctions.
Given a number λ ∈ C and a sequence wn ∈ D(A), consider three conditions:

(W1) ‖(A− λ)wn‖H → 0 as n→∞,

(W2) ‖wn‖H = 1,

(W3) wn ⇀ 0 weakly in H as n→∞.

(We considered these conditions in Chapter 15 for the special case of the
Laplacian).

Condition (W1) says wn is an “approximate eigenfunction”, and condi-
tion (W2) simply normalizes the sequence. These conditions characterize the
spectrum, for a selfadjoint operator.

Theorem 18.3. If A is selfadjoint then

spec(A) = {λ ∈ C : (W1) and (W2) hold for some sequence wn ∈ D(A)}.

Proof. “⊃” Assume (W1) and (W2) hold for λ, and that A−λ has an inverse
defined on H. Then for fn = (A− λ)wn we find

‖(A− λ)−1fn‖H
‖fn‖H

=
‖wn‖H

‖(A− λ)wn‖H
→∞

as n → ∞, by (W1) and (W2). Thus the inverse operator is not bounded,
and so λ ∈ spec(A).

“⊂” Assume λ ∈ spec(A), so that λ is real by Theorem 18.2. If λ is an
eigenvalue, say with normalized eigenvector f, then we simply choose wn = f
for each n, and (W1) and (W2) hold trivially.

Suppose λ is not an eigenvalue. Then A − λ is injective, hence so is
(A− λ)∗, which equals A− λ by selfadjointness of A and reality of λ. Thus
ker
(
(A− λ)∗

)
= {0}, and so Ran(A− λ) is dense in H by Proposition 17.2.

Injectivity ensures that (A−λ)−1 exists on Ran(A−λ). If it is unbounded
there, then we may choose a sequence fn ∈ Ran(A−λ) with ‖(A−λ)−1fn‖H =
1 and ‖fn‖H → 0. Letting wn = (A−λ)−1fn gives (W1) and (W2) as desired.
Suppose on the other hand that (A− λ)−1 is bounded on Ran(A− λ). Then
the argument in the proof of Theorem 18.2 shows that Ran(A − λ) = H,
which means λ belongs to the resolvent set, and not the spectrum. Thus this
case cannot occur.
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Discrete and continuous spectra

Define the discrete spectrum

specdisc(A)

= {λ ∈ spec(A) : λ is an isolated eigenvalue of A having finite multiplicity},

where “isolated” means that some neighborhood of λ in the complex plane
intersects spec(A) only at λ. By “multiplicity” we mean the geometric mul-
tiplicity (dimension of the eigenspace); if A is not selfadjoint then we should
use instead the algebraic multiplicity [HislopSigal].

Next define the continuous spectrum

speccont(A)

= {λ ∈ C : (W1), (W2) and (W3) hold for some sequence wn ∈ D(A)}.

The continuous spectrum lies within the spectrum, by Theorem 18.3. The
characterization in that theorem required only (W1) and (W2), whereas the
continuous spectrum imposes in addition the “weak convergence” condition
(W3).

A Weyl sequence for A and λ is a sequence wn ∈ D(A) such that (W1),
(W2) and (W3) hold. Thus the preceding definition says the continuous
spectrum consists of λ-values for which Weyl sequences exist.

The continuous spectrum can contain eigenvalues that are not isolated
(“imbedded eigenvalues”) or which have infinite multiplicity.

A famous theorem of Weyl says that for selfadjoint operators, the entire
spectrum is covered by the discrete and continuous spectra.

Theorem 18.4. If A is selfadjoint then

spec(A) = specdisc(A) ∪ speccont(A).

(Further, the discrete and continuous spectra are disjoint.)

We omit the proof. See [HislopSigal, Theorem 7.2].

Applications to Schrödinger operators

The continuous spectrum of the Laplacian −∆ equals [0,∞), and the spec-
trum contains no eigenvalues, as we saw in Chapter 15.
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The hydrogen atom too has continuous spectrum [0,∞), with its Schrödinger
operator L = −∆−2/|x| on R3 having domain H2(Rd) ⊂ L2(Rd); see [Taylor,
Section 8.7]. The discrete spectrum {−1/n2 : n ≥ 1} of the hydrogen atom
was stated in Chapter 3.

As the hydrogen atom example suggests, potentials vanishing at infinity
generate continuous spectrum that includes all nonnegative numbers:

Theorem 18.5. Assume V(x) is real-valued, continuous, and vanishes at
infinity (V(x)→ 0 as |x|→∞).

Then the Schrödinger operator −∆+V is selfadjoint (with domain H2(Rd) ⊂
L2(Rd)) and has continuous spectrum = [0,∞).

For a proof see [HislopSigal, Corollary 14.10], where a stronger theorem
is proved that covers also the Coulomb potential −2/|x| for the hydrogen
atom. Note the Coulomb potential vanishes at infinity but is discontinuous
at the origin, where it blows up. The stronger version of the theorem re-
quires (instead of continuity and vanishing at infinity) that for each ε > 0,
the potential V(x) be decomposable as V = V2 + V∞ where V2 ∈ L2 and
‖V∞‖L∞ < ε. This decomposition can easily be verified for the Coulomb
potential, by “cutting off” the potential near infinity.

Theorem 18.5 implies that any isolated eigenvalues of L must lie on the
negative real axis (possibly accumulating at 0). For example, the −2 sech2

potential in Chapter 16 generates a negative eigenvalue at −1.

Connection to generalized eigenvalues and eigenfunctions

Just as the discrete spectrum is characterized by eigenfunctions in L2, so the
full spectrum is characterized by existence of a generalized eigenfunctions
that grows at most polynomially at infinity.

Theorem 18.6. Assume V(x) is real-valued and bounded on Rd. Then the
Schrödinger operator −∆+ V has spectrum

spec(−∆+ V) =

closure of {λ ∈ C : (−∆+ V)u = λu for some polynomially bounded u}.

We omit the proof; see [GustafsonSigal, Theorem 5.22].
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Further reading

A wealth of information on spectral theory, especially for Schrödinger oper-
ators, can be found in the books [GustafsonSigal, HislopSigal, ReedSimon2,
ReedSimon4].
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Chapter 19

Discrete spectrum revisited

Goal

To fit the discrete spectral Theorem 4.1 (from Part I of the course) into
the spectral theory of selfadjoint operators and, in particular, to prove the
absence of continuous spectrum in that situation.

Discrete spectral theorem

The discrete spectral Theorem 4.1 concerns a symmetric, elliptic, bounded
sesquilinear form a(u, v) on an infinite dimensional Hilbert space K, where
K imbeds compactly and densely into the Hilbert space H. The theorem
guarantees existence of an ONB for H consisting of eigenvectors of a:

a(uj, v) = γj〈uj, v〉H ∀v ∈ K,

where the eigenvalues satisfy

0 < γ1 ≤ γ2 ≤ γ3 ≤ · · ·→∞.
We want to interpret these eigenvalues as the discrete spectrum of some
selfadjoint, densely defined linear operator on H. By doing so, we will link
the discrete spectral theory in Part I of the course with the spectral theory
of unbounded operators in Part II.

Our tasks are to identify the operator A and its domain, to prove A is
symmetric, to determine the domain of the adjoint, to conclude selfadjoint-
ness, and finally to show that the spectrum of A consists precisely of the
eigenvalues γj.
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Operator A and its domain

In the proof of Theorem 4.1 we found a bounded, selfadjoint linear operator
B : H→ K ⊂ H with eigenvalues 1/γj and eigenvectors uj:

Buj =
1

γj
uj.

We showed B is injective (meaning its eigenvalues are nonzero). Notice B
has dense range because its eigenvectors uj span H.

(Aside. This operator B relates to the sesquilinear form a by satisfying
a(Bf, v) = 〈f, v〉H for all v ∈ K. We will not need that formula below.)

Define
A = B−1 : Ran(B)→ H.

Then A is a linear operator, and its domain

D(A) = Ran(B)

is dense in H.

Symmetry of A

Let u, v ∈ D(A). Then

〈Au, v〉H = 〈Au,BAv〉H since BA = Id,

= 〈BAu,Av〉H since B is selfadjoint,

= 〈u,Av〉H since BA = Id.

Domain of the adjoint

First we show D(A) ⊂ D(A∗). Let u ∈ D(A). For all v ∈ D(A) we have

|〈u,Av〉H| = |〈Au, v〉H| by symmetry

≤ ‖Au‖H‖v‖H.

Hence the functional v 7→ 〈u,Av〉H is bounded on D(A) with respect to the
H-norm, so that u belongs to the domain of the adjoint A∗.

Next we show D(A∗) ⊂ D(A). Let u ∈ D(A∗) ⊂ H. We have

|〈u,Av〉H| ≤ (const.)‖v‖H ∀v ∈ D(A) = Ran(B).
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Writing v = Bg gives

|〈u, g〉H| ≤ (const.)‖Bg‖H ∀g ∈ H.

One can express u in terms of the ONB as u =
∑

j djuj. Fix J ≥ 1 and

choose g =
∑J

j=1 γ
2
jdjuj ∈ H, so that Bg =

∑J
j=1 γjdjuj. We deduce from

the last inequality that

J∑
j=1

γ2j |dj|
2 ≤ (const.)

( J∑
j=1

γ2j |dj|
2
)1/2
,

and so
J∑
j=1

γ2j |dj|
2 ≤ (const.)2

Letting J→∞ implies that∑
j

γ2j |dj|
2 ≤ (const.)2

and so the sequence {γjdj} belongs to `2. Put f =
∑

j γjdjuj ∈ H. Then
Bf =

∑
j djuj = u, and so u ∈ Ran(B) = D(A), as desired.

Selfadjointness, and discreteness of the spectrum

Theorem 19.1. A is selfadjoint, with domain

D(A) = Ran(B) =
{∑

j

γ−1
j cjuj : {cj} ∈ `2

}
.

Furthermore, spec(A) = specdisc(A) = {γj : j ≥ 1}.

Proof. We have shown above that A is symmetric and D(A∗) = D(A), which
together imply that A is selfadjoint.

We will show that if

λ ∈ C \ {γ1, γ2, γ3, . . .}

then A−λ is invertible, so that λ belongs to the resolvent set. Thus the spec-
trum consists of precisely the eigenvalues γj. Note each eigenvalue has finite
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multiplicity by Theorem 4.1, and is isolated from the rest of the spectrum;
hence A has purely discrete spectrum.

The inverse of A−λ can be defined explicitly, as follows. Define a bounded
operator C : H→ H on f =

∑
j cjuj ∈ H by

Cf =
∑
j

(γj − λ)
−1cjuj,

where we note that (γj − λ)
−1 is bounded for all j, and in fact approaches 0

as j → ∞, because |γj − λ| is never zero and tends to ∞ as j → ∞. This
new operator has range Ran(C) = Ran(B), because (γj− λ)

−1 is comparable
to γ−1

j (referring here to the characterization of Ran(B) in Theorem 19.1).
Thus Ran(C) = D(A).

Clearly (A − λ)Cf = f by definition of A, and so Ran(A − λ) = H.
Similarly one finds that C(A − λ)u = u for all u ∈ D(A). Thus C is the
inverse operator of A − λ. Because C is bounded on all of H we conclude
A− λ is invertible, according to the definition in Chapter 17.

Example: Laplacian on a bounded domain

To animate the preceding theory, let us consider the Laplacian on a bounded
domain Ω ⊂ Rd, with Dirichlet boundary conditions. We work with the
Hilbert spaces

H = L2(Ω), K = H10(Ω),

and the sesquilinear form

a(u, v) =

∫
Ω

∇u · ∇v dx+
∫
Ω

uvdx = 〈u, v〉H1 ,

which in Chapter 5 gave eigenfunctions satisfying (−∆ + 1)u = (λ + 1)u
weakly. In this setting, u = Bf means that (−∆ + 1)u = f weakly. Note
B : L2(Ω)→ H10(Ω), and recall that A = B−1.

Proposition 19.2. The domain of the operator A contains H2(Ω)∩H10(Ω),
and

A = −∆+ 1

on H2(Ω) ∩H10(Ω).
Furthermore, if ∂Ω is smooth then D(A) = H2(Ω) ∩ H10(Ω), in which

case A = −∆+ 1 on all of its domain.
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Proof. For all u ∈ H2(Ω) ∩H10(Ω), v ∈ H10(Ω), we have

〈u, v〉H1 = 〈−∆u+ u, v〉L2 by parts

= 〈B(−∆u+ u), v〉H1 by definition of B.

Since both u and B(−∆u+u) belong to H10(Ω), and v ∈ H10(Ω) is arbitrary,
we conclude from above that u = B(−∆u + u). Therefore u ∈ Ran(B) =
D(A), and so H2(Ω) ∩H10(Ω) ⊂ D(A).

Further, we find Au = −∆u+ u because B = A−1, and so

A = −∆+ 1 on H2(Ω) ∩H10(Ω).

Finally we note that if ∂Ω is C2-smooth then by elliptic regularity the
weak solution u of (−∆ + 1)u = f belongs to H2(Ω), so that Ran(B) ⊂
H2(Ω) ∩H10(Ω). Thus

D(A) = H2(Ω) ∩H10(Ω)

when ∂Ω is smooth enough. In that case A = −∆+1 on all of its domain.
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