

ESCAPE 2

Spectral Transform

Michail Diamantakis
based on the lecture slides by Andreas Mueller

IFS (Integrated Forecast System)

technology applied at ECMWF for
the last 30 years

- spectral transform
- semi-Lagrangian
- semi-implicit

ESCAPE: Energy-efficient Scalable Algorithms for Weather Prediction at Exascale
https://www.ecmwf.int/escape
"ESCAPE aimed to develop world-class, extreme-scale computing capabilities for European operational numerical weather prediction (NWP) and future climate models."

ESCAPE2

IFS (Integrated Forecast System)

technology applied at ECMWF for the last 30 years

- spectral transform
- semi-Lagrangian
- semi-implicit
- spectral transform
\square grid point dynamics
- wave model
\square semi-implicit solver
\square physics+radiation
■ ocean model

IFS (Integrated Forecast System)

technology applied at ECMWF for the last 30 years

- spectral transform
- semi-Lagrangian
- semi-implicit
pie chart: \% of runtime in 5 km forecast (future operational)
- spectral transform
\square grid point dynamics
- wave model
\square semi-implicit solver
\square physics+radiation
■ ocean model

IFS (Integrated Forecast System)

technology applied at ECMWF for the last 30 years

- spectral transform
- semi-Lagrangian
- semi-implicit
pie chart: \% of runtime in 1.25km forecast (experiment, no ocean)
- spectral transform
\square grid point dynamics
- wave model
\square semi-implicit solver
\square physics+radiation
■ ocean model

Fourier transform

Fourier transform = Spectral transform in 1D

ESCAPE 2

Fourier transform

Fourier transform = Spectral transform in 1D

ESCAPE 2

Fourier transform

Fourier transform = Spectral transform in 1D

grid point space
Fourier space

ESCAPE 2

Fourier transform and its inverse

In practice these transforms are discrete in nature
 transforming grid-point functions (fields) to a finite number of discrete Fourier coefficients and vice versa.

The Fast Fourier Transform (FFT) is the standard way of performing this operation.

ESCAPE 2

Spatial derivatives and Fourier
function of x

$$
f(x)=\sum_{m=-\infty}^{\infty} f_{m} e^{i m x}, \quad x \in[0,2 \pi]
$$

$$
\frac{d f(x)}{d x}=\sum_{m=-\infty}^{\infty} i m f_{m} e^{i m x}
$$

ESCAPE 2

on the sphere: spectral transform

Truncated spectral transform series

Spherical harmonics
Spectral coefficient

$$
f(\lambda, \phi)=\sum_{m=-\infty}^{\infty} \sum_{n=|m|}^{\infty} f_{n}^{m} Y_{n}^{m}(\lambda, \phi), Y_{n}^{m}(\lambda, \phi)=\boldsymbol{P}_{n}^{m}(\sin \phi) e^{i m \lambda}
$$

Truncated series:

$$
f(\lambda, \phi)=\sum_{m=-M}^{M} \sum_{n=|m|}^{M} f_{n}^{m} Y_{n}^{m}(\lambda, \phi), \quad Y_{n}^{m}(\lambda, \phi)=P_{n}^{m}(\mu) e^{i m \lambda}, \quad \mu=\sin \phi
$$

Triangular truncation: (n, m) indices lie within a triangle.
Uniform resolution over entire surface of the sphere

Consider Laplace's equation on the sphere, assuming a solution (separation of variables, see book by Krishnamurti et al) of the form:

$$
Y(\lambda, \mu)=L(\lambda) P(\mu), \quad \lambda: \text { longitude }, \mu=\sin \phi
$$

then, we obtain two ODEs:

$$
\frac{d^{2} L}{d \lambda^{2}}+m^{2} L=0, \quad \frac{1-\mu^{2}}{P} \frac{d}{d \mu}\left(\left(1-\mu^{2}\right) \frac{d P}{d \mu}\right)+n(n+1)\left(1-\mu^{2}\right)=m^{2}
$$

Solving for L, P the above we find that the solution is the spherical harmonics function:

$$
Y_{n}^{m}(\lambda, \mu)=e_{L(\lambda): \text { Fourier mode }}^{e^{i m \lambda}} \cdot \underbrace{P_{n}^{m}(\mu)}_{P(\mu) \text { : associated Legendre poly }}
$$

Properties of spherical harmonics

- Derivatives can be accurately, cheaply and trivially computed:

$$
\begin{aligned}
& \frac{\partial Y_{n}^{m}}{\partial \lambda}=\operatorname{im} Y_{n}^{m} \\
& \left(1-\mu^{2}\right) \frac{\partial Y_{n}^{m}}{\partial \mu}=-n \varepsilon_{n+1}^{m} Y_{n+1}^{m}+(n+1) \varepsilon_{n}^{m} Y_{n-1}^{m}, \quad \varepsilon_{n}^{m}=\sqrt{\frac{n^{2}-m^{2}}{4 n^{2}-1}}
\end{aligned}
$$

- Spherical harmonics are the Eigenfunctions of the horizontal Laplace operator and they are orthogonal (due to orthogonality of Legendre polynomials)

$$
\nabla^{2} Y_{n}^{m}=\frac{-n(n+1)}{a^{2}} Y_{n}^{m}, \quad a: \text { Earth radius }
$$

- Thus, elliptic equations are easy and cheap to solve \square important for semi-implicit timestepping
- Spectral transform methods do not suffer from pole singularities and have uniform spatial resolution over entire sphere with triangular truncation for m, n (used in these notes)

$$
\begin{aligned}
& f(\lambda, \mu, z, t)=\sum_{m=-\infty}^{\infty} \sum_{n=|m|}^{\infty} f_{n}^{m}(z, t) Y_{n}^{m}(\lambda, \mu) \\
& f_{m}(\mu, z, t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\lambda, \mu, z, t) e^{-i m \lambda} d \lambda \\
& f_{n}^{m}(z, t)=\frac{1}{2} \int_{-1}^{1} f_{m}(\mu, z, t) P_{n}^{m}(\mu) d \mu
\end{aligned}
$$

Continuous spectral transform for a 4-dimensional equation model (space-time)

Continuous Fourier transform in longitude

Continuous Legendre transform in latitude

Discrete transforms in space-time

$$
\left.\begin{array}{l}
f_{m}\left(\mu_{k}, z, t\right)=\frac{1}{L} \sum_{j=1}^{L} f\left(\lambda_{j}, \mu_{k}, z, t\right) e^{-i m \lambda_{j}} \\
f_{n}^{m}(z, t)=\frac{1}{2} \sum_{k=1}^{K} w_{k} f_{m}\left(\mu_{k}, z, t\right) P_{n}^{m}\left(\mu_{k}\right)
\end{array}\right\}
$$

Legendre transform: a Gaussian quadrature exact for all polynomials of degree 2K-1
$\left.\begin{array}{l}w_{k}: \text { Gaussian weights } \\ \mu_{k}: \text { Gaussian quadrature points }\end{array}\right\}, k=1,2, \ldots, K$

$$
\left.\begin{array}{l}
f_{m}\left(\mu_{k}, z, t\right)=\sum_{n=|m|}^{M} f_{n}^{m}(z, t) P_{n}^{m}\left(\mu_{k}\right) \\
f\left(\lambda_{j}, \mu_{k}, z, t\right)=\sum_{m=-M}^{M} f_{m}\left(\mu_{k}, z, t\right) e^{i m \lambda_{j}}
\end{array}\right\}
$$

Inverse Legendre transform

Inverse Fourier transform

For accurate LTs a Gaussian grid must be used: grid-point latitudes coincide with the latitude of Gaussian quadrature points (roots of Legendre polynomials)

ESCAPE 2

Issue: multiplication of two variables produces shorter
waves than grid can handle

ESCAPE 2

aliasing

wave generated in spectral space

Issue: multiplication of two waveform variables produces a new
variable with shorter wavelength than the one the grid can handle

ESCAPE 2

aliasing

wave generated in spectral space
grid points

Issue: multiplication of two waveform variables produces a new variable with shorter wavelength than the one the grid can handle

ESCAPE 2

wave generated in spectral space
grid points

Issue: multiplication of two waveform variables produces a new
variable with shorter wavelength than the one the grid can handle

ESCAPE 2

wave generated in spectral space

wave in grid point space
Issue: multiplication of two waveform variables produces a new
variable with shorter wavelength than the one the grid can handle
aliasing example

500hPa adiabatic zonal wind tendencies (T159)

aliasing example

500hPa adiabatic meridional wind tendencies (T159)

with aliasing

filtered

alternatives to using a filter

Idea: use more grid points than spectral coefficients

Orszag, 1971:
$2 N+1$ gridpoints to N waves : linear grid
$3 N+1$ gridpoints to N waves : quadratic grid
$4 N+1$ gridpoints to N waves : cubic grid

Spatial filter range Δ : grid-length (Wedi, 2014)
$\sim 1-2 \Delta$
$\sim 2-3 \Delta$
$\sim 3-4 \Delta$

Equation terms accurately represented without aliasing

- Cubic grid filters 3-4 grid-length oscillations therefore no need to apply an extra de-aliasing filter as in the linear grid
- The smallest wavelength $2 \pi \alpha / \mathrm{N}$ is resolved by $2,3,4$ points by the linear, quadratic, cubic grids

ESCAPE 2

effective resolution

of linear and cubic grids (Abdalla et al. 2013)

Cubic octahedral (Gaussian) grid of IFS

- No aliasing in nonlinear products
- Improved accuracy and mass conservation compared with linear grid
- Efficiency and scalability for large size problems: high grid-point resolution for a given spectral truncation i.e. expensive transforms become a smaller fraction of total computations

Collignon projection on the sphere: Number of points at latitude line $i=4 \times i+16, i=1, \ldots, 2 M$

For a given spectral triangular truncation M the cubic reduced octahedral Gaussian grid has:

- 2 M points between pole and equator which coincide with Gaussian latitudes
- $4 \mathrm{M}+16$ east-west points along the equator
- $4 \mathrm{M}(\mathrm{M}+9)$ points in total

Variation of grid-point resolution with latitude

ESCAPE 2

time step in IFS

FFT: Fast Fourier Transform, LT: Legendre Transform

ESCAPE 2 Inverse transforms: use of symmetry properties of Legendre polynomials in computation
spectral coefficient for field $\mathrm{f}: \quad \mathbf{D}(f, \mathrm{i}, n, m)$
spectral space

$\mathbf{S}_{m}(f, \mathrm{i}, \phi)=\sum_{n} \mathbf{D}_{e, m}(f, \mathrm{i}, n) \cdot \mathbf{P}_{e, m}(n, \phi)$,
$\mathbf{A}_{m}(f, \mathrm{i}, \phi)=\sum_{n} \mathbf{D}_{o, m}(f, \mathrm{i}, n) \cdot \mathbf{P}_{o, m}(n, \phi)$
$\phi>0: \mathbf{F}(\mathrm{i}, m, \phi, f)=\mathbf{S}_{m}(f, \mathrm{i}, \phi)+\mathbf{A}_{m}(f, \mathrm{i}, \phi)$
$\phi<0: \mathbf{F}(\mathrm{i}, m, \phi, f)=\mathbf{S}_{m}(f, \mathrm{i},-\phi)-\mathbf{A}_{m}(f, \mathrm{i},-\phi)$
for each ϕ,f:
$\mathbf{G}_{\phi, f}(\lambda)=\operatorname{FFT}\left(\mathbf{F}_{\phi, f}(\mathrm{i}, m)\right)$
grid point data:
$\mathbf{G}(f, \lambda, \phi)$
grid point space

Normalised
associated Legendre
polynomial
inverse Fourier transform
parallelisation
over m, n indices

lots of MPI communication

inverse Legendre transform

Domain decomposition in spectral transform semi-implicit solver

Matrix-matrix multiply in a LT

Legendre and inverse Legendre transforms are expressed as a matrix-matrix multiply for each wavenumber m (Wedi et al, MWR 2013)
$f_{n}^{m}(z, t)=\frac{1}{2} \sum_{k=1}^{K} w_{k} f_{m}\left(\mu_{k}, z, t\right) P_{n}^{m}\left(\mu_{k}\right) \quad f_{m}\left(\mu_{k}, z, t\right)=\sum_{n=|m|}^{M} f_{n}^{m}(z, t) P_{n}^{m}\left(\mu_{k}\right)$

Left: LT Right: Inverse LT

Interpolative decomposition ("butterfly compression")

The left hand-side matrix in a LT transform (matrix-matrix multiply) remains the same regardless the timestep. It can be compressed and approximated in a form that accelerates computation

- A: rank deficient matrix

- R: contains blocks with full rank
- S : "interpolation matrix". A subset of its columns makes up the identity matrix -cannot be further compressed so must be saved
- The approximation is valid within a tolerance selected so that it doesn't change significant the results

Split matrix in two halves applying decomposition

The above algorithm can be repeated until the residual block matrix contains a single diagonal of full-rank blocks

Funded by the

Matrix of Legendre polynomials
truncation $\mathrm{N}=500$, zonal wavenumber $\mathrm{m}=40$

FLT:

step 1: split matrix into two halves
step 2: empty half of each column and apply "interpolative decomposition"
total wavenumber n

Funded by the

Matrix of Legendre polynomials
truncation $\mathrm{N}=500$, zonal wavenumber $\mathrm{m}=40$

FLT:

step 1: split matrix into two halves
step 2: empty half of each column and apply "interpolative decomposition"
step 3: reorder columns

Funded by the

Fast Legendre Transform

Matrix of Legendre polynomials
truncation $\mathrm{N}=500$, zonal wavenumber $\mathrm{m}=40$

FLT:

step 1: split matrix into two halves
step 2: empty half of each column and apply "interpolative decomposition"
step 3: reorder columns
step 4: apply to each block recursively

Matrix of Legendre polynomials
truncation $\mathrm{N}=500$, zonal wavenumber $\mathrm{m}=40$

FLT:

step 1: split matrix into two halves
step 2: empty half of each column and apply "interpolative decomposition"
step 3: reorder columns
step 4: apply to each block recursively

ESCAPE 2

Fast Legendre Transform

Matrix of Legendre polynomials
truncation $\mathrm{N}=500$, zonal wavenumber $\mathrm{m}=40$

FLT:

step 1: split matrix into two halves
step 2: empty half of each column and apply
"interpolative decomposition"
step 3: reorder columns
step 4: apply to each block recursively

ESCAPE 2

Fast Legendre Transform

Matrix of Legendre polynomials
truncation $\mathrm{N}=500$, zonal wavenumber $\mathrm{m}=100$

FLT:

step 1: split matrix into two halves
step 2: empty half of each column and apply "interpolative decomposition"
step 3: reorder columns
step 4: apply to each block recursively

ESCAPE 2

Fast Legendre Transform

Number of floating point operations for direct or inverse spectral transforms of a single field, scaled by $N^{2} \log ^{3} \mathrm{~N}$

Fast Legendre Transform

Average wall-clock time compute cost of 10^{7} spectral transforms scaled by $N^{2} \log ^{3} N$

ESCAPE 2

performance comparison
Funded by the
of IFS with other models
3 km Case: Speed Normalized to Operational Threshold (8.5 mins per day)

scalability comparison

ESCAPE 2

IFS scaling on Summit and PizDaint (CPU only)

ESCAPE 2

optimisations by NVIDIA in ESCAPE

Spherical Harmonics Dwarf TCO639 Test Case
4 GPUs on DGX-1V

ESCAPE 2

GPUs vs CPUs on Summit

References \& Acknowledgements

Seljebotn 2012, WAVEMOST-fast spherical transforms by butterfly matrix compression (Astrophysical Journal Supplement, vol 199)

Tygert 2010, Fast algorithms for spherical harmonic expansions III (JCP vol 229)
Wedi et al 2013, A fast spherical harmonics transform for global NWP and climate models (MWR vol 141)

Krishnamurti, T.N., Bedi, H.S., Hardiker, V., Watson-Ramaswamy, L., An Introduction to Global Spectral Modeling, 2006

The ESCAPE 2 project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 800897. This material reflects only the author's view and the Commission is not responsible for any use that may be made of the information it contains.

Image credits:

- Images on slide 1 used under license from shutterstock.com

Some practice

interactive web-app by Andreas Müller about spectral transform open in a browser: anmrde.github.io/spectral

