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IFS (Integrated Forecast System)

technology applied at ECMWF for 

the last 30 years

• spectral transform

• semi-Lagrangian

• semi-implicit

ESCAPE: Energy-efficient Scalable Algorithms for Weather Prediction at Exascale

https://www.ecmwf.int/escape

“ESCAPE aimed to develop world-class, extreme-scale computing capabilities for European 
operational numerical weather prediction (NWP) and future climate models.”

https://www.ecmwf.int/escape
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IFS (Integrated Forecast System)

technology applied at ECMWF for 

the last 30 years
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• semi-Lagrangian
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Fourier transform

grid point space Fourier space



Fourier transform = Spectral transform in 1DFourier transform and its inverse
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In practice these transforms
are discrete in nature 
transforming grid-point 
functions (fields) to a finite 
number of discrete Fourier 
coefficients and vice versa.

The Fast Fourier Transform 
(FFT) is the standard way of 
performing this operation.

Fourier transform

Inverse Fourier transform



Spatial derivatives and Fourier 
representation
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on the sphere: spectral transform

grid point space spectral space

= + + +...
spherical harmonics



Truncated spectral transform series

Truncated series:

latitudelongitude
Spherical harmonics

Spectral coefficient

m: zonal wavenumber
n: total wavenumber
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Triangular truncation: (n,m) indices lie within a triangle.

Uniform resolution over entire surface of the sphere

Associated Legendre 
Polynomials (normalised)



Spherical harmonics: where do they come from?

Consider Laplace’s equation on the sphere, assuming a solution (separation of variables, 
see book by Krishnamurti et al) of the form:

( , ) ( ) ( ), :  longitude, sinY L P      = =

then, we obtain two ODEs: 

Solving for L, P the above we find that the solution is the spherical harmonics function: 

( ): Fourier mode
( ): associated Legendre poly
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Properties of spherical harmonics

• Derivatives can be accurately, cheaply and trivially computed:

• Spherical harmonics are the Eigenfunctions of the horizontal Laplace operator and they are 
orthogonal (due to orthogonality of Legendre polynomials)

• Thus, elliptic equations are easy and cheap to solve            important for semi-implicit time-
stepping

• Spectral transform methods do not suffer from pole singularities and have uniform spatial 
resolution over entire sphere with triangular truncation for m, n (used in these notes)
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Continuous transforms in space-time
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Continuous spectral transform for a 4-dimensional 
equation model (space-time)

Continuous Fourier transform in longitude

Continuous Legendre transform in latitude



Discrete transforms in space-time
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: Gaussian weights
, 1,2,...,

: Gaussian quadrature points
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Fourier transform at latitude φk: computed using a FFT

Legendre transform: a Gaussian quadrature exact for all 
polynomials of degree 2K-1

Inverse Legendre transform

Inverse Fourier transform

For accurate LTs a Gaussian grid must be used: grid-point latitudes coincide with the latitude of Gaussian 
quadrature points (roots of Legendre polynomials)



aliasing
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aliasing

grid points

wave generated in spectral space

wave in grid point space

Issue: multiplication of two waveform variables produces a new 

variable with shorter wavelength than the one the grid can handle



aliasing example
500hPa adiabatic zonal wind tendencies (T159)

with aliasing filtered



aliasing example
500hPa adiabatic meridional wind tendencies (T159)

with aliasing filtered



alternatives to using a filter

2N+1 gridpoints to N waves : linear grid

3N+1 gridpoints to N waves : quadratic grid

4N+1 gridpoints to N waves : cubic grid

~ 1-2 Δ

~ 2-3 Δ

~ 3-4 Δ

• Cubic grid filters 3-4 grid-length oscillations therefore no need to apply an extra de-aliasing 

filter as in the linear grid 

• The smallest wavelength 2πα/N is resolved by 2,3,4 points by the linear, quadratic, cubic grids

(Wedi, 2014)

Idea: use more grid points than spectral coefficients

Orszag, 1971: Δ : grid-length
Spatial filter range Equation terms accurately 

represented without aliasing

Linear

Quadratic

Cubic



effective resolution
of linear and cubic grids (Abdalla et al. 2013)



Collignon projection on the sphere: Number of points at latitude line i = 4 × i + 16,  i = 1, . . . ,2M

• No aliasing in nonlinear products

• Improved accuracy and mass 

conservation compared with linear grid

• Efficiency and scalability for large size 

problems: high grid-point resolution for 

a given spectral truncation i.e. 

expensive transforms become a 

smaller fraction of total computations

26

Cubic octahedral (Gaussian) grid of IFS

Variation of grid-point resolution with latitude

For a given spectral triangular truncation M the cubic 

reduced octahedral Gaussian grid has:

• 2M points between pole and equator which coincide 

with Gaussian latitudes

• 4M+16 east-west points along the equator

• 4M(M+9) points in total



time step in IFS

Grid-point space

-semi-Lagrangian advection

-physical parametrizations

-products of terms

Fourier space

Spectral space

-horizontal gradients

-semi-implicit calculations 

-horizontal diffusion

FFT

LT

Inverse FFT

Inverse LT

Fourier space

FFT: Fast Fourier Transform,  LT: Legendre Transform

No grid-staggering of 

prognostic variables



Inverse transforms: use of symmetry properties 
of Legendre polynomials in computation

spectral coefficient for field f:

for each m:

even n odd n

grid point data:

for each ɸ,f:

spectral space

inverse Legendre transform

parallelisation
over m, n indices

inverse Fourier transform

grid point space

lots of MPI 
communication

Normalised 
associated Legendre 
polynomial



Domain decomposition in spectral 
transform semi-implicit solver

Direct Legendre transform:

• multiply data with Gaussian 

quadrature weights 

• Same as an inverse transform but 

in reverse order

• The data transpositions needed by 

spectral transforms imply heavy 

communication load

References: 
Foster et al, Parallel Algorithms for the Spectral Transform Method, SIAM J Sci Com, 
1997
Baros et al, The IFS model: A parallel production weather code, Parallel computing 21



Matrix-matrix multiply in a LT 

Legendre and inverse  Legendre transforms are expressed as a matrix-matrix multiply for each 
wavenumber m  (Wedi et al, MWR 2013)
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Gaussian latitude

Fast LT: apply “butterfly” 
compression (Tygart 2010)

Vertical level

Spectral coefficient 
at vertical level l
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A matrix-matrix multiply for 
each zonal wavenumber m 
across all Gaussian Latitudes 
and vertical levels



Interpolative decomposition (“butterfly compression”)

m n m k k nA R S  
• A: rank deficient matrix
• R: contains blocks with full rank
• S: “interpolation matrix”. A subset of its columns makes up the 

identity matrix -cannot be further compressed so must be saved
• The approximation is valid within a tolerance selected so that it 

doesn’t change significant the results

The left hand-side matrix in a LT transform (matrix-matrix multiply) remains the same regardless the 
timestep. It can be compressed and approximated in a form that accelerates computation 
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Split matrix in two halves applying decomposition

Rewrite matrix as the product of 
two block matrices emptying 
half of each column

The above algorithm can be repeated until the residual block matrix contains a single diagonal of full-rank blocks



Fast Legendre Transform
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Fast Legendre Transform
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step 3: reorder columns

step 4: apply to each 
block recursively

step 2: empty half of 
each column and apply
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Fast Legendre Transform
floating point operations
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Number of floating point operations for direct or inverse spectral 

transforms of a single field, scaled by N2log3N



Average wall-clock time compute cost of 107 spectral transforms 

scaled by N2log3N
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performance comparison
of IFS with other models

(Michalakes et al, NGGPS AVEC report, 2015)

IFS



scalability comparison
of IFS with other models

(Michalakes et al, NGGPS AVEC report, 2015)

IFS



IFS scaling on Summit
and PizDaint (CPU only)



figure: courtesy of Alan Gray, Peter Messmer (NVIDIA)

optimisations by NVIDIA in ESCAPE

16x



GPUs vs CPUs on Summit
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open in a browser: anmrde.github.io/spectral

interactive web-app by Andreas Müller about spectral transform

Some practice …


