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Abstract. This is a study of the sum [(s; a)=Zy=,  [E,(a)]-’ over the eigenvalues E,(n)  
of Schrodinger’s equation in a (billiard) domain 9 with reflecting walls, threaded by a 
single line of magnetic flux a. For integer s, [(s; a) is calculated by generalising a Green 
function technique of Itzykson er a/ based on a conformal transformation between 9 and 
the unit disc. When the transformation is generated by a polynomial of finite degree an 
explicit formula enables [(2; a) to be easily computed with high accuracy. In conjunction 
with a semiclassical approximation the exact values of l (2 ;  a) can be used to calculate 
the ground state E , ( a )  for a non-integrable billiard, with an error of about one per cent. 

1. Introduction 

The zeta function of a Hermitian operator fi with infinitely many discrete eigenvalues 
{ E j }  is the sum 

Zeta functions have been evaluated for some one-dimensional differential operators. 
If f i  is the Hamiltonian of a quantal harmonic oscillator, then because the energy 
levels are equ?lly spaced l(s) can be expressed simply in terms of Riemann’s zeta 
function. If H is the operator of Bessel’s equation, -d2/dx2+(u2-a)/x2, applied to 
functions vanishing at x = 0 and x = 1, then Ej is the square of the j th  zero of the uth 
Bessel function, from whose product formula l(s) has been evalu!ted for even integer 
s in studies begun by Euler two centuries ago (Watson 1944). If H is the Hamiltonian 
of a particle in an even power law potential, that is -d2/dx2+xZM, with M a natural 
number, then even though, when M > 1, the eigenfunctions are not standard special 
functions it is possible to obtain analytic properties, recurrence relations and some 
special values of l(s), as shown by Voros (1983). 

Itzykson et a1 (1986) have extended these studies to a class of two-dimensional 
operators, namely quantum billiards, in which particles are free within a domain 9 
on whose reflecting boundary wavefunctions must vanish. They are able to express 
l ( s )  for integer s in closed form, as 2s-fold integrals. This extension is important 
because in contrast to the one-dimensional cases the corresponding classical Hamil- 
tonian motion (bouncing balls in 9) need not be integrable. Itzykson et al’s integrals 
therefore provide exact sum rules for the unknown energy levels of quantal systems 
whose classical motion may be chaotic. 

Our purpose here is threefold. Firstly, to generalise Itzykson er al’s results (§ 2) 
so as to include the Aharonov-Bohm billiards recently introduced by Berry and Robnik 
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(1986, hereafter called BR). These are quantum billiards where the particles have 
charge q and where a single line of magnetic flux (3 threads 9. With coordinates 
r = (x, y )  with the flux line at the origin, the Hamiltonian (BR) is 

Z? = -(V -iaA(r))’ (2) 
where the quantum Jlux parameter a is defined by 

a = q O / h  (3) 
( h  being Planck’s constant), and A is any vector potential satisfying 

V A A = 27rS(r). (4) 
The flux (Y breaks the time-reversal symmetry of the quantum dynamics and thereby 
alters the universality class of the statistics of high-lying energy levels (BR);  here it is 
the a dependence of the zeta functions l(s; a) that will be studied. 

The second purpose (§ 3) is to show that Itzykson er al’s formulae and the present 
generalisation simplify considerably for domains which can be obtained by a finite- 
degree conformal mapping of the unit disc (these include domains for which the 
classical motion is chaotic). Explicit formulae will be found for 5(2; a). 

The third purpose (0 4) is to show how the exact results for ((2; a) can be combined 
with semiclassical approximations to give unexpectedly good estimates of the ground- 
state energy E, as a function of CY. 

2. Trace formulae and Green function 

We define the (zero-energy) Green function gI2 and Green operator 6 by 

~ l z ~ ~ r , ~ ~ ~ ~ ~ ~ ~ ~ r , ~ ~ ~ ~ ~ ~ z ~  ( = %>. ( 5 )  
Then for integer s, from ( l ) ,  l(s) is the trace 

l(s) =Tr k s = T r  

= 11 dr, . . . 11 drs%lz%z3.. . 

where the s integrations are over the domain 9. 
The idea of Itzykson et a1 (1986) is to express (6) in terms of integrals over the 

unit disc, related to 9 by conformal transformation. With position in the disc plane 
denoted by 

R=(x ,  Y ) = ( R ,  e )  with Z = X + i Y  (7) 

r = ( x , y ) = ( r ,  4) with z = x + i y  (8) 

2 = w ( 2 )  i.e. x = Re w ( 2 )  y = Im w ( 2 ) .  ( 9 )  

and position in 9 denoted by 

the transformation is defined by an analytic function w ( 2 )  by 

The boundary of Ed is the image of the boundary of the unit disc R = 1, and the 
Jacobian is lw’(2)1’, so that (6) becomes 
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where now the integrations are over the unit disc and %12 has arguments Z ,  and Z2 
(or RI and R2). 

In r space (el2 is determined by I?& = 1 in position representation; from ( 2 )  and 
(5 )  follow 

- ( V , , - ~ Q A ( ~ , ) ) ~ % ~ ~ =  6 ( r 1 - r 2 )  

3221 = % 
(11) 

31, = 0 if r ,  or r2 is on the boundary of 9. 

As explained by BR, the operator is most easily transformed to R space by choosing 
a gauge in which the lines of the vector potential become concentric circles (in r this 
corresponds to A being the velocity field of a steady incompressible irrotational flow 
in 9 with a vortex of strength 27r at r = 0 ) .  Then 

-(V,l-iaA(rl))2= -Iw'(Z,))-2(V,,-(i~6/R1)2 (12) 

where 6 is the angular unit vector in the R plane. Now ( 1  1) becomes 

- ( V ~ , - ( i ~ 6 / R , ) ~ % , ~ = ~ w ' ( Z , ) ~ ~ 6 ( r , - r ~ )  = S ( R l - R 2 )  

3 2 1  = %TZ 
(13)  

%12 = 0 if RI = 1 or R2= 1. 

This is just the Aharonov-Bohm zero energy Green function for a circular billiard: 
with our gauge, all dependence on the shape of the 9 boundary has disappeared. It 
follows that in (10) the zeta function depends on 9 only through the factors w'(Z), 
and on Q only through the factors %. 

To solve (13 )  we begin with the non-magnetic billiard ( Q = 0), for which %,, satisfies 
Poisson's equation and is the potential at 2, of a line charge at Z2 inside a conducting 
cylinder, namely 

1 Z , - Z ,  
gl2=--ln1 27r l-ZTZ, 1 (if Q = 0). 

Denoting by 2, and 2, the positions further from and closer to the origin and 
expanding in powers of Z , / Z ,  gives the convergent series 

where n = 0 is excluded. 

follows: 
With flux, the elementary solutions of (13)  which occur in (15) are modified as 

,i ne,  R f (  n - a )  
1 becomes ,i n e ,  R+ n 

e -i ne,  R; ( n -a ). e-ine2R;n becomes 

The correct generalisation of (15 )  now gives the Aharonov-Bohm Green function as 

where the sum now includes the term with n = 0, whose limit as Q + 0 gives the logarithm 
in (15) .  This is a single-valued function of RI and R2,  satisfying (13)  and therefore also 

(18) % z ( - Q )  = %T2(e)  gI2(a + 1)  = exp[i(& - ~ 2 ) l % 1 2 ( d .  
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The form (17) is the one we will use to calculate zeta functions from (lo),  but it 
is interesting to express the Green function in several other ways. By using 

(If RI < R,, Hermiticity implies that the correct form for (el2 is obtained by exchanging 
2, and 2, and taking the complex conjugate.) In (20) neither the exponential nor 
integral factors is single-valued but their product is. 

Another method of evaluating the sums in (17) is by means of the Poisson formula 
m m  f F(n) = ,zm { -m d x F ( x )  exp(2rimx). (22) 

n=-m 

The integrals to which this gives rise are of the form 

and lead to 

). (24) 
( 0 , -  0,-2mn)’+(ln R1R2)* 

( 0 , -  f32-2.rrm)2+(ln R,/R2)2 
1 f exp[ia(O, - 0 2 - 2 m ) l  In 

4?l m=-m 

In the angular dependence, m evidently plays the role of a winding number labelling 
circuits of the flux line, so that this is a ‘whirling wave’ representation of the type 
introduced by Berry (1980) for the Aharonov-Bohm scattering wavefunction and by 
Morandi and Menossi (1984) for the Aharonov-Bohm propagator. In complex form, 
(24) is 

where’ the summation is over the multivalues of the summand on all sheets of its 
Riemann surface. In (24) and (25) the sums are single-valued even though the individual 
terms are not. 

3. Explicit formulae for 5(2; a) 

Because the average level density of billiards is asymptotically constant, l( s)  diverges 
as s + 1 (equation (1)) and the simplest zeta function therefore has s = 2. From (10) 
and (51, 

l ( 2 ;  a) = jO2= de1 

where from now on the a dependence will be indicated explicitly. 

de2 Io1 dRt  RI lo1 dR2 R21w’(Zl)121w’(z~)~21~1212 (26) 
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To evaluate this we must choose w ( 2 )  and hence a shape for the billiard domain 
9. In the work of Itzykson et a1 (1986) (for which a = 0) the main emphasis is on 
triangular domains, for which w ( Z )  has algebraic singularities (at the images of the 
vertices). Here we will concentrate on domains with smooth boundaries, generated 
by conformal transformations for which w( 2) is a low-order polynomial, as introduced 
by Robnik (1983, 1984) for flux-free billiards (classical and quantum) and applied by 
BR to the Aharonov-Bohm billiards. 

For this type of transformation we may write 
lmax 

w ' ( Z ) =  C dlZ' (27) 
I = O  

involving l,,, + 1 complex coefficients dl. In numerical examples we shall take I,,, = 2, 
for which a canonical form (see BR) is 

w ( z )  = z+ B Z ~ +  c e i x z 3  

i.e. do= 1 d l = 2 B  d, = 3C eix (28)  

where B, C and x are real. 
When (27 )  is substituted into (26) along with the Green function (17) there results 

a sixfold summation, which the angular integrations immediately reduce twofold. The 
radial integrations are elementary but lead to complicated expressions whose reduction 
will not be described in detail except to state that it makes use of the identity 

1 - ( 2 a  + b + c)bc - l +  1 1  
U a + b  a + ~  a + b + c  a ( a + b ) ( a + c ) ( a + b + c ) '  

The final result is 

where 

in which 
a = 2 + s +  t - lm - nl. 

The quadruple sum is not as bad as it looks. For fixed n the number of m, s, t 
terms is finite (and equal to (l,,, + l)(lmax + 2)( I,,, + 3)/6). The n sum is infinite but 
converges as I; lnl-3. It is therefore easy to calculate 5(2; a )  on a microcomputer: 
when I,,, = 2, six-figure accuracy (table 1 )  is achieved in a few minutes for each value 
of a. 

Consider 5 ( 2 ;  a )  as a function of a for a given billiard, i.e. for a given choice 
of {dl} in ( 2 7 ) .  The following symmetries follow from corresponding symmetries of 
(18 )  of Ce,, or of the eigenvalues E,(a)  (see BR): 

5(2; a )  = 5(2; - a )  = 5(2; a + 1). (33)  

It is therefore necessary to consider only the range 0 S a C f. We expect 5(2; a )  to be 
smooth apart from discontinuities of slope at integer a. These discontinuities arise 
from discontinuities in the slopes of the individual eigenvalues, given by 

(aEj(a)/da)+277 sgn(a)+f(r=O; a =o) as a+O (34) 
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Table 1. Spectral zeta function 5(2; a) for three billiards of the type (28): the unit circle 
( B  = C = 0); the heart ( B  = 0.4, C = 0) and the Africa ( B  = C = 0.2, ,y = ~/3). 

a lo2 l(circ1e) 1025(heart) lo2 l(Africa) 

0 
0.05 
0.1 
0.15 
0.2 
0.25 
0.3 
0.35 
0.4 
0.45 
0.5 

4.936 68 
4.580 83 
4.286 65 
4.044 43 
3.846 64 
3.687 52 
3.562 63 
3.468 64 
3.403 14 
3.364 48 
3.351 69 

8.308 3 1 
7.847 25 
7.462 94 
7.144 14 
6.882 11 
6.670 11 
6.502 93 
6.376 64 
6.288 38 
6.236 17 
6.218 89 

6.635 13 
6.235 62 
5.903 94 
5.629 17 
5.405 13 
5.223 87 
5.081 24 
4.973 69 
4.898 62 
4.854 27 
4.839 59 

where I/J~ is the j th  normalised wavefunction, assumed non-degenerate for zero flux; 
this formula is derived in appendix 1. 

For the (unit) circular billiard, di = and (30) gives 

This is a sum rule for the zeros of fractional-order Bessel functions, because the circle 
eigenfunctions (labelled 1, m )  are 

where N,, are normalisation constants and j , ,  is the mth non-zero zero of the Bessel 
function of order v. Thus the circle energy levels are 

(37) 
and 

( - c o < l < o o , m z l )  (36) i I4 
GIm(r;  a )  = NiJii-ai(jii-ai,mr) e 

.2 
E l m  = j l i - a l , m  

a m  

~ ( 2 ;  a )  = C i k 4 a l , m .  (38) 
I=-m m = l  

By elementary arguments involving low-order Riemann zeta functions, (35) gives the 
limiting values 

5(2; 0 ) = & ~ ~ - & = 0 . 0 4 9  3668 

5(2; ; ) = & ~ ~ - & = 0 . 0 3 3  5169 (39) 
a5(2; a) /aa  + -& as a + 0,. 

An approximation to the function 5(2; a )  for the circle can be obtained from (35) 
The function 5(2; a )  obtained from the sum (35) is plotted in figure 1. 

by applying Poisson’s formula (22). This gives, first of all, the exact results 
exp( 2 Ti mx) m m 

5(2; a )  = & 1 e x p ( 2 ~ i m a )  
m = - m  

cos 2 ~ m x  m dx ++ cos(2~mcu) dx 
- 8  (x+1)2(x+2)  m = l  Iom (x+1)2(x+2) 

1- ln2  OC 

- -- +$ c o s ( 2 ~ m a ) [ 1 + 2 ~ m  S i ( 2 ~ m ) + C i ( 2 ~ m ) - C i ( 4 ~ m ) ]  
8 m = l  
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C i r c l e  

L 
0 0.1 0 . 2  0.3 0.4 0.5 

a 

Figure 1. l ( 2 ;  a) =X,"=,[E,(a)]-2 computed from (30) for the circular billiard and for the 
Africa and heart billiards (equations (28) and (43)). The broken curve is the approximation 
(42) for the circle. 

where Si and Ci are the sine and cosine integrals, defined by 

sin t 
Si(x) = - lxm d t t  Ci (x)=-  j x m d t T  cos t 

If these integrals are approximated by their lowest-order large x asymptotic forms, the 
zeta function becomes 

= $( 1 - In 2) +&(a - a + a') 
-2L-1 - 768 In 2 +&(a -;)'. (42) 

This approximation is also plotted in figure 1 and evidently gives a qualitatively accurate 
description of the function l (2;  a) (the value of -al(2; O ) / a a  is exact). 

Of course the main interest lies in non-circular billiards, for which the E j ( a )  are 
not expressible in terms of standard special functions, and figure 1 and table 1 also 
show 5(2; a) obtained from (20) for two billiards in the family (28). These are 

B = 0.4 c=o ('heart' billiard) 

B = C = 0.2 ,y = 4 3  ('Africa' billiard) 
(43) 

the reason for the names being apparent from figure 2. Previous studies of these 
billiards (Robnik 1983, BR) indicate that the classical bouncing trajectories (the same 
with and without flux) are chaotic. 
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\ 
I 

1 Africa 
\ 
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Figure 2. Boundaries of heart and Africa billiard domains (equations (28) and (43)) with 
crosses marking the position of the flux line. 

The scale of the 5 axis in figure 1 is not significant, because for any a the numerical 
value of 5 ( 2 ;  a )  can be altered simply by uniform magnification of 9 ( 5 ( 2 ;  a )  is 
proportional to d2 where d is the area of 9). It is the shape of the curves which is 
important, not their scale, and it is clear from figure 1 that the three zeta functions are 
qualitatively similar. But they are not identical, because if all three curves are scaled 
to have the same value at a = 0 their values at a =: differ by 10%. 

The qualitative similarity of 5 curves for billiards whose classical motions are very 
different is explained by the fact that differences of classical motion affect the asymptotic 
spectral fluctuations, whereas the series for 5 ( 2 )  is sensitive to the details of low-lying 
levels and depends only on the average locations of the high levels. To demonstrate 
this, we caiculate 5(2; a )  using a finite number of levels computed by matrix diagonali- 
sation of H, and approximate the remaining levels by the best semiclassical approxima- 
tion which is blind to the details of the classical motion. Thus we write 

The semiclassical approximation for the zeta tail &+, is obtained from the smoothed 
spectral staircase function Nsm( E ) ,  i.e. the smoothed number of states with energies 
less than E, for which we use the corrected Weyl formula (Bakes and Hilf 1976), valid 
for simply connected 9 with area d and (smooth) boundary with length 2, with an 
extra term arising from the flux a. The derivation of this extra term is given in appendix 
2 .  The resulting expression for NSm( E ) ,  written for 0 S a s 1 but periodic in a, is 

Nsm(E) = d E / 4 ~ - 2 d E / 4 ~ + : -  ( ~ ( 1 -  ( ~ ) / 2 .  ( 4 5 )  

N s m ( ~ j ) = j - &  ( 4 6 )  

( 4 7 )  

With this formula the best approximation to the j th  level is given by 

which is 

E, =[2+{Z2+ 1 6 r d [ j  -:+ a(1- a ) / 2 ] } ” 2 ( 2 d ) - 1 ] 2 .  
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As a specific numerical example we take the heart billiard (43) with the golden 
flux a = i(J5 - 1) and N = 125 in (44). We have 

d = 4.1469 3 = 7.3376 

1125[2; f(J5 - l)]  % 0.062 387 (matrix diagonalisation) (48) 

5:26[2; t(J5 - l)] = 0.000 773 (equation (47)) 

(the value of 5125 was kindly supplied by M Robnik). Thus (44) gives {[2; f(J5 - l)]  = 
0.063 160, in agreement with 5[2; f(d5 - l)]  = 0.063 1597 from (30). Comparable 
accuracy (better than one part in 10’) was obtained by similar computations over the 
whole range 0 S a S 3 with the Africa billiard. Degradation of the asymptotic formula 
(45) can result in a considerable loss of accuracy: if for example all three correction 
terms are omitted the significant digits of l T 2 5  are 872 rather than 773 and 5(2) is 
accurate only to one part in io3. 

This insensitivity to the details of high-lying levels suggests that 5(2; a) might be 
usefully employed to estimate the ground state, and it is to this that we now turn. 

4. Estimates of the ground state 

Watson (1944) gives examples of the early history of the use of sum rules to obtain 
approximations to low-lying eigenvalues. For example in 1776 Waring introduced 

E, = lim [l(s)]-’/’ (49) 

rl(s)l-’/’< El < l ( s ) / l ( s +  1) 

s-m 

as a technique for estimating the smallest root of an equation, and in 1781 Euler used 

(50) 

to compute the lowest Bessel zero j,,l to one part in a million (by extrapolation based 
on several values of l(s)). 

For Aharonov-Bohm billiards, with 5(s)  available only for s = 2 at present, we 
employ what we call the ‘semiclassical zeta approximation’. This is based on (44) with 
N = 1, in which the ground state is 

E , ( a )  = [5(2; a) - 5:(2; a ) ] - 1 / 2  (51) 
with 5: approximated by the semiclassical formulae (45)-(47). The semiclassical sum 
for l: converges slowly (as f 2 )  but is rapidly evaluated by replacing its tail by the 
lowest Euler-Maclaurin integral, that is, by using 

(This technique accelerates the convergence by a factor of 100.) 
Table 2 shows the ground state calculated in this way for the Africa billiard (43) 

(which has d = 3.7699, 2’= 7.1012), for several values of the flux a, together with the 
‘exact’ values of &(a) (kindly supplied by M Robnik). Figure 3 shows the same data 
along with two other approximations: the pure semiclassical approximation ((47) with 
j = 1) and the bare zeta approximation ((51) with l: set to zero). Another possibility 
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Table 2. Ground state of the Africa billiard. 

E,(cr)  exact E , ( n )  from (51)-(53) O h  error 

0 5.067 5.108 0.8 
i ( J 5  - 1) = 0.1 180 5.678 5.710 0.6 
0.25 6.279 6.268 -0.2 
4(3 - J5)  = 0.3820 6.708 6.63 1 -1.1 
0.5 6.849 6.743 -1.5 

i- , 
0 0.1 0.2 0.3 0.4 0.5 

a 

Figure 3. Ground state E , ( o )  for the Africa billiard including the exact ground state (thin 
curve), the semiclassical zeta approximation based on (51)-(53) (thick curve), the pure 
semiclassical approximation (dotted curve) and the bare zeta approximation (broken curve). 

might appear to be based on (51) with the uncorrected Weyl formula (first term of 
(45)), but this gives 

d2 d2 
4 T 2  j = 2  4 T  

l;=- c ( 2 j -  1)-’= 7 ( 7 r 2 / S -  1) (54) 

which for the Africa billiard exceeds the exactly known l2 for all a and so is meaningless 
when employed in (51). 

Evidently the semiclassical zeta approximation gives the ground state accurate to 
about one per cent over the whole range of a. 

At first it is surprising to get such high accuracy from such a simple theory with 
no adjustable parameters (such as occur in variational procedures, for example). Some 
insight into the accuracy comes from the following estimate of the expected fractional 
error which arises as the result of deviations 6Ej of the higher levels from the 
assumed semiclassical form (47). From (51) and (44) we have 
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Now we assume the errors SE, of the different levels are independent with mean values 
zero, i.e. (SE, = 0) and (SE,  SE,) = 0 ( i  # j ) .  Then 

(SE;)  
( E : )  = E :  c -. 

jX1 E: 

Next we assume that (SE;) are the fluctuations in level spacings as described by 
the Gaussian unitary ensemble which is the appropriate ensemble for systems without 
time-reversal symmetry (see BR). In terms of the mean level spacing 47r/d and the 
normalised fluctuating spacings S, 

(SEf)’/Z 3 4v((  S2) - 1 ) 1 / 2 / &  = 47r& - 1)1’2/ d 

= (0.422 x 47r)/&. (57) 

It is adequate to approximate the series (56) by its first term, and E ,  and Ez by (47). 
This gives, for the expected fractional ground-state error, 

( ~ : ) ‘ / ~ = 0 . 4 2 2 ~  ( 1 6 v d c / Z 2 T ; )  (58) 

where is defined in (53). For the Africa billiard, (~ : ) ‘ /~=0.027 which is indeed 
comparable with the errors in table 1.  (For a = 0 and a = 4 the appropriate fluctuations 
are those of the Gaussian orthogonal ensemble; instead of 0.422 this gives ( 8 / ~ ~ / ~ -  
1)”’ = 0.661 and still leads to expected errors of a few per cent.) 

One consequence of the above error analysis is that the semiclassical zeta approxi- 
mation relies for its success on level repulsion (such as that occurring in the Gaussian 
ensembles) and especially on repulsion between El and E 2 .  The approximation should 
therefore be at its worst for billiards whose ground state is degenerate. This occurs for 
the circular billiard where, because of (37), all states are (doubly) degenerate when 
a = f  (the degeneracies are between states with 1 and - I +  1). The way in which this 
degrades the semiclassical zeta approximation for E , ( & )  as a approaches 5 is clear 
from table 3 and figure 4. For the degenerate case itself the simplest remedy is to 
replace (44) by 

and then use the semiclassical approximation (47) to evaluate 4‘:. This gives E, ($ )  = 
9.892 which is in error (cf table 3) by only +0.2%. 

Table 3. Ground state of the circular billiard. 

E , ( a )  exact E , ( a )  from (51)-(53) % error 

0 5.783 5.848 
0.1 6.541 6.567 
0.2 7.328 7.232 
0.3 8.146 7.783 
0.4 8.993 8.152 
0.5 9.870 8.282 

1 . 1  
0.4 

-1.3 
-4.5 
-9.3 

-16.1 
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0 0.1 0.2 0.3 0 . 4  0.5 
a 

Figure 4. As figure 3, but for the circular billiard. 

5. Conclusions 

In this study we have concentrated on finding explicit formulae for 5(2; a ) ,  and 
employing them to estimate the ground state. This merely scratches the surface of 
what spectral zeta functions contain, and there are two obvious directions for future 
research. 

Firstly, 5(s; a )  should be studied for integer s > 2. The formalism already exists: 
equation (10) with g12 given by (17) and w ’ ( Z )  by (27). But the algebra involved in 
finding the generalisations of 5(2; a )  as given by (30) is very heavy, even for s = 3, 
and would probably best be carried out on a computer using symbolic manipulation. 
If this turns out to be feasible, the resulting sequence of zeta functions could be used 
in Euler’s procedure based on (50) to calculated El(&) with high accuracy. By 
extension, N zeta functions could be used to estimate the first N levels, and it would 
be interesting to see whether very high states could be calculated accurately in this 
way (probably not). 

Secondly, the analytic properties of l(s; a )  in the complex s plane should be 
studied. The reason for doing this is that in principle the whole spectrum can be 
reconstructed from this complex function. For example the partition function is 

where c >  1, and the level density is 

f 6(  E - E,) = Tr 6 (  E - A) = - 1 c+im d s  5( s)E”’. 
j = 1  2 ~ i  c-ioo 

Of course some of the information contained in the analytic structure of 5(s; a )  
concerns high-lying states and is therefore semiclassical. An elementary example is the 
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simple pole at s = 1 ,  whose residue is the asymptotic (Weyl) level density (d/47r for 
billiards with and without flux). More refined properties (perhaps the distribution of 
zeros) would contain information distinguishing billiards with and without flux and 
billiards with chaotic or regular classical trajectories. 
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Appendix 1 

This is the derivation of equation (34). For any a, the rate of change of eigenvalue 
with flux is 

( A l . l )  

where the integration domain is 9. For A we take (2) with the gauge in which the 
lines of A are concentric circles. Then 

aA 2 
(Al.2) 

For t+hj we write a superposition of elementary solutions of Schrodinger's equation in 
polar coordinates, namely 

(A1.3) 

where kj = dEj. Then with the boundary of 9 denoted by r = rb(+) ( A l . l )  gives 

(Al .4)  

We want to study aEj/aa as a tends to zero (or any other integer). When a equals 
zero the terms multiplied by - I ,  which come from the i ala4 term in (A1.2), must sum 
to zero because i 3/34  is a Hermitian operator so its contribution to aEj/aa must be 
real, whereas the zero flux wavefunction q j ( r ;  0) is real (i.e. c-,(O) = cT(0) if as we 
assume, it is non-degenerate) and this implies that the terms give a contribution to 
(A1.4) which is imaginary. 

The terms multiplied by a all tend to zero except the one with 1 = I' = 0 for which 
the radial integrals diverge at the origin if U = 0. This term gives 
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where we have used the fact, which follows from (A1.3), that co(0) is the (real) value 
of the zero flux wavefunction at r = 0. In the limit the integrals are dominated by the 
behaviour close to the origin, so 

(A1.6) 

and when substituted into (A1.5) this gives (34). 
What makes aEj/aa discontinuous at a = 0 is the singular nature of the magnetic 

field @ 8 ( r )  of a single flux line; for a smooth magnetic field, switching on the flux 
would not be a singular perturbation, and aEj/aa would vanish at a = 0. 

Appendix 2 

This is the justification for using the corrected Weyl rule (45), with the extra term 
involving the flux a, as the smoothed spectral staircase function for Aharonov-Bohm 
billiards. The spectral staircase (unsmoothed) is defined as 

where 0 denotes the unit step function. Its derivative is the spectral density given in 
terms of the trace of the energy-dependent Green function by 

d r  Im ieE(r, r ) .  ('42.2) 
1 

I m T r v =  -- 
d N ( E )  1 -- - -- 

d E  7T E + l & - H  T 

Semiclassically (that is for large E )  ieE(r,  r )  consists of contributions from the 
classical trajectories that begin and end at r and have energy E (for a review of these 
ideas see Berry (1983)). These trajectories are of two sorts. First, there are the (infinitely 
many) closed orbits which return to r after a finite time. Their contributions to X ( E )  
are oscillatory functions of energy whose phase is proportional to their action; this 
includes a term for orbits winding w times round the flux line (see BR). The closed 
orbits describe spectra on fine scales and are of course flux dependent. 

Second, there are the trajectories which go from r4o r without any excursion (these 
are the limits as r'+ r of the direct paths from r' to r ) .  It is these trajectories which 
give the non-oscillatory (smoothed) contributions Nsm( E )  whose flux dependence we 
now seek to establish. 

For ordinary billiards (a = 0) Balian and Bloch (1970) show that the non-oscillatory 
part of Im ieE ( r ,  r )  is given by that of the Green function in unbounded space unless 
r is very close to the boundary, and this lowest-order theory gives the leading (Weyl) 
term in (45). When r is very close to the boundary there are corrections to %E in the 
form of multiple integrals involving tiny closed orbits formed by clusters of neighbour- 
ing points, and these give rise to the corrections in (45). Switching on the flux leaves 
the boundary terms unaffected, because the only possible contribution to each tiny 
closed orbit would be a phase factor depending on the magnetic flux through it, but 
this flux is zero (the flux line a does not pierce such orbits) so that the factor is unity. 
(This also follows from a Feynman picture (Morandi and Menossi 1984) in which 

r )  is the sum of all paths-not just classical orbits-from r to r with flux 
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contributing according to the winding number, and the winding number is zero for all 
(tiny) paths giving rise to the asymptotic boundary contributions.) 

In fact the flux term in (45) arises from the area integral of the unbounded Green 
function. We find this Green function by a method similar to that employed for the 
zero energy circle Green function in Q 2. Without flux, the unbounded Green function 
is (with k = J E )  

%E ( rl , r2) = -$El;'( klr, - r2 ) )  
X 

= -$i exp[il(O,- e2)]Jlll(kr,)Hf.~'(kr,) ( a  = 0). 

With flux, the correct generalisation (analogous to that of Morandi and Menossi (1984) 
for the time-dependent case) is 

The quantity appearing in (A2.2) is thus 

( ' 4 2 . 5 )  
-1 1 "  

- 7~ Im % E ( r ,  r )  =- 1 J'$-al(kr). 
47r t=-m 

When a = 0 the Bessel sum is unity and its area integral in (A2.2) simply gives the 
leading (Weyl) term in (45), as stated previously. The extra number of states below 
energy E = K 2  in a billiard (assumed circular without affecting the result) with area 
d =  r R 2  is 

AN = 2 loK d k k loR d r 2 7rr ( - Im[ %E ( r, r ) - %E ( r, r )(, = o) 
7T 

X 

= loK d k k  joR d r r  (J$-ab(kr)-Jtl(kr)). 
I=-X 

Transforming using the Poisson formula (22) gives 

A X =  -8 c sin2(m7ra) loR d r  r loK dk k lom dx Jf( kr) cos(27~mx). 
oc 

m = l  

For the Bessel function we employ the smoothed Debye approximation 

J:( kr) = [ ( kr)2 - x ~ ] - " ~ /  T (x  < kr) 

= O  (x > kr). 

The x integration can be performed and we obtain 

m 
A N =  -4 s in2(mm) IoR d r  r loK dkWo(2rmkr) 

m = l  

sin2(mra)  
=-4 [l-J0(2mnKR)].  

m = l  ( 2 7 ~ m ) ~  ('-42.9) 
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Smoothing eliminates the Jo term for large KR (the semiclassical limit), giving the 
non-oscillatory flux contribution as 

1 sin2(m.rra) 
T',,,=~ m2 

ANsm = -- 

= -a( 1 - a ) / 2  ( O S a S l )  (A2.10) 

thereby completing the justification of (45). 
The negative value of ANsm shows that the flux line acts to repel states from its 

neighbourhood. But this effect is small: ANsm < Q and so never exceeds the curvature 
term t in (45). 
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