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Abstract: The properties of spectrally selective solar absorber coatings can be fine-tuned by varying
the thickness and composition of the individual layers. We have deposited individual layers of
WAlSiN, SiON, and SiO2 of thicknesses ~940, 445, and 400 nm, respectively, for measuring the refrac-
tive indices and extinction coefficients using spectroscopic ellipsometer measurements. Appropriate
dispersion models were used for curve fitting of ψ and ∆ for individual and multilayer stacks in
obtaining the optical constants. The W/WAlSiN/SiON/SiO2 solar absorber exhibits a high solar
absorptance of 0.955 and low thermal emissivity of 0.10. The refractive indices and extinction coeffi-
cients of different layers in the multilayer stack decrease from the substrate to the top anti-reflection
layer. The graded refractive index of the individual layers in the multilayer stack enhances the solar
absorption. In the tandem absorber, WAlSiN is the main absorbing layer, whereas SiON and SiO2 act
as anti-reflection layers. A commercial simulation tool was used to generate the theoretical reflectance
spectra using the optical constants are in well accordance with the experimental data. We have at-
tempted to understand the gradation in refractive indices of the multilayer stack and the physics
behind it by computational simulation method in explaining the achieved optical properties. In brief,
the novelty of the present work is in designing the solar absorber coating based on computational
simulation and ellipsometry measurements of individual layers and multilayer stack in achieving a
high solar selectivity. The superior optical properties of W/WAlSiN/SiON/SiO2 makes it a potential
candidate for spectrally selective solar absorber coatings.

Keywords: spectrally selective absorber; multilayer stack; spectroscopic ellipsometry; optical con-
stants; simulation

1. Introduction

Solar energy is one of the abundantly available renewable sources and has drawn
researchers’ interest due to diminishing non-renewable energy (fossil fuels). The solar
radiation is converted into thermal energy through photothermal conversion by means of
concentrated solar power (CSP) plants, which is a suitable way of producing thermal energy
and disposable electricity [1]. The solar absorber has a significant role in improving the
overall efficiency of CSP, as solar absorber coating determines the photothermal conversion
of incident solar radiation to heat energy [2]. A real solar absorber coating should possess
high solar absorptance (α ≥ 0.950) in the solar spectrum range (0.25–2.5 µm) and very
low thermal emissivity (ε ≤ 0.10) in the infrared (IR) range (2.5–25 µm) [3]. Spectrally
selective solar absorbers with high solar absorptance, low thermal emissivity and high
thermal stability deposited using physical vapor deposited (PVD) are widely used in
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parabolic trough collectors operating at temperatures of 400 ◦C at maximum. In recent
years, solar absorbers have drawn massive interest due to their novel optical properties
in the solar spectral and IR range [4]. Solar selective coatings are broadly classified into
five different types namely: (a) Intrinsic absorber, (b) semiconductor absorber, (c) textured
surfaces, (d) multilayer stack, and (e) cermet-based absorbers. Amongst these, multilayer
stack and cermet-based solar absorbers are widely investigated [5]. The multilayer stack
and/or cermet-based solar absorber consists of an infrared reflector, an absorber and an
anti-reflection layer. The metal interlayers such as W, Mo, Ni, and Ti in the multilayer
stack are mainly used to reduce the thermal emissivity of the coating in the infrared region
at high temperatures [6,7]. Tungsten (W) is a potential material as interlayer due to its
excellent thermal stability, low infrared emissivity and also acts as diffusion barrier. In
case of absorbers, a wide range of transition metal nitrides/oxynitride based solar absorber
coatings have been developed due to the tuneable optical properties and high thermal
stability at elevated temperatures. Transition metals like Cr, Mn, W, Ni, and Mo usually
show good selectivity and good thermal stability via doping of nitrogen and oxygen to
form respective nitrides, oxynitrides, and oxides as main absorber layers [8]. Various
anti-reflection layers such as SiO2, SiOxNy, Si3N4, TiO2, Al2O3, and AlSiOy are used in
solar absorbers based on the application [9–11]. The anti-reflection layer deposited on the
absorber layer reduces the surface reflection and thereby reducing the reflection losses. In
this regard, a multilayer stack is designed by optimizing the optical properties of individual
layers to achieve high absorptance.

The optical properties of thin films are mainly dependent on the optical constants, i.e.,
refractive index (n) and extinction coefficient (k). The refractive index of the individual
layers has a significant effect in designing a high absorptance solar selective coating. A
gradation in refractive index from top anti-reflection layer to bottom of the substrate in the
multilayers stack significantly increases the absorption of the coating [6]. A wide range of
wavelengths in solar radiation can experience enhanced absorption due to multiple reflec-
tions at layer interfaces. Two factors are usually attributed to the absorption in thin films:
One is because the phase difference between the top and bottom layers of the coating sur-
face accounts for destructive interference of light and the other is band-to-band transitions.
The refractive indices and extinction coefficients of the individual layers in the multi-layer
stack determine the reflectance behavior, thereby, helping in better under-standing of the
absorption mechanism and high solar selectivity (α/ε). In the past decade, several reports
have been devoted on the effect of refractive index and extinction coefficient on the optical
properties [12–16]. The refractive index and extinction coefficient of each layer is broadly
interpreted with spectroscopic ellipsometry measurements. Biswas et al. reported the
ellipsometry studies of TiAlN/TiAlON/Si3N4 tandem absorber deposited on Cu substrate.
They correlated the measured ellipsometry spectra with theoretical simulated spectra
based on the optical constant determined for each layer [17]. Dan et al. reported the optical
constants of W/WAlN/WAlON/Al2O3 multilayer coating with the presence of intermixed
layers between WAlN and WAlON based on ellipsometry studies. The simulation using
these optical constants indicates good correlation between the simulated and experimental
measured reflectance spectra [18]. Similarly, Al-Rjoub et al. reported the optical constants
of WAlSiNx, WAlSiOyNx, and SiAlOy layers by varying the nitrogen and oxygen partial
pressures. The multilayer stack was designed based on obtained optical constants using
simulation software which exhibited a high solar absorptance of 0.96 and low thermal emis-
sivity of 0.105 (calculated ε400 ◦C) [19]. Yet in another work, Escobar-Galindo et al. reported
AlyTi1-y(OxN1-x) based solar absorber multilayer coatings, which are stable up to 650 ◦C
for 12 h and the simulated results are in good accordance with the experimental reflectance
data [20]. Similarly, Wang et al. reported an aperiodic metal-dielectric multilayer based on
AlCrN and AlCrON high-temperature stable coating (500 ◦C for 1000 h) with high solar
selectivity (α/ε) of 0.94/0.11 [21]. In this regard, a wide range of solar selective coatings
developed by several groups are: Cu/TiAlCrN/TiAlN/AlSiN [22], MoSi2–SiO2 [23], Al-
CrSiN/AlCrSiON/AlCrO [24], Al/NbMoN/NbMoON/SiO2 [25], TiN/nano-multilayered
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AlCrSiO/amorphous AlCrSiO [26], and W/AlSiTiNx/SiAlTiOyNx/SiAlOx [27].The optical
design of the coating based on optical constants, layer thickness and composition plays a
major role in developing a spectrally selective absorber coating with high solar absorptance
and low thermal emissivity.

In our previous work, we have demonstrated the in-depth effect of process parameters
affecting the optical properties of individual layers as well as the multilayer stack of
W/WAlSiN/SiON/SiO2 [28]. In this manuscript, we had presented the effect of reactive
gas flow rates, sputtering power, deposition time and thicknesses of individual layers to
achieve high spectral selectivity. A very low reflectance (R < 5%) was observed in the
wavelength range of 450–1500 nm and very high reflectance (R > 95%) in the IR region,
resulting in high solar absorptance (α = 0.955) and low thermal emissivity (ε = 0.10 @
82◦C). In another study, the thermal stability of the optimized multilayer stack has been
investigated in vacuum (700 ◦C for 200 h) and air (400 ◦C for 500 h and 500 ◦C for 100 h) for
longer duration under cyclic heating conditions. Further, the high-temperature emissivity
measurements have been carried out in the temperature range of 80 ◦C to 460 ◦C and
the optimized sample exhibited a thermal emissivity of 0.15 @ 460 ◦C [29]. The proposed
multilayer stack is a potential candidate as absorber coating on receiver tubes of parabolic
through collector.

One of the biggest problems for central receiver tubes used in CSP is to improve the oper-
ating temperature of solar absorber coatings to enhance the overall photo-thermal conversion
efficiency. In the literature, very few coatings are reported with good thermal stability (air) in
the temperature range of 400–500 ◦C operating for long duration [20,23,27–30]. Because of
high optical absorption along with low thermal emissivity as well as enhanced thermal stabil-
ity of the tandem absorber of W/WAlSiN/SiON/SiO2 owing to its unique nano-multilayer
design, it is important to investigate the optical constants (n and k) of individual layers as
well as tandem absorber. Therefore, in this manuscript, we report the phase-modulated
spectroscopic ellipsometry measurements of individual layers of WAlSiN, SiON and SiO2 and
multilayer stack of W/WAlSiN/SiON/SiO2 for their optical constants. The optical properties
of thick individual layers were measured using UV-Vis spectroscopy and the effect of surface
roughness on thermal emissivity was verified. The obtained refractive indices and extinction
coefficients of individual layers and multilayers stack are curve fitted using suitable dispersion
medium theories. The wide-angle absorptance was investigated by varying the incident angle
in the UV-Vis-NIR region from 8◦ to 68◦. The simulated reflectance spectra using obtained
optical constants of the individual layers and multilayer stack are in good agreement with the
experimentally measured reflectance spectra with minimal deviation.

2. Experimental Details

Spectrally selective coatings of W/WAlSiN/SiON/SiO2 were deposited on stainless
steel (SS) and silicon (Si) substrates by a Reactive Unbalanced Direct Current (DC) Mag-
netron Sputtering System with high purity (>99.9%) targets of W, Al, and Si. The substrate
and targets were maintained at a constant distance of 10 cm throughout the deposition.
Pulsed DC power supplies were used to deposit W, WAlSiN, SiON, and SiO2 layers. The re-
active sputtering of W, Al, Si targets in suitable Ar, N2, and O2 environments for depositing
the multilayer stack and individual layers. All the coatings were deposited at a substrate
temperature of 200 ◦C and in-situ Argon (Ar) plasma cleaning for 5 min at a voltage of
−1000 V. The optimized process parameters (such as: Power density, reactive gas flow
rates, bias voltage, and deposition time) were used to deposit each layers as discussed in
our previous paper [28].

The refractive index (n) and the extinction coefficient (k) of the multilayer stack were
measured by the phase-modulated spectroscopic ellipsometry (Model UVISEL 460, ISA
Jobin-Yvon-Spex, Palaiseau, France) in the wavelength range of 300–900 nm. The obtained
data were further analyzed by fitting with the appropriate dispersion models. Solar ab-
sorptance and emissivity of the as-deposited samples were measured using Solar Spectrum
Reflectometer (Model SSR) and Emissometer (Model AE) (Devices & Services Company,
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Texas, TX, USA) of Devices and Services. The emissivity was measured at a tempera-
ture of 82 ◦C. The reflectance spectra of the as-deposited samples were measured in the
wavelength range of 0.25–2.5 µm using UV-VIS-NIR spectrophotometer (PerkinElmer:
Lambda 950, (PerkinElmer, Massachusetts, MA, USA). Fourier transform infrared spec-
troscopy (PerkinElmer, Massachusetts, MA, USA) was used for measuring the reflectance
from NIR to MIR (2–25 µm). Cross-sectional studies of the individual layers were carried
out using field-emission scanning electron microscopy (FESEM, Carl Zeiss, SUPRA 40VP,
Oberkochen, Germany). The cross-sectional FESEM images of individual layers were
measured using secondary electron detection mode (SE) and at an acceleration voltage of
10 kV. The thicknesses of the individual layers were measured using a 3D profilometer,
Nano Map500LS (AEP Technologies, California, CA, USA). A commercial simulation tool
(SCOUT Version 2.99) was used for simulating the reflectance spectra of each layers of
the tandem absorber using obtained optical constants and compared with the measured
reflectance spectra [31].

3. Results and Discussion
3.1. Optical Properties of Individual Layers

The optical properties of individual layers in the multilayer stack enabled us to
understand the spectral selectivity of the W/WAlSiN/SiON/SiO2 solar absorber coatings.
To obtain the individual layer optical properties, we have deposited the layers of WAlSiN,
SiON and SiO2 for long durations on SS and Si substrates. Their optical properties were
measured in the wavelength range from 250–2500 nm using UV-Vis-NIR spectrophotometer.
The thickness and average roughness of the film were measured from the Si substrate. The
individual layer thicknesses were: 940, 445, and 400 nm for WAlSiN, SiON and SiO2 layers,
respectively, as labelled in insets of Figure 1. The layer thickness was measured using cross-
section FESEM images as shown in the insets of Figure 1 and verified from 3D profilometer
data. It is to be noted that the optical properties of W metal such as reflectance and refractive
indices are well reported in the literature, therefore, the detailed characterization of W
interlayer has not been carried out to avoid duplications. Figure 1a shows the reflectance
spectrum of WAlSiN layer, wherein it is observed that the overall reflectance of the film is
less than 40% in the UV-Vis-NIR region, indicating its absorbing nature. The layer has good
absorption in UV-Vis-NIR region and we observe the interference fringes in near-IR region
due constructive and destructive interference in the film. Similarly, the reflectance spectra
of SiON and SiO2 anti-reflection layers are as shown in Figure 1b,c with cross-section
FESEM images of the coatings. However, the high reflectance of the SiON and SiO2 layers
indicates their non-absorbing nature. The SiON and SiO2 layers are transparent in visible
and near infrared region and acts as an excellent anti-reflection layers [32]. Moreover,
the fringes observed in the UV-Vis region of reflectance spectra are due to interferences
owing to the fact that light gets partially reflected from the substrate as these layers are
transparent in this wavelength range.
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Figure 1. Reflectance spectra of individual layers deposited on stainless steel (SS) substrate (a) WAlSiN, (b) SiON, and (c)
SiO2. The cross-sectional FESEM images of the individual layers are shown in the insets.

The thermal emissivity depends on the material property and surface roughness
of the coating. The coatings high surface roughness would considerably increase the
thermal emissivity. The statement mentioned above has been proved theoretically and
experimentally by various research groups [33]. The theoretical expression which correlates
the dependence of thermal emissivity, surface roughness and reflectance of the coating is
as in Equation (1):

Rr = Rp exp

{
−
(

4πσ

λ

)2
}

(1)

where Rr, Rp, σ and λ are reflectance of rough surface, reflectance of polished surfaces, root
mean square roughness and wavelength, respectively. According to Kirchhoff’s law, the
emissivity and reflectance can be related using the following equation: ελ = 1−Rλ [34,35].
From the above two equations it is evident that with increasing surface roughness, the
emissivity of the film increases [7]. However, a fine nanostructure formed on the coating
surface will enhance the light absorption by multiple reflections due to light trapping [36].
Cao et al. numerically investigated the dependence of surface roughness of the film on
the reflectance and thermal emissivity [37]. Similarly, Wen et al. reported the modelling of
surface roughness of aluminum alloy by different theoretical models and results indicate
a clear correlation between the surface roughness and thermal emissivity [38]. Recently,
metal–liquid–crystal–metal (MLCM) based metasurface of Au/LC/Au are reported for
their enhanced thermal camouflage by structuring the surface emissivity and optimizing
the surface microstructure [39,40]. In this regard, we carried out AFM studies to evalu-
ate the effect on optical properties based on surface roughness of individual layers and
multilayer stack, as shown in Figure 2. The main absorber layer (WAlSiN, layer thickness
~940 nm) exhibited the average roughness (Ra) of 1.87 nm, as shown in Figure 2a and
the layer exhibits a selectivity (α/ε) of 0.80/0.63. However, SiON and SiO2 depicted low
average roughness values of 1.31 and 1.16 nm, as shown in Figure 2b,c. The anti-reflection
layers exhibit almost similar selectivity of 0.440/0.20 and 0.428/0.20 for SiON (layer thick-
ness ~445 nm) and SiO2 (layer thickness ~400 nm), respectively. The multilayer stack of
W/WAlSiN/SiON/SiO2 deposited on SS substrates depicts a low surface roughness of
0.61 nm and exhibits good spectral selectivity (α/ε) of 0.955/0.10. The results indicate that
the surface roughness of the thin films influences the thermal emissivity of the coatings.
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Figure 2. 3-dimensional AFM images of (a) WAlSiN, (b) SiON, (c) SiO2, and (d) multilayer stack 

deposited on SS substrates. 

3.2. Spectroscopy Ellipsometry Measurements 

3.2.1. Optical Constants of Individual Layers 

 The solar selective properties of each layer were examined for a better understand-

ing of optical properties. The individual layers of WAlSiN, SiON, and SiO2 are deposited 

for measuring the optical constants using phase-modulated spectroscopic ellipsometry. In 

spectroscopic ellipsometry, it measures the change in the monochromatic light's polariza-

tion state reflected from the sample surface. The variations are represented as a function 

of ψ and Δ of the individual layers, which represents the amplitude ratio of s and p polar-

ized light and their phase change, respectively. Ψ and Δ can be represented in a complex 

reflection ratio (𝜌), which is defined as the ratio of Fresnel reflection coefficient for s and 

p polarized light [17,41].  

𝜌 =
𝑟p

𝑟s
= 𝑡𝑎𝑛𝜓 exp(𝑖𝛥) (2) 

where, rp and rs are the reflection coefficient of p and s component of the electric field, 

respectively [17,18,41].  

 The obtained ψ and Δ data from ellipsometry are curve fitted by assuming a physical 

model appropriate for each layer. Theoretical simulated spectra consider a suitable optical 

dispersion medium for the layers. However, ψ and Δ data from ellipsometry measure-

ments are derived from experiments and are curve fitted with an optical dispersion model 

for optical constant of individual layers. Some of the assumptions, considered during the 

fitting of experimentally obtained data with the theoretically generated data are [38]: 

 The individual layer deposited are considered as homogenous model of thin-film and 

is simulated with a theoretical dispersion model to generate optical constants.  

 The optical constants of the bare substrate are measured to attain more realistic re-

sults, and these results were compiled for curve fittings. 

The optical constants are determined by considering a physical model that matches 

the sample and generates a generally suitable optical dispersion oscillator. In this regard, 

Cauchy’s absorbent dispersion model was considered for WAlSiN main absorber layer, 

WAlSiN

15 nm

0 nm

Y: 5.0 mm X: 5.0 mm

Ra: 1.87 nm

(a)
SiON

15 nm

0 nm

Y: 5.0 mm X: 5.0 mm

Ra: 1.31 nm

(b)

SiO2

15 nm

0 nm

Y: 5.0 mm X: 5.0 mm

Ra: 1.16 nm

(c) Tandem Absorber

15 nm

0 nm

Y: 5.0 mm X: 5.0 mm

Ra: 0.61 nm

(d)

Figure 2. 3-dimensional AFM images of (a) WAlSiN, (b) SiON, (c) SiO2, and (d) multilayer stack
deposited on SS substrates.

3.2. Spectroscopy Ellipsometry Measurements
3.2.1. Optical Constants of Individual Layers

The solar selective properties of each layer were examined for a better understanding
of optical properties. The individual layers of WAlSiN, SiON, and SiO2 are deposited
for measuring the optical constants using phase-modulated spectroscopic ellipsometry.
In spectroscopic ellipsometry, it measures the change in the monochromatic light’s po-
larization state reflected from the sample surface. The variations are represented as a
function of ψ and ∆ of the individual layers, which represents the amplitude ratio of s and
p polarized light and their phase change, respectively. ψ and ∆ can be represented in a
complex reflection ratio (ρ), which is defined as the ratio of Fresnel reflection coefficient for
s and p polarized light [17,41].

ρ =
rp

rs
= tanψ exp(i∆) (2)

where, rp and rs are the reflection coefficient of p and s component of the electric field,
respectively [17,18,41].

The obtained ψ and ∆ data from ellipsometry are curve fitted by assuming a physical
model appropriate for each layer. Theoretical simulated spectra consider a suitable optical
dispersion medium for the layers. However,ψ and ∆ data from ellipsometry measurements
are derived from experiments and are curve fitted with an optical dispersion model for
optical constant of individual layers. Some of the assumptions, considered during the
fitting of experimentally obtained data with the theoretically generated data are [38]:

• The individual layer deposited are considered as homogenous model of thin-film and
is simulated with a theoretical dispersion model to generate optical constants.

• The optical constants of the bare substrate are measured to attain more realistic results,
and these results were compiled for curve fittings.

The optical constants are determined by considering a physical model that matches
the sample and generates a generally suitable optical dispersion oscillator. In this regard,
Cauchy’s absorbent dispersion model was considered for WAlSiN main absorber layer,
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as this layer act as absorbing layer in the multilayer stack [17,18,42]. The relations for
Cauchy’s absorbent dispersion medium are as shown in Equations (3) and (4):

n(λ) = A +
B
λ2 +

C
λ4 (3)

k(λ) = D +
E
λ2 +

F
λ4 (4)

where, λ is the wavelength and A, B, C, D, E, and F are fit parameters. The above equation
mentions that A, B, and C corresponds to the long-wavelength asymptotic refractive index
value, slope and amplitude, respectively of refractive index curve, a similar notation for D,
E, and F [17,18]. The top SiON and SiO2 layers were curve fitted with the Tauc–Lorentz (TL)
oscillator model. TL model is effective for nanocrystalline and amorphous thin films [18,43].
The complex dielectric functions can be expressed in a simple oscillator model and the
expression for ε2 is as shown in the Equation (5):

ε2 =
AEoΓ

(
E − Eg

)2[(
E − Eg

)2
+ Γ2E2

]2
1
E

; E > Eg (5)

ε2 = 0 ; E < Eg

where, Eo, Eg, Γ and A are the peak transition energy, optical band gap energy, broadening
parameter, and optical transition matrix elements, respectively [20,44]. From Kramers–
Krönig transformation (KKT) the real part (ε1) of the dielectric function is expressed as
depicted in Equation (6):

ε1 = εα,UV +
2
π

P
∫ α

Eb

ξε2(ξ)

ξ2 − E2 dξ (6)

where, εα,UV , ξ and P represents the high frequency dielectric constant, linear dielectric
susceptibility and principal values of the integrals, respectively [45].

Using the above dispersion models ψ and ∆ data of WAlSiN, SiON and SiO2 samples
were curve fitted using a minimization process. This minimization process has a maximum
of 100 iterations and the basis of convergence is 0.000001 (χ2 minimization—which defines
the good fitting of curves). The model parameters are varied by a regression analysis until
the calculated and experimental data are as close as possible. The following average square
error function is minimized by weighing it to the approximate experimental errors.

χ =

 1
2N − M

N

∑
i=1

[

ψmod
i − ψ

expt
i

σ
expt
ψ , i

2

+

(
∆mod

i − ∆expt
i

σ
expt
∆ , i

)2

]


1
2

(7)

where, N, M, and σ are the number of measured ψ and ∆ pairs, number of variable
parameters and standard deviation, respectively. The superscripts “mod” and “expt” mean
the theoretical calculations and experimental data [18,46]. The curve fitted ψ and ∆ of
individual layers are shown by lines, which are in good accordance with the measured
data, represented by symbols in Figure 3. However, the oscillations observed in SiON and
SiO2 in the wavelength range of 300–900 nm, due to interference as shown in Figure 3b,c.
In contrast, the absence of such oscillations for the WAlSiN layer, as depicted in Figure 3a,
indicates a strongly absorbing property [19]. The optical behavior of such absorbing thin
films can be observed from the reflectance spectra shown in Figure 1. It is to be noted that
the WAlSiN layer contains fine nano-multilayers of W2N and AlSiN, a total of 36 layers
(18 layers each) as reported previously [29]. However, during the ellipsometry fitting we
have considered the nano-multilayer structure of W2N (t ~1.5 nm, polycrystalline phase)
and AlSiN (t ~3 nm, amorphous phase) as a single composite layer of WAlSiN and effective
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optical constants of WAlSiN layer are obtained. This is assumed as the individual layer
thickness (~3 nm) is very small compared to the measurement wavelength (300–900 nm) of
the ellipsometry. The best fitted optical constant o are plotted as a function of wavelength,
which are shown in Figure 4a. In the case of, WAlSiN layer the refractive index increases
with wavelength, thereby making this layer ideal a material for selective absorption of solar
radiation, as depicted in Figure 4a. The refractive indices of SiON and SiO2 decrease with
increasing wavelength, but the change is minimal throughout the wavelength range, as
shown in Figure 4b,c. The decrease of the extinction coefficient (k) in WAlSiN film indicates
the presence of interband transitions and metallic nature of the film. The “k” values of
SiON and SiO2 are zero as expected for dielectric materials. The excellent optical behavior
of SiON and SiO2 makes them a potential candidate for anti-reflection layers. The optical
constants (n and k) of the individual layers were calculated using different dispersion
models, discussed above.
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Figure 3. Ellipsometry spectra of individual layers, (a) WAlSiN, (b) SiON, and (c) SiO2 deposited on SS substrate.
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Figure 4. Refractive indices and extinction coefficients of individual layers (a) WAlSiN, (b) SiON, and (c) SiO2 deposited on
SS substrate.

The absorption coefficient of a material determines the depth of penetration of solar
radiation into the material. It is well known that the extinction coefficient of a material
is directly proportional to the optical absorption coefficient, which is as shown in the
below equation:

α =
4πk

λ
(8)

where, α, k, and λ are absorption coefficient, extinction coefficient and wavelength [41]. The
absorption coefficients calculated for individual layers using the obtained extinction coefficient
are shown in Figure 5a. The higher absorption coefficient of the WAlSiN layer indicates it
absorbs the incident solar radiation efficiently compared to that of SiON and SiO2. Similarly,
penetration depth indicates the extent to which the incident radiation penetrates inside the
film thickness and the same for WAlSiN layer is shown in Figure 5b. For the WAlSiN layer
with increasing wavelength, the penetration depth increases, indicating good absorption
property of the layer. In contrast, SiON and SiO2 films are transparent in the wavelength
range of 300–900 nm.
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Figure 5. (a) Absorption coefficient, (b) penetration depth, (c) real (ε1), and (d) imaginary (ε2)
part of the dielectric constants as a function of wavelength for single layer coatings deposited on
SS substrate.

The optical properties of thin films are influenced by various material properties
such as dielectric constant (ε), dielectric susceptibility (χ), and conductivity (σ), which are
treated as scalars for isotropic materials. Moreover, semiconductors and dielectric films
are considered nonmagnetic and do not possess excess electrons other than the electrons
bound in atoms. The relation between the optical constants (n and k) for dielectric and
semiconductor materials can be calculated from the following relations:

N = n + ik and ε = ε1 + i ε2 (9)

where, N and ε are complex refractive index and complex dielectric constant, respec-
tively. Similarly, the real and imaginary part of dielectric constant can be calculated using
ε1 = n2 − k2 and ε2 = 2nk, respectively [41]. The real (ε1) and imaginary (ε2) part of di-
electric constants of individual layers were plotted using the obtained optical constants
(n and k), which are shown in Figure 5c,d. The imaginary part (ε2) of dielectric constant
is related to the conductivity of the material and higher (ε2) indicates good conductivity
due to metallic nature of the film. The ε1 is related to the polarization and ε2 is related to
dissipation, which accounts for wide-angle selectivity and better absorption in the film,
respectively. The ε2 for WAlSiN layers increases with wavelength, depicting excellent
absorption property of the film. However, SiON and SiO2 demonstrate no absorption and
are highly transparent films in the wavelength range [47,48].

3.2.2. Optical Constants of Multilayer Stack

The optical properties of the optimized multilayer stack were designed based on
gradation in optical constants of each layers calculated using the dispersion theories. The
metal W is well explored and reported in the literature as a material with high refractive
index of 3.83 and good IR reflector [49]. Moreover, the sole purpose of the W interlayer is to
reduce the overall thermal emissivity of the coating and acts as a diffusion barrier at high
temperature. The experimentally measured optical constants of individual layers were
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fitted for W/WAlSiN/SiON/SiO2 with multilayer model. By considering this we account
the overall optical behavior of the layers in the stack as well as the effect of each individual
layers in achieving high solar selectivity (α/ε). The curve fitted ψ and ∆ of the multilayer
stack are shown in solid lines and which are in good accordance with the measured data,
as shown in Figure 6a. The best curve fitting of the multilayer stack shown in Figure 6a
emphasizes that the assumption of considering the nano-multilayers of W2N and AlSiN
layers present in WAlSiN main absorber layer, which is considered as a single composite
layer, has insignificant impact on the calculated optical constants. The experimental fitting
of the multilayer stack depicts the presence of intermixed layer in between WAlSiN and
SiON layer. The optical constants of intermixed layer were evaluated using Bruggeman
effective-medium approximation (EMA) [18,50,51]. The EMA model is sensitive to the
surface roughness of the layers, but the intermixed layer thickness is ~5 nm and the surface
roughness can be neglected. The intermixed layer formed at the interface of WAlSiN and
SiON layer has to be better understood for its influence over the optical properties of the
multilayer stack. The multilayer stacks optical constants with gradation in the refractive
index and extinction coefficient are drawn as a function of wavelength and is as shown
in Figure 6b,c. The refractive indices of W, WAlSiN, intermixed layer, SiON and SiO2 in
the multilayer stack measured at 550 nm are 3.83, 2.52, 2.28, 1.56, and 1.51, respectively,
as shown in the inset of Figure 6b. The lower refractive index of SiON and SiO2 layers
shows the dielectric nature of the films. The trend of refractive index in the multilayer stack
depicts an increase from top anti-reflection layers to the substrate. At each interface of the
layers, the incident solar radiation will change the phase by 180◦, leading to maximum
absorption of light [52]. This graded refractive index concept is well reported and is an
efficient way in trapping light and in achieving enhanced solar absorption of the multilayer
coatings as explained in the below section [53–55].
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Figure 6. (a) Ellipsometry spectra of solar absorber coating, (b) refractive index and (c) extinction coefficient of
WAlSiN/SiON/SiO2 multilayer stack deposited on SS substrate. The refractive index and extinction coefficient of W
are depicted in (b) and (c).

3.3. Optical Properties of Multilayer Stack

To understand the behavior of high solar absorptance of the multilayer stack, we have
deposited successive layers step by step (SS, SS/W, SS/W/WAlSiN, SS/W/WAlSiN/SiON,
and SS/W/WAlSiN/SiON/SiO2) and measured the reflectance spectra of each sample.
From the reflectance spectra it clear that by addition of one more layer on the top, the
reflectance in the UV-Vis region reduces and near-zero reflectance is achieved after deposi-
tion of last layer, as shown in Figure 7. We have measured the reflectance of polished SS
substrate as a reference of reflectance for characterization of layers deposited on it succes-
sively and the optical properties (α and ε) are tabulated in Table 1. The deposition of the
WAlSiN layer with fine-nano multilayers over the W interlayer results in a significant drop
of reflectance in the UV-Vis region due to interference, as seen in Figure 7. Further, adding
of SiON and SiO2 anti-reflection layers the reflectance to near zero in the wavelength range
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of 500–1300 nm is achieved due to gradation in refractive indices of the layers as shown in
Figure 6 [56].
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Table 1. Solar absorptance and thermal emissivity of layer-by-layer deposited on SS substrate.

Sl. No Description Solar Absorptance (α) Thermal Emissivity (ε)

1 SS 0.320 0.13
2 SS/W 0.40 0.08
3 SS/WAlSiN 0.850 0.12
4 SS/WAlSiN/SiON 0.950 0.11
5 SS/WAlSiN/SiON/SiO2 0.955 0.10

The schematic representation of the multilayer tandem stack of W/WAlSiN/SiON/SiO2
deposited on the SS substrate, as shown in Figure 8a. The schematic depicts an intermixed
layer between WAlSiN and SiON layer, a detailed explanation of this is mentioned in
the below section. The thicknesses of each individual layers in the multilayer stack are
labelled in the schematic, as depicted in Figure 8a. The selective solar absorber coating
is designed based on a graded refractive index with a double anti-reflection layer. The
reflectance spectra of the multilayer stack are as shown in Figure 8b, exhibits near-zero
reflectance in the wavelength range of 0.6–1.4 µm and high reflectance of above 90% in
the infrared region [28]. The low reflectance and high absorptance in the multilayer stack
is due to destructive interference and band-to-band transitions [3]. A graded design of a
multilayer stack generates a step-by-step change in the refractive index, resulting in lower
reflection due to interference effect. Additionally, the double anti-reflection layer (DLAR)
of SiON/SiO2 reduces the reflection losses at the surface and enhances the absorption by
trapping the incident solar radiation [10,32,57]. Kim et al. reported the DLAR coatings of
SiNx/SiO2 of different thicknesses and the refractive indices of each layer were theoreti-
cally calculated using Essential Macleod software. They also reported that DLAR coatings
exhibited better solar efficiency when compared to single SiNx anti-reflection layer [10].
Moreover, the absorption of light over a wide range of wavelength is achieved better in
DLAR than a single ARC layer [58]. In summary, we have demonstrated that the gradient
in the refractive index of the individual layers in the multilayer stack responsible for the
enhanced absorption (high α).
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Figure 8. (a) Schematic of the multilayer stack deposited on SS substrate and (b) The reflectance spectrum of the optimized
sample of the multilayer stack [28].

3.4. Angular Dependence of Solar Absorptance

The angle of incidence of solar radiation on the multilayer stack has direct influence
over the reflectance and overall performance of the system. By varying the angle of
incidence, the reflectance spectra are measured for the multilayer stack using UV-Vis-NIR
spectrophotometer. The influence on optical properties of the multilayer stack with change
in incident angle was studied in detail. The incident angle was varied from 8◦–68◦ and the
transverse electric (TE), i.e., s polarization and transverse magnetic (TM), i.e., p polarization
reflectance spectra were recorded as a function of wavelength, as shown in Figure 9. The
p polarization reflectance spectra (Rp) depict a decrease in reflectance up to an incident
angle of 58◦ and further it increases at 68◦ incident angle, as shown in Figure 9a. The
reflectance of the multilayer stack is less than 6% in the wavelength range of 500–1500 nm,
which indicates good selectivity as well as wide angle solar absorptance. Similarly, the
s polarization reflectance spectra (Rs) show an increase in reflectance of the film with
increasing incident angle, as shown in Figure 9b. A slight shift in reflectance minima
towards shorter wavelength is observed in reflectance spectra form 38◦–68◦. This is due
the fact that at higher incident angles the effective thickness of the coating interacting with
light is thinner compared to the actual thickness [59]. However, the average reflectance
spectra of s and p polarization indicate a low reflectance (less than 10%) with varying
incident angle, as shown in Figure 9c. These results demonstrate excellent wide-angle solar
selectivity of W/WAlSiN/SiON/SiO2 multilayer stack up to 58◦.
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3.5. Optical Simulation of Individual Layers and Multilayer Stack

A commercial simulation tool is used for determining the calculated reflectance spectra
based on optical constants of the materials and film thicknesses [31]. The design of the solar
absorber coating of W/WAlSiN/SiON/SiO2 was carried out using simulation to minimize
the number of experiments. The simulation was carried out to reduce the reflectance in the
UV-ViS-NIR region by varying the refractive indices and thicknesses of the individual layers in
the multilayer stack. Subsequently, the simulated reflectance data of the designed solar absorber
coating was compared with the actual deposited W/WAlSiN/SiON/SiO2 coating and similar
approach was used for individual layers (WAlSiN, SiON and SiO2) as well. The computational
studies of WAlSiN, SiON, and SiO2 layers were based on the optical constants obtained using
spectroscopy ellipsometry and the reflectance spectra is generated in the wavelength range of
300–2500 nm. The refractive index (n) and extinction coefficient (k) of each individual layer are
used for the simulation. Reference was inputted from experimentally measured reflectance
spectra. The deviation was computed as a simple mean squared difference. Individual points
on the simulated and imported reflectance spectra were compared and deviation was computed.
The displayed value is the average of mean squared values over the defined range. The
simulation fitting between the simulated and the measured spectra is evaluated using the
deviation value. The simulation fitting is described as rejected, bad, acceptable, good and
excellent based on the fit deviation value i.e., 0.1, 0.01, 0.001, 0.0001, and 0.00001, respectively [31].
The fit deviation values of all the simulated spectra are tabulated in Table 2 and a low deviation
value indicates good and excellent fits of the simulated spectra. The simulated and experimental
spectra of WAlSiN, SiON, and SiO2 thick individual layers (Figure 10a–c and the deviations of
the fit are tabulated in Table 2. The optical constants are acquired from ellipsometry studies
of the individual layers as well as the multilayer stack, as discussed above. The data fitting in
simulation software of the individual layers showed a deviation, which is attributed to available
ellipsometry data of the individual layers in the limited wavelength range (300–900 nm). The
deviation between the two spectra exists for various reasons. The most important one being
the range over which ellipsometry data was collected. Ellipsometry data is collected up to
900 nm, while reflectance data is plotted up to 2500 nm. The simulation tool assumes a constant
value (n, k at 900 nm) of the ellipsometry data in 900–2500 (missing data range). This can be
justified as the fitting for the particular layer thickness well matched with the experimentally
measured reflectance spectra in the range of 300–900 nm. These measurement errors influence
a minor deviation in the reflectance spectra generated through SCOUT simulation software
to that of the experimentally measured reflectance spectra. The fit deviations are tabulated
in Table 2. However, the effective optical constant of WAlSiN layer used for simulation indicates
an excellent fit, which implies that the calculated optical constants of WAlSiN layer are accurate.
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Figure 10. Experimental reflectance spectra of the individual layers in the tandem stack fitted with the simulated spectra
obtained from SCOUT simulation software (a) WAlSiN, (b) SiON, and (c) SiO2 layer.
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Table 2. Thicknesses of the individual layers and tandem absorber used to generate the simulated
reflectance spectra, fit deviation with experimentally measured spectra.

Sl. No Description
Layer Thickness (nm)

Deviation
Experimental Simulated

1 WAlSiN 940 872 0.00128
2 SiON 445 407 0.00371
3 SiO2 440 430 0.00377
4 W/WAlSiN/SiON/SiO2 280/85/70/30 250/78/68/37 0.0002270

5 W/WAlSiN/Intermixed
layer/SiON/SiO2

280/85/70/30 250/80/5/70/40 0.0002042

The effective optical constants of WAlSiN layer and optical constants of SiON and SiO2 anti-
reflection layers calculated are considered for simulation studies of the multilayer stack. In the
multilayer stack, the simulation indicates an excellent fit with a deviation in fitting of 0.0002042
between the experimental and simulated spectra. Moreover, the thickness of individual layers
in the multilayer stack after fitting shows a slight variation from the measured thickness of
the film (as tabulated in Table 2), as this variation of thickness is due to the measured optical
constants. However, at the interface of WAlSiN and SiON layer there exists a thin intermixed
layer of ~5 nm in the multilayer stack, which is known from the spectroscopic ellipsometry
measurement. The influences of the intermixed layer on reflectance spectra are simulated with
respect to the measured reflectance spectra and the same is shown in Figure 11. The schematics
of multilayer stack with simulated thicknesses are incorporated as in-sets in Figure 11a,b. The
simulated spectrum without the presence of intermixed layer depicts a small hump in the
wavelength range of 600–1200 nm and two reflectance minima at 712 and 1305 nm, as indicated
in Figure 11a. The simulated thicknesses for the individual layers are labelled in the schematic
(inset) of Figure 11a and are tabulated in Table 2. Figure 11b shows the simulated and the
experimental reflectance spectra of multilayer stack in which the presence of the intermediate
layer between WAlSiN main absorber layer and SiON layer exhibits an excellent fit. After
introducing the intermixed layer, the reflectance minimum shifts from 712 nm to 637 nm,
thereby implies better absorptance property of the multilayer stack, as marked in Figure 11b.
However, the reflectance minimum at 1305 nm does not shift but the overall reflectance in the
wavelength range of 600–1300 nm is less than 1%. Furthermore, the gradual change in the
refractive index of the multilayer stack due to intermixed layer ensures the near-zero reflectance,
i.e., W/WAlSiN/intermixedlayer/SiON/SiO2 (3.83/2.52/2.28/1.56/1.51 @ 550 nm) from the
top anti-reflection layer to the bottom of the substrate. This comparison of simulated spectra
with and without intermixed layer confirms that due the formation of the intermixed layer
in between WAlSiN and SiON layers, the reflectance decreases in the wavelength range of
600–1200 nm. So, the intermixing at the interface favors in lowering the reflectance by a gradual
change in the optical constants. Similar, intermixing is also observed at the interface of WAlN
and WAlON in W/WAlN/WAlON/Al2O3 solar selective coating [18]. Zhao et al. reported the
optimized three-layer solar absorber coating using CODE simulation tool, which exhibits a high
solar absorptance of 0.97 and low thermal emissivity [60]. Their simulated results were in good
agreement with the experimental data, which indicates the reliability of the approach through
computational simulation.
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Figure 11. The multilayer reflectance spectra of the solar absorber fitted with simulated spectra
generated from simulation: (a) Without the intermixed layer and (b) with the intermixed layer. The
schematics of the multi-layer stack with simulated layer thicknesses are presented as insets.

4. Conclusions

We report the detailed evaluation and analysis of enhanced spectrally selective so-
lar absorber coating of W/WAlSiN/SiON/SiO2 by means of spectroscopic ellipsometry.
The optical constants of individual layers and multilayer stack were obtained by curve
fitting the ψ and ∆ plots using appropriate dispersion models. The Cauchy absorbent
dispersion model was used for main absorber layer (WAlSiN), Tauc-Lorentz model for
anti-reflection layers (SiON and SiO2) and Bruggeman effective medium approximation
for the intermixed layer formed in between WAlSiN and SiON layers. The obtained optical
constants depict a gradation in the designed multilayer stack from top anti-reflection layer
to substrate due to which an enhanced solar absorption is achieved. The multilayer stack
of W/WAlSiN/SiON/SiO2 (280/85/70/30 nm) deposited on SS substrate exhibits a high
solar absorptance of 0.955 and low thermal emissivity of 0.10. Furthermore, the wide-angle
selectivity of the multilayer stack was measured by varying the incident angle (8◦–68◦)
and the multilayer stack exhibits an excellent wide-angle selectivity up to 58◦. The optical
simulated spectra of individual layers and multilayer stack using software shows a good
correlation between the measured and experimental spectra. The simulation results based
on optical constants of multilayer stack measured using ellipsometry describe the influence
of intermixed layer in achieving high solar absorptance.
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