
Speech Command Recognition with Convolutional
Neural Network

Xuejiao Li
xjli1013@stanford.edu

Zixuan Zhou
zixuan95@stanford.edu

Abstract—This project aims to build an accurate, small-
footprint, low-latency Speech Command Recognition system that
is capable of detecting predefined keywords. Using the Speech
Commands Dataset provided by Google’s TensorFlow and AIY
teams, we have implemented different architectures using
different machine learning algorithms. Our models include:
Vanilla Single-Layer softmax model, Deep Neural Network and
Convolutional Neural Network. The Convolutional Neural
Network proves to outperform the other two models and can
achieve accuracy of 95.1% for 6 labels.

Keywords—Keyword Spooting (KWS), Deep Neural Network
(DNN), Convolutional Neural Network(CNN)

I. INTRODUCTION
Thanks to the rapid development of mobile devices,

interacting with machines using voice technology has become
increasing popular. Related products like Google Now or
iPhone’s Siri both exploit speech command technology.
Google has also offered the service to search by voice [1] on
Android phones and a fully hands-free experience called “Ok
Google”[2]. As a matter of fact, keyword spotting (KWS)
technology is a potential technique to provide fully hands-free
interface, and this is especially convenient for mobile devices
compared to typing by hands. And it is also the desired
technique for situations like driving or some emergency cases.
Since speech command recognition system usually runs on
smartphones or tablets, it therefore must be low-latency, and
must have a very small memory footprint, and require only
very small computation. Thus the motivation of our project is
to build a keyword spotting system that is capable of detecting
predefined keywords and helps device to interact differently
based on what the command asks for. Specially for this task,
our dataset is provided by Google’s TensorFlow and AIY
teams, which contains 65,000 WAVE audio files of people
saying thirty different words [3]. Each of the audio clip lasts
for one second and contains one single word. According to
different requirements, different predefined keywords are
required, such as “yes”/“no” or “up”/“down”/“left”/“right”
or “stop”/“go”. The predefined keywords can be
reconfigurable, thus enabling our system to work for different
labels with high flexibility. The system tries to classify a one
second audio clip as either “silence”, an “unknown word” or
one of our predefined keywords. We then use a single-layer
softmax model, a DNN model and a CNN model to calculate

the probability that the input audio belongs to each of the
labels and finally output the predicted label that the machine
believes the input audio clip belongs to. The task is very
meaningful and can be configured and run in an Android
application.

We describe related work in section Ⅱ , dataset and
preprocessing method in section Ⅲ, and three models, namely,
Vanilla, DNN, and CNN, in Section Ⅳ. The experiment setup,
results and some discussion follow in Section Ⅴ. Section Ⅵ
closes with the conclusions.

II. RELATED WORK
Machine learning has been proved to have powerful ability

for classification task. A commonly use technique for KWS is
the Key-word/Filler Hidden Markov Model (HMM) [4, 5, 6, 7,
8]. In this generative approach, for each of the keyword, an
HMM model is trained, and a filler model HMM is trained
from the non-keyword segment of the speech signal (filters)[9].
This method is very computational expensive, since HMM
requires Viterbi decoding. Other recent work explores some
discriminative models based on large-margin formulation
[10,11] or recurrent neural network [12,13]. These techniques
show some improvement over HMM approach, but have
relatively long-latency, since they either require to process over
the whole speech to find the region of the keyword or take
inputs from a long period of time to predict the keyword. The
current KWS system at Google [9] uses a DNN, which
outperforms the traditional HMM system and is also very
simple and requires relatively lower computation. However, we
believe that a CNN model can provide further improvement
over a DNN model in a variety of small and large vocabulary
tasks [14,15,16].

CNNs are better than DNNs for KWS task for mainly 2
reasons. First, DNNs just ignore the input topology and resize it
into column vectors. However, for audio signals, the spectrum
representations show very strong correlations in time and
frequency. So modeling local correlations with CNNs will be
beneficial and is expected to have much better performance
than DNNs. Second, thanks to the parameter sharing quality of
CNNs, CNNs can have far fewer parameters compared to
DNNs for the same task, thus reducing memory footprint and
computational requirement. So CNNs will have improved
performance and reduced model size over DNNs and is thus the
state-of-the-art technique for KWS task.

III. DATASET AND FEATURES

A. Dataset preparation
We are provided with the Speech Commands Dataset from

Google’s TensorFlow and AIY teams, which consist of 65,000
WAVE audio files of people saying thirty different words,
each of which lasts for one second. The data set has been
separated into different categories like numbers, animals,
directions or person names. By doing so the system can be
trained with more specific purposes. We divided the data set
into three part, including 80% training set, 10% validation set
and 10% test set, and each subset of speech audio is classified
as either silence, unknown word, or predefined keywords,
which are attached different labels respectively.

Key word. The key word class, labeled separately, contains
a set of concerned words. In this project, “up”, “down”, “left”,
“right” are chosen for this speech recognition task.

Unknown word. The unknown word audio clips capture
the words, which are not concerned about. This class is
differed from the key word class, which can motivate the
network to learn which speech should be ignored or captured.

Silence. Only relatively silent situation can be recorded,
this class contains audios over a variety of quiet environment.

In addition, to obtain a more robust set of parameters, the
background noise is attached to the training set proportionally.
In more specific, the noise audio, captured from machinery
and household activities, is divided into small segments, which
is randomly mixed into the training audio clip with an
adjustable lower volume. In this project, the background
volume is 0.1 and its frequency is 0.8.

B. Feature Extraction with MFCC
We calculated Mel-Frequency Cepstral Coefficients

(MFCC) to extract spectral features. Based on human
perception experiments, Mel-Frequency analysis is employed
to re-weight dimension of frequency and gain more
perceptually-relevant representation of speech audio [17].

The diagram of feature exaction is shown in the Fig. 1. We
firstly define a 30-ms analysis window, and divide the speech
signal into different time frames by shifting the window
(shifting stride = 10 ms). Since audio signal sample is 1s each,
we will have (1000-30)/10+1=98 time frames, as shown in Fig.
2. After windowing, Fast Fourier Transformation (FFT) is
calculated for each frame to obtain the frequency features, and
the logarithmic Mel-Scaled filter bank is applied to the Fourier
transformed frames. The last step is to calculate Discrete
Cosine Transformation (DCT) to obtain the 40-dimentional
coefficients vector. In this project, we finally obtained a [98×40]
2D matrix desired to feed the successive neural network.

Fig. 1. Diagram of MFCC Derivation Process

Fig. 2. Feature Exaction Window

IV. METHODS
A. Vanilla Single Layer Softmax

We firstly built a model with a single hidden fully-
connected layer and a softmax output layer.

This simple model has only one matrix multiplication and
bias, and the number of the output nodes is the same as the
labels. As expected, Vanilla can’t produce very accurate
results, but can work very fast.

B. Deep Neural Network
Our second model is a standard feed-forward fully

connected neural network with 3 hidden layers and 128 hidden
nodes per layer, as shown in Fig. 3. We use 3 hidden layers
because in practice, a 3 hidden layers fully-connected neural
network usually outperforms DNNs with 1 or 2 hidden layers,
but only slightly worse with DNNs with 4 or more hidden
layers. Another empirical experience is to use more hidden
nodes per layer to achieve higher accuracy, although it may
lead to overfitting. In this project, dropout technique is used to
prevent overfitting.

For the hidden layers, we use rectified linear unit (ReLU)
as activation functions for computing reduction, the weighted
sum of the output from previous layer. Compared to Vanilla
Single Layer, this model is expected to give a more accurate
result at the cost of more memory footprint and higher
computational cost. Apart from that, DNN model is desirable
for device, as its size can be easily adjusted via altering the
number of parameters in the network [18].

Fig. 3. Fully-Connected DNN structure

C. Convolutional Neural Network
As stated in section Ⅱ, Convolutional Neural Networks

(CNNs) are attractive for keyword spotting (KWS) task, so we
have implemented a convolutional architecture with two
convolutional layers. For our interest, some key layers are:
Convolutional (Conv) layer (multiple convolution filters to
obtain different features), Pooling layer (down-sampling by
taking max operation to reduce the amount of parameters and
computation in the network, and hence control overfitting),
Dropout layer (only keep a neuron active with some
probability p, or set it to zero otherwise to control overfitting),
Linear low-rank (Lin) layer (perform linear multiplication and
addition to transfer the output of Conv layer to discrete nodes,
reduce parameters and computation, control overfitting), and
Fully-connected (FC) layer (preserve full information, or make
the final softmax prediction). Our CNN model is cascaded as
in Fig. 4. The reason why we choose only to apply 2 Conv
layers instead of the state-of-art very deep and big CNNs is to
limit the number of parameters at the sacrifice of some
accuracy. We have successfully kept the number of parameters
below 250K, which is feasible for small-footprint KWS tasks
on mobile devices where memory footprint is limited. The
number of parameters we need is shown as in Table 1.

In section Ⅴ, we will show the benefit of this architecture
for KWS compared to a DNN and a Vanilla single-layer
network.

Fig.4. Structure of Convolutional network architecture

Table 1: CNN architecture

Type Ht. Wd. Depth Stride
Ht.

Stride
Wd.

Par.

Conv1 20 8 64 1 3 10.2k
Conv2 10 4 64 1 1 164.8k
 Lin - - 32 - - 65.5k
DNN - - 128 - - 4.1k

Softmax - - 6 - - 0.7k
Total - - - - - 244.4k

V. EXPERIMENTS AND RESULTS
A. Training Details
Training Environment

We choose to use a GPU to train our network, since the
required computation power of neural network is huge. Our
training environment is shown in table 2.

Table 2: Training Environment
Language Python3.5

Framework Google TensorFlow 1.4.0
GPU Nvidia GeForce GTX 960M

GPU Memory 4044MB

Initialization
Weights are initialized randomly from a truncated normal

distribution with zero mean and specified standard deviation
for symmetry breaking.

Since we do not know the final value of every weight in
the trained network, but with proper data normalization it is
reasonable to assume that approximately half of the weights
will be positive and half of them will be negative. Therefore,
we want the weights to be very close to zero, but not
identically zero，because if every neuron in the network
computes the same output, then they will also all compute the
same gradients during back-propagation and makes the exact
same parameter updates.
Batch size

Batch size for gradient descent is equal to 100. For each
step, we randomly choose 100 training samples, which can
break the correlation among them and make the network learn
more efficiently.

We choose batch size not equal to 1 to avoid overfitting.
However the batch size can also not be too large, since
training a neural network can be extremely computational
consuming. So this value is a trade-off between performance
and hardware limitation.
Learning rate

The learning rate is 0.001 for the first 5/6 of total steps
followed by 0.0001 towards the end. The learning rate for the
latter is relatively smaller, since we are fine-tuning the model
for the latter steps. We tried several combinations and find this
one can obtain both high efficiency and good convergence.
Update Method

Since one drawback of stochastic gradient descent is that
updating direction depends completely on current batch,
momentum method is introduced to stabilize updating process.
We applied Nesterov Momentum update, which in practice
works slightly better than standard momentum. First, we
update one step along original direction, and then compute its
gradient, according to which we correct the final updating
direction, expressed as：

 𝑥!!! = 𝑥! + Δ𝑥! (4.1)
 Δ𝑥! = 𝜌𝑥!!! − 𝜂Δ𝑓(𝑥!!! + 𝜌𝑥!!!) (4.2)
where, 𝜂 is learning rate, and 𝜌 represents momentum
momentum value. In the beginning stage, the gradient is
relatively large, for which initial value of 𝜌 is 0.5, while a
large 𝜌 is chosen for small gradient. In the project, momentum
value 𝜌 is assigned with 0.5, 0.9, 0.95, 0.99 with regard to the
increasing steps [19].
Cross-entropy

 For each model, last layer employs a softmax classifier
with cross-entropy loss 𝐿 to estimate the posterior of each
output label, expressed as:

 𝐿! = −𝑙𝑜𝑔 !!!"

!!!!
 (4.3)

where, 𝑓! 𝑧 = !!!

!!!!
 is softmax function, which means the

score for j-th element.
Regularization

We applied dropout method as regularization technique,
which can reduce overfitting in neural networks by preventing
complex co-adaptations on training data [20]. In the
experiment, drop probability is equal to 0.5, as it can
maximize number of randomly-generated network structures.

B. Result and Discussion
Our 6 labels for this KWS task is:

“up”/“down”/“left”/“right”/“silence”/“unknown”.
We performed 33,000 training steps for there 3 models

individually, and every 400 steps, we perform a test on
validation-set. After training we perform a single prediction on
our test-set to obtain test-accuracy.

Definition

We introduce accuracy, precision, recall and loss as our
performance metrics. We also plot the ROC/AUV curve,
precision-recall curve to demonstrate the performance of there
3 models. The definitions of these metrics are shown in Fig.5.
The ROC/AUV curve uses false positive rate (FPR) as its x-
axis and true positive rate (TPR) as its y-axis.

 Fig.5. Confusion matrix and common performance metrics

Accuracy and Loss

We calculated the accuracy over validation-set and plot the
accuracy trend (fitting) of 3 different models in Fig. 6. It is
clear that compared to DNN and Vanilla, CNN model
performs a smoother curve has a higher final accuracy on
validation set.

After training we perform a single prediction on our test-set
to obtain test-accuracy. We plot Table 3 to illustrate the final
accuracy and loss on test set.

The first observation is that Vanilla is not good at all with
only 56% accuracy overall and highest loss, but also not
surprising given that it only performs linear computation.
Another observation is that DNNs achieve roughly 72%
accuracy and smaller loss, indicating that the non-linear
combination of 3 hidden layers can improve the result
significantly. Finally a simple 2-ConvLayer CNN network is
already outperforming the Vanilla and DNN and achieves
31.43% and 66.67% relative improvement with regard to DNN
and Vanilla in test-accuracy and 82% and 94.8% in loss.

What’s more, CNN also proves to have faster convergence
speed.

 Fig.6. Accuracy trend over validation set

Table 3: Comparison between accuracy loss

 Fig.7. Test Confusion Matrix for CNN

From Table 3 we also find that the differences between
test-accuracy and validation-accuracy are relatively small,
indicating we haven’t got overfit to our training-set.

Finally we show a confusion matrix for the CNN model for
the test-set in Fig 7. The columns of the confusion matrix
represent a set of samples that were predicted as “silence”,
“unknown”, “up”, “down”, “left”, “right” respectively. All
of the entries are very small apart from the diagonal lines
through the center, which indicates the CNN model makes
very few mistakes. We can also see that the biggest confusion
for CNNs now is to identify “unknown” and “up”.

Recall, Precision, ROC and AUC

We calculated precision value and recall value using
confusion matrix for test-set and we plot Table 4 to illustrate
the recall and precision values on test set. We also plot the

Models Validation
-Accuracy

Test-
Accuracy

Loss

CNN 95.1% 94.5% 0.190
DNN 72.5% 71.9% 1.048

Vanilla 57.3% 56.7% 3.640

Precision-Recall curve illustrated in Fig. 8, 9 and 10 and the
ROC/AUC curve in Fig. 11.

Fig.8. Recall-Precision curve for CNN

 Fig.9. Recall-Precision curve for DNN

Fig.10. Recall-Precision curve for Vanilla

Table 4: Precision Value and Recall Value for 3 models

These results indicate that CNN is more effective than

DNN and Vanilla, giving 18.6% relative improvement over
DNN and 72.3% over Vanilla on precision value; 37.4% over

DNN and 61.8% over Vanilla on recall value, where high
precision relates to a low false positive rate, and high recall
relates to a low false negative rate.

 Fig.11. ROC/AUC Curves comparing 3 models

The precision-recall curve shows the trade-off between

precision and recall for different threshold. CNN has the
highest area under the curve, representing both high recall and
high precision. This means that our CNN model is returning
accurate results (high precision), as well as returning a
majority of all positive results (high recall).

ROC/AUC curve shows that CNN model achieves a much
higher AUC, and gains dramatically at a very low false
positive rate, which is a desirable property for speech
command system.

Reconfiguration Ability
We have also tested other labels besides
“up”/“down”/“left”/“right”, in order to test the reconfiguration
ability of our CNN models. The result is illustrated in Table 5,
indicating our CNN model can maintain high accuracy with
regard to different labels and different number of labels.

Table 5: Accuracy for different labels

VI. CONCLUSION AND FUTURE WORK
In this project, we used 3 models for KWS task: Vanilla,

DNN and CNN. All of these 3 models exploit softmax
classifier and MFCC feature extraction. The experiment results
show that CNN model outperforms the other two models and
achieves 31.43% and 66.67% relative improvement with regard
to DNN and Vanilla in accuracy; 82% and 94.8% in loss; 18.6%
and 72.3% in precision value; and 37.4% and 61.8% in recall
value. One limitation of our CNN model is the huge number of
multiplies in the second ConvLayer because of the 3-
dimentional inputs spanning across time, frequency and feature
maps. So our next step is to dive into some new CNN
architectures with fewer multiplies and thus make it feasible to
work on some power-constrained devices.

 CNN DNN Vanilla
Precision

Value 0.9330 0.7866 0.5416

Recall
Value 0.9280 0.6754 0.5734

Labels Yes/No Up/Down/
Left/Right

0-9

Accuracy 95.7% 94.5% 93%

 CONTRIBUTIONS
Zixuan dived into researches about feature extraction and

implemented Vanilla and DNN models, Xuejiao dived into
training methodology, trained the hyper-parameters,
implemented CNN models and evaluated the performance
metrics. The team worked together to run the training, process
result data, plot curves and tables, as well as make poster and
write the final report. We share ideas through frequent
discussions and cooperate each other.

REFERENCES

[1] Johan Schalkwyk, Doug Beeferman, Françoise Beaufays, Bill Byrne,

Ciprian Chelba, Mike Cohen, Maryam Kamvar, and Brian Strope,
““Your word is my command”: Google search by voice: A case study,”
in Advances in Speech Recognition, pp. 61–90. Springer, 2010.

[2] G. Chen, C. Parada, and G. Heigold, “Small-footprint Keyword Spotting
using Deep Neural Networks,” in Proc. ICASSP, 2014.

[3] https://research.googleblog.com/2017/08/launching-speech-commands-
dataset.html

[4] J.R. Rohlicek, W. Russell, S. Roukos, and H. Gish, “Continuous hidden
Markov modeling for speaker-independent wordspotting,” in
Proceedings of the International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 1990, pp. 627–630.

[5] Richard C Rose and Douglas B Paul, “A hidden Markov model based
keyword recognition system,” in Proceedings of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 1990, pp. 129–132.

[6] JG Wilpon, LG Miller, and P Modi, “Improvements and applications for
key word recognition using hidden Markov modeling techniques,” in
Proceedings of the International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 1991, pp. 309–312.

[7] Marius-Calin Silaghi and Hervé Bourlard, “Iterative posteriorbased
keyword spotting without filler models,” in Proceedings of the
Automatic Speech Recognition and Understanding Work shop (ASRU).
IEEE, 1999, pp. 213–216.

[8] Marius-Calin Silaghi, “Spotting subsequences matching an HMM using
the average observation probability criteria with application to keyword
spotting.,” in Proceedings of the National Conference on Artificial
Intelligence. Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999, 2005, vol. 20, p. 1118.

[9] Chen, Guoguo, Carolina Parada, and Georg Heigold. "Small-footprint
keyword spotting using deep neural networks." Acoustics, Speech and
Signal Processing (ICASSP), 2014 IEEE International Conference on.
IEEE, 2014.

[10] David Grangier, Joseph Keshet, and Samy Bengio, “Discriminative
keyword spotting,” Automatic speech and speaker recognition: large
margin and kernel methods, pp. 175–194, 2009.

[11] Shima Tabibian, Ahmad Akbari, and Babak Nasersharif, “An
evolutionary based discriminative system for keyword spotting,” in
International Symposium on Artificial Intelligence and Signal
Processing (AISP). IEEE, 2011, pp. 83–88.

[12] KP Li, JA Naylor, and ML Rossen, “A whole word recurrent neural
network for keyword spotting,” in Proceedings of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 1992, vol. 2, pp. 81–84.

[13] Santiago Fernández, Alex Graves, and Jürgen Schmidhuber, “An
application of recurrent neural networks to discriminative keyword
spotting,” in Artificial Neural Networks–ICANN 2007, pp. 220–229.
Springer, 2007.

[14] O. Abdel-Hamid, A. Mohamed, H. Jiang, and G. Penn, “Applying
Convolutional Neural Network Concepts to Hybrid NN-HMM Model for
Speech Recognition,” in Proc. ICASSP, 2012.

[15] L. Toth, “Combining Time-and Frequency-Domain Convolution in
Convolutional Neural Network-Based Phone Recognition,” in Proc.
ICASSP, 2014.

[16] T. N. Sainath, A. Mohamed, B. Kingsbury, and B. Ramabhadran, “Deep
Convolutional Neural Networks for LVCSR,” in Proc. ICASSP, 2013.

[17] Dave, Namrata. (2013). Feature extraction methods LPC, PLP and
MFCC in speech recognition. International Journal For Advance
Research in Engineering And Technology(ISSN 2320-6802). Volume 1.

[18] Sainath, Tara N., and Carolina Parada. "Convolutional neural networks
for small-footprint keyword spotting." Sixteenth Annual Conference of
the International Speech Communication Association. 2015.

[19] http://cs231n.github.io/neural-networks-3/
[20] Hinton, Geoffrey E., et al. “Improving nerural networks by preventing

co-adaptation of feature detectors.” arXiv preprint arXiv:1207.0580
(2012)

