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Abstract—This project aims to build an accurate, small-
footprint, low-latency Speech Command Recognition system that 
is capable of detecting predefined keywords. Using the Speech 
Commands Dataset provided by Google’s TensorFlow and AIY 
teams, we have implemented different architectures using 
different machine learning algorithms. Our models include: 
Vanilla Single-Layer softmax model, Deep Neural Network and 
Convolutional Neural Network. The Convolutional Neural 
Network proves to outperform the other two models and can 
achieve accuracy of 95.1% for 6 labels.  

Keywords—Keyword Spooting (KWS), Deep Neural Network 
(DNN), Convolutional Neural Network(CNN) 

 

I.  INTRODUCTION  
Thanks to the rapid development of mobile devices, 

interacting with machines using voice technology has become 
increasing popular. Related products like Google Now or 
iPhone’s Siri both exploit speech command technology. 
Google has also offered the service to search by voice [1] on 
Android phones and a fully hands-free experience called “Ok 
Google”[2]. As a matter of fact, keyword spotting (KWS) 
technology is a potential technique to provide fully hands-free 
interface, and this is especially convenient for mobile devices 
compared to typing by hands. And it is also the desired 
technique for situations like driving or some emergency cases. 
Since speech command recognition system usually runs on 
smartphones or tablets, it therefore must be low-latency, and 
must have a very small memory footprint, and require only 
very small computation. Thus the motivation of our project is 
to build a keyword spotting system that is capable of detecting 
predefined keywords and helps device to interact differently 
based on what the command asks for. Specially for this task, 
our dataset is provided by Google’s TensorFlow and AIY 
teams, which contains 65,000 WAVE audio files of people 
saying thirty different words [3]. Each of the audio clip lasts 
for one second and contains one single word. According to 
different requirements, different predefined keywords are 
required, such as “yes”/“no” or “up”/“down”/“left”/“right” 
or “stop”/“go”. The predefined keywords can be 
reconfigurable, thus enabling our system to work for different 
labels with high flexibility. The system tries to classify a one 
second audio clip as either “silence”, an “unknown word” or 
one of our predefined keywords. We then use a single-layer 
softmax model, a DNN model and a CNN model to calculate 

the probability that the input audio belongs to each of the 
labels and finally output the predicted label that the machine 
believes the input audio clip belongs to. The task is very 
meaningful and can be configured and run in an Android 
application. 

We describe related work in section Ⅱ , dataset and 
preprocessing method in section Ⅲ, and three models, namely, 
Vanilla, DNN, and CNN, in Section Ⅳ. The experiment setup, 
results and some discussion follow in Section Ⅴ. Section Ⅵ 
closes with the conclusions.  
 

II. RELATED WORK 
Machine learning has been proved to have powerful ability 

for classification task. A commonly use technique for KWS is 
the Key-word/Filler Hidden Markov Model (HMM) [4, 5, 6, 7, 
8]. In this generative approach, for each of the keyword, an 
HMM model is trained, and a filler model HMM is trained 
from the non-keyword segment of the speech signal (filters)[9]. 
This method is very computational expensive, since HMM 
requires Viterbi decoding. Other recent work explores some 
discriminative models based on large-margin formulation 
[10,11] or recurrent neural network [12,13]. These techniques 
show some improvement over HMM approach, but have 
relatively long-latency, since they either require to process over 
the whole speech to find the region of the keyword or take 
inputs from a long period of time to predict the keyword. The 
current KWS system at Google [9] uses a DNN, which 
outperforms the traditional HMM system and is also very 
simple and requires relatively lower computation. However, we 
believe that a CNN model can provide further improvement 
over a DNN model in a variety of small and large vocabulary 
tasks [14,15,16].  

CNNs are better than DNNs for KWS task for mainly 2 
reasons. First, DNNs just ignore the input topology and resize it 
into column vectors. However, for audio signals, the spectrum 
representations show very strong correlations in time and 
frequency. So modeling local correlations with CNNs will be 
beneficial and is expected to have much better performance 
than DNNs. Second, thanks to the parameter sharing quality of 
CNNs, CNNs can have far fewer parameters compared to 
DNNs for the same task, thus reducing memory footprint and 
computational requirement. So CNNs will have improved 
performance and reduced model size over DNNs and is thus the 
state-of-the-art technique for KWS task. 



III. DATASET AND FEATURES 

A. Dataset preparation 
We are provided with the Speech Commands Dataset from 

Google’s TensorFlow and AIY teams, which consist of 65,000 
WAVE audio files of people saying thirty different words, 
each of which lasts for one second. The data set has been 
separated into different categories like numbers, animals, 
directions or person names. By doing so the system can be 
trained with more specific purposes. We divided the data set 
into three part, including 80% training set, 10% validation set 
and 10% test set, and each subset of speech audio is classified 
as either silence, unknown word, or predefined keywords, 
which are attached different labels respectively. 

Key word. The key word class, labeled separately, contains 
a set of concerned words. In this project, “up”, “down”, “left”, 
“right” are chosen for this speech recognition task.  

Unknown word. The unknown word audio clips capture 
the words, which are not concerned about. This class is 
differed from the key word class, which can motivate the 
network to learn which speech should be ignored or captured.  

Silence. Only relatively silent situation can be recorded, 
this class contains audios over a variety of quiet environment.  

In addition, to obtain a more robust set of parameters, the 
background noise is attached to the training set proportionally. 
In more specific, the noise audio, captured from machinery 
and household activities, is divided into small segments, which 
is randomly mixed into the training audio clip with an 
adjustable lower volume. In this project, the background 
volume is 0.1 and its frequency is 0.8. 

 

B. Feature Extraction with MFCC 
We calculated Mel-Frequency Cepstral Coefficients 

(MFCC) to extract spectral features. Based on human 
perception experiments, Mel-Frequency analysis is employed 
to re-weight dimension of frequency and gain more 
perceptually-relevant representation of speech audio [17]. 

The diagram of feature exaction is shown in the Fig. 1. We 
firstly define a 30-ms analysis window, and divide the speech 
signal into different time frames by shifting the window 
(shifting stride = 10 ms). Since audio signal sample is 1s each, 
we will have (1000-30)/10+1=98 time frames, as shown in Fig. 
2. After windowing, Fast Fourier Transformation (FFT) is 
calculated for each frame to obtain the frequency features, and 
the logarithmic Mel-Scaled filter bank is applied to the Fourier 
transformed frames. The last step is to calculate Discrete 
Cosine Transformation (DCT) to obtain the 40-dimentional 
coefficients vector. In this project, we finally obtained a [98×40] 
2D matrix desired to feed the successive neural network. 

 

 

 
 

Fig. 1. Diagram of MFCC Derivation Process 
 

 
Fig. 2. Feature Exaction Window 

 

IV. METHODS 
A. Vanilla Single Layer Softmax  

We firstly built a model with a single hidden fully-
connected layer and a softmax output layer.  

This simple model has only one matrix multiplication and 
bias, and the number of the output nodes is the same as the  
labels. As expected, Vanilla can’t produce very accurate 
results, but can work very fast. 

B. Deep Neural Network 
Our second model is a standard feed-forward fully 

connected neural network with 3 hidden layers and 128 hidden 
nodes per layer, as shown in Fig. 3. We use 3 hidden layers 
because in practice, a 3 hidden layers fully-connected neural 
network usually outperforms DNNs with 1 or 2 hidden layers, 
but only slightly worse with DNNs with 4 or more hidden 
layers. Another empirical experience is to use more hidden 
nodes per layer to achieve higher accuracy, although it may 
lead to overfitting. In this project, dropout technique is used to 
prevent overfitting. 

For the hidden layers, we use rectified linear unit (ReLU) 
as activation functions for computing reduction, the weighted 
sum of the output from previous layer. Compared to Vanilla 
Single Layer, this model is expected to give a more accurate 
result at the cost of more memory footprint and higher 
computational cost. Apart from that, DNN model is desirable 
for device, as its size can be easily adjusted via altering the 
number of parameters in the network [18]. 

 
Fig. 3. Fully-Connected DNN structure 



C. Convolutional Neural Network 
As stated in section Ⅱ, Convolutional Neural Networks 

(CNNs) are attractive for keyword spotting (KWS) task, so we 
have implemented a convolutional architecture with two 
convolutional layers. For our interest, some key layers are: 
Convolutional (Conv) layer (multiple convolution filters to 
obtain different features), Pooling layer (down-sampling by 
taking max operation to reduce the amount of parameters and 
computation in the network, and hence control overfitting), 
Dropout layer (only keep a neuron active with some 
probability p, or set it to zero otherwise to control overfitting), 
Linear low-rank (Lin) layer (perform linear multiplication and 
addition to transfer the output of Conv layer to discrete nodes, 
reduce parameters and computation, control overfitting), and 
Fully-connected (FC) layer (preserve full information, or make 
the final softmax prediction). Our CNN model is cascaded as 
in Fig. 4. The reason why we choose only to apply 2 Conv 
layers instead of the state-of-art very deep and big CNNs is to 
limit the number of parameters at the sacrifice of some 
accuracy. We have successfully kept the number of parameters 
below 250K, which is feasible for small-footprint KWS tasks 
on mobile devices where memory footprint is limited. The 
number of parameters we need is shown as in Table 1. 

In section Ⅴ, we will show the benefit of this architecture 
for KWS compared to a DNN and a Vanilla single-layer 
network. 

 
Fig.4. Structure of Convolutional network architecture 

 
Table 1: CNN architecture 

Type Ht. Wd. Depth Stride 
Ht. 

Stride 
Wd. 

Par. 

Conv1 20 8 64 1 3 10.2k 
Conv2 10 4 64 1 1 164.8k 
  Lin - - 32 - - 65.5k 
DNN - - 128 - - 4.1k 

Softmax - - 6 - - 0.7k 
Total - - - - - 244.4k 

 

V. EXPERIMENTS AND RESULTS 
A. Training Details 
Training Environment 

We choose to use a GPU to train our network, since the 
required computation power of neural network is huge. Our 
training environment is shown in table 2. 
 
 

Table 2: Training Environment 
Language Python3.5 

Framework Google TensorFlow 1.4.0 
GPU Nvidia GeForce GTX 960M 

GPU Memory 4044MB 
 

Initialization 
Weights are initialized randomly from a truncated normal 

distribution with zero mean and specified standard deviation 
for symmetry breaking.  

Since we do not know the final value of every weight in 
the trained network, but with proper data normalization it is 
reasonable to assume that approximately half of the weights 
will be positive and half of them will be negative. Therefore, 
we want the weights to be very close to zero, but not 
identically zero，because if every neuron in the network 
computes the same output, then they will also all compute the 
same gradients during back-propagation and makes the exact 
same parameter updates.  
Batch size 

Batch size for gradient descent is equal to 100. For each 
step, we randomly choose 100 training samples, which can 
break the correlation among them and make the network learn 
more efficiently.  

We choose batch size not equal to 1 to avoid overfitting. 
However the batch size can also not be too large, since 
training a neural network can be extremely computational 
consuming. So this value is a trade-off between performance 
and hardware limitation. 
Learning rate 

The learning rate is 0.001 for the first 5/6 of total steps 
followed by 0.0001 towards the end. The learning rate for the 
latter is relatively smaller, since we are fine-tuning the model 
for the latter steps. We tried several combinations and find this 
one can obtain both high efficiency and good convergence. 
Update Method 

Since one drawback of stochastic gradient descent is that 
updating direction depends completely on current batch, 
momentum method is introduced to stabilize updating process. 
We applied Nesterov Momentum update, which in practice 
works slightly better than standard momentum. First, we 
update one step along original direction, and then compute its 
gradient, according to which we correct the final updating 
direction, expressed as：  

 𝑥!!! = 𝑥! + Δ𝑥!                        (4.1)       
                      Δ𝑥! = 𝜌𝑥!!! − 𝜂Δ𝑓(𝑥!!! + 𝜌𝑥!!!)           (4.2) 
where, 𝜂  is learning rate, and 𝜌  represents momentum 
momentum value. In the beginning stage, the gradient is 
relatively large, for which initial value of 𝜌 is 0.5, while a 
large 𝜌 is chosen for small gradient. In the project, momentum 
value 𝜌 is assigned with 0.5, 0.9, 0.95, 0.99 with regard to the 
increasing steps [19]. 
Cross-entropy 

 For each model, last layer employs a softmax classifier 
with cross-entropy loss 𝐿 to estimate the posterior of each 
output label, expressed as:  



                      𝐿! = −𝑙𝑜𝑔 !!!"

!!!!
                                 (4.3)  

where, 𝑓! 𝑧 = !!!

!!!!
 is softmax function, which means the 

score for j-th element.  
Regularization 

We applied dropout method as regularization technique, 
which can reduce overfitting in neural networks by preventing 
complex co-adaptations on training data [20]. In the 
experiment, drop probability is equal to 0.5, as it can 
maximize number of randomly-generated network structures.  

B. Result and Discussion 
Our 6 labels for this KWS task is: 

“up”/“down”/“left”/“right”/“silence”/“unknown”.  
We performed 33,000 training steps for there 3 models 

individually, and every 400 steps, we perform a test on 
validation-set. After training we perform a single prediction on 
our test-set to obtain test-accuracy. 

 
Definition  

We introduce accuracy, precision, recall and loss as our 
performance metrics. We also plot the ROC/AUV curve, 
precision-recall curve to demonstrate the performance of there 
3 models. The definitions of these metrics are shown in Fig.5. 
The ROC/AUV curve uses false positive rate (FPR) as its x-
axis and true positive rate (TPR) as its y-axis. 

  
  Fig.5. Confusion matrix and common performance metrics 
 
Accuracy and Loss 

We calculated the accuracy over validation-set and plot the 
accuracy trend (fitting) of 3 different models in Fig. 6. It is 
clear that compared to DNN and Vanilla, CNN model 
performs a smoother curve has a higher final accuracy on 
validation set.  

After training we perform a single prediction on our test-set 
to obtain test-accuracy. We plot Table 3 to illustrate the final 
accuracy and loss on test set. 

The first observation is that Vanilla is not good at all with 
only 56% accuracy overall and highest loss, but also not 
surprising given that it only performs linear computation. 
Another observation is that DNNs achieve roughly 72% 
accuracy and smaller loss, indicating that the non-linear 
combination of 3 hidden layers can improve the result 
significantly. Finally a simple 2-ConvLayer CNN network is 
already outperforming the Vanilla and DNN and achieves 
31.43% and 66.67% relative improvement with regard to DNN 
and Vanilla in test-accuracy and 82% and 94.8% in loss. 

What’s more, CNN also proves to have faster convergence 
speed.  

 
            Fig.6. Accuracy trend over validation set 
 

Table 3: Comparison between accuracy loss 

 
       Fig.7. Test Confusion Matrix for CNN 

From Table 3 we also find that the differences between 
test-accuracy and validation-accuracy are relatively small, 
indicating we haven’t got overfit to our training-set. 

Finally we show a confusion matrix for the CNN model for 
the test-set in Fig 7. The columns of the confusion matrix 
represent a set of samples that were predicted as “silence”, 
“unknown”, “up”, “down”, “left”, “right” respectively. All 
of the entries are very small apart from the diagonal lines 
through the center, which indicates the CNN model makes 
very few mistakes. We can also see that the biggest confusion 
for CNNs now is to identify “unknown” and “up”. 
 
Recall, Precision, ROC and AUC 

We calculated precision value and recall value using 
confusion matrix for test-set and we plot Table 4 to illustrate 
the recall and precision values on test set. We also plot the 

Models Validation
-Accuracy 

Test-
Accuracy 

Loss 

CNN 95.1% 94.5% 0.190 
DNN 72.5% 71.9% 1.048 

Vanilla 57.3% 56.7% 3.640 



Precision-Recall curve illustrated in Fig. 8, 9 and 10 and the 
ROC/AUC curve in Fig. 11. 

 
Fig.8. Recall-Precision curve for CNN 
 

 
                   Fig.9. Recall-Precision curve for DNN 
 

 
Fig.10. Recall-Precision curve for Vanilla 

 
Table 4: Precision Value and Recall Value for 3 models 
                
 
 
 
 

 
 
These results indicate that CNN is more effective than 

DNN and Vanilla, giving 18.6% relative improvement over 
DNN and 72.3% over Vanilla on precision value; 37.4% over 

DNN and 61.8% over Vanilla on recall value, where high 
precision relates to a low false positive rate, and high recall 
relates to a low false negative rate. 

 
   Fig.11. ROC/AUC Curves comparing 3 models 

 
The precision-recall curve shows the trade-off between 

precision and recall for different threshold. CNN has the 
highest area under the curve, representing both high recall and 
high precision. This means that our CNN model is returning 
accurate results (high precision), as well as returning a 
majority of all positive results (high recall). 

ROC/AUC curve shows that CNN model achieves a much 
higher AUC, and gains dramatically at a very low false 
positive rate, which is a desirable property for speech 
command system.  

 
Reconfiguration Ability 
We have also tested other labels besides 
“up”/“down”/“left”/“right”, in order to test the reconfiguration 
ability of our CNN models. The result is illustrated in Table 5, 
indicating our CNN model can maintain high accuracy with 
regard to different labels and different number of labels. 
 

Table 5: Accuracy for different labels 

 

VI.  CONCLUSION AND FUTURE WORK 
In this project, we used 3 models for KWS task: Vanilla, 

DNN and CNN. All of these 3 models exploit softmax 
classifier and MFCC feature extraction. The experiment results 
show that CNN model outperforms the other two models and 
achieves 31.43% and 66.67% relative improvement with regard 
to DNN and Vanilla in accuracy; 82% and 94.8% in loss; 18.6% 
and 72.3% in precision value; and 37.4% and 61.8% in recall 
value. One limitation of our CNN model is the huge number of 
multiplies in the second ConvLayer because of the 3-
dimentional inputs spanning across time, frequency and feature 
maps. So our next step is to dive into some new CNN 
architectures with fewer multiplies and thus make it feasible to 
work on some power-constrained devices. 

 

 

 CNN DNN Vanilla 
Precision 

Value 0.9330 0.7866 0.5416 

Recall 
Value 0.9280 0.6754 0.5734 

Labels Yes/No Up/Down/ 
Left/Right 

0-9 

Accuracy 95.7% 94.5% 93% 



 

 

 CONTRIBUTIONS 
Zixuan dived into researches about feature extraction and 

implemented Vanilla and DNN models, Xuejiao dived into 
training methodology, trained the hyper-parameters, 
implemented CNN models and evaluated the performance 
metrics. The team worked together to run the training, process 
result data, plot curves and tables, as well as make poster and 
write the final report. We share ideas through frequent 
discussions and cooperate each other. 
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