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Abstract—This paper presents a new approximate Bayesian
estimator for enhancing a noisy speech signal. The speech model
is assumed to be a Gaussian mixture model (GMM) in the
log-spectral domain. This is in contrast to most current models in
frequency domain. Exact signal estimation is a computationally
intractable problem. We derive three approximations to enhance
the efficiency of signal estimation. The Gaussian approximation
transforms the log-spectral domain GMM into the frequency do-
main using minimal Kullback–Leiber (KL)-divergency criterion.
The frequency domain Laplace method computes the maximum
a posteriori (MAP) estimator for the spectral amplitude. Corre-
spondingly, the log-spectral domain Laplace method computes the
MAP estimator for the log-spectral amplitude. Further, the gain
and noise spectrum adaptation are implemented using the ex-
pectation–maximization (EM) algorithm within the GMM under
Gaussian approximation. The proposed algorithms are evaluated
by applying them to enhance the speeches corrupted by the
speech-shaped noise (SSN). The experimental results demonstrate
that the proposed algorithms offer improved signal-to-noise ratio,
lower word recognition error rate, and less spectral distortion.

Index Terms—Approximate Bayesian estimation, Gaussian mix-
ture model (GMM), speech enhancement.

I. INTRODUCTION

I N real-world environments, speech signals are usually cor-
rupted by adverse noise, such as competing speakers, back-

ground noise, or car noise, and also they are subject to distortion
caused by communication channels; examples are room rever-
beration, low-quality microphones, etc. Other than specialized
studios or laboratories when audio signal is recorded, noise is
recorded as well. In some circumstances such as cars in traffic,
noise levels could exceed speech signals. Speech enhancement
improves the signal quality by suppression of noise and reduc-
tion of distortion. Speech enhancement has many applications;
for example, mobile communications, robust speech recogni-
tion, low-quality audio devices, and hearing aids.
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Because of its broad application range, speech enhancement
has attracted intensive research for many years. The difficulty
arises from the fact that precise models for both speech signal
and noise are unknown [1], thus speech enhancement problem
remains unsolved [2]. A vast variety of models and speech en-
hancement algorithms are developed which can be broadly clas-
sified into two categories: single-microphone class and multi-
microphone class. While the second class can be potentially
better because of having multiple inputs from microphones, it
also involves complicated joint modeling of microphones such
as beamforming [2]–[4]. Algorithms based on a single micro-
phone have been a major research focus, and a popular subclass
is spectral domain algorithms.

It is believed that when measuring the speech quality, the
spectral magnitude is more important than its phase. Boll
proposed the spectral subtraction method [5], where the signal
spectra are estimated by subtracting the noise from a noisy
signal spectra. When the noisy signal spectra fall below the
noise level, the method produces negative values which need
to be suppressed to zero or replaced by a small value. Alterna-
tively, signal subspace methods [6] aim to find a desired signal
subspace, which is disjoint with the noise subspace. Thus, the
components that lie in the complementary noise subspace can
be removed. A more general task is source separation. Ideally,
if there exists a domain where the subspaces of different signal
sources are disjoint, then perfect signal separation can be
achieved by projecting the source signal onto its subspace [7].
This method can also be applied to the single-channel source
separation problem where the target speaker is considered
as signal and the competing speaker is considered as noise.
Other approaches include algorithms based on audio coding
algorithms [8], independent component analysis (ICA) [9], and
perceptual models [10].

Performance of speech enhancement is commonly evaluated
using some distortion measures. Therefore, enhanced signals
can be estimated by minimizing its distortion, where the expec-
tation value is utilized, because of the stochastic property of
speech signal. Thus, statistical-model-based speech enhance-
ment systems [11] have been particularly successful. Statistical
approaches require prespecified parametric models for both the
signal and the noise. The model parameters are obtained by
maximizing the likelihood of the training samples of the clean
signals using the expectation–maximization (EM) algorithm.
Because the true model for speech remains unknown [1], a
variety of statistical models have been proposed. Short-time
spectral amplitude (STSA) estimator [12] and log-spectral
amplitude estimator (LSAE) [13] assume that the spectral co-
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efficients of both signal and noise obey Gaussian distribution.
Their difference is that STSA minimizes the mean square error
(MMSE) of the spectral amplitude while the LSAE uses the
MMSE estimator of the log-spectra. LSAE is more appropriate
because log-spectrum is believed more suitable for speech
processing. Hidden Markov model (HMM) is also developed
for clean speech. The developed HMM with gain adaptation
has been applied to the speech enhancement [14] and to the
recognition of clean and noisy speech [15]. In contrast to the
frequency-domain models [12]–[15], the density of log-spectral
amplitudes is modeled by a Gaussian mixture model (GMM)
with parameters trained on the clean signals [16]–[18]. Spec-
trally similar signals are clustered and represented by their
mixture components. Though the quality of fitting the signal
distribution using the GMM depends on the number of mix-
ture components [19], the density of the speech log-spectral
amplitudes can be accurately represented with very small
number of mixtures. However, this approach leads to a complex
model in the frequency domain and exact signal estimation
becomes intractable; therefore, approximation methods have
been proposed. The MIXMAX algorithm [16] simplifies the
mixing process such that the noisy signal takes the maximum
of either the signal or the noise, which offers a closed-form
signal estimation. Linear approximation [17], [18] expands
the logarithm function locally using Taylor expansion. This
leads to a linear Gaussian model where the estimation is easy,
although finding the point of Taylor expansion needs iterative
optimization. The spectral domain algorithms offer high quality
speech enhancement while remaining low in computational
complexity.

In this paper, different from the frequency-domain models
[12]–[15], we start with a GMM in the log-spectral domain as
proposed in [16]–[18]. Converting the GMM in the log-spec-
tral domain into the frequency domain directly produces a mix-
ture of log-normal distributions which causes the signal esti-
mation difficult to compute. Approximating the logarithm func-
tion [16]–[18] is accurate only locally for a limited interval and
thus may not be optimal. We propose three methods based on
Bayesian estimation. The first is to substitute the log-normal
distribution by an optimal Gaussian distribution in the Kull-
back–Leiber (KL) divergence [20] sense. This way in the fre-
quency domain, we obtain a GMM with a closed-form signal
estimation. The second approach uses the Laplace method [21],
where the spectral amplitude is estimated by computing the
maximum a posteriori (MAP). The Laplace method approxi-
mates the posterior distribution by a Gaussian derived from the
second-order Taylor expansion of the log likelihood. The third
approach is also based on Laplace method, but the log-spectra
of signals are estimated using the MAP. The spectral amplitudes
are obtained by exponentiating their log-spectra.

The statistical approaches discussed above rely on parame-
ters estimated from the training samples that reflect the statis-
tical properties of the signal. However, the statistics of the test
signals may not match those of the training signals perfectly.
For example, movement of the speakers and changes of the
recording conditions are causes of mismatches. Such difficulty
can be overcome by introducing parameters that adapt to the en-
vironmental changes. Gain and noise adaptation partially solves

Fig. 1. Diagram for the relationship among the time domain, the frequency
domain, the log-spectral domain, and the cepstral domain.

this problem [14], [15]. Different from the aspect of audio gain
estimation in [12], [22] the gain here means the energy of sig-
nals corresponding to the volume of the audio. In [17], noise
estimation is proposed, but the gain is fixed to 1. We propose an
EM algorithm with efficient gain and noise estimation under the
Gaussian approximation.

The paper is organized as the follows. In Section II, speech
and noise models are introduced. In Section III, the proposed al-
gorithms are derived in detail. In Section IV, an EM algorithm
for learning gain and noise spectrum under the Gaussian approx-
imation is presented. Section V shows the experimental results
and comparisons to other methods applied to enhance the speech
corrupted by speech-shaped noise (SSN). Section VI concludes
the paper.

Notations: We use or to denote the variables derived
from the clean signal, or to denote the variables derived
from the noisy signal, and or to denote the variables de-
rived from the noise. The small letters with square brackets,

and , denote time-domain variables. The capital letters,
and , denote the fast Fourier transform (FFT) coeffi-

cients, the small letters, and , denote the log-spectral
amplitudes, and the letters with superscript and ,
denote the cepstral coefficients. The subindex is the frequency
bin index. denotes the gain and denotes its complex con-
jugate. denotes the Gaussian distribution with mean

and precision , which is defined as the inverse of covariance
. The small letter denotes the mixture

component (state index). and denote the mean and the
precision of the distribution for the clean signal log-spectrum

, and denotes the precision of the dis-
tribution for the noise FFT coefficients.

II. PRIOR SPEECH MODEL AND SIGNAL ESTIMATION

A. Signal Representations

Let be the time-domain signal. The FFT1 coefficients
can be obtained by applying the FFT on the segmented

and windowed signal . The log-spectral amplitude is com-
puted as the logarithm of the magnitude of the FFT coefficients,

. The cepstral coefficients are computed by
taking the inverse FFT (IFFT2 ) on the log-spectral amplitudes

. Fig. 1 shows the relationship among different domains. Note
that for the FFT coefficients, the th component is the com-
plex conjugate of . Thus, we only need to keep the first

components, because the rest provides no additional
information, and IFFT contains the same property. Due to this
symmetry, the cepstral coefficients are real.

1The FFT is � � ����� .
2The IFFT is ���� � ����� � � .
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B. Speech and Noise Models

We consider the clean signal is contaminated by statisti-
cally independent and zero mean noise in the time domain.
Under the assumption of additive noise, the observed signal can
be described by

(1)

where is the impulse response of the filter and denotes
convolution. Such signal is often processed in frequency domain
by applying FFT

(2)

where denotes the frequency bin and is the gain. In this
paper, we will focus on stationary channel, where is time-
independent.

Statistical models characterize the signals by its probability
density function (pdf). The GMM, provided a sufficient number
of mixtures, can approximate any given density function to ar-
bitrary accuracy, when the parameters (weights, means, and co-
variances) are correctly chosen [19, p. 214]. The number of pa-
rameters for GMM is usually small and can be reliably estimated
using the EM algorithm [19]. Here, we assume the log-spectral
amplitudes obey a GMM

(3)

where is the state of the mixture component. For state
denotes a Gaussian with mean and

precision defined as the inverse of the covariance

(4)

Though each frequency bin is statistically independent for state
, they are dependent overall because the marginal density

does not factorize.
Use the definition of log-spectrum can

be written as , where and
are its real part and imaginary part, is its

phase. Assume that the phase is uniformly distributed
, and the pdf for is given in (4), we compute the pdf

for the FFT coefficients as

(5)

where the Jacobian
. We call this density log-normal, because the loga-

rithm of a random variable obeys a normal distribution. The fre-

quency-domain model is preferred compared to the log-spectral
domain because of simple corruption dynamics in (2).

We consider a noise process independent on the signal and
assume the FFT coefficients obey a Gaussian distribution with
zero mean and precision matrix

(6)

Note that this Gaussian density is for the complex variables. The
precisions satisfy . In contrast,
(4) is Gaussian density for the log-spectrum which is a real
random variable.

The parameters , and of speech model given in
(3) are estimated from the training samples using an EM algo-
rithm. The details for EM algorithm can be found in [19]. The
precision matrix of the noise model can
be estimated from either pure noise or the noisy signals.

C. Signal Estimation

Under the assumption that the noise is independent on the
signal, the full probabilistic model is

(7)

Signal estimation is done as a summation of the posterior
distributions of a signal

(8)

For example, the MMSE estimator of a signal is given by

(9)

where is the signal estimator for state . This signal estimator
makes intuitive sense. Each mixture component enhances the
noisy signal separately. Because the hidden state is unknown,
the MMSE estimator consists of the average of the individual
estimators , weighted by the posterior probability .
The block diagram is shown in Fig. 2.

The MMSE estimator suggests a general signal estimation
method for the mixture models. First, an estimator based on each
mixture state is computed. Then the posterior state proba-
bility is calculated to reflect the contribution from state
. Finally, the system output is the summation of the estima-

tors for the states, weighted by the posterior state probability.
However, such a straightforward scheme cannot be carried out
directly for the model considered. Neither the individual esti-
mator nor the posterior state probability is easy to
compute. The difficulty originates from the log-normal distribu-
tions for speech in the frequency domain. We propose approxi-
mations to compute both terms. Because we assume a diagonal
precision matrix for in the GMM, can be estimated sep-
arately for each frequency bin .
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Fig. 2. Block diagram for speech enhancement based on mixture models. Each
mixture component enhances the signal separately. The signal estimator �� is
computed by the summation of individual estimator weighted by its posterior
probability ��� � ��.

III. SIGNAL ESTIMATION BASED ON APPROXIMATE

BAYESIAN ESTIMATION

Intractability often limits the application of sophisticated
models. A great amount of research has been devoted to develop
accurate and efficient approximations [20], [21]. Although there
are popular methods that have been applied successfully, the
effectiveness of such approximations is often model dependent.
As indicated in (9), two terms, and , are required.
Three algorithms are derived to estimate both terms. One is
based on Gaussian approximation. The other two methods are
based on Laplace methods in the time-frequency domain and
the log-spectral domain.

A. Gaussian Approximation (Gaussian)

As shown in Section II-B, the mixture of log-normal distribu-
tions for FFT coefficients makes the signal estimation difficult.
If we substitute the log-normal distribution in (5) by a
Gaussian for each state , the frequency domain model becomes
a GMM, which is analytically tractable.

For each state , we choose the optimal Gaussian that mini-
mizes the KL divergence [23]

(10)

where is non-negative and equals to zero if and only if
equals to almost surely. Note that is asymmetric about its
arguments and , and is chosen because a closed-
form solution for exists.

It can be shown that the optimal Gaussian that minimizes
the KL-divergence having mean and covariance corresponding
to those of the conditional probability in state . The
mean of is zero due the assumption of a uniform phase
distribution. The second-order moments are

(11)

The Gaussian minimizes .
Under the Gaussian approximation, we have converted the

GMM in log-spectral domain into a GMM in frequency domain.
We denote this converted GMM by

(12)

This approach avoids the complication from the log-normal dis-
tribution and offers efficient signal enhancement.

Under the assumption of a Gaussian noise model in (6), the
posterior distribution over for state is computed as

(13)

It is a Gaussian with precision and mean given by

(14)

(15)

where is the covariance of the speech prior and is the
precision of noise pdf. Note that we have used the approximated
speech prior in (13). The individual signal estimator
for each state is given by (15).

The posterior state probability is computed

(16)

using the Bayes’ rule. Under the speech prior in (12),
is computed as

(17)

where the precision is given by

(18)

Using (9) and substituting in (15), in (16), the
signal estimation function can be written as

(19)

Each individual estimator has resembled the power response of
a Wiener filter and is a linear function of . Note that the state
probability depends on ; therefore, the signal estimator in (19)
is a nonlinear function of . This is analogous to a time-varying
Wiener filter where the signal and noise power is known or can
be estimated from a short period of the signal such as using a
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decision directed estimation approach [12], [22]. Here, the tem-
poral variation is integrated through the changes of the posterior
state probability over time.

B. Laplace Method in Frequency Domain (LaplaceFFT)

The Laplace method approximates a complicated distribution
using a Gaussian around its MAP. This method suggests the
MAP estimator for the original distribution which is equivalent
to the more popular MMSE estimator of the resulted Gaussian.
Computing the MAP can be considered as an optimization
problem and many optimization tools can be applied. We use
the Newton’s method to find the MAP. The Laplace method is
also applied to compute the posterior state probability which
requires an integration over a hidden variable . It expands
the logarithm of the integrand around its mode using Taylor
series expansion, and transforms the process into a Gaussian
integration which has a closed-form solution. However, such
a method for computing the posterior state probability is not
accurate for our problem and we use an alternative approach.
The final signal estimator is constructed using (9).

We derive the MAP estimator for each state . The loga-
rithm of the posterior signal pdf, conditioned on state , is given
by

(20)

where is a constant independent on . It is more convenient
to represent using its magnitude and phase

, and we compute the MAP estimator for the magnitude
and phase for each state

(21)

Using (20) and neglecting the constant , maximizing (21) is
equivalent to minimizing the function defined by

(22)

where . It is obvious from the above
equation that the MAP estimator for is , which is
independent on state , and the magnitude estimator mini-
mizes

(23)

where . The minimization over does not have
an analytical solution, but it can be solved with the Newton’s
method. For this, we need the first-order and second-order
derivatives of with respect to

(24)

(25)

Then, the Newton’s method iterates

(26)

The absolute value of indicates the search of the minima of
. The denotes the learning rate.
Newton’s method is sensitive to the initialization and may

give local minima. The two squared terms in (23) indicate that
the optimal estimator is bounded between and .
We use both values to initialize and select the one that
produces a smaller . Empirically, we observe that this
scheme always finds a global minimum. The first term in (23)
is quadratic; thus, Newton’s method converges to the optimal
solution faster, less than five iterations for our case, than other
methods such as gradient decent.

Computing the posterior state probability requires
the knowledge of . Marginalization over gives

(27)

However, because of the log-normal distribution
provided in (5), the integration cannot be solved with a
closed-form answer. Either numerical methods or approxi-
mations are needed. Numerical integration is computationally
expensive, leaving the approximation more efficient. We
propose the following two approaches based on the Laplace
method and Gaussian approximation.

1) Evaluate Using the Laplace Method: The
Laplace method is widely used to approximate integrals with
continuous variables in statistical models to facilitate prob-
abilistic inference [21] such as computing the high order
statistics. It expands the logarithm of the integrand up to
its second order, leading to a Gaussian integral which has a
closed-form solution. We rewrite (27) as

(28)

where we define

(29)

and . The Laplace
method expands the logarithm of the integrand around its
minimum up to the second order and carries out a Gaussian
integration

(30)

where is the Hessian of evaluated at . Denote
by its real part and imaginary part

, its magnitude by . is computed as

(31)
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(32)

The and here are defined as

(33)

(34)

The determinant of Hessian is

(35)

Thus, the marginal probability is

(36)

This gives

(37)

The Laplace method in essence approximates the posterior
using a Gaussian density. This is very effective

in Bayesian networks, where the training set includes a large
number of samples. The posterior distribution of the (hyper-)
parameters has a peaky shape that closely resembles a Gaussian.
The Laplace method has an error that scales as , where

is the number of samples [21]. However, the estimation here
is based on a single sample . Further, the normalization factor
of in (36) depends on the state , but it is ignored. Thus,
this approach does not yield good experimental results and we
derive another method.

2) Evaluate Using Gaussian Approximation: As dis-
cussed in Section III-A, the log-normal distribution
has a Gaussian approximation
given in (12). Thus, we can compute the marginal distribution

for state as

(38)

where the precision is given in (18). The posterior state
probability is obtained using the Bayes’ rule. It is

(39)

This approach uses the same procedure shown in Section III-A.

The signal estimator is the summation of the MAP estimator
for each state weighted by the posterior state proba-

bility in (39)

(40)

The MAP estimator for phase, , is utilized.

C. Laplace Method in Log-Spectral Domain (LaplaceLS)

It is suggested that the human auditory system perceives a
signal on the logarithmic scale, therefore log-spectral analysis
such as LSAE [13] is more suitable for speech processing.
Thus, we can expect better performance if the log-spectra can
be directly estimated. The idea is to find the log-amplitude

that maximizes the log posterior probability
given in (20). Note that is not the MAP of

. A similar case is LSAE [13], where the
expectation of the log-spectral error is taken over rather
than . Optimization over also has the advantage
of avoiding negative amplitude due to local minima.

Substituting into (20), we compute the MAP
estimator for the phase and log-amplitude . Note that the op-
timal phase is that of the noisy signal, . The MAP
estimator for the log-amplitude maximizes (20), which is equiv-
alent to minimizing

(41)

where , and can be minimized using Newton’s
method. The first- and second-order derivatives are given by

(42)

(43)

The Newton’s method updates the log-amplitude as

(44)

where is the learning rate, and is the regularization to avoid
divergence when is close to zero. This avoids the numerical
instability caused by the exponential term in (41).

In the experiment, we use the noisy signal log-spectra for
initialization, . We set , and
run ten Newton’s iterations.

We use the same strategy as described in Section III-B.2 to
compute using (39). The signal estimator follows

(45)

(46)

The MAP estimator of phase from the noisy signal is used.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on January 28, 2009 at 13:36 from IEEE Xplore.  Restrictions apply.



30 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 1, JANUARY 2009

In contrast to (40), where the amplitude estimators are aver-
aged, (45) provides the log-amplitude estimator. The magnitude
is obtained by taking the exponential. The exponential function
is convex; thus, (45) provides a smaller magnitude estimation
than (40) when . Furthermore, this log-spectral
estimator fits a speech recognizer, which extracts the Mel fre-
quency cepstral coefficients (MFCCs).

IV. LEARNING GAIN AND NOISE WITH

GAUSSIAN APPROXIMATION

One drawback of the system comes from the assumption that
the statistical properties of the training set match those of the
testing set, which means a lack of adaptability. However, the
energy of the test signals may not be reliably estimated from a
training set because of uncontrolled factors such as variations of
the speech loudness or the distance between the speaker and mi-
crophone. This mismatch results in poor enhancement because
the pretrained model may not capture the statistics of samples
under the testing conditions. One strategy to compensate for
these variations is to estimate the gain instead of a fixed value
of 1 used in the previous sections. Two conditions will be con-
sidered: frequency independent gain, which is a scalar gain and
frequency dependent gain. Gain-adaptation needs to carry out
efficiently. For the signal prior given in (3), it is difficult to es-
timate the gain because of the involvement of log-normal dis-
tributions. See Section II-B. However, under Gaussian approxi-
mation, the gain can be estimated using the EM algorithm.

Recall that the acoustic model is as
given in (2). If has the form of GMM and is
Gaussian, the model becomes exactly a mixture of factor
analysis (MFA) model. The gain can be estimated in the
same way as estimating a loading matrix for MFA. For this
purpose, we take the approach in Section III-A and approx-
imate the log-normal pdf by a normal distribution

, where the signal covariance
is given in (11). In addition, we assume additive Gaussian noise
as provided in (6). Treating as a hidden variable, we derive
an EM algorithm, which contains an expectation step (E-step)
and a maximization step (M-step), to estimate the gain and
the noise spectrum .

A. EM Algorithm for Gain and Noise Spectrum Estimation

The data log-likelihood denoted by is

where is the frame index. The above inequality is true for all
choices of the distribution . When equals the
posterior probability , the inequality becomes an
equality. The EM algorithm is a typical technique to maximize
the likelihood. It iterates between updating the auxiliary distri-
bution (E-step) and optimizing the model parameters

(M-step), until some convergence criterion is satisfied.

The E-step computes the posterior distribution over
with gain

fixed. And is computed as

(47)

Note we use the approximated signal prior given in
(12). Thus, the computation is a standard Bayesian inference in
a Gaussian system, and one can show that

, whose mean and precision are
given by

(48)

(49)

Here, denotes the complex conjugate of . We point out
that the precisions are time-independent while the means are
time dependent.

The posterior state probability is computed
as

(50)

The M-step updates the gain and noise spectrum
with fixed. Now we consider two con-

ditions: frequency-dependent gain and frequency-independent
gain.

Frequency Independent Gain: is scalar, its update rule is

(51)

Frequency Dependent Gain: is a
vector. The update rule is, for

(52)

The update rule for the precision of noise is

(53)

The goal of the EM algorithm is to provide an estimation
for the gain and the noise spectrum. Note that it is not neces-
sary to compute the intermediate results in every iteration.
Thus, substantial computation can be saved if we substitute (49)
into the learning rules. This significantly improves the compu-
tational efficiency and saves memory. After some mathematical
manipulation, the EM algorithm for the frequency dependent
gain is as follows.

1) Initialize and .
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Fig. 3. Block diagram of EM algorithm for the gain and noise spectrum esti-
mation. The E-step, computing ���� � �����, and M-step, updating � and �,
iterate until convergence.

2) Compute using (50).
3) Update the precisions using (48).
4) Update the gain

(54)

5) Update the noise precision

(55)

6) Iterate step 2), 3), 4), and 5) until convergence.
For frequency-independent gain, the gain is updated as fol-

lows:

(56)

The block diagram is shown in Fig. 3. In the above EM algo-
rithm, is time independent; thus, it is computed only once
for all the frames, and is computed in advance.

In our experiment, because the test files are 1–2 seconds long
segments, the parameters can not be reliably learned using a
single segment. Thus, we concatenate four segments as a testing
file. The gain is initialized to be 1. The noise covariance is ini-
tialized to be 30% of the signal covariance for all signal-to-noise
ratio (SNR) conditions, which does not include any prior SNR
knowledge. Because the EM algorithm for estimating the gain
and noise is efficient, we set strict convergence criteria: a min-
imum of 100 EM iterations, the change of likelihood less than
1 and the change of gain less than 10 per iteration.

B. Identifiability of Model Parameters

The MFA is not identifiable because it is invariant under the
proper rescaling of the parameters. However, in our case, the pa-
rameters and are identifiable, because the model for speech,
a GMM trained by clean speech signals, remains fixed during
the learning of parameters. The fixed speech prior removes the
scaling uncertainty of the gain . Second, the speech model is

a GMM while the noise is modeled by a single Gaussian. The
structure of speech, captured by the GMM through its higher
order statistics, does not resemble a single Gaussian. This makes
the noise spectrum identifiable. As shown in our experiments,
the gain and noise spectrum are reliably estimated using
the EM algorithm.

V. EXPERIMENTS AND RESULTS

We evaluate the performances of the proposed algorithms by
applying them to enhance the speeches corrupted by various
levels of SSN. The SNR, spectral distortion (SD), and word
recognition error rate serve as the criteria to compare them with
the other benchmark algorithms quantitatively.

A. Task and Dataset Description

For all the experiments in this paper, we use the mate-
rials provided by the speech separation challenge [24]. This
data set contains six-word sentences from 34 speakers. The
speech follows the sentence grammar, $command $color
$preposition $letter $number $adverb . There are 25

choices for the letter (a–z except w), ten choices for the number
(0–9), four choices for the command (bin, lay, place, set), four
choices for the color (blue, green, red, white), four choices
for the preposition (at, by, in, with), and four choices for the
adverb (again, now, please, soon). The time-domain signals
are sampled at 25 kHz. Provided with the training samples,
the task is to recover speech signals and recognize the key
words (color, letter, digit) in the presence of different levels of
SSN. Fig. 4 shows the speech and the SSN spectrum averaged
over a segment under 0-dB SNR. The average spectra of the
speech and the noise have the similar shape; hence, the name
speech-shaped noise. The testing set includes the noisy signals
under four SNR conditions, 12 dB, 6 dB, 0 dB, and 6 dB,
each consisting of 600 utterances from 34 speakers.

B. Training the Speech Model

The training set consists of clean signal segments that are 1–2
seconds long. They are used to train our prior speech model.
To obtain a reliable speech model, we randomly concatenate
2 minutes of signals from the training set and analyze them
using Hanning windows, each of size 800 samples and overlap-
ping by half of the window. Frequency coefficients are obtained
by performing a 1024 points FFT to the time-domain signals.
Coefficients in the log-spectral domain are obtained by taking
the logarithm of the magnitude of the FFT coefficients. Due to
FFT/IFFT symmetry, only the first 513 frequency components
are kept. Cepstral coefficients are obtained by applying IFFT on
the log-spectral amplitudes.

The speech model for each speaker is a GMM with 30 states
in the log-spectral domain. First, we take the first 40 cepstral
coefficients and apply a -mean algorithm to obtain
clusters. Next, the outputs of the -mean clustering are used to
initialize the GMM on those 40 cepstral coefficients. Then, we
convert the GMM from the cepstral domain into the log-spectral
domain using FFT. Finally, the EM algorithm initialized by the
converted GMM is used to train the GMM in the log-spectral
domain. After training, this log-spectral domain GMM with 30
states for speech is fixed when processing the noisy signals.
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Fig. 4. Plot of SSN spectrum (dotted line) and speech spectrum (solid line)
averaged over one segment under 0-dB SNR. Note the similar shapes.

C. Benchmark Algorithms for Comparison

In this section, we present the benchmark algorithms with
which we compare the proposed algorithms: the Wiener filter,
the perceptual model [10], the linear approximation [17], [18],
and the model based on super Gaussian prior [25]. We assume
that parameters of the model for noise are available, and they
are estimated by concatenating 50 segments in the experiment.

1) Wiener Filter (Wiener): Time-varying Wiener filter as-
sumes that both of the signal and noise power are known, and
they are stationary for a short period of time. In the experiment,
we first divide the signals into frames of 800 samples long with
half overlapping. Both speech and noise are assumed to be sta-
tionary within each frame. To estimate speech and noise power,
for each frame, the 200-sample-long subframes are chosen with
half overlapping. On the subframes, Hanning windows are ap-
plied. Then, 256 points FFT are performed on those subframes
to obtain the frequency coefficients. The power of signal within
each frame for frequency bin , denoted by , is computed
by averaging the power of FFT coefficients over all the sub-
frames that belong to the frame . The same method is used to
compute the noise power denoted by . The signal estimation
is computed as

(57)

where is the subframe index and denotes the frequency
bins. After IFFT, in the time domain, each frame can be syn-
thesized by overlap-adding the subframes, and the estimated
speech signal is obtained by overlap-adding the frames.

Because the signal and noise powers are derived locally for
each frame from the speech and noise, the Wiener filter contains
strong speech prior in detail. Its performance can be regarded as
a sort of experimental upper bound for the proposed methods.

2) Perceptual Model (Wolfe): The perceptually motivated
noise reduction technique can be seen as a masking process. The
original signal is estimated by applying some suppression rules.

For comparison, we use the method described in [10]. The al-
gorithm estimates the spectral amplitude by minimizing the fol-
lowing cost function:

if
otherwise.

(58)

where is the estimated spectral amplitude, and is the true
spectral amplitude. This cost function penalizes the positive and
negative errors differently, because positive estimation errors
are perceived as additive noise and negative errors are perceived
as signal attenuation [10]. The stochastic property of speech is
that real spectral amplitude is unavailable; therefore, is com-
puted by minimizing the expected cost function

(59)

where is the phase, and is the posterior signal
distribution. Details of the algorithm can be found in [10]. The
MATLAB code is available online [26]. The original code adds
synthetic white noise to the clean signal, we modified it to add
SSN to corrupt a speech at different SNR levels.

The reason we chose this method is because we hypothesize
that this spectral analysis-based approach fails to enhance the
SSN corrupted speech, due to the spectral similarity between
the speech and noise as shown in Fig. 4. This method, motivated
from a different aspect by human perception, also serves as a
benchmark with which we can compare our methods.

3) Linear Approximation (Linear): It can be shown that the
relationship among the log-spectra of the signal , the noisy
signal , and the noise is given by [17], [18]

(60)

where is an error term.
The speech model remains the same which is GMM given by

(3), but the noise log-spectrum has a Gaussian density with the
mean and precision , while the error term obeys a Gaussian
with zero-mean and precision

(61)

(62)

This essentially assumes a log-normal pdf for the noise FFT
coefficients, in contrast to the noise model in (6).

Linear approximation to (60) has been proposed in [17]
and [18] to enhance the tractability. Note that there are
two hidden variables and due to the error term . Let

. Define and
its derivatives

. Using (60) and expanding
around linearly, becomes a linear

function of

(63)
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where

(64)

The choice for will be discussed later. Now we have a
linear Gaussian system and the posterior distribution over
is Gaussian, . The mean and the precision
satisfy

(65)

(66)

where the means of GMM for the speech and
noise log-spectrum, and the precisions.

The accuracy of linear approximation strongly depends on the
point which is the point of expansion for . A reasonable
choice is the MAP. Substitute in (65) and use

, we can obtain an iterative update for

(67)

The is the learning rate, and is introduced to avoid oscillation.
This iterative update gives the signal log-spectral estimator, ,
which is the first element of the .

The state probability is computed as, per Bayes’ rule,
. The state-dependent probability is

(68)

where the mean is given in (64) and the precision
.

The log-spectral estimator is . Using the
phase of the noisy signal , the signal estimation in frequency
domain is given by .

It is observed that Newton’s method with learning rate 1 os-
cillates; therefore, we set in our experiments. We ini-
tialize the iteration of (67) with two conditions, and

, and choose the one that offers higher likelihood
value. The number of iterations is 7 which is enough for con-
vergence. Note that the optimization of the two variables and

increases computational cost.
4) Super Gaussian Prior (SuperGauss): This method is de-

veloped in [25]. Let and denote
the real and the imaginary parts of the signal FFT coefficients.
The super Gaussian priors for and obey double-sided
exponential distribution, given by

(69)

(70)

Assume the Gaussian density for the noise
. Here, and are the means of and ,

respectively. Let be the a priori SNR,
be the real part of the noisy signal FFT coefficient. Define

, and . It was
shown in [25, (11)] that the optimal estimator for the real part is

(71)

where denotes the complementary error function. The
optimal estimator for the imaginary part is derived analo-
gously in the same manner. The FFT coefficient estimator is
given by .

D. Comparison Criteria

The performance of the algorithms are subject to some quality
measures. We employ three criteria to evaluate the performances
of all algorithms: SNR, SD, and word recognition error rate. For
all experiments, the estimated signal are normalized such
that it has the same covariance as the clean signal before
computing the signal quality measures.

1) Signal-to-Noise Ratio (SNR): In time domain, SNR is de-
fined by

SNR (72)

where is original clean signal, and is estimated signal.
2) Spectral Distortion (SD): Let and be the cepstral

coefficients of the clean signal and the estimated signal, respec-
tively. The computation of cepstral coefficients is described in
Section II-A. The spectral distortion is defined in [25] by

SD (73)

where the first 16 cepstral coefficients are used.
3) Word Recognition Error Rate: We use the speech recogni-

tion engine provided on the ICSLP website [24]. The recognizer
is based on the HTK package. The inputs of the recognizer in-
clude MFCC, its velocity ( MFCC) and its acceleration (
MFCC) that are extracted from speech waveforms. The words
are modeled by the HMM with no skipover states and two states
for each phoneme. The emission probability for each state is a
GMM of 32 mixtures, of which the covariance matrices are di-
agonal. The grammar used in the recognizer is the same as the
sentence grammar shown in Section V-A. More details about the
recognition engine can be found at [24].

For each input SNR condition, the estimated signals are fed
into the recognizer. A score of is assigned to each ut-
terance depending on how many key words (color, letter, digit)
that are incorrectly recognized. The word recognition error rate
in percentage is the average of the scores of all 600 testing ut-
terances divided by 3.

E. Results

1) Performance Comparison With Fixed Gain and Known
Noise Model: All the algorithms are applied to enhance the
speech corrupted by SSN at various SNR levels. They are com-
pared by SNR, SD, and word recognition error rate. The Wiener
filer, which contains the strong and detailed signal prior from a
clean speech, can be regarded as an experimental upper bound.
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Fig. 5. Spectrogram of a female speech “lay blue with e four again.” (a) Clean
speech. (b) Noisy speech of 6-dB SNR. (c)–(i) Enhanced signals by (c) Wiener
filter, (d) perceptual model (Wolfe), (e) linear approximation (Linear), (f) super
Gaussian prior (SuperGauss), Laplace method in (g) frequency domain (Laplac-
eFFT) and in (h) log-spectral domain (LaplaceLS), (i) Gaussian approximation
(Gaussian).

Fig. 6. Spectrogram of a male speech “lay green at r nine soon.” (a) Clean
speech. (b) Noisy speech of 6-dB SNR. (c)–(i) Enhanced signal by various al-
gorithms. See Fig. 5. (a) Cleen Speech. (b) Noisy Speech. (c) Wiener Filter. (d)
Wolfe. (e) Linear. (f) SuperGauss. (g) LaplaceFFT. (h) LaplaceLS. (i) Gaussian.

Figs. 5 and 6 show the spectrograms of a female speech and a
male speech, respectively. The SNR for the noisy speech is 6 dB.
The Wiener filter can recover the spectrogram of the speech. The
methods based on the models in log-spectral domain (Linear,
LaplaceFFT, LaplaceLS, and Gaussian) can effectively suppress
the SSN and recover the spectrogram. Because the SuperGauss
estimates the real and imaginary parts separately, the spectral
amplitude is not optimally estimated which leads to a blurred
spectrogram. The perceptual model (Wofle99) fails to suppress
SSN because of its spectral similarity to speech.

The SNR of speech enhanced by various algorithms are
shown in Fig. 7(a). Wiener filter performs the best. Laplace
methods (LaplaceFFT and LaplaceLS) are very effective, and
the LaplaceLS is better. This coincides with the belief that the
log-spectral amplitude estimator is more suitable for speech
processing. The Gaussian approximation works comparably
well to the Laplace methods with the advantage of greater
computational efficiency where no iteration is necessary. The
linear approximation provides inferior SNR. The reason is
that this approach involves two hidden variables, which may

Fig. 7. Signal-to-noise ratio, spectrum distortion, and recognition error rate of
speeches enhanced by the algorithms. The speech is corrupted at four input SNR
values. The gain and the noise spectrum are assumed to be known. Wiener:
Wiener filter; Wolfe99: perceptual model; Linear: linear approximation; Super-
Gauss: super Gaussian prior; LaplaceFFT: Laplace method in frequency do-
main; LaplaceLS: Laplace method in log-spectral domain; Gaussian: Gaussian
approximation; NoDenoising: noisy speech input. (a) Signal-to-noise ratio. (b)
Spectral distortion. (c) Recognition error rate.

increase the uncertainty for signal estimation. The SuperGauss
works better than perceptual model (Wolfe99) which fails to
suppress SSN.

The SD of speech enhanced by various algorithms are shown
in Fig. 7(b). The methods that estimate spectral amplitude
(Linear, LaplaceFFT, LaplaceLS) perform close to the Wiener
filter. Because the SupperGauss estimates the real part and
the imaginary part of FFT coefficients separately, it introduces
distortion to the spectral amplitude and gives higher SD. The
perceptual model is not effective to suppress SSN.
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TABLE I
COMPUTATIONAL TIME (SECONDS) OF PROCESSING

10 S OF NOISY SPEECH SAMPLED AT 25 kHz

The word recognition error rate of speech enhanced by
various algorithms are shown in Fig. 7(c). The outstanding
performance of Wiener filter may be considered as an upper
bound. The Linear and LaplaceLS give very low word recogni-
tion error rate in the high SNR range, because they estimate the
log-spectral amplitude, which is a strong fit to the recognizer
input (MFCC). LaplaceLS is better than Linear in the low
SNR range, because Linear involves two hidden variables
to estimate. The LaplaceFFT and Gaussian also improve the
recognition remarkably. Because SuperGauss offers less accu-
rate spectral amplitude estimation and higher SD, it gives lower
word recognition rate. The Wolfe99 is not able to suppress SSN
and the decrease in performance may be caused by the spectral
distortion.

The computation costs of these algorithms are given in
Table I. All algorithms are implemented with MATLAB, and
the experiments run on a 2.66-GHz PC. The methods based
on linear approximation and Laplace method involve iterative
optimization; thus, they are more computationally expensive.
Their efficiency also depends on the number of initializations
and iterations. The methods that do not involve iterations,
Wiener filter, Gaussian, SuperGauss, are much faster.

2) Performance Comparison With Estimated Gain and Noise
Spectrum: The performances of the Gaussian approximation
with the fixed gain versus the estimated gain and noise spectrum
are compared. The SNR, SD, and word recognition error rate of
the enhanced speech are shown in Fig. 8(a)–(c), respectively.
The performances are almost identical, which demonstrate
that, under Gaussian approximation, the learning of gain and
noise spectrum is very effective. Estimation of gain and noise
degrades the performance compared to the scenario of fixed
gain and known noise spectrum very slightly. Furthermore,
with clean signal input, the estimated signal still has 32.71-dB
SNR for scalar gain and 15.32-dB SNR for vector gain. The
recognition error rate is also close to the results of the clean
signal input. The slight degradation in the vector gain case is
because we have more parameters to estimate.

VI. CONCLUSION

We have developed speech enhancement algorithms based
upon approximate Bayesian estimation. These approxima-
tions make the GMM in log-spectral domain applicable for
speech enhancement. The log-spectral domain Laplace method,
which computes the MAP estimator for the log-spectral ampli-
tude, is particularly successful. It offers higher SNR, smaller
recognition error rate, and lower SD. This confirms that the
log-spectrum is more suitable for speech processing. The
estimation of the log-spectral amplitude is a strong fit to the
speech recognizer and significantly improves its performance,

Fig. 8. Signal-to-noise ratio, spectral distortion, and recognition error rate
of speeches enhanced by algorithms based on Gaussian approximation. The
speech is corrupted by SSN. KnownNoise: known gain and noise spectrum;
ScalarGain: estimated frequency-independent gain and noise spectrum; Vector-
Gain: estimated frequency dependent gain and noise spectrum; NoDenoising:
noisy speech input. (a) Signal-to-noise ratio. (b) Spectral distortion. (c) Recog-
nition error rate.

which makes this approach valuable to the recognition of the
noisy speech. However, the Laplace method requires iterative
optimization which increases the computational cost. Com-
pared to the Laplace method, the Gaussian approximation with
a closed-form signal estimation, is more efficient and performs
comparably well. The advantage of fast gain and noise spec-
trum adaptation makes this algorithm more flexible. In the
experiments, the proposed algorithms demonstrate superior
performances over the spectral domain models and are able
to reduce the noise effectively even when its spectral shape is
similar to the speech.
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