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Abstract 

A speech recognition system implements the task of automatically transcribing speech 

into text. As computer power has advanced and sophisticated tools have become 

available, there has been significant progress in this field. But a huge gap still exists 

between the performance of the Automatic Speech Recognition (ASR) systems and 

human listeners. In this thesis, a novel signal analysis technique using Reconstructed 

Phase Spaces (RPS) is presented for speech recognition. The most widely used 

techniques for acoustic modeling are currently derived from frequency domain feature 

extraction. The reconstructed phase space modeling technique taken from dynamical 

systems methods addresses the acoustic modeling problem in the time domain instead. 

Such a method has the potential of capturing nonlinear information usually ignored by 

the traditional linear human speech production model. The features from this time 

domain approach can be used for speech recognition when combined with statistical 

modeling techniques such as Hidden Markov Models (HMM) and Gaussian Mixture 

Models (GMM). Issues associated with this RPS approach are discussed, and 

experiments are done using the TIMIT database. Most of this work focuses on isolated 

phoneme classification, with some extended work presented on continuous speech 

recognition. The direct statistical modeling of RPS can be used for the isolated phoneme 

recognition. The Singular Value Decomposition (SVD) is used to extract frame-based 

features from RPS, and can be applied to both isolated phoneme recognition and 

continuous speech recognition. 
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1. Introduction 

1.1 Overview of Speech Recognition 

1.1.1 Historical Background 

Speech recognition has a history of more than 50 years. With the emerging of 

powerful computers and advanced algorithms, speech recognition has undergone a great 

amount of progress over the last 25 years. The earliest attempts to build systems for 

automatic speech recognition (ASR) were made in 1950s based on acoustic phonetics. 

These systems relied on spectral measurements, using spectrum analysis and pattern 

matching to make recognition decisions, on tasks such as vowel recognition [1]. Filter 

bank analysis was also utilized in some systems to provide spectral information. In the 

1960s, several basic ideas in speech recognition emerged. Zero-crossing analysis and 

speech segmentation were used, and dynamic time aligning and tracking ideas were 

proposed [2]. In the 1970s, speech recognition research achieved major milestones. Tasks 

such as isolated word recognition became possible using Dynamic Time Warping 

(DTW). Linear Predictive Coding (LPC) was extended from speech coding to speech 

recognition systems based on LPC spectral parameters. IBM initiated the effort of large 

vocabulary speech recognition in the 70s [3], which turned out to be highly successful 

and had a great impact in speech recognition research. Also, AT&T Bell Labs began 

making truly speaker-independent speech recognition systems by studying clustering 

algorithms for creating speaker-independent patterns [4]. In the 1980s, connected word 

recognition systems were devised based on algorithms that concatenated isolated words 

for recognition. The most important direction was a transition of approaches from 

template-based to statistical modeling – especially the Hidden Markov Model (HMM) 
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approach [5]. HMMs were not widely used in speech application until the mid-1980s. 

From then on, almost all speech research has involved using the HMM technique. In the 

late 1980s, neural networks were also introduced to problems in speech recognition as a 

signal classification technique. Recent focus is on large vocabulary, continuous speech 

recognition systems. Major contributors in this direction are Defense Advanced Research 

Projects Agency (DARPA), Carnegie Mellon University (the SPHINX system), BBN, 

Lincoln Labs, SRI, MIT (the SUMMIT system), AT&T Bell Labs and IBM.  

 

1.1.2 Automatic Speech Recognition 

A source filter model is often used to describe the speech production mechanism. 

This model has been successful exploited in applications such as speech coding, synthesis 

and recognition for many years [6]. A typical automatic speech recognition system 

consists of the basic components shown in Figure 1. 
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Figure 1 – Basic architecture of speech recognition system 
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Acoustic models include knowledge about phonetics, acoustics, environmental 

variability, and gender and speaker variabilities, etc, while language models include 

knowledge of word possibilities, syntax, and semantics information. The speech signal is 

processed in the signal-processing module that extracts effective feature vectors for the 

decoder. The decoder uses both acoustic and language models to generate the word 

sequence that has the maximum posterior probability for the input feature vectors. Both 

acoustic model and language model can provide information for the adaptation 

component in order to obtain improved performance over time. In our work, we focus on 

the signal-processing module, to study the features from time domain analysis technique. 

This is a dramatically different approach from the existing signal processing method for 

speech recognition applications. 

 

1.1.3 Acoustic Feature Representation  

Traditional acoustic features are derived from the decomposition of the speech signal 

as a source through a linear time varying filter [3, 7, 8]. Figure 2 shows this model, where 

 is the excitation from vocal folds,  is the vocal tract filter and [ ]e n [ ]h n [ ]x n  is the output 

speech signal. Current state-of-the-art acoustic feature representation is based on such a 

speech production model. Because of the time varying nature of speech signals, features 

are calculated on frame-by-frame basis assuming speech signal stationarity within each 

frame. Speech recognizers estimate the filter characteristics and usually ignore the 

excitation because the information for speech recognition mostly depends on vocal tract 

characteristics. Thus, separation between source and filter is one of the important tasks in 

speech processing. 
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e[n] h[n] x[n]e[n] h[n] x[n]
 

Figure 2 – Source-filter model for speech signals 

 
Based on such a model, several acoustic feature representations have emerged for 

speech recognition. Historically, the spectrogram has been a useful representation that 

uses the short-time Fourier analysis. The idea of a spectrogram is to compute a short-time 

Fourier transform at each time/frequency interval. Linear predictive coding (LPC), also 

know as LPC analysis or auto-regression (AR) modeling, is a decomposition technique 

based on an all-pole source-filter model. Acoustic features can be derived from this 

analysis technique as well. However, cepstral analysis is the most frequently used speech 

feature extraction technique and the Mel-Frequency Cepstrum Coeffieient (MFCC) is 

currently the most common feature set. MFCCs are spectral features calculated from 

short-time analysis of speech signal. It approximates the auditory system behavior by 

using the nonlinear frequency scale. Perceptually motivated models, such as Perceptual 

Linear Prediction (PLP) [9, 10], are similar approaches to cepstral analysis but with 

specific modeling of the auditory system. All these approaches emphasize power 

spectrum/frequency domain analysis with perspectives on auditory model approximation. 

Phase information and higher order signal information are ignored in these feature 

representations. 

 

1.2 Nonlinear Signal Processing Techniques 

Nonlinearity exists in signals such as human speech or biomedical signals (EEG, 

ECG). For some signal processing systems, nonlinearity is an essential component. The 
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use of nonlinear techniques in speech processing is a rapidly growing area of research. 

There are large variety of methods found in the literature, including linearization as in the 

field of adaptive filtering [11], and various forms of oscillators and nonlinear predictors 

[12]. Nonlinear predictors are part of the more general class of nonlinear autoregressive 

models. Various approximations for nonlinear autoregressive models have been 

proposed, in two main categories: parametric and nonparametric methods. Parametric 

methods are exemplified by polynomial approximation, locally linear models [13], and 

state dependent models, as well as neural networks. Nonparametric methods include 

various nearest neighbor methods [14] and kernel-density estimates. Another class of 

nonlinear speech processing methods includes models and digital signal processing 

algorithms proposed to analyze nonlinear phenomena of the fluid dynamics type in the 

speech airflow during speech production [15]. The investigation of the speech airflow 

nonlinearities can result in development of nonlinear signal processing systems suitable 

to extract related information of such phenomena. Recent work includes speech 

resonances modeling using AM-FM model [16], measuring the degree of turbulence in 

speech sounds using fractals [17], and applying nonlinear speech features to speech 

recognition [17, 18].   

Our work in speech recognition focuses on integrating techniques from chaos and 

dynamical systems theory to the task of speech recognition. The work utilizes 

Reconstructed Phase Spaces (RPS) from dynamical systems theory [19-21] for signal 

analysis and feature extraction. A detailed discussion of RPSs for speech recognition can 

be found in Chapter 3. 
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1.3 Motivation of Research 

As discussed previously, current speech recognition systems typically use frequency 

domain features, obtained via a frame-based spectral analysis of the speech signal. Such 

frequency domain approaches are constrained by linearity assumptions incurred by the 

source-filter model of speech production. Research has suggested that there is evidence 

of nonlinear behavior in speech signals [22, 23]. The RPS representation is capable of 

preserving the nonlinear dynamics of the signal. This method addresses the problem in 

the time domain instead of the frequency domain so that nonlinear information can be 

captured. The application of RPSs for speech recognition is a new path of research and is 

still in its very early stages. The potential of this method for speech recognition motivates 

the work presented in the thesis. In pursuit of this direction, we have done experiments 

using RPSs for speech recognition tasks such as isolated phoneme classification and 

continuous speech recognition. Because acoustic features are being investigated and 

compared, the evaluation is primarily based on the isolated phoneme classification task. 

 

1.4 Thesis Organization 

The thesis is organized as follows. Chapter 2 gives an overview of conventional 

speech processing and recognition methods. Chapter 3 introduces the RPS approach for 

speech recognition and discusses various issues associated with this technique. Chapter 4 

focuses on developing various frame-based features from RPSs and the implementation 

of speech recognition tasks using these features. Chapter 5 describes experiments and 

presents experimental results. The conclusions and future work are detailed in Chapter 6. 
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2. Speech Processing and Recognition  
 
2.1 Acoustic Modeling  

If an acoustic observation sequence is denoted as 1 2... nx x x=X  and the word sequence 

is , then the maximum posterior probability  is computed as  1 2... mw w w=W ( | )P W X

 ( ) ( | )( | )
( )

P PP
P

=
W X WW X

X
.  (2.1) 

The estimated word sequence  is therefore Ŵ

 ( ) ( | )ˆ arg max ( | ) arg max arg max ( ) ( | ),
( )w w w

P PP P
P

= = =
W X WW W X W X

X
P W  (2.2) 

since the acoustic observation  is fixed.  X

The acoustic model  and the language model  are the two underlying 

challenges to building a speech recognition system.  should take into account 

phonetic variations, speaker variations, and environmental variations. The process of 

finding the best word sequence  given the input speech signal  is a difficult pattern 

classification problem [24], due to the complex and nonstationary nature of the task.  

( | )P X W ( )P W

( | )P X W

W X

The Hidden Markov Model (HMM) is the foundation for acoustic phonetic modeling. 

It incorporates segmentation, time warping, pattern matching, and context knowledge in a 

unified way. It has become the prevailing choice of statistical model for continuous 

speech recognition tasks. Section 2.3 will summarize the HMM in detail. As mentioned 

before, the work of the thesis concentrates on acoustic models of speech. Thus, the 

speech processing and recognition discussed in this chapter involve no language models. 

 



 8
 

2.1.1 Cepstral Processing 

The cepstrum is obtained by taking the inverse Fourier transform of the log spectrum. 

There are two types of cepstrums: complex cepstrum and real cepstrum. Let [ ]x n  denote 

the original signal. The complex cepstrum is defined as: 

  (2.3) 1ˆ[ ] {log( { [ ]})},x n FT FT x n−=

and the real cepstrum is defined as: 

  (2.4) 1[ ] {log(| { [ ]} |)},c n FT FT x n−=

where FT  denotes Fourier transform.  

The cepstrum is a homomorphic transformation [6] that converts a convolution  

 [ ] [ ]* [ ]x n e n h n=  (2.5) 

into a sum in the cepstrum domain 

 ˆˆ ˆ[ ] [ ] [ ].x n e n h n= +  (2.6) 

This type of transformation allows the separation of the source from the filter. In the 

cepstrum domain, the excitation  and filter  are split apart, so we can 

approximately recover both  and  from 

ˆ[ ]e n ˆ[ ]h n

[ ]e n [ ]h n ˆ[ ]x n  by homomorphic filtering.  

The term quefrency is used to represent the independent variable n in  and is 

measured in time units. The log operation in Equation (2.4) combined with two Fourier 

transforms separates the excitation and vocal tract spectrum in the cepstrum domain such 

that the vocal tract information is in the low quefrency and the excitation is in the high 

quefrency. 

[ ]c n

In addition, the complex cepstrum can be obtained from the LPC coefficients by a 

recursive method [6]. Empirical study has shown that a finite number of cepstrum 
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coefficients is sufficient for speech recognition, usually in the range of 12-20 depending 

on the sampling rate and whether or not frequency warping is used. Cepstral coefficients 

tend to be uncorrelated, which is very useful for building machine learning models for 

speech recognition.  

 

2.1.2 Common Features 

Mel-Frequency Cepstrum Coefficients (MFCCs) are related to the real cepstrum of a 

windowed short-time signal derived from the FFT of that signal. It differs from the real 

cepstrum in that a nonlinear frequency scale, the Mel-Frequency scale [25], is used. 

Because this scale is based on the human auditory system, it is beneficial to use such a 

scale for speech recognition tasks.  

MFCCs are computed by using filterbanks. The filterbanks consists of triangular 

filters as shown in Figure 3. Such filters compute the spectrum around each center 

frequency with increasing bandwidths.  

 

……

f

|DFT|

……

f

|DFT|

 
Figure 3 – Triangular filters used in the MFCC computation 



 10
 

After defining the lowest and highest frequencies of the filterbank and the number of 

filters, the boundary frequencies of filterbank are uniformly spaced in the Mel scale, 

which is given by: 

 1127 ln(1 ).
700

fm = +  (2.7) 

The log-energy at the output of each filter is computed afterwards. The mel-frequency 

cepstrum is the Discrete Cosine Transform (DCT) of the filter energy outputs: 

  (2.8) 
1

0
[ ] [ ]cos( ( 1/ 2) / ) 0 ,

M

m
c n S m n m M n Mπ

−

=

= −∑ ≤ <

n

where  is the log-energy at the output of each filter, and M is the number of filters, 

which varies for different implementations from 24 to 40. 

[ ]S m

Usually, only the first 12 cepstrum coefficients (excluding , the 0[0]c th coefficient) 

are used. The advantage of computing MFCC by using filter energies is that they are 

more robust to noise and spectral estimation errors. Although  corresponds to the 

energy measure, it is preferred to calculate log-energy separately for the framed speech 

signal: 

[0]c

  (2.9) 2

1
log [ ].

N

n
E x

=

= ∑

The features outlined above don’t have temporal information. In order to incorporate 

the ongoing changes over multiple frames, time derivatives are added to the basic feature 

vector. The first and second derivatives of the feature are usually called Delta coefficients 

and Delta-Delta coefficients respectively. The Delta coefficients are computed via a 

linear regression formula: 
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 1

2

1

( [ ] [ ])
[ ]

2

k

i
k

i

i c m i c m i
c m

i

=

=

+ − −
∆ =

∑

∑
 (2.10) 

where  is the size of the regression window and  is the  MFCC coefficient. 2k +1 [ ]c m thm

The Delta-Delta coefficients are computed using linear regression of Delta features. 

 A typical speech recognition system has a 39-element feature vector. The feature 

vector consists of 13 static features (12 MFCCs computed from 24 filter banks [26] and 

log energy), 13 delta coefficients (first derivatives of static features) and 13 delta-delta 

coefficients (second derivatives of static features). The complete feature extraction 

procedure for a typical speech recognition system is shown in Figure 4. 

 

Speech 
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Energy
Measure
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Speech 
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Delta

 

Figure 4 – Block diagram of feature extraction for a typical speech recognition system 

 

This thesis uses MFCC features obtained via the above procedure as the baseline for 

all the experiments. 
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2.1.3 Feature Transformation 

To cope with environmental noise, speaker variations and channel distortion, various 

feature transformations can be utilized. By transforming the features that are most 

effective for recognition, the recognition error rate can be further reduced. Sometimes, it 

is also useful to reduce the dimension of the feature vector in order to lower the 

computational cost. Principal Component Analysis (PCA) [24, 27] is such a 

transformation, which is investigated on RPSs in Chapter 3.  

The best criterion for selecting what feature sets to use should be based on reducing 

the recognition error. It is usually hard to evaluate the feature sets systematically 

according to this criterion. Linear Discriminant Analysis (LDA) [24] is a common 

method based on criterion that addresses class separability by using within-class and 

between-class scatter matrices. In a manner similar to PCA, LDA can reduce the 

dimension of the original feature space too. Other feature processing techniques, such as 

frequency warping for vocal tract length normalization (VTLN), have been used to 

reduce interspeaker variability.  

It is of interest to know that various feature transformation methods have limited 

contribution to the reduction of recognition error, typically fewer than 10% on relative 

error [7]. 

 
2.1.4 Variability in Speech 

The current state-of-art speech recognition system still cannot beat human 

performance in most tasks. It remains a challenge to build a recognition system that is 

robust as to different speakers, different languages and speaking styles, and different 

speaking environments. As accuracy and robustness are the most important measures of 
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speech recognition systems, variability in speech signals is a major factor that needs to be 

addressed.   

Variablity in pronunciation exists at the phonetic level as well as word and sentence 

levels. The acoustic realization of a phoneme depends on its left and right context, 

especially in fast speech and spontaneous speech conversation. In continuous speech 

recognition, the same thing happens at the word and sentence levels. Also, interspeaker 

variability affects the performance of speech recognition systems. This is due to the 

differences in vocal tract length, physical characteristics, age, sex, dialect, health, 

education, and talking style, etc. Finally, the variability in environment, especially in 

noisy environments, affects the accuracy of speech recognizer. Environmental noise has 

different types and may come from various sources such as input device, microphone, 

A/D quantization noise, etc. Environmental variability remains one of the most severe 

challenges facing today’s speech recognition system despite the progress made in recent 

years. 

 

2.2 Gaussian Mixture Models 

Gaussian Mixture Models (GMM) are probability density models that comprise a 

number of component Gaussian functions. These component functions are combined to 

provide a multimodal density. They can be used to model almost any probability density 

function (PDF) [28]. GMM is a parametric model and provides flexibility and precision 

in modeling the underlying statistics of sample data. A GMM is defined as: 

  (2.11) ( ) ( ) ( )
1 1

ˆ ˆ ; ,
M M

m m m m m
m m

p w p w
= =

= =∑ ∑x x x µ ΣN ,
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where M is the number of mixtures, ( ); ,m mx µ ΣN  is a normal distribution with mean 

mµ  and covariance matrix , and  is the mixture weight. As seen from the formula, 

each mixture component is a Gaussian , and 

mΣ mw

1mw =∑  guarantees that it is a valid 

probability model. The Gaussian distribution is defined as: 

 ( ) ( ) ( ) ( )
1

122
1; , 2 exp
2

d T

m m m m m mπ −− −⎛ ⎞= − −⎜ ⎟
⎝ ⎠

x µ Σ Σ x µ Σ x µN ,−  (2.12) 

where d is the dimension of feature space. 

Expectation-Maximization (EM) [29, 30] is a well established maximum likelihood 

algorithm for fitting the GMM model to a set of training data. It is guaranteed to find a 

local maximum [29]. An iterative algorithm derived from EM that yields a maximum 

likelihood estimate for the GMM parameters is given by: 

 

 
( )

( )

' 1

1

,

T

m t t
t

m T

m t
t

p x x

p x
µ =

=

=
∑

∑
 (2.13) 

 
( )( ) ( )

( )

' 1

1

,

T
T

m t t m t m
t

m T

m t
t

p x x x

p x

µ µ
=

=

− −
Σ =

∑

∑
 (2.14) 

 
( )

( )

' 1

1 1

.

T

m t
t

m T M

m t
t m

p x
w

p x

=

= =

=
∑

∑∑
 (2.15) 
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EM requires a priori selection of model order, i.e. the number of components to be 

incorporated into the model. The user may select a suitable number, roughly 

corresponding to the number of distinct clusters in the feature space. For an unknown 

distribution, the required number of mixtures is related to the underlying distribution of 

the feature space. The classification accuracy tends toward an asymptote as the number of 

mixtures increases provided there is sufficient training data. Too few mixtures can lead to 

poor representations of feature distribution while too many mixture can have data 

memorization problem because of overfitting of training data but decreased testing 

performance. Selecting the appropriate number of mixtures is important to the 

performance of the GMM model. 

 
2.3 Hidden Markov Models 

The Hidden Markov Model (HMM) is a very powerful statistical tool for acoustic 

modeling in speech recognition and can be utilized for many other applications. It 

incorporates parametric models, such as GMMs, and provides a unified pattern 

classification of time varying data sequences via dynamic programming. The HMM has 

become one of the most powerful statistical methods for modeling speech signals. It has 

been widely used in various speech applications [3, 5, 6, 26, 31]. An HMM structure 

diagram is illustrated in Figure 5.  
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Figure 5 – An HMM structure 

 

2.3.1 Definition 

An HMM is a Markov chain where the output observation is a random variable 

generated according to an output probabilistic function associated with each state. 

Formally, an HMM is defined by: 

• , the state transition probability matrix, where  is the probability of 

taking a transition from state i to state j. 

{ }ija=A ija

• , the set of state output probability distribution, where  is the 

probability of emitting  when state i is entered. 

{ ( )}i tb o=B ( )i tb o

to

• { }iπ=π , the initial state distribution. 

Since , , and ija ( )i tb o iπ  are all probabilities, they must satisfy the following properties: 

 0, ( ) 0, 0 ,ij i t ia b o all i jπ≥ ≥ ≥ ∀  (2.16) 
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where N is the total number of states. In the discrete state observation case,  is 

discrete probability mass function (PMF). It can be extended to the continuous case with 

a continuous parametric probability density function (PDF). Conversely, a continuous 

vector variable can be mapped to a discrete set using vector quantization [6]. A complete 

HMM can now be defined as: 

( )i tb o

 ( , , )λ = A B π  (2.20) 

where λ  is the complete parameter set to represent the HMM. 

Two formal assumptions characterize HMMs as used in speech recognition. The first-

order Markov assumption states that history has no influence on the Markov chain’s 

future evolution if the present is specified. The output independence assumption states 

that the present observation depends only on the current state and neither chain evolution 

nor past observations influence it if the last chain transition is specified. These 

assumptions can greatly reduce the number of parameters that need to be estimated as 

well as the model complexity without significantly affecting the speech system 

performance.  

In order to apply HMM to speech applications, there are three basic problems that 

need to be solved [5]: 

1. The evaluation problem: Given a model λ  and an observation sequence 

, what is the probability 1 2( , ,..., )To o o=O ( | )P λO , i.e. the probability that the 

model generates the observations? 
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2. The decoding problem: Given a model λ  and an observation sequence 

, what is the most likely state sequence  in 

the model that produces the observations? 

1 2( , ,..., )To o o=O 1 2( , ,..., )Ts s s=S

3. The learning problem: Given a model λ  and an observation sequence 

, how to adjust the model parameter 1 2( , ,..., )To o o=O λ̂  to maximize the 

likelihood probability ( | )P λO ? 

The implementation of the above three problems shares the same principle of 

dynamic programming. These three problems are related to each other under the same 

probabilistic framework. The forward-backward algorithm [5] is used to solve the 

evaluation problem. The Viterbi algorithm [5] is used to solve the decoding problem. A 

version of the EM algorithm called the Baum-Welch algorithm [32] is used to solve the 

learning problem. 

 

2.3.2 Practical Issues 

Although the HMM provides a solid framework for speech modeling, there are some 

practical issues and limitations of HMMs that need to be addressed for effective use of 

this technique.  

The first issue is how to choose the initial estimates of the HMM parameters. The re-

estimation algorithm of the HMM finds a local maximum of the likelihood function. 

Choosing the initial parameters is important so that the local maximum will be or near the 

global maximum. Setting the initial estimates of the HMM means and variances to global 

means and variances is usually a good choice. The second issue is how to train the model 

parameters. The Gaussian mixture training for observation distribution usually starts with 
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a single Gaussian model. The parameters are computed from the training data. Then the 

Gaussian density function is split to double the number of mixtures and parameters re-

trained. After each splitting, several iterations are needed to refine the model. It is shown 

in practice that this procedure yields fairly good results.  

The issue of model topology also relates to the implementation of HMMs. A left-to-

right topology is usually a good choice to model the speech signal. In such topology, each 

state has a state-dependent output probability distribution that can be used to represent 

the observable speech signal. This topology is one of the most popular HMM structures 

used in speech recognition system. The number of states is an important parameter in a 

left-to-right HMM. If each HMM is used to represent a phoneme, typically three states 

are used for each model. Most of the isolated phoneme classification experiments 

discussed in this thesis use one state HMM with a GMM state distribution for both 

MFCC and RPS based experiments.  

The final issue is to decide the type of covariance matrix used for GMM distribution. 

It is often more robust to use diagonal covariance matrices instead of full covariance 

matrices, especially when the correlation among feature coefficients is weak, such as in 

the case of MFCCs. The use of full covariance matrices also requires more data, which is 

often not possible. Diagonal covariance matrices are used in all the work discussed in this 

thesis. 

 

2.4 Isolated vs. Continuous Speech Recognition 

Isolated speech recognition such as isolated phoneme recognition is easier to 

implement than continuous speech recognition. In isolated phoneme recognition, the 
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phonemes are pre-segmented. We build an HMM for each phoneme. The training or 

recognition can be implemented directly. To estimate model parameters, examples of 

each phoneme in the vocabulary are collected. The model parameters are estimated from 

all these examples using the forward-backward algorithm and the Baum-Welch re-

estimation formula.  

In continuous speech recognition, a subword unit, such as a phoneme, is used to build 

the basic HMM model. A word is formed by concatenating subword units and a 

dictionary is required to define possible words. There has no boundary information to 

segment words in a sentence. Instead, a concatenated sentence HMM is trained on the 

entire observation sequence for the corresponding sentence. Word boundaries are 

inherently considered. It does not matter where the word boundaries are since HMM state 

alignments are done automatically.  

 

2.5 Summary 

This chapter has briefly reviewed fundamentals of speech recognition with 

concentration on the acoustic aspects. Speech processing is the front-end of a speech 

recognition system involving acoustic modeling. Particularly, acoustic feature extraction 

was presented and the common MFCC feature was introduced. Under a statistical 

framework, HMMs, with GMMs for the state observation distributions, are commonly 

employed for both isolated speech recognition and continuous speech recognition tasks in 

most state-of-the-art speech recognition systems. 
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3. Reconstructed Phase Spaces for Speech Recognition 
 

3.1 Fundamental Theory      

The Reconstructed Phase Space (RPS) technique has been applied to a variety of time 

series analysis and nonlinear signal processing applications [33, 34]. The RPS is 

originated from the study of topology [19-21, 35]. The work shows that a time series of 

observations of a single state variable of a system can be used to reconstruct a space 

topologically equivalent to the original system. The reconstruction of such a space can be 

done through the use of time-delay embedding [19]. This can be thought as a multi-

dimensional plot of the signal against delayed versions of itself. Given a time series 

 1n ,x x n N= = …  (3.1) 

where n is the time index and N is the number of observations, individual vectors in a 

reconstructed phase space are formed by: 

 ( ) ( )( )1 1 1n n n n d ,x x x n dτ τ τ− − −
⎡ ⎤= = +⎣ ⎦x " N− …  (3.2) 

where d is the embedding dimension and τ  is the time lag. 

A complete description of an RPS can be represented by a matrix called the trajectory 

matrix: 
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The trajectory matrix is formed by compiling its row vectors from the vectors that are 

created per Equation (3.2). This matrix is a mathematical representation of the 

reconstructed phase space.  
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A sufficient condition for the RPS to be topologically equivalent to the original state 

space of the system is that the embedding dimension is large enough, which means d is 

greater than twice the box counting dimension of the original system [21]. Given 

sufficient dimension, the dynamical invariants such as Lyapunov exponents and fractal 

dimension are guaranteed identical to the original system. In practice, since the 

dimension of the original system is unknown and the time lag must be selected to embed 

the signal, the appropriate values of those parameters must be chosen with respect to 

some relevant criteria. The details of choosing the dimension and lag will be discussed in 

Section 3.5. 

Examples of reconstructed phase spaces of phonemes are shown in Figure 6, by 

plotting the row vectors of the trajectory matrix. The trajectory pattern within the phase 

space is referred to as its attractor, defined as a bounded subset of the phase space to 

which trajectories asymptote as time increases [36]. As can be seen from the plots, 

different types of phonemes demonstrate different geometric structures in the RPS. The 

vowel /ow/ exhibits clear structure probably due to the periodic nature of its waveform 

originated from voiced source excitation. The semivowel /w/ and nasal /ng/ exhibit less 

clear structure than the vowel. The fricative /f/ exhibits the random noise like structure 

indicating its origin from unvoiced noise excitation. 
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Figure 6 – Examples of three dimensional reconstructed phase spaces 

 

3.2 Direct Statistical Modeling of RPS 

To utilize an RPS representation for isolated phoneme classification tasks, one 

possible approach is based on direct statistical modeling of the RPS, through the 

estimation of the probability distribution over that space. We introduce two modeling 

approaches for this: bin-based modeling, a nonparametric method, and GMM-based 

modeling, a parametric method. Both approaches require initial reconstruction of the 

RPS. Because of the amplitude variance of original signals, it is often beneficial to 

normalize the attractor in the RPS for all embeddings. The steps for an isolated phoneme 

classifier based on direct statistical modeling of RPS can be implemented as follows: 
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1. Determine the time lag and embedding dimension of the RPS and normalize the 

attractors through a radial normalization method: 

 ,n
n

rσ
−

= Xx µx  (3.4) 

where  is an original point in the phase space, nx Xµ  is the mean of the columns of 

, and X
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σ
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−
− − ∑ Xx µ� n  (3.5) 

2. Model the probability distribution of the attractor of the RPS through either a 

nonparametric approach or a parametric approach. 

3. Use a maximum likelihood classifier (discussed in Section 3.3) to perform 

classification based on the probability distribution obtained from step 2. 

 

3.2.1 Bin-based Distribution Modeling 

A discrete statistical characterization (estimates of the probability masses) of the 

reconstructed phase space is formed by dividing the reconstructed phase space into n by n 

histogram bins as is illustrated in Figure 7 [37]. This is done by dividing each dimension 

into n partitions such that each partition contains approximately 1/n of all training data 

points. To compute bin boundaries, all training data are embedded into phase spaces, and 

vectors of RPSs are combined together. 
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Figure 7 – Dividing RPS into bins for PMF estimation 

 
The estimate of the probability mass function within each bin can be calculated via  

 ˆ ( ) .Number of points in bin xp x
Total number of points

=  (3.6) 

For our experiments, each dimension is assigned ten partitions. In the case of two-

dimensional RPS, this gives a 10 by 10 grid to form a 100-bin probability mass function. 

 

3.2.2 GMM-based Distribution Modeling 

The bin-based method is difficult to apply to higher dimensional RPSs because of 

scalability issues. Firstly, all training data need to be embedded into phase spaces and 

combined together to determine the intercepts. For a large dataset and higher dimensional 

RPS, this will create huge space complexity. Secondly, bin-based modeling is a 

nonparametric approach. As the dimension of the RPS increases, the number of bins 
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increases exponentially. To address this, a second approach is introduced, based on 

statistical modeling using GMMs, as introduced in Section 2.2, to form a parametric 

distribution to estimate the PDF of RPS. It is a parametric approach, and the number of 

parameters of the GMM only increases linearly (with a diagonal covariance matrix and 

same number of mixtures) as the dimension of the RPS increases. The EM training will 

finish in polynomial time, thus the GMM does not have the same scalability problems as 

a bin-based system does. 

 

3.3 Classifier 

Classification is done through a Maximum Likelihood (ML) [38] classifier that uses 

the estimates of the distribution from the direct statistical modeling of each RPS. This 

classifier computes the conditional probabilities of the different classes given the phase 

space and then selects the class with the highest likelihood:  

 ( ){ } (
1 1 1

ˆarg max | arg max |
N

i i i n i
i C i C n

c p c p
= = =

)ˆ c⎧ ⎫
= = ⎨ ⎬

⎩ ⎭
∏X

… …
x  (3.7) 

where  is the likelihood of a point in the phase space, C is the number of phoneme 

classes, and c is the resulting maximum likelihood class. 

ˆ ( )i np x

 

3.4 Datasets and Software 

TIMIT [39, 40] database is used for these experiments. TIMIT contains a total of 

6300 sentences, 10 sentences spoken by each of 630 speakers from 8 major dialect 

regions. There are total of 1260 SA sentences, 3150 SX sentences and 1890 SI sentences. 

Each speaker says 2 SA sentences, 5 SX sentences and 3 SI sentences. The SA sentences 
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are dialect sentences that expose the dialectal variants of the speakers and are read by all 

speakers. The SX sentences are phonetically-compact sentences designed to provide a 

good coverage of phonemes. The SI sentences are phonetically-diverse sentences that add 

diversity in sentence types and phonetic contexts. When doing training and testing, only 

SX sentences and SI sentences are used, while the SA sentences are discarded to avoid 

overlap of training and testing material. 

TIMIT is an ideal database for isolated phoneme classification experiments because it 

contains expertly labeled, phonetic level transcription and segmentation performed by 

linguists. It can be used for continuous recognition as well. The sampling rate of TIMIT 

is 16kHz and the data are digitized using 16 bits. The training partition and testing 

partition are predefined. There is no overlap of speakers of training set and testing set, 

which means the experiments are speaker-independent.  

There are a total of 64 possible phonetic labels in TIMIT. From this set, 48 phonemes 

are modeled. When generating confusion matrix, certain within-group errors are not 

counted. This folds 48 phonemes to 39-phoneme class for calculating the results [41]. 

Matlab [42] is a technical computing language and is largely involved in this 

research. The Hidden Markov Toolkit (HTK) [26] is a set of speech recognition toolkit 

widely used in the speech community for HMM modeling. Other software tools used 

include Netlab [28], TSTOOL [43], and TISEAN [44]. The Netlab toolbox is designed to 

provide a wide range of data analysis and modeling functions. TSTOOL and TISEAN are 

nonlinear time series analysis tools. Apart from Matlab, all the above tools are free and 

available online. 
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3.5 Choosing Lag and Dimension  

The dimension d and lag τ  are two important parameters of an RPS. As mentioned 

before, sufficiently large dimension can guarantee topological equivalence of an RPS to 

the original state system. The optimal time lag is not specified in the theory. There are 

heuristic ways to choose the lag and dimension, such as using automutual information 

approach for choosing lag and using false nearest neighbor (FNN) approach for choosing 

dimension [33, 34].  

Because the calculation of automutual information is independent of embedding 

dimension, the time lag is chosen first. The isolated phoneme dataset from the training 

partition of TIMIT is used. The implementation used here is as follows: 

1. For each segmented phoneme time series, calculate the automutual information 

sequence; 

2. Find the first minimum of each automutual information sequence. This value 

represents the time lag selection for each phoneme exemplar. 

3. A histogram is drawn according to the lags selected over all phoneme exemplars from 

the training set of TIMIT, and the peak value in histogram is chosen as the resulting 

time lag. 

 

After choosing the time lag, the embedding dimension can be determined using FNN 

approach. The attractor of the RPS is not fully unfolded in a dimension lower than the 

minimum embedding dimension. The minimum embedding dimension is the lowest 

dimension that unfolds the attractor from self-overlaps. The false nearest neighbor 

algorithm calculates the percentage of false neighbors of the attractor as a function of the 
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embedding dimension. As this percentage drops to a small enough value, the attractor is 

considered to be unfolded, and the embedding dimension is identified. The 

implementation used here is adopted from [34]. The idea is to compare the distance 

between the nearest neighbor points in dimension d+1 to that in dimension d. If the 

distance in the higher dimension is substantially larger than in the lower dimension, then 

those points are false neighbors, which means the dimension is not high enough to unfold 

the current point in the attractor. The algorithm is implemented as follows: 

1. Let  be the phase space point defined in Equation (3.2), where d is current the 

embedding dimension. Find the nearest neighbor of ; 

( )n dx

( )n dx

2. Compute the square of the Euclidian distance between the nearest neighbor points for 

both dimension d and dimension d+1; denoted as  and  respectively; 2 ( )nD d 2 ( 1nD d + )

3. Compute the ratio 
2 2( 1) ( )

( )
n n

n

D d D d
D d
+ −

, and compare this ratio to a threshold ; If 

the ratio exceeds the threshold, the current point  is a false neighbor; 

1r

( )n dx

4. Calculate the percentage of all points that are false neighbors and compare this 

percentage to another threshold ; If the percentage is small enough, then the 

attractor is fully unfolded and the dimension can be determined. 

2r

5. A histogram is drawn according to the dimensions selected over the training set from 

TIMIT and the peak value in histogram is chosen as the embedding dimension. 

 

It is important to notice that the two thresholds affect the selection of dimension. For 

clean data, the percentage of false nearest neighbors can be expected to drop to near zero 

as embedding dimension increases. The second threshold is set to a very small number 
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such as 0.001 with TIMIT database. The first threshold  is usually empirical and the 

value of 15 is adopted from [34].  

1r

The following results shown here use the segmented isolated phonemes with the 

length of at least 200 points. This guarantees that each time series has adequate points for 

calculating automutual information sequence as well as FNNs in higher dimension. 

Different phonetic classes can have different lag and dimension selections, so five 

phonetic classes are investigated, given by: 

Vowels ih ix ax ah ao aa iy eh ey ae aw ay ox ow uh uw er  

Affricates and Fricatives sh zh jh ch s z f th v dh 

Semivowels and glides el l r w y hh 

Nasals  n en m ng 

Stops  b d g p t k dx 

The isolated phoneme exemplars are extracted from the training set of TIMIT for the 

experiments. There are more than 100,000 total phonetic exemplars in this set. The 

number of exemplars is large enough to generalize the results. 

The figures shown below are the histograms of first minimum of automutual 

information across different phonetic classes, as well as overall. From the histogram of 

all phonemes, we can see that the lag peaks at five or six, with six representing the peak 

value. In subclass histogram plots, vowels and semivowels/glides have peak at lag of 6, 

while the peaks occur at lag of 1, 9 and 3 for affricates/fricatives, nasals and stops 

respectively.  
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Figure 8 – Histogram of first minimum of automutual function for all phoneme 

 
Figure 9 – Histogram of first minimum of automutual function for vowels 
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Figure 10 – Histogram of first minimum of automutual function for affricates and fricatives 

 
Figure 11 – Histogram of first minimum of automutual function for semivowels and glides 
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Figure 12 – Histogram of first minimum of automutual function for nasals 

 

 
Figure 13 – Histogram of first minimum of automutual function for stops 
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Using the lag of 6 as selected from the above plots, the embedding dimension can be 

estimated. The figures shown below are the histograms of dimensions determined by 

false nearest neighbor approach. To measure the impact of the thresholds in this method, 

two different sets of thresholds are used: 

1 2

1 2

1: 15, 2.2204 16
2 : 2.5, 0.001

Set threshold r threshold r e
Set threshold r threshold r

= = −
= =

 

A threshold of 15 for  is considered to be a standard value [34]. The other threshold  

is usually selected as a very small value near zero. The  value in Set 1 is the default 

floor value used in Matlab. When  is 15, the percentage of false neighbors will reach 

and stay zero at a high enough dimension. When  is 2.5, this percentage will not reach 

zero but a small value instead. The reason for this is probably due to the noise in speech 

signals. The TIMIT dataset is not totally noise free. Thus the  value in Set 2 cannot be 

set to as low.  

1r 2r

2r

1r

1r

2r

The results of these two sets of thresholds are substantially different. The optimal 

dimension determined using Set 1 is five compared to twelve using Set 2. 
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Figure 14 – Histogram of dimension by FNN approach (Set 1) for all phonemes 

 
Figure 15 – Histogram of dimension by FNN approach (Set 1) for vowels 
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Figure 16 – Histogram of dimension by FNN approach (Set 1) for affricates and fricatives 

 
Figure 17 – Histogram of dimension by FNN approach (Set 1) for semivowels and glides 
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Figure 18 – Histogram of dimension by FNN approach (Set 1) for nasals 

 
Figure 19 – Histogram of dimension by FNN approach (Set 1) for stops 
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Figure 20 – Histogram of dimension by FNN approach (Set 2) for all phonemes 

 
Figure 21 – Histogram of dimension by FNN approach (Set 2) for vowels 
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Figure 22 – Histogram of dimension by FNN approach (Set 2) for affricates and fricatives 

 
Figure 23 – Histogram of dimension by FNN approach (Set 2) for semivowels and glides 
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Figure 24 – Histogram of dimension by FNN approach (Set 2) for nasals 

 
Figure 25 – Histogram of dimension by FNN approach (Set 2) for stops 
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The above results suggest that the optimal lag and dimension using this heuristic 

approach would be a lag of 6 and a dimension of 5 (using standard thresholds). The 

actual best value of lag and dimension based on performance of an RPS based speech 

recognition system could be different than the results from this heuristic approach. Thus 

it is worth running some experiments to compare this lag and dimension according to 

actual performance. The task used for this purpose is isolated phoneme classification. A 

GMM is used for modeling the distribution of RPS and a maximum likelihood classifier 

is utilized. The details will be discusses in next section. The results are presented here in 

order to compare the different approaches on selecting lag and dimension. Because a lag 

of six is determined by the heuristic approach, Figure 26 shows the classification 

accuracy across a wide range of dimensions on TIMIT using lag of 6.  

 
Figure 26 – TIMIT Accuracy vs. dimension at lag of 6 
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The peak value of the above figure is at dimension of 11 and it reaches a plateau after 

that point. In light of this observation, another set of TIMIT isolated phoneme 

classification experiments are performed using dimension of 11 but varying the lag. The 

results are shown in Figure 27. The peak is at lag of 1 with a second peak at lag of 5. The 

best values for lag and dimension are one and eleven respectively as concluded from the 

actual the phoneme classification tasks. The selection of dimension is not restricted as 

long as a high enough dimension is chosen according to the figure above.  

 

Figure 27 – TIMIT Accuracy vs. lag at dimension of 11 

 

Since the task of applying RPS based method is to perform speech recognition, it 

makes sense to choose the lag and dimension according to actual system performance on 
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development data. In the experiments in Chapter 5 involving speech recognition tasks 

over complete TIMIT database, a lag of 1 and dimension of at least 10 are used.  

 

3.6 Issues of Speech Signal Variability using RPS Based Method 

Variability exists in speech signals. Different speakers and different environments can 

affect the robustness of a speech recognition system. In speaker-independent tasks, the 

attractor structures are affected by the variance of speakers. Inconsistency of attractor 

structures across different speakers would be expected to result in poor performance. The 

noise in speech signals could also have negative impact on attractor patterns that lead to 

poor statistical modeling. Other factors, such as fundamental frequency and RPS 

transformation, could also affect the attractor structure. The RPS representation of speech 

signals is different from the cepstral representation, and it is of interest to analyze the 

impact of such variabilities for this time-domain representation. The experiments 

presented in the following sections address three factors that could have impact on speech 

recognition accuracy using the RPS based method [45, 46]. 

 

3.6.1 Effect of Principal Component Analysis on RPS 

Principal component analysis is also known as Karhunen-Loeve transform. It is used 

for reducing dimensionality while retaining the subspace that has largest variance. Using 

PCA, the original feature space is transformed to another feature space on a different set 

of orthogonal base. The basis vectors of the principal component analysis are the 

eigenvectors of the covariance matrix of a given distribution. In practice, the basis 

vectors can be computed from the eigenvectors of the autocorrelation matrix. The 
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smallest eigenvalues can be discarded for dimension reduction purpose as they 

correspond to least effective features. The transformed feature vector has a diagonal 

covariance matrix and therefore is particularly useful for models based on Gaussian 

distribution features.  

In order to truly represent the underlying dynamic systems that produce the speech 

signals, usually a high dimensional phase space reconstruction is required. Considering 

the computational cost associated with the phase space method, a lower dimensional 

phase space reconstruction is usually desired in practice. By doing PCA transformation 

over the phase space, the eigenspaces that retain the most significant amount of 

information are kept. Previous work on transformation over phase space can also be 

found in the literature [47].  

PCA over the RPS is performed in following steps: 

1. A trajectory matrix is compiled as shown in Equation (3.3). 

2. A scatter matrix is formed 

  (3.8) TS = X X

and an eigendecomposition is performed such that 

  (3.9) TS = ΦΛΦ

where the eigenvalues of  are reordered in non-increasing order along the diagonal. Λ

3. Select the largest eigenvalues, and let ′Φ  be a matrix containing the corresponding 

columns of . Then Φ

 ′=Y XΦ  (3.10) 

is the new PCA projected trajectory matrix. 
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Three types of projection are implemented. The difference between each 

implementation mainly depends on the various ways to compute and apply 

transformations over the data set. 

• PCA projection 

The PCA projection method learns one scatter matrix from all the training data 

and applies the PCA transformation to the trajectory matrix from each phoneme. 

• Individual projection 

The individual projection method learns and applies the transformation to the 

trajectory matrix from each phoneme on an example-by-example basis. 

• Class-based projection  

The class-based projection method involves two steps in implementation. In the 

training phase, it learns a scatter matrix for each phoneme class (e.g. vowels, 

nasals, stops, fricatives, and semivowels) and applies the transformation over each 

phoneme based on its known class identification. In the test phase, several 

different transformations, one for each class, are done on the trajectory matrix of 

each test phoneme exemplar, and these projected trajectory matrices are used to 

compute probabilities under the corresponding class models for the Maximum 

Likelihood classifier.  

The TIMIT corpus is used to train and evaluate the isolated phoneme classification 

task. The embedding dimensions before and after PCA projection are 15 and 3 

respectively for all the experiments.  

The speaker-dependent experiment uses data from one male speaker with 417 

phoneme exemplars over standard 48 phonemes [41]. Classification results with three 
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types of projection are obtained from the speaker-dependent experiments, giving a 

comparison between the different implementations mentioned above.  

The speaker-independent test uses training data from six male speakers and testing 

data from three different male speakers with experiments run on three types of phonemes 

respectively. A total of 7 fricatives, 7 vowels, and 5 nasals are selected for these 

experiments. Also, classification results with three types of projection are obtained from 

the speaker-independent experiments, giving an idea of how the projection over the phase 

space affects the classification accuracy on different types of phonemes.  

Table 1 shows the results of speaker-dependent experiments on a total of 48 phonemes 

with and without projection. Table 2 shows the results of speaker-independent 

experiments on a total of 7 fricative phonemes with and without projection. Table 3 

shows the results of speaker-independent experiments on a total of 7 vowel phonemes 

with and without projection. Table 4 shows the results of speaker-independent 

experiments on a total of 5 nasal phonemes with and without projection.  

 

Without 
Proj. 

PCA 
Proj. 

Individual 
Proj. 

Class-based 
Proj. 

24.33% 28.47% 25.30% 11.19% 

Table 1 – Results of speaker-dependent 48 phonemes using PCA on RPS 

 

Without 
Proj. 

PCA 
Proj. 

Individual 
Proj. 

Class-based 
Proj. 

39.07% 42.38% 33.77% 29.14% 

Table 2 – Results on speaker-independent fricatives using PCA on RPS 
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Without 
Proj. 

PCA 
Proj. 

Individual 
Proj. 

Class-based 
Proj. 

40.54% 43.24% 29.68% 8.78% 

Table 3 – Results on speaker-independent vowels using PCA on RPS 

 

Without 
Proj. 

PCA 
Proj. 

Individual 
Proj. 

Class-based 
Proj. 

55.21% 48.96% 47.92% 48.96% 

Table 4 – Results on speaker-independent nasals using PCA on RPS 

 

The basic PCA projection method works best for the overall, fricative, and vowel 

phoneme classification tasks, while the class-based projection method gives the lowest 

classification accuracies for these tasks. It can be observed that some phonemes tend to 

be classified as one particular phoneme for both fricative and vowel experiments using 

class-based projection method. The confusion of these phonemes in the reconstructed 

phase space using distribution model can be observed by investigating the confusion 

matrices for each case. 

 

3.6.2 Effect of Vowel Pitch Variability 

Fundamental frequency, as a parameter that varies significantly but does not contain 

information about the generating phoneme, should affect the phase space in an adverse 

way for classification. The basic idea introduced here for dealing with vowel pitch 

variability is to use variable time lags instead of a fixed time lag for embedding vowel 

phonemes, as a function of the underlying fundamental frequency of the vowel. An 
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estimate of the fundamental frequency is used to determine the appropriate embedding 

lag.  

The fundamental frequency estimate algorithm for vowels used here is based on the 

computation of autocorrelation in the time domain as implemented by the Entropic ESPS 

package [48].  

The typical vowel fundamental frequency range for male speakers is 100~150Hz, 

with an average of about 125Hz, while the typical range for female speakers is 

175~256Hz, with an average of about 200Hz. For this experiment only male speakers are 

used. In the reconstructed phase space, a lower fundamental frequency has a longer 

period, corresponding to a larger time lag. With a baseline time lag and mean 

fundamental frequency given as τ  and 0f  respectively, we perform fundamental 

frequency compensation via the equations 

 0 0f fτ τ ′ ′=  (3.11) 

and 

 0

0

' f
f

ττ =
′

 (3.12) 

where τ ′  is the new time lag and 0f ′  is the fundamental frequency estimate of the 

phoneme example. This time lag is rounded and used for phase space reconstruction, for 

both estimation of the phoneme distributions across the training set and maximum 

likelihood classification of the test set examples. 

Two different baseline time lags are used in the experiments. A time lag of six 

corresponds to that chosen through examination of the automutual information heuristics; 

however, rounding effects lead to quite a low resolution on the lags in the experiment, 
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which vary primarily between 5, 6, and 7. To achieve a slightly higher resolution, a 

second set of experiments at a time lag of 12 is implemented for comparison. Since the 

final time lags used for reconstruction are given by a fundamental frequency ratio, the 

value of the baseline frequency is not of great importance, but should be chosen to be 

near the mean fundamental frequency. A baseline of 129Hz was used, as the mean 

fundamental frequency of the training set. The final time lag is given in accordance with 

Equation (3.12) above. 

A seven-vowel set is used for these experiments. Data are selected from 6 male 

speakers for training and 3 different male speakers for testing, all within the same dialect 

region. 

There are four experiments, two with a baseline lag of 6 and two with a baseline lag 

of 12. In each case, the tests are run with a fixed lag as well as with variable lags. The 

four experiments are summarized as follows: 

Exp 1: 2, 6,d τ τ τ′= = = , 

Exp 2: 0
0

0

2, 6, 129 , fd f Hz
f

ττ τ ′= = = =
′

, 

Exp 3: 2, 12,d τ τ τ′= = = , 

Exp 4: 0
0

0

2, 12, 129 , fd f Hz
f

ττ τ ′= = = =
′

 

where d is the embedding dimension, τ  is the default time lag, 0f  is the baseline 

fundamental frequency, 0f ′  is the estimated fundamental frequency, and τ ′  is the actual 

embedding time lag. 

Table 5 shows the resulting ranges for τ ′  given the parameters, while Table 6 and 

Table 7 show the classification results.  
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τ  0f  τ ′  
6 129Hz 5~8 

12 129Hz 10~15 

Table 5 – Range of τ ′  given τ  and  0f

 

Exp 1 Exp 2 
27.70% 36.49% 

Table 6 – Vowel phoneme variable lag classification results for lag of 6 

 

Exp 3 Exp 4 
39.19% 38.51% 

Table 7 – Vowel phoneme variable lag classification results for lag of 12 

 

As can be seen from the above results, the improvement of classification accuracy is 

obtained by using a variable lag model with baseline lag of 6. The classification accuracy 

is almost unchanged with baseline lag of 12. The results suggest that the variability of 

fundamental frequency is not large. 

 

3.6.3 Effect of Speaker Variability 

Speaker variability is an unknown factor with regard to the amount of variance 

caused in underlying attractor characteristics, and is an important issue in the question of 

how well the RPS technique will work for speaker-independent tasks. Initial experiments 

have shown some significant discriminability in such tasks, but performed at a 

measurably lower accuracy than that for speaker-dependent tests [46].  

Using the phase space reconstruction technique for speaker-independent tasks clearly 

requires that the attractor pattern across different speakers is consistent. Inconsistency of 
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attractor structures across different speakers would be expected to lead to smoothed and 

imprecise phoneme models with resulting poor classification accuracy. The experiments 

presented here are designed to investigate the inter-speaker variation of attractor patterns. 

Although a number of different attractor distance metrics could be used for this purpose, 

the best such choice is not readily apparent and we have instead focused on classification 

accuracy as a function of the number of speakers in a closed-set speaker dependent 

recognition task. The higher the consistency of attractors across speakers, the less 

accuracy degradation should be expected as the number of speakers in the set is 

increased. 

All speakers are male speakers selected from the same dialect region within the 

TIMIT corpus. The only variable is the number of speakers for isolated phoneme 

classification tasks.  

To examine speaker variability effects across different classes of phonemes, vowels, 

fricatives and nasals are tested separately. The overall data set is a group of 22 male 

speakers, from which subsets of 22, 17, 11, 6, 3, 2 and 1 speaker(s) have been randomly 

selected. Classification experiments are performed on sets of 7 fricatives, 7 vowels, and 5 

nasals. 

The evaluation of speaker variability was carried out using leave-one-out cross 

validation. The overall classification accuracies for the three types of phonemes are 

shown in Table 8, Table 9 and Table 10. 

Spkr# 1 2 6 11 17 22 

Acc(%) 58.00 51.06 49.26 49.02 47.98 48.58 

Table 8 – Classification results of fricatives on various numbers of speakers 
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Spkr# 1 2 6 11 17 22 

Acc(%) 61.90 49.09 49.58 46.92 45.46 46.03 

Table 9 – Classification results of vowels on various numbers of speakers 

 

Spkr# 1 2 3 6 11 17 22 

Acc(%) 51.79 40.00 31.91 29.95 29.71 27.79 26.76 

Table 10 – Classification results of nasals on various numbers of speakers 

 

Figure 28 is a visual representation of the results presented above. The classification 

results are plotted against the number of speakers for vowels, fricatives and nasals 

respectively. 

 

Figure 28 – The classification accuracy vs. number of speakers 
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As can be seen from Figure 28, the degree of attractor variation across speakers is 

different for these three types of phonemes. Nasals appear to have the largest variability 

while the fricatives have the least. In all three phoneme types, the accuracy is relatively 

unchanged after 2 or 3 speakers. The results show that the accuracy reaches asymptote as 

larger number of speakers is included in the experiments. The speaker variability does 

exist but basic attractor structures are consistent, which can be captured by statistical 

modeling of RPSs. 

 

3.7 Summary 

This chapter has introduced theory for the reconstructed phase space approach to 

signal representation, and addressed issue of choosing parameters for phase space 

embedding. Two types of direct statistical modeling on RPS have been presented. A 

maximum likelihood classifier is used for RPS based classification. The issues of speech 

signal variability using RPS based method were also thoroughly investigated. The next 

chapter will introduce frame-based analysis to RPSs, which can reduce time complexity 

and make continuous speech recognition possible using RPSs with the current HMM 

framework. 
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4. Frame-based Features from Reconstructed Phase Spaces 
 
4.1 Why use Frame-based Features 

In a conventional HMM, the probability of state occupancy decreases exponentially 

with time: 

  (4.1) ( ) (1 ).t
i ii id t a a= − i

The probability of t consecutive observations in state i is the probability of taking the 

self-loop at state i for t times. The traditional speech recognition system uses frame-based 

features, with frame sizes anywhere between 10ms to 40ms. The RPS based method 

described above regards each point in the phase space as a feature vector, thus the feature 

vector from RPS representation can change as fast as the sampling rate. For a typical 

16kHz-sampling rate (e.g. TIMIT database), the feature rate would be 160 times faster 

than a 10ms frame step size used with cepstral features. In this case, the default HMM 

state duration shown in Equation (4.1) cannot be used for continuous speech recognition.  

There are some ways to cope with this problem. One way is to use HMM with an 

explicit time duration distribution for each state. Another way is to mimic the traditional 

MFCC features based on frame-by-frame speech signal analysis. The second approach 

has two major advantages over the first one: the simplicity and the reduced computational 

time. There is no easy way to incorporate an explicit duration model into HMMs for use 

with point-by-point RPS feature vectors. By using the frame-based feature extraction 

approach, the existing continuous speech recognition framework can be utilized without 

any change on HMM state duration. Also, the direct statistical modeling approach on 

RPSs for isolated phoneme classification tasks can be replaced by this frame-based 

approach for reduced computational time. 
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4.2 Frame-based Features from RPS 

Several nonlinear features can be useful in speech applications, such as the 

information in the LPC residue, the correlation dimension of speech signal, physiological 

parameters related to the speech production system [15, 49], and high order statistics of 

the acoustic measurements. Some frame-based features, such as modulations, fractals, 

correlation dimensions, Lyapunov exponents, etc., have been used in speech recognition 

[16-18, 50, 51]. But still few speech recognition systems exploit these acoustic features. 

The perspective of this work is on investigating new frame-based features from 

reconstructed phase space for speech recognition. The proposed SVD derived features 

from trajectory matrix of RPS can be extracted on frame-by-frame basis and will be 

introduced in the following section. 

 

4.3 SVD Derived Features 

There are two different implementations of SVD projection on RPSs to extract 

features. The first one uses global SVD projection and the second one uses regional SVD 

projection. Both methods can extract features from RPSs on one frame length of data. 

 

4.3.1 Global SVD Derived Features 

The steps for extracting the global SVD derived features are as follows: 

1. Frame the speech signal with given frame length and step size. In the experiments, a 

25ms window and 10ms step size are used. TIMIT has a 16kHz-sampling rate, so 

25ms corresponds to 400 points and 10ms corresponds to 160 points. 
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2. Embed each frame of signal into RPS, and create a trajectory matrix from each frame 
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as shown in Equation (3.3). 

3. Compile frame-based trajectory matrices from all training data into a larger trajectory 

matrix . X

4. Factorize the trajectory matrix  using singular value decomposition: X

  (4.2) = TX USV

where S  is a diagonal matrix containing the singular values of X  with decreasing 

order, and  and  are matrices of the singular vectors associated with . In 

practice, the matrix  is obtained by doing SVD on  instead of , such that 

U V S

V TX X X

  (4.3) T T T TX X = (USV ) (USV ) = VS V

The advantage of doing SVD on  is that  is of size d by d, where d is the 

embedding dimension, thus it can be obtained from all training data by accumulating 

this covariance value calculated from each frame without memory or space 

complexity problems. 

TX X TX X

5. After getting matrix V , calculate the new SVD projected trajectory matrix for both 

training and testing data on frame-by-frame basis: 

  (4.4) X̂ = XV

By projecting into the basis vectors in , the new trajectory matrix has been 

orthogonized because its covariance matrix is close to a diagonal matrix. 

V

6. Calculate the diagonal values of the covariance matrix of the new trajectory matrix: 



 57
 

  (4.5) ˆ ˆ(diag TX X)

2

These diagonal values obtained from Equation (4.5) are the elements of the feature 

vector. 

 

The obtained features can be thought of as the power values along the main principle 

axes in the RPS. There are some useful properties of this decomposition. The singular 

vectors in  are actually the eigenvectors of , and the singular vectors in  are the 

eigenvectors of the covariance matrix . The singular values in S are square roots of 

the eigenvalues of both  and . The new trajectory matrix has orthogonal 

property as can be proven by calculating the covariance: 

U TXX V

TX X

TXX TX X

  (4.6) ˆ ˆT T T T T T TX X = (XV) (XV) = V X XV = V (VSU )(USV )V = S

In practice, matrix V is calculated separately from all training data, the obtained 

covariance matrix of  is not an exact diagonal matrix. But the diagonal values selected 

as the feature elements should have dominant information over non-diagonal elements. 

X̂

 

4.3.2 Regional SVD Derived Features 

In addition to the probability density information of the RPS, trajectory information 

can be used to characterize changes in the attractor. It is beneficial to incorporate such 

information since the trajectory information could have discriminatory power in cases 

where two RPSs may have similar density distribution. The regional SVD approach 

divides the RPS into eight regions and extract feature element from each region. These 

feature elements are combined to form the final feature vector. The trajectory change in 
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attractor can be somewhat reflected in the change of value of feature element from each 

region.  

The steps for extracting the regional SVD derived features are as follows: 

1. Follow the same steps 1 to 4 from global SVD approach to obtain matrix V. 

2. Let  be a matrix containing first 3 by 3 block of V (corresponding to the three 

largest singular values of S). Project higher dimensional trajectory matrix into three 

dimensional matrix using matrix 

′V

′V : 

 ′ ′X = XV  (4.7) 

  is now the trajectory matrix of three dimensional phase space. ′X

3. Partition  to eight regions using three planes: ′X 0, 0, 0x y z= = = . The 

corresponding points in original higher dimensional trajectory matrix X are likewise 

partitioned into eight groups.  

4. Within each region, use the same procedure to extract feature elements as with global 

SVD. There are eight different projection matrices V’s to train in this case, one for 

each region.  

5. If three feature elements are extracted from each region, then the final feature vector 

will have 24 elements in total. 

 

 

4.4 Implementation for Speech Recognition Tasks 

The implementation for speech recognition tasks using SVD derived features is 

similar to an MFCC based speech recognition system because both systems employ 

frame-based feature extraction scheme. A 12 dimensional RPS embedding can usually 
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have 12 SVD derived feature elements in accordance to typical 12 MFCC feature vector. 

Deltas and Delta-Deltas can also be computed on SVD features using linear regression 

introduced in Equation (2.10). An energy measure can also be appended to the feature 

vector. For experiments with SVD derived features, the energy is computed as the log of 

the signal energy based on one frame of speech { , 1, , }ns n N= … [26]: 

 2

1
log

N

n
n

E
=

= s∑  (4.8) 

The same HMM structure and training and testing algorithms can be utilized for both 

isolated speech recognition and continuous speech recognition.  

 

 

4.5 Summary  

This chapter discussed the necessity of extracting frame-based features. The singular 

value decomposition was proposed in use with trajectory matrix of RPS to extract such 

features. Two SVD projections, the global SVD projection and the regional SVD 

projection, were introduced. The implementation of such feature extraction methods was 

elaborated. The frond-end frame-based feature extraction from RPS can work with 

current speech recognition systems directly.  
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5. Experimental Setup and Results 

5.1 RPS Isolated Phoneme Classification 

The time lag and dimension used here for the experiments are based on the criteria 

elucidated in Section 3.5. Because classification accuracy is the decisive factor of the 

experiments, the selection of time lag and dimension is based on this criterion from 

previous experiments. For RPS isolated phoneme classification experiments using SVD 

derived feature sets, a lag of 1 and dimension of 12 are chosen. In most cases, the feature 

vector extracted from 12 dimensional RPS consists of 12 elements using SVD method. 

The number of elements is the same as the traditional MFCC feature vector has. 

Additional features such as log energy and Delta and Delta-Delta are also calculated the 

same way as MFCCs. In general, the number of GMM mixtures affects the classification 

accuracy in that the higher the number of mixtures, the lower the classification error. Too 

large a number of mixtures can have huge computational cost and overfitting problem on 

training data. The experiments presented here show the results of using different number 

of mixtures for the purpose of comparison. The window size is 25 ms (400 sample points) 

and frame step size is 10 ms (160 sample points) for all experiments.  

 

5.1.1 Baselines 

The baseline results are shown here in order to compare the current state-of-the-art 

system with our frame-based RPS method. The baseline system uses MFCC features as 

described in Chapter 2. Most of the parameters use the default value from HTK. The 

configuration file can be found in the appendix. A simple 1-state HMM topology with a 

GMM state distribution is utilized. Table 11 shows the baseline results on different 
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number of mixtures, and different set of features (12-MFCC denotes standard 12 MFCC 

coefficients feature vector; 13-MFCC+E denotes feature vector comprised of standard 12 

MFCC coefficients and log energy; 39-MFCC+E+∆,∆∆ denotes feature vector comprised 

of standard 12 MFCC coefficients and log energy and their 1st order and 2nd order linear 

regression coefficients.) 

 

# of mixtures 16 128 512 

12-MFCC 50.34 52.08 52.12 

13-MFCC+E 51.09 53.40 55.81 

39-MFCC+E+∆,∆∆ 54.86 59.19 59.78 

Table 11 – Baseline phoneme accuracy 

 

5.1.2 Experiments using Frame-Based SVD Derived Features 

The basic feature vector is computed from each frame using the same window size 

and step size as the MFCC feature. The original speech signal of each frame is embedded 

directly into an RPS without imposing any windowing function. All RPSs are normalized 

via Equations (3.4) and (3.5). Features are extracted through the procedure described in 

Chapter 4. A lag of 1 and a dimension of 12 are used for phase space embedding, so that 

the basic SVD feature vector is comprised of 12 elements. Log energy is computed via 

Equation (4.8). The 1st order and 2nd order linear regression coefficients are computed the 

same way as MFCC. 
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Table 12 shows the results of the RPS SVD derived feature set with the number of 

mixtures set at 128. The log energy gives a significant boost over the basic SVD feature 

set.  

Feature set Accuracy 

12-SVD 41.11 

13-SVD+E 45.39 

39-SVD+E+∆,∆∆ 46.76 

Table 12 – Phoneme accuracy on SVD feature (128 mix) 

 

The use of GMM state observation distribution works better if the features are more 

likely Multimodal Gaussian distributed. By using different ways of computing feature 

set, the underlying distribution of features will change. Table 13 shows the results using 

square roots and cubic roots of original SVD derived feature from Equation (4.5). Results 

show that about 1% improvement is obtained by simply taking the square roots of 

original SVD derived feature vector. 

 

Feature set Accuracy 

12-SVD 41.11 

12-Square root of SVD 42.15 

12-Cubic root of SVD 42.03 

Table 13 – Phoneme accuracy on SVD feature using nonlinear operator (128 mix) 
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The regional SVD derived feature is expected to give better results since it is 

supposed to capture geometric information in attractor pattern. Table 14 presents the 

results of a regional SVD experiment. The regional SVD experiment utilizes a 24-

element feature vector, with 3 elements extracted from each of the eight projected 

regions. The basic 12-element SVD feature result and 30-element SVD feature result 

(derived from an RPS of dimension of 30) are also included for comparison. With even 

fewer feature elements, the regional SVD feature set still outperforms the 30-element 

SVD feature set. This demonstrates the trajectory information is captured by the regional 

SVD approach. 

 

Feature set Accuracy 

12-SVD 41.11 

30-SVD 42.17 

24-Regional SVD 43.54 

Table 14 – Phoneme accuracy on regional SVD feature (128 mix) 

 

The results with SVD derived features also show good robustness to noise. In 

preliminary experiment of isolated phoneme classification under noisy environment, the 

clean TIMIT corpus is contaminated with Gaussian white noise such that the signal to 

noise ratio is 5dB. The classification accuracy drops from 41.1% to 37.1%, which is 4.0% 

net degradation. In the experiment using MFCC feature with the same level noise 

contamination, the classification accuracy drops from 54.9% to 36.3%, which is 18.6% 

net degradation. In this case, the SVD derived RPS feature outperforms the traditional 
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MFCC feature in noisy environment and is more robust to noise with respect to accuracy 

degradation.  

 

5.1.3 Experiments using Combined Features 

It is also worth investigating the effects of combining the MFCC and SVD derived 

features together. Table 15 shows the results of combined MFCC and SVD features. The 

new feature vector has 25-elements, among which 12 elements are from MFCC feature 

vector, 12 elements are from SVD feature vector, and the last element is log energy. 

Compared to the baseline MFCC, the combined feature sets don’t have better 

performance. When number of mixture reaches 1024, the overfitting problem may occur 

as demonstrated by the degraded accuracy.  

# of mixtures 128 256 512 1024 

25-MFCC+SVD+E 48.09 50.13 51.44 51.05 

Table 15 – Phoneme accuracy on combined features (MFCC+SVD) 

 

Table 16 shows the results of combined MFCC and regional SVD features. The 

feature vector has 37-elements, among which 12 elements are from the MFCC feature 

vector, 24 elements are from the regional SVD feature vector, and the last element is log 

energy. Still, the combined feature sets are not able to outperform the baseline MFCC 

feature. 

# of mixtures 128 1024 

37-MFCC+Reg. SVD+E 50.67 52.88 

Table 16 – Phoneme accuracy on combined features (MFCC+regional SVD) 
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5.2 RPS Continuous Speech Recognition 

Because the SVD derived RPS feature set is based on frame-by-frame analysis, it can 

be applied to continuous speech recognition (CSR) directly. Preliminary CSR results are 

shown in Table 17. A 3-state HMM topology with an 8-mixture GMM are used. The 

language model is a bigram trained on training set of TIMIT. A total of 46 monophones 

is modeled as the basic speech unit.  

The percentage Word Correct is defined as: 

 100%,N D SCorrect
N

− −
= ×  (5.1) 

and the percentage Word Accuracy is defined as: 

 100%,N D S IAccuracy
N

− − −
= ×  (5.2) 

where S, D, I, and N are the number of substitution errors, the number of deletion errors, 

the number of insertion errors, and the total number of labels in the reference 

transcriptions, respectively.  

 

 Word Correct  Word Accuracy  

13-MFCC+E 26.10 23.38 

39-MFCC+E+∆,∆∆ 46.20 41.83 

13-SVD+E 17.35 13.57 

39-SVD+E+∆,∆∆ 18.38 10.59 

Table 17 – CSR results (3-state monophone HMM, 8 mix, bigram) 
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Although traditional MFCC features still outperform SVD RPS features in CSR 

experiments, the features from RPS have shown significant discriminatory power and 

they may have the potential to contribute to improved performance of speech recognition 

systems. 

 

5.3 Discussion 

This chapter presented results using alternative features from time domain analysis of 

speech, namely SVD derived RPS features, on isolated phoneme classification and 

continuous speech recognition tasks. There are several issues that could have impact on 

the results. It is important to consider these issues in order to achieve improved 

performance of speech recognition.  

The origin of SVD derived features is from the time domain and is different from 

MFCC features originated from frequency domain. It is unclear why the combination of 

MFCC and SVD feature is not helpful on boosting the accuracy. By investigating the 

confusion matrices of MFCC and SVD feature sets, we can observe that the 

corresponding phonemes have some major classification overlaps between these two. 

One conjecture is that the SVD features may contain similar information as the MFCC 

features. In order to combine them together to get better performance, a more 

sophisticated combination mechanism may be helpful. The distribution of SVD features 

is different from the MFCC features. From the results presented here, we can conclude 

that the SVD features usually need larger numbers of mixtures to achieve asymptotic 

accuracy compared to MFCC features. The GMMs are supposed to capture arbitrary 
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distribution but may not be the most effective way of representing RPS SVD derived 

feature space.  

The experiments on noisy environment show the robustness of the SVD time domain 

approach. The application of using time domain features in robust speech recognition is 

promising and worth further investigation. 
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6.  Conclusions and Future Work 

6.1 Conclusions  

Speech recognition using a dynamical systems approach has been presented in the 

thesis. This is a novel approach that extracts features from the time-domain using 

reconstructed phase spaces. The results indicate that RPS features have substantial 

discriminatory power in speech recognition application. The study of nonlinear 

dynamical system shows that the RPS is able to capture the nonlinear information of 

underlying system that cannot be captured by frequency domain analysis alone.  

The two parameters of an RPS, time lag and embedding dimension, play an important 

role both theoretically and practically of building a speech recognition system based on 

time domain features. In theory, a sufficient dimension is required to embed the signals in 

order to fully unfold the attractors in the RPSs. Both the heuristic approach and the 

empirical approach introduced here for determining the embedding dimension suggest 

that there exists a lowest embedding dimension that would truly unfold the attractor. A 

dimension of 10-12 would be a good choice for speech recognition application using the 

RPS based method, as indicated by the results shown here. Unlike the embedding 

dimension, the time lag does not affect system performance in a monotonic way. An 

empirical study suggests that a higher dimension combined with a smaller time lag would 

be a good choice for better system performance. One such choice is a dimension of 12 

and a lag of 1, as used in the SVD experiments. 

The features from RPSs can be used in speaker-independent tasks as demonstrated by 

the speaker-independent experiments presented in this thesis. In general, the SVD feature 

extraction approach has better accuracy than the direct statistical modeling approach on 
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RPSs, but still behind the traditional MFCC features by a net gap of about 10% in 

accuracy. But the results are promising. The combination of traditional frequency domain 

features and time domain features has the potential of building better speech recognition 

systems if it is done in an intelligent way. 

In conclusion, this research applies nonlinear techniques to speech, and brings a 

totally different perspective for the speech recognition problem that has been traditionally 

dominated by a linear system analysis approach. 

 

6.2 Future Work 

The research on this topic is at its beginning and further work is needed in order to 

further understand this topic. The RPS based approach has the potential for identifying 

noise robust features. The robustness issue is critical in real world speech applications 

and worth investigation in future work. With frame-based features from RPS, it is 

possible to improve continuous speech recognition. Issues such as the HMM topology, 

frame size, step size, temporal change of features, modeling technique, RPS 

normalization, and feature normalization and transformation, could all affect the overall 

system performance, and have not all been studied thoroughly. 

Traditional MFCC features stem from approximation of the human auditory 

perception system. The features from the RPS, however, have no clear physical meaning. 

This technique can be applied to virtually any type of time series. It is of necessary to 

strengthen the theoretical framework for applying such techniques to speech recognition. 

In light of this, it seems necessary to investigate the relationship between RPSs and 

speech production systems in order to build a nonlinear speech production model that 
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could identify effective acoustic features. There are also possible ways of characterizing 

RPSs using alternative representations, such as geometric measures, invariants from 

RPSs, moments, global flow reconstructions, fixed points identification of the attractor, 

or higher order features from SVD. A modification of the SVD method, such as using 

higher order SVD moments, may be possible to obtain better features that capture higher 

order information from the underlying signal.  
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