Speeding up Wang-Landau sampling of lattice model proteins using GPUs

Ying Wai Li, Thomas Wüst and David P. Landau

Center for Simulational Physics, The University of Georgia, USA

Acknowledgment:

Pan-American Advanced Studies Institute (PASI) program of NSF

Outline

HP lattice protein model Monte Carlo methods

Statistical Physics

Wang-Landau sampling

Thermodynamics

How do GPUs help?

Two ways for physics simulations

Deterministic

molecular dynamics

Stochastic

Monte Carlo

Wang-Landau sampling

- A random walk in energy space to obtain g(E)
- Physical observables are available for all temperatures from a single simulation

Density of states in energy, g(E)

Proportion of configurations having energy E

Definitions of thermodynamic quantities

Partition function:

$$Z_T = \sum_{\text{all states}} e^{-E/k_B T} \equiv \sum_E g(E) e^{-E/k_B T}$$

Average energy:

$$\langle E \rangle_T = \frac{1}{Z_T} \sum_E E \mathbf{g}(\mathbf{E}) e^{-E/k_B T}$$

Specific heat:

$$C_V(T) = \frac{\langle E^2 \rangle - \langle E \rangle^2}{k_B T^2}$$

Simplifying proteins into models

Amino acids with hydrophobic side chains

Amino acids with hydrophilic side chains

Aspartic acid Asp D

Lysine Lys K

Threonine

Amino acids with intermediate side chains

Glycine Gly G

Ala

Arginine

Arg

The HP protein model

Hydrophobic

Polar

Attractions between:

nearest-neighbor non-bonded

The HP protein model

$$E = -n_{HH} \varepsilon_{HH}$$

 n_{HH} : number of hydrophobic monomer-monomer pairs

 ε_{HH} : attractive strength between H monomers

Specific heat as a signal of transitions

Specific heat, Cv/N

^{*}Error bars are smaller than the size of data points.

Serial simulation flow chart

Repeat until g(E) converges

Parallelization

Algorithm:

Parallelize Wang-Landau sampling

Model:

Energy calculation(and other structural parameters)

Serial simulation flow chart

Parallelized energy calculation

To find n_{HH}^i :

- One thread per monomer
- Each thread examines 2×D nearest neighbors

$$n_{HH} = \frac{1}{2} \sum_{i=1}^{N} n_{HH}^{i}$$

$$E = -n_{HH} \varepsilon_{HH}$$

Parallelized energy calculation

To find n_{HH}^i :

- 2×D threads per monomer
- Each thread examines only one nearest neighbor

$$n_{HH} = \frac{1}{2} \sum_{i=1}^{N} n_{HH}^{i}$$

$$E = -n_{HH} \varepsilon_{HH}$$

Parallelized Wang-Landau sampling (Scheme 1)

Multiple random walkers in single g(E)

Parallelized Wang-Landau sampling (Scheme 1)

Multiple random walkers in single g(E)

Parallelized Wang-Landau sampling (Scheme 2)

Multiple g(E) in single simulation

Parallelized Wang-Landau sampling (Scheme 2)

Multiple g(E) in single simulation

More current (and future) work

Parallel calculations of structural parameters

$$R_g = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\vec{r}_i - \vec{r}_{cm})^2}$$

HP protein adsorption

Combination of parallel schemes?

Parallel Monte Carlo trial moves?