SPH3U: Delivery! Position - Time Graphs

Answers: 0) 130 m [W], 260 m [W], $390 \mathrm{~m}[\mathrm{~W}], 0 \mathrm{~m}$, 1) 2, 2) 30 s , 3) $390 \mathrm{~m}[\mathrm{~W}], 4) 13 \mathrm{~m} / \mathrm{s}$ [W], 5) East, 6) $20 \mathrm{~m} / \mathrm{s}$ (going east), 7) 780 m , 8) 0 m , 9) $7.8 \mathrm{~m} / \mathrm{s}, 10) 0 \mathrm{~m} / \mathrm{s}$

The Speeder Bike Chase!

Luke is chasing Imperial Troopers on the forest moon of Endor riding on Speeder Bikes, as shown in the position-time graph below.

1. Do Luke and the Troopers start at the same point? How do you know? If not, which is ahead?

Troopers start ahead, at a position away from origin
2. At $\mathrm{t}=7 \mathrm{~s}$, who is ahead? How do you know?

Luke is ahead, his position is farther away from the origin
3. Who is travelling faster at 3 s ? How do you know?

Luke is traveling faster because the slope of his line is steeper
4. Are their velocities equal at any time? How do you know?

No, the slopes are constant (= constant velocities), and Luke's slope is always steeper
5. What is happening at the intersection of the two lines?

They are at the same position, Luke has overtaken the troopers
In the next dramatic scene, the motion is different:
6. How does Luke's motion in this graph compare to that in the first graph?

Luke is moving towards the origin, not away from it.
7. Who has the greater speed? How do you know?

The trooper line has the greater slope, so they are going faster

8. Describe what is happening at the intersection of the lines.

They are passing by each other in opposite directions, they are at the same position
9. Who has travelled further during the first 4 seconds? How do you know?

The troopers - their displacement in the first 4 seconds is greater than Luke's

SPH3U: Position-Time Graphs and Velocity

On a position-time $(\vec{d}-t)$ graph, the slope of the graph represents \qquad velocity \qquad -.

Graph A

Time (s)

The graphs are straight: _constant _ velocity.
The slope of the graphs are positive: objects are traveling in the \qquad $+$ \qquad direction.

The steeper the slope of the graphs, the __greater \qquad the velocity.

Graph C

The slope of the graph is negative: object is traveling _towards \qquad the reference point.

The graph is straight: \qquad constant \qquad velocity.
*Note: constant velocity = uniform velocity

Graph B

The graph is straight: _constant___ velocity.
The slope of the graph is \qquad 0 \qquad : the object is not moving.
The velocity of the object is \qquad 0 .

Graph D

The slope of the graphs are positive (objects are traveling in the \qquad direction), but the graphs are not straight: \qquad non-uniform \qquad motion.

The slope of Runner A is decreasing: runner A is
\qquad slowing down \qquad _.

The slope of Runner B is increasing: runner B is
___speeding up \qquad —.

SPH3U: Position and Velocity Graphs

Name:
Sketch a motion map and v -t graph corresponding to the following descriptions of the motion of an object.

1. The object is moving away from the origin at a constant (steady) speed.

2. The object moves towards the origin at a steady speed for 10 s , then stands still for 10 s .

3. The object is standing still

4. The object moves away from the origin at a steady speed for 10 s , then reverses direction and moves back toward the origin at the same speed.

Draw v-t graphs and a motion map for an object whose motion produced the d-t graphs shown below.

SPH3U: Representations of Motion and Name: Constant Velocity

x vs. t Graph	v vs. t Graph	Written Description	Motion Map
		-start away from origin, moring away - rest - come back towards origin at lugher \bar{v} - end closer to orgin	$\xrightarrow{\stackrel{\leftrightarrow}{\longleftrightarrow}}$
		(assumes starting away from origin) - come back towards origin at high \bar{v} - move anay from origin - resl	$\leftrightarrow \stackrel{\vdots}{\longleftrightarrow}$
 t		- starts away from arigin, cones back at low \bar{v} - rest - comes all the way bock at bugher \bar{V}	
		- start at rest - move away from origin at high speed - come buck tonards origin part way at lower speed	

${ }^{2} 1$		Object moves with constant positive velocity for 4 seconds. Then, it stops for 2 seconds and returns to the initial position in 2 seconds.	
		- starts away from Grigin, comes back at kyg \bar{v} for 25 - stops for 25 - moves avay at lover \bar{v} for 4 s	$\begin{aligned} & \Rightarrow \Rightarrow \rightarrow \Rightarrow \\ & \longmapsto \longleftrightarrow \\ & H \end{aligned}$
		Object A starts 10 m to the right of the origin and moves to the left at $2 \mathrm{~m} / \mathrm{s}$. Object B starts at the origin and moves to the right at $3 \mathrm{~m} / \mathrm{s}$.	
		A starts from origen, waves right B starts to rght of origin, moves nght atte sime spee after delay after delay	

SPH3U: Velocity-Time Graphs and Displacement

On a position-time ($\vec{d}-t$) graph,

1. the slope of the graph represents \qquad velocity \qquad .
On a velocity-time ($\vec{v}-t$) graph,
2. the slope of the graph represents \qquad acceleration \qquad .
3. the area under the graph represents \qquad displacement \qquad .

Position-Time Graphs and Velocity-Time Graphs

1. What is the slope of the position-time graph for Runner A?

$$
5.0 \mathrm{~m} / \mathrm{s}[\mathrm{~N}]
$$

2. What is the slope of the position-time graph for Runner B?

$2.5 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$

3. What is the displacement (change in position) of Runner A after 4 s ?

20 m [N]

4. What is the displacement of Runner B after $6 s$?

15 m [N]

5. What is the area under the velocity-time curve for Runner A from 0 to 4 s ?

$$
5.0 \mathrm{~m} / \mathrm{s}[\mathrm{~N}] \times 4 \mathrm{~s}=20.0 \mathrm{~m}[\mathrm{~N}]
$$

6. What is the area under the velocity-time curve for Runner B from 0 to $6 s$?

$$
2.5 \mathrm{~m} / \mathrm{s}[\mathrm{~N}] \times 6 \mathrm{~s}=15.0 \mathrm{~m}[\mathrm{~N}]
$$

7. What is the slope of the velocity-time curve for Runner A?

$$
0 \mathrm{~m} / \mathrm{s} / \mathrm{s}\left(0 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

8. What is the slope of the velocity-time curve for Runner B?

$$
0 \mathrm{~m} / \mathrm{s} / \mathrm{s}\left(0 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

Sketching Velocity-Time Graphs:

Graph A

Runner A runs at a constant velocity of $2 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$, while Runner B runs at a constant velocity of 2 $\mathrm{m} / \mathrm{s}[\mathrm{S}]$ for 4 s .
What is Runner A's displacement after 4 s ?
$2 \mathrm{~m} / \mathrm{s}[\mathrm{N}] \times 4 \mathrm{~s}=8 \mathrm{~m}[\mathrm{~N}]$

Graph C

Starting from rest, Bicycle A accelerates smoothly to $5 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$ in 10 s . Starting from rest, Bicycle B accelerates smoothly to $5 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$ in 5 s , and then continues for another 5 s at constant velocity.
What is Bicycle A's displacement?
$0.5 \times 5 \mathrm{~m} / \mathrm{s}[\mathrm{N}] \times 10 \mathrm{~s}=25 \mathrm{~m}[\mathrm{~N}]$

What is Bicycle B's displacement?
$0.5 \times 5 \mathrm{~m} / \mathrm{s}[\mathrm{N}] \times 5 \mathrm{~s}+5 \mathrm{~m} / \mathrm{s}[\mathrm{N}] \times 5 \mathrm{~s}=37.5 \mathrm{~m}[\mathrm{~N}]$

If they both have the same starting position, who is ahead after 10 s? Bicycle B

A runner runs at a constant velocity of $2 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$ for 2 s , and then instantaneously changes direction and runs $2 \mathrm{~m} / \mathrm{s}[\mathrm{S}]$ for another 2 s .
What is the runner's displacement after 4 s ?
$2 \mathrm{~m} / \mathrm{s}[\mathrm{N}] \times 2 \mathrm{~s}+(-2 \mathrm{~m} / \mathrm{s}[\mathrm{N}] \times 2 \mathrm{~s})=0 \mathrm{~m}$

Graph D

A lab cart is pushed so that it coasts up an inclined plane, starting at $5 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$, and then it rolls back down the plane.
What can you say about the area between the graph and the time axis when the lab cart rolls back down to its original position?
Area (rolling down) must be equal to the area (rolling up), so total area $=0$ since displacement must be 0

SPH3U: Velocity Time Graphs

Answers: (0) $6 \mathrm{~m} / \mathrm{s}$ [S], $24 \mathrm{~m} / \mathrm{s}[\mathrm{S}], 0,12 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$, (1) $30 \mathrm{~m}[\mathrm{~S}]$, (2) $210 \mathrm{~m}[\mathrm{~S}], 3.45 \mathrm{~m}[\mathrm{~N}], 4.390 \mathrm{~m}, 5.13 \mathrm{~m} / \mathrm{s}, 6$. $300 \mathrm{~m}[\mathrm{~S}], 10.0 \mathrm{~m} / \mathrm{s}[\mathrm{S}], 8.20-27.5 \mathrm{~s}, 9$. a) $5-10 \mathrm{~s}, 10-15 \mathrm{~s}, 25-27.5 \mathrm{~s}$, b) $20-25 \mathrm{~s}$, c) $0-25 \mathrm{~s}$, d) $25-30 \mathrm{~s}$

Finding Instantaneous and Average Velocity from Position-Time Graphs

Consider the following position-time graph for a scooter:

Over the course of the entire trip, the scooter's motion is non-uniform (not constant in velocity - the speed and/or direction change) because the graph is not straight.

Instantaneous Velocity: the velocity at a specific point in time, calculated by finding the slope of a tangent line to the curve (graph) at that point.
A tangent line is a straight line which "touches" the curve only at the point of interest, and does not intersect it.
Average Velocity: displacement divided by the time required to complete that displacement; ignores the actual path travelled; calculated by finding the slope of a secant line connecting the starting position and the end position.
A secant line is a straight line which intersects two points on a curve.
$\vec{v}_{\text {ave }}=\frac{\Delta \vec{d}}{\Delta t}=\frac{\vec{d}_{2}-\vec{d}_{1}}{t_{2}-t_{1}}$, where Δd is the displacement (change in position), and Δt is the change in time

Worked Examples from the Graph:

A tangent line and secant line for $t=20 \mathrm{~s}$ have been drawn for you, and sample calculations for instantaneous and average velocity are shown. Find the instantaneous and average velocities for $t=80 \mathrm{~s}$ and $\mathrm{t}=180 \mathrm{~s}$ by drawing tangent and secant lines.

Timepoint (s)	Instantaneous Velocity	Average Velocity (from t $=0 \mathrm{~s}$)
$\mathrm{t}=20 \mathrm{~s}$	$\vec{v}_{\text {inst }}=\frac{195-50}{60-0}=2.4 \mathrm{~m} / \mathrm{s}[\mathrm{~N}]$	$\vec{v}_{\text {ave }}=\frac{100-0}{20-0}=5 \mathrm{~m} / \mathrm{s}[\mathrm{~N}]$
$\mathrm{t}=80 \mathrm{~s}$	$\bar{V}_{\text {lnst }}=\frac{160-150}{120-40}=0.125 \mathrm{~m} / \mathrm{s}$	$\bar{V}_{\text {ave }}=\frac{155-0}{80-0}=1.9 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$
$\mathrm{t}=180 \mathrm{~s}$	$\bar{V}_{\text {inst }}=\frac{25-110}{200-140}=-1.4 \mathrm{~m} / \mathrm{s}$	$\bar{V}_{\text {ave }}=\frac{25-0}{200-0}=0.125 \mathrm{~m} / \mathrm{s}[\mathrm{~N}]$

Draw tangents on the position-time graph for at least 4 time points, calculate the slopes of these tangents to find the instantaneous velocities, plot them on a velocity-time graph, and draw a best-fit straight line.

What is the slope of your velocity-time graph? What is the area under your velocity-time graph from 0 to 6 s? What is the acceleration? What do you notice about the displacement from 0 to 6 s ?

