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ABSTRACT
We present an agent-based model of manipulating prices in
financial markets through spoofing : submitting spurious or-
ders to mislead traders who observe the order book. Built
around the standard limit-order mechanism, our model cap-
tures a complex market environment with combined private
and common values, the latter represented by noisy observa-
tions upon a dynamic fundamental time series. We consider
background agents following two types of trading strategies:
zero intelligence (ZI) that ignores the order book and heuris-
tic belief learning (HBL) that exploits the order book to
predict price outcomes. By employing an empirical game-
theoretic analysis to derive approximate strategic equilibria,
we demonstrate the e↵ectiveness of HBL and the usefulness
of order book information in a range of non-spoofing envi-
ronments. We further show that a market with HBL traders
is spoofable, in that a spoofer can qualitatively manipulate
prices towards its desired direction. After re-equilibrating
games with spoofing, we find spoofing generally hurts mar-
ket surplus and decreases the proportion of HBL. However,
HBL’s persistence in most environments with spoofing indi-
cates a consistently spoofable market. Our model provides
a way to quantify the e↵ect of spoofing on trading behavior
and e�ciency, and thus measures the profitability and cost
of an important form of market manipulation.
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1. INTRODUCTION
Electronic trading platforms have transformed the finan-

cial market landscape, supporting automation of trading
and consequential scaling of volume and speed across ge-
ography and asset classes. Automated traders have un-
precedented ability to gather and exploit market informa-
tion from a broad variety of sources, including transactions
and order book information exposed by many market mecha-
nisms. Whereas some of these developments may contribute
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to improved price discovery and e�ciency, the automation
and dissemination of market information may also introduce
new possibilities of disruptive and manipulative practices in
financial markets.

Recent years have witnessed several cases of fraud and
manipulation in the financial markets, where traders made
tremendous profits by deceiving investors or artificially af-
fecting market beliefs. On April 21, 2015, nearly five years
after the “Flash Crash”,1 the U.S. Department of Justice
charged Navinder Singh Sarao with 22 criminal counts, in-
cluding fraud and market manipulation [3]. Prior to the
Flash Crash, Sarao allegedly used an automated program
to place orders amounting to about $200 million worth of
bets that the market would fall, and later replaced or mod-
ified those orders 19,000 times before cancellation. The
U.S. Commodity Futures Trading Commission (CFTC) con-
cluded that Sarao’s manipulative practice was responsible
for significant order imbalances. Though recent analysis has
cast doubt on the causal role of Sarao on the Flash Crash [1],
many agree that such manipulation could increase the vul-
nerability of markets and exacerbate market fluctuations.

The specific form of manipulation we examine in this pa-
per is spoofing. Spoofing refers to the practice of submitting
large spurious orders to buy or sell some security. The or-
ders are spurious in that the spoofer does not intend for them
to execute, but rather to mislead other traders by feigning
strong buy or sell interest in the market. Spoof orders may
lead other traders to believe that prices may soon rise or fall,
thus altering their own behavior in a way that will directly
move the price. To profit on its feint, the spoofer can submit
a real order on the opposite side of the market and as soon
as the real order transacts, cancel all the spoof orders.

In 2010, the Dodd-Frank Wall Street Reform and Con-
sumer Protection Act was signed into federal law, outlawing
spoofing as a deceptive practice. In its allegations against
Sarao, the CFTC notes that “many market participants, re-
lying on the information contained in the order book, con-
sider the total relative number of bid and ask o↵ers in the
order book when making trading decisions”. In fact spoof-
ing can be e↵ective only to the extent that traders actually
use order book information to make trading decisions. De-
spite detection systems and regulatory enforcement e↵orts,
spoofing is hard to eliminate due to the di�culty in general
of determining the manipulation intent behind placement of
orders.

1The Flash Crash was a sudden trillion-dollar dip in U.S.
stock markets on May 6, 2010, during which stock indexes
collapsed and rebounded rapidly [11].
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In this study, we aim to reproduce spoofing in a computa-
tional model, as a first step toward developing more robust
measures to characterize and prevent spoofing. Our model
implements a continuous double auction (CDA) market with
a single security traded. The CDA is a two-sided mecha-
nism adopted by most financial and commodity markets [7].
Traders can submit orders at any time, and whenever an
incoming order matches an existing one they trade at the
incumbent order’s limit price. We adopt an agent-based
modeling approach to simulate the interactions among play-
ers with di↵erent strategies. The market is populated with
multiple background traders and in selected treatments, one
spoofer. Background traders are further divided into agents
using instances of the zero intelligence (ZI) and heuristic
belief learning (HBL) strategy families. In both strategies
traders employ a noisy observation of the security’s funda-
mental value they receive on arrival to trade. The HBL
strategy further considers information about orders recently
submitted to the order book. The spoofer in our model
maintains large buy spoof orders at one tick behind the best
bid, designed to manipulate the market by misleading others
about the level of demand.

We first address the choice of background traders among
HBL and ZI strategies, through empirical game-theoretic
analysis. In most non-spoofing environments we examine,
HBL is adopted in equilibrium and benefits price discovery
and social welfare. By executing a spoofer against the found
equilibria, we show that spoofing can qualitatively manip-
ulate price given su�cient HBL traders in the market. We
finally re-equilibrate games with spoofing and find HBL still
exists in some equilibria but with smaller mixture probabil-
ity. Though the welfare benefits of HBL persist, the presence
of spoofing generally decreases market surplus.

The paper is structured as follows. In Section 2, we discuss
related work and our contributions. We describe the mar-
ket model, background trading strategies, and the spoofing
strategy in Section 3. In Section 4, we discuss experiments
and present main findings. Section 5 concludes with open
questions.

2. RELATED WORK & CONTRIBUTIONS

2.1 Agent-Based Finance
Agent-based modeling (ABM) takes a simulation approach

to study complex domains with dynamically interacting de-
cision makers. ABM has been frequently applied to financial
markets [12], for example to study the Flash Crash [17] or
bubbles and crashes in the abstract [13]. Often the goal of
ABM is to reproduce stylized facts of the financial system
[18]. Researchers also use ABM to investigate the e↵ects
of particular trading practices, such as market making [22]
and high-frequency trading [15, 23]. ABM advocates argue
that simulation is particularly well-suited to study finan-
cial markets [2], as analytic models in this domain typically
require extreme stylization for tractability, and pure data-
driven approaches cannot answer questions about changing
market and agent designs.

2.2 Bidding Strategies
There is a substantial literature on autonomous bidding

strategies in CDA markets [26]. The basic zero intelligence
(ZI) strategy [10] submits o↵ers at random o↵sets from valu-
ation. Despite its simplicity, ZI has been shown surprisingly

e↵ective for modeling some cases [6]. In this study, we adopt
an extended and parameterized version of ZI to represent
trading strategies that ignore order book information.

Researchers have also extended ZI with adaptive features
that exploit observations to tune themselves to market con-
ditions.2 For example, the zero intelligence plus strategy
outperforms ZI by adjusting an agent-specific profit margin
based on successful and failed trades [4, 5]. Adaptive ag-
gressiveness [21] adds another level of strategic adaptation,
allowing the agent to control its behavior with respect to
short and long time scales.

Gjerstad proposed a more direct approach to learning
from market observations, termed GD in its original ver-
sion [9] and named heuristic belief learning (HBL) in a sub-
sequent generalized form [8]. The HBL model estimates a
heuristic belief function based on market observations over
a specific memory length. Variants of HBL (or GD) have
featured prominently in the trading agent literature. GDX
calculates the belief function in a similar manner, but uses
dynamic programming to optimize the price and timing of
bids [19]. Modified GD further adapts the original GD to
markets that support persistent orders [20].

We adopt HBL as our representative class of agent strate-
gies that exploit order book information. HBL can be ap-
plied with relatively few tunable strategic parameters, com-
pared to other adaptive strategies in the literature. Our
study extends the HBL approach to a more complex finan-
cial market environment than addressed in previous studies.
The extended HBL strategy considers the full cycle of an
order, including the times an order is submitted, accepted,
canceled, or rejected.

2.3 Spoofing in Financial Markets
The literature on spoofing and its impact on financial

markets is fairly limited. Some empirical research based
on historical financial market data has been conducted to
understand spoofing. Lee et al. [14] empirically examine
spoofing by analyzing a custom data set, which provides
the complete intraday order and trade data associated with
identified individual accounts in the Korea Exchange. They
found investors strategically spoof the stock market by plac-
ing orders with little chance to transact to add imbalance
to the order book. They also discovered that spoofing usu-
ally targets stocks with high return volatility but low market
capitalization and managerial transparency. Wang investi-
gates spoofing on the index futures market in Taiwan, iden-
tifying strategy characteristics, profitability, and real-time
impact [24]. Martinez-Miranda et al. [16] implement spoof-
ing behavior within a reinforcement learning framework to
model conditions where such behavior is e↵ective.

2.4 Contributions
Our contributions are threefold. First, we adapt HBL

to a complex market environment that supports persistent
orders, combined private and fundamental values, noisy ob-
servations, stochastic arrivals, and ability to trade multi-
ple units with buy or sell flexibility. Second, we demon-
strate through empirical game-theoretic analysis the e↵ec-
tiveness of our extended HBL and (as corollary) the use-

2Note that to some extent, the adaptive functions of these
strategies would be implicitly handled by the game-theoretic
equilibration process we employ to determine the parametric
configurations of the (non-adaptive) trading strategies.
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fulness of order book information in the absence of spoof-
ing, in a range of parametrically di↵erent market environ-
ments. Third and most importantly, we provide the first
computational model of spoofing a dynamic financial mar-
ket, and demonstrate the e↵ectiveness of spoofing against
approximate-equilibrium traders in that model. Our model
provides a way to quantify the e↵ect of spoofing on trading
behavior and e�ciency, and thus a first step in the design of
methods to deter or mitigate market manipulation.

3. MARKET MODEL

3.1 Market Environment
The model employs a CDA market mechanism over a sin-

gle security. Prices are fine-grained and take discrete values
at integer multiples of the tick size. Time is also fine-grained
and discrete, with trading over a finite horizon T . Agents in
the model submit limit orders, which specify the maximum
(minimum) price at which they would be willing to buy (sell)
together with the number of units to trade.

The fundamental value r of the underlying security changes
throughout the trading period, according to a mean-reverting
stochastic process:

rt = max{0,r̄ + (1� )rt�1

+ ut}; r0 = r̄. (1)

Here rt denotes the fundamental value of the security at time
t 2 [0, T ]. The parameter  2 [0, 1] specifies the degree to
which the fundamental reverts back to r̄. The perturbation
in the fundamental at time t is normally distributed: ut ⇠
N(0,�2

s).
The CDA market maintains a limit order book of out-

standing orders, and provides information about the book
to traders with zero delay. The buy side of the order book
starts with BIDt, the highest-price buy order at time t, and
extends to lower prices. Similarly, the sell side starts with
ASKt, the lowest-price sell order at time t, and extends to
higher prices. On order cancellation or transaction, the mar-
ket removes the corresponding orders and updates the order
book. Agents may use order book information at their own
discretion.

The market is populated with multiple background traders,
and in selected treatments, a spoofer. Background traders
represent investors with preferences for holding long or short
positions in the underlying security. The spoofer seeks trad-
ing profits through its price manipulation actions.

The individual preference of background trader i is defined
by its private value ⇥i, a vector of length 2q

max

, where q
max

is the maximum number of units a trader can be long or
short at any time. Private values are subject to diminishing
marginal utility and element ✓qi in the vector specifies the
incremental private benefit foregone by selling one unit of
the security given a current net position of q.

⇥i = (✓�q
max

+1

i , . . . , ✓0i , ✓
1

i , . . . , ✓
q
max

i )

Alternatively, ✓q+1

i can be understood as the marginal pri-
vate gain from buying an additional unit given current net
position q. To reflect diminishing marginal utility, that is
✓q

0
 ✓q for all q0 � q, we generate ⇥i from a set of 2q

max

values drawn independently from N(0,�2

PV ), sort elements
in descending order, and assign ✓qi to its respective value in
the sorted list. The agent’s overall valuation for a unit of
the security is the sum of fundamental and private value.

The entries of a background trader follow a Poisson pro-
cess with an arrival rate �

a

. On each entry, the trader ob-
serves an agent-and-time-specific noisy fundamental ot =
rt + nt with the observation noise following nt ⇠ N(0,�2

n).
Given its incomplete information about the fundamental,
the agent can potentially benefit by considering market in-
formation, which is influenced by the aggregate observations
of other agents. When it arrives, the trader withdraws its
previous order (if untransacted) and submits a new single-
unit limit order, either to buy or sell as instructed with equal
probability. The trader’s order price is jointly decided by its
valuation and trading strategy, as discussed in the next sec-
tion. The spoofing agent, if present, initially arrives at a
designated intermediate time T

sp

2 [0, T ] and executes the
manipulation strategy described in Section 3.2.4.

3.2 Trading Strategies

3.2.1 Estimation of the Final Fundamental
As holdings of the security are evaluated at the end of a

trading period, traders estimate the final fundamental value
based on their noisy observations. We assume the market
environment parameters (mean reversion, shock variance,
etc.) are common knowledge for background agents.

Given a new noisy observation ot, an agent estimates the
current fundamental by updating its posterior mean r̃t and
variance �̃2

t in a Bayesian manner. Let t0 denote the agent’s
preceding arrival time. We first update the previous poste-
riors (r̃t0 and �̃2

t0) by mean reversion for the interval since
preceding arrival (� = t� t0):

r̃t0  (1� (1� )�)r̄ + (1� )� r̃t0 ;

�̃2

t0  (1� )2��̃2

t0 +
1� (1� )2�

1� (1� )2
�2

s .

The estimates for t are then given by:

r̃t =
�2

n

�2

n + �̃2

t0
r̃t0 +

�̃2

t0

�2

n + �̃2

t0
ot ; �̃2

t =
�2

n�̃
2

t0

�2

n + �̃2

t0
.

Based on the posterior estimate of r̃t, the trader computes
r̂t, its estimate at time t of the terminal fundamental rT , by
adjusting for mean reversion:

r̂t =
�
1� (1� )T�t�r̄ + (1� )T�tr̃t. (2)

3.2.2 ZI as a Background Trading Strategy
ZI traders compute limit-order prices based on fundamen-

tal observations and private values. The ZI agent shades its
bid from its valuation by a random o↵set, which is uniformly
drawn from [R

min

, R
max

]. Specifically, a ZI trader i arriving
at time t with position q generates a limit price

pi(t) ⇠
(
U [r̂t + ✓q+1

i �R
max

, r̂t + ✓q+1

i �R
min

] if buying,

U [r̂t � ✓qi +R
min

, r̂t � ✓qi +R
max

] if selling.

Our version of ZI also takes into account the current quoted
price, as governed by a strategic threshold parameter ⌘ 2
[0, 1]. Before submitting a new limit order, if the agent could
achieve a fraction ⌘ of its requested surplus, it would simply
take that quote.

3.2.3 HBL as a Background Trading Strategy
HBL agents go beyond their own observations and pri-

vate values by also considering order book information. The
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strategy is centered on belief functions that traders form
on the basis of observed market data. Agents estimate the
probability that orders at various prices would be accepted
in the market, and choose a limit price maximizing their
own expected surplus at current valuation estimates.

The HBL agent’s probability estimate is based on ob-
served frequencies of accepted and rejected buy (bid) and
sell (ask) orders during the last L trades, where L, the
agent’s memory length, is a strategic parameter. On arrival
at time t, the HBL agent builds a belief function ft(P), de-
signed to represent the probability that an order at price P
will result in a transaction. Specifically, the belief function
is defined for encountered prices P by:

ft(P) =

8
><

>:

TBLt(P)+ALt(P)

TBLt(P)+ALt(P)+RBGt(P)

if buying,

TAGt(P)+BGt(P)

TAGt(P)+BGt(P)+RALt(P)

if selling.

(3)

Here, T and R specify transacted and rejected orders re-
spectively; A and B represent asks and bids; L and G de-
scribe orders with prices less than or equal to and greater
than or equal to price P correspondingly. For example,
TBLt(P) is the number of transacted bids found in mem-
ory with price less than or equal to P up to time t. Agents
compute the statistics upon each arrival and update their
memory whenever the market receives new order submis-
sions, transactions, or cancellations.

Since our market model supports order cancellations and
keeps active orders in the order book, the notion of a rejected
order is tricky to define. To solve this problem, we introduce
a grace period ⌧

gp

and an alive period ⌧
al

of an order. We
define the grace period ⌧

gp

= 1/�a and the alive period ⌧
al

of
an order as the time interval from submission to transaction
or withdrawal if it is inactive, or to the current time if active.
An order is considered as rejected only if its alive period ⌧

al

is longer than ⌧
gp

, otherwise it is partially rejected by a
fraction of ⌧

al

/⌧
gp

.
As the belief function (3) is defined only at encountered

prices, we extend it over the full domain by cubic spline in-
terpolation. To speed the computation, we pick knot points
and interpolate only between those points.

After formulating the belief function, agent i with an ar-
rival time t and current holdings q searches for the price
P⇤

i (t) that maximizes expected surplus:

P⇤
i (t) =

(
argmaxp(r̂t + ✓q+1

i � p)ft(p) if buying,

argmaxp(p� ✓qi � r̂t)ft(p) if selling.

Under the special cases when there are fewer than L trans-
actions at the beginning of a trading period or when one side
of the order book is empty, HBL agents behave the same as
ZI agents until enough information is gathered to form the
belief function. As those cases are rare, the specific ZI strat-
egy that HBL agents adopt does not materially a↵ect overall
performance.

3.2.4 Spoofing Strategy
We design a simple spoofing strategy which maintains

a large volume of buy orders at one tick behind the best
bid. Specifically, upon arrival at T

sp

2 [0, T ], the spoofing
agent submits a buy order at price BID

T

sp

� 1 with volume
Q

sp

� 1. Whenever there is an update on the best bid, the
spoofer cancels its original spoof order and submits a new
one at price BIDt�1 with the same volume. As background

traders submit only single-unit orders, they cannot transact
with the spoof order, which is shielded by a higher order
at BID

T

sp

. If that higher order gets executed, the spoofer
immediately cancels and replaces its spoof orders before an-
other background trader arrives. We assume in e↵ect that
the spoofer can react infinitely fast, in which case its spoof
orders are guaranteed never to transact.

By continuously feigning buy interest in the market, this
spoofing strategy specifically aims to raise market beliefs.
Other spoofing strategies such as adding sell pressure or al-
ternating between buy and sell pressure can be easily con-
structed by extension from the current version.

3.3 Surplus
We calculate market surplus as the sum of agents’ sur-

pluses at the end of the trading period T . An agent’s total
surplus (i.e., payo↵) is its net cash from trading plus the
final valuation of holdings. The market’s final valuation of
trader i with ending holdings H is rTH +

Pk=H
k=1

✓ki for long

position H > 0, or alternatively, rTH�
Pk=0

k=H+1

✓ki for short
position H < 0.

4. EXPERIMENTS AND RESULTS
We conduct simulation experiments for our market model

over a variety of parametrically defined market environments.
Each simulation run evaluates a specified profile of back-
ground trading strategies in the designated environment.
We sample 20,000 runs for each profile, to account for stochas-
tic features such as market fundamental series, agent arrival
patterns, and private valuations. Given the accumulated
payo↵ data from these samples, we estimate an empirical
game model, and from that derive an approximate Nash equi-
librium, where agents have no incentive to deviate to other
available strategies, given others’ choices. This allows us to
evaluate market performance and the impact of spoofing in
strategically stable settings.

We start by specifying our experimental market settings
in Section 4.1. Section 4.2 introduces the empirical game-
theoretic analysis (EGTA) [25] methods used to identify
equilibrium solutions. In Section 4.3, we conduct EGTA
on agents’ choices among ZI and HBL strategies in games
without spoofing. Section 4.4 investigates games with spoof-
ing. We first illustrate that the HBL strategy is spoofable
and spoofing can cause a rise in market prices and a redis-
tribution of surplus between ZI and HBL agents. We then
re-equilibrate the game with spoofing to investigate the im-
pact of spoofing on HBL adoption and market surplus.

4.1 Market Environment Settings
Our simulations consider nine environment settings that

di↵er in the variance defining market shock, �2

s 2 {105, 5 ⇥
105, 106}, and observation noise, �2

n 2 {103, 106, 109}. Shock
variance governs fluctuations in the fundamental time series,
and observation variance the quality of information agents
get about the true fundamental. Preliminary explorations
over environment parameters suggested these as the most
salient for our study. We label the three low, medium, and
high shock variances as {A,B,C} and noisy observation vari-
ances as {1, 2, 3} respectively to describe the nine environ-
ments. For instance, A1 represents a market with low shock
�2

s = 105, and low observation noise �2

n = 103.
For each environment setting, we consider games with

N 2 {28, 65} background traders and in selected treatments,
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Table 1: Background trading strategies included in empirical game-theoretic analysis.

Strategy ZI
1

ZI
2

ZI
3

ZI
4

ZI
5

ZI
6

ZI
7

HBL
1

HBL
2

HBL
3

HBL
4

L NA NA NA NA NA NA NA 2 3 5 8
R

min

0 0 0 0 0 250 250 250 250 250 250
R

max

250 500 1000 1000 2000 500 500 500 500 500 500
⌘ 1 1 0.8 1 0.8 0.8 1 1 1 1 1

a spoofer. The global fundamental time series is generated
according to (1) with fundamental mean r̄ = 105, mean
reversion  = 0.05, and shock variance �2

s . Each trading
period lasts T = 10, 000 time steps. Background traders ar-
rive at the market according to a Poisson distribution with
a rate �a = 0.005 and upon each arrival, the trader ob-
serves a noisy fundamental ot. The maximum number of
units background traders can hold at any time is q

max

= 10.
Private values are drawn from a Gaussian distribution with
zero mean and a variance of �2

PV

= 5 ⇥ 106. The spoofing
agent initially arrives at time T

sp

= 1000, submits a large
buy order at price BID

T

sp

� 1 with volume Q
sp

= 200, and
later maintains spoofing orders at price BIDt � 1.

To provide a benchmark for market surplus, we calculate
the social optimum, which depends solely on the trader pop-
ulation size and valuation distribution. From 20,000 samples
of the joint valuations, we estimate mean social optima of
18389 and 43526 for markets with 28 and 65 background
traders, respectively. We further calculate the average order
book depth (on either buy or sell side) in markets without
spoofing. Throughout the trading horizon, the N = 28 mar-
ket has a relatively thin order book with an average depth
of 12, whereas the N = 65 market has a thicker one with an
average depth of 30.

The background trading strategy set (Table 1) includes
seven versions of ZI and four versions of HBL.3 Agents are
allowed to choose from this restricted set of strategies to
maximize their payo↵s.

4.2 EGTA Process
We model the market as a symmetric game, which is de-

fined by a market environment and a set of players represent-
ing background traders. The spoofer agent, when present,
implements a fixed policy so is not considered a strategic
player. The payo↵ of a specific strategy in a profile is the
average over agents playing that strategy in the profile, and
thus depends on the number playing each strategy, not on
individual mappings. We are interested in players’ strategic
choices in Nash equilibria of these games.

As game size grows exponentially in the number of play-
ers and strategies, it is computationally prohibitive to ana-
lyze games with this many traders. We therefore apply ag-
gregation to approximate the many-player games as games
with fewer players. The specific technique we employ, called
deviation-preserving reduction (DPR) [27], defines reduced-
game payo↵s in terms of payo↵s in the full game as follows.
Consider an N -player symmetric game, which we want to
reduce to a k-player game. The payo↵ for playing strategy
s
1

in the reduced game, with other agents playing strate-
gies (s

2

, . . . , sk), is given by the payo↵ of playing s
1

in the
full N -player game when the other N � 1 agents are evenly

3We also considered ZI strategies with larger shading ranges
and HBL strategies with longer memory lengths, but they
fail to appear in equilibrium.

divided among strategies s
2

, . . . , sk. To facilitate DPR, we
choose values for N to ensure that the required aggregations
come out as integers. Specifically, in this study we reduce
the market environments with 28 (65) background traders to
games with four (five) background traders. With one back-
ground player deviating to a new strategy, we can reduce
the remaining 27 (64) players to three (four).

To find the Nash equilibrium of a game, we run simula-
tions to get payo↵s for background strategies and conduct
EGTA based on those payo↵s. Exploration starts with sin-
gleton subgames (games over strategy subsets), and spreads
to consider other strategies incrementally. Equilibria found
in a subgame are considered as candidate solutions of the full
game. We attempt to refute these candidates by evaluating
deviations outside the subgame strategy set, constructing a
new subgame when a beneficial deviation is found. If we ex-
amine all deviations without refuting, the candidate is con-
firmed. We continue to refine the empirical subgame with
additional strategies and corresponding simulations until at
least one equilibrium is confirmed and all non-confirmed can-
didates are refuted.

4.3 Games without Spoofing
Since spoofing targets the order book and can be e↵ective

only to the extent traders exploit order book information,
we first investigate whether background agents adopt the
HBL strategy in games without spoofing. Applying EGTA
to the eleven background strategies in Table 1, we found at
least one equilibrium for each market environment.4

As indicated in Figure 4 with blue circles, HBL is adopted
with positive probability by background traders in most non-
spoofing environments. That is, in the absence of spoofing,
investors generally have incentives to make bidding decisions
based on order book information. We find that HBL is ro-
bust and widely preferred in markets with more traders,
low fundamental shocks, and high observation noise. Intu-
itively, a larger population size implies a thick order book
with more learnable aggregated data; low shocks in funda-
mental time series increase the predictability of future price
outcomes; and high observation noise limits what an agent
can glean about the true fundamental from its own infor-
mation. The two exceptions (environments C1 and C2 with
28 background traders) where all agents choose ZI can be
explained by the environments’ small population size, large
fundamental shocks, and relatively small observation noise.

We further conduct EGTA in games where background
traders are restricted to strategies in the ZI family (ZI

1

–
ZI

7

in Table 1). This is tantamount to disallowing learning
from order book information. To understand the e↵ect of
order book disclosure on market performance, we compare

4Details of the HBL adoption rates and market surpluses of
all found equilibria in games with and without spoofing are
available in an online appendix at http://hdl.handle.net/
2027.42/136123
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Figure 1: Comparisons of market surplus (Figures 1(a) and 1(b)) and price discovery (Figures 1(c) and 1(d)) for equilibrium
in each environment, with and without the HBL strategies available to background traders. Blue circles represent equilibrium
outcomes when agents can choose both HBL and ZI strategies; orange triangles represent equilibrium outcomes when agents
are restricted to ZI strategies. Overlapped markers are outcomes from the same equilibrium mixture, despite the availability
of HBL. The market generally achieves higher surplus and better price discovery when HBL is available.

equilibrium outcomes for each environment, with and with-
out the HBL strategy set available to background traders,
on two measures: market surplus and price discovery (Fig-
ure 1). Price discovery reflects how well transactions reveal
the true value of the security; it is defined as the root-mean-
squared deviation (RMSD) of the transaction price from the
estimate of the true fundamental (2) over the trading period.
Lower RMSD means better price discovery.

Overall in our experiments, background traders achieve
higher surplus (Figures 1(a) and 1(b)) and better price dis-
covery (Figures 1(c) and 1(d)) when the market provides or-
der book information and enables the HBL strategy option.
When the equilibrium includes HBL, we find transactions re-
veal fundamental estimates well, especially in markets with
lower shock and observation variances (i.e., A1, A2, B1, B2).
We also notice small exceptions in scenarios with high obser-
vation variance and more background traders (environment
A3 and C3 with 65 players) where ZI-only equilibria exhibit
higher surplus than equilibria combining HBL and ZI.

4.4 Games with Spoofing

4.4.1 Comparison across Fixed Strategy Profiles
To examine the e↵ectiveness of the designed spoofing strat-

egy, we play a spoofer against each equilibrium found in Sec-
tion 4.3 and perform controlled comparisons with and with-
out spoofing. In the paired instances, background agents
play identical strategies, and are guaranteed to arrive at the
same time, receive identical private values, and observe the
same fundamental values. Therefore, any change in behav-
ior is caused by the spoof orders’ e↵ects on HBL traders.
For every setting, we simulate 20,000 paired instances, and
compare their transaction price di↵erences (Figure 2), and
surplus di↵erences attained by HBL and ZI traders (Fig-
ure 3). Transaction price di↵erence at a specific time is
defined as the most recent transaction price of a game with
spoofing minus that of the paired game without spoofing.
Similarly, surplus di↵erence of HBL or ZI is the aggregated
surplus obtained in a game with spoofing minus that of the
paired game without spoofing.

Figure 2 shows5 , across all environments, positive changes
in transaction prices subsequent to arrival of a spoofing

5As spoofing has no impact on pure ZI populations, we dis-
play transaction price di↵erences only for equilibria includ-
ing HBL.

agent at T
sp

= 1000. This suggests HBL traders are tricked
by the spoof buy orders: they believe the underlying security
should be worth more and therefore submit or accept limit
orders at higher prices. Though ZI agents do not change
their bidding behavior directly, they may be passively af-
fected due to the requested surplus fraction ⌘, and make
transactions at higher prices.

Several other interesting findings are revealed by the trans-
action price di↵erence series (Figure 2). First, the average
price rise caused by spoofing in market with 28 background
traders is higher than that of the 65-background-trader mar-
ket. The market with fewer background traders is more sus-
ceptible to spoofing, possibly due to the limited pricing infor-
mation a thin market could aggregate. Second, for markets
populated with more HBLs than ZIs, the transaction price
di↵erences increase throughout the trading period. This am-
plification can be explained by HBLs consistently submitting
orders at higher prices and confirming each other’s spoofed
belief. However, for markets with more ZIs, the spoofing
e↵ect diminishes as ZIs who do not change their limit-order
pricing can partly correct HBLs’ illusions. Third, di↵erences
in transaction prices first increase and then tend to stabilize
or decrease as time approaches the end of a trading period.
As time approaches T = 10, 000, spoofing wears o↵ in the
face of accumulated observations and mean reversion.

Figure 3 demonstrates a redistribution of surplus between
HBL and ZI agents when we include a spoofer: HBL’s aggre-
gated surplus decreases, while ZI’s increases compared to the
non-spoofing baseline. That is, the ZI agents benefit from
the HBL agents’ spoofed beliefs. Since the decreases in HBL
surplus are consistently larger than the increases for ZI, the
overall market surplus decreases. We also find that markets
with a spoofer against background traders at equilibrium
have statistically significantly higher RMSD, which a�rms
the notion that spoofing, as a deceptive practice, hurts price
discovery.

4.4.2 Spoofing Profitability
To examine the potential to profit from a successful price

manipulation, we extend the spoofing agent with an ex-
ploitation strategy: buying, then (optionally) spoofing to
raise the price, then selling. It starts by buying when it finds
a limit sell order with price less than the fundamental mean.
It then optionally runs the spoofing trick, or alternatively
waits, for 1000 time steps. Finally, the exploiter sells when
it finds a limit buy order with price more than fundamental
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Figure 2: Transaction price di↵erences throughout the trading horizon with and without a spoofer against each HBL-and-ZI
equilibrium found in Section 4.3. Multiple lines of the same environment represent di↵erent equilibria. A market with HBL
agents is spoofable, as the designed spoofing tactic can successfully raise market prices.
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Figure 3: Background trader surplus di↵erences in markets with and without a spoofer against each HBL-and-ZI equilibrium
found in Section 4.3. Repetitions of the same market environment represent outcomes of multiple equilibria. Spoofing generally
causes a decrease in HBL’s aggregated surplus and an increase in ZI’s total surplus.

mean. Note that even without the spoof, this exploitation
strategy is profitable in expectation due to the mean rever-
sion, and the reliable arrival of background traders willing
to sell at prices better than the fundamental.

In controlled experiments, we find that exploitation profits
are consistently increased when the spoof is also deployed.
Specifically, across 28-trader market environments, the ex-
ploiter makes an average profit of 206.1 and 201.8 with and
without spoofing, and the increases in profit range from 1.2
to 11.5. For the 65-trader market, the average profits of
this exploitation strategy with and without spoofing are 50.5
and 46.3 respectively, with the increases in profit varying
from 1.7 to 9.4 across environments.6

4.4.3 Re-Equilibrating Games with Spoofing
To understand how spoofing a↵ects background-trader in-

teractions, we conduct EGTA again to find Nash equilib-
rium in games with spoofing, where background traders can
choose any strategy in Table 1. As indicated in Figure 4 with
orange triangles, after re-equilibrating games with spoofing,
HBL is generally adopted by a smaller fraction of traders,
but may still persist at equilibrium in most market envi-
6Statistical tests show all increases in profit are significantly
larger than zero. Regardless of spoofing, the exploitation
strategy profits more in the thinner market due to the
greater variance in transaction prices.

ronments. HBL’s existence after re-equilibration indicates a
consistently spoofable market: the designed spoofing tactic
fails to eliminate HBL agents and in turn, the persistence of
HBL may incentivize a spoofer to continue e↵ectively ma-
nipulating the market.

Finally, we investigate the e↵ect of spoofing on market
surplus. Figure 5 compares the total surplus achieved by
background traders in equilibrium with and without spoof-
ing. Given the presence of HBL traders, spoofing generally
decreases total surplus (as in Figure 5, most filled orange tri-
angles are below the filled blue circles). However, spoofing
has ambiguous e↵ect in the thicker market with large obser-
vation variance (environment A3 and C3 with 65 background
agents). This may be because noise and spoofing simulta-
neously hurt the prediction accuracy of the HBL agents and
therefore shift agents to other competitive ZI strategies with
higher payo↵s. Finally, we find the welfare e↵ects of HBL
strategies persist regardless of spoofing’s presence: markets
populated with HBL agents in equilibrium generally achieve
higher total surplus than those markets without HBL (as in
Figure 5, the hollow markers are below the filled markers).

5. CONCLUSION
We constructed a computational model of spoofing: the

tactic of manipulating market prices by targeting the order
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Figure 4: HBL adoption rates at equilibria in games with and without spoofing. Each blue (orange) marker specifies the HBL
proportion at one equilibrium found in a specific game environment without (with) spoofing.
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Figure 5: Total surplus achieved at equilibria in games with and without spoofing. Each blue (orange) marker specifies the
surplus at one equilibrium found in a specific game environment without (with) spoofing. Surplus achieved at equilibria
combining HBL and ZI and equilibria with pure ZI are indicated by markers with and without fills respectively.

book. To do so, we designed an HBL strategy that uses or-
der book information to make pricing decisions. Since HBL
traders use the order book, they are potentially spoofable,
which we confirmed in simulation analysis. We demonstrate
that in the absence of spoofing, HBL is generally adopted in
equilibrium and benefits price discovery and social welfare.
Though the presence of spoofing decreases the HBL propor-
tion in background traders, HBL’s persistence in equilib-
rium indicates a robustly spoofable market. By comparing
equilibrium outcomes with and without spoofing, we find
spoofing tends to decrease market surplus. Comparisons
across parametrically di↵erent environments reveal factors
that may influence the adoption of HBL and the impact of
spoofing.

Our agent-based model aims to capture the complex essence
of real-world financial markets and the strategic interactions
among investors. We acknowledge several factors that limit
the accuracy of our equilibrium analysis in individual game
instances; these include sampling error, reduced-game ap-
proximation, and most importantly, restricted strategy cov-
erage. Despite such limitations (inherent in any complex
modeling e↵ort), we believe the model o↵ers a constructive
basis for other researchers, regulators, and policymakers to
better evaluate spoofing and understand its interplay with
other trading strategies.

We close with two open questions for further investigation.
First, are there more robust ways for exchanges to dis-

close order book information? Similarly, are there strategies
by which traders can exploit market information but in less
vulnerable ways? Preliminary explorations suggest that a
modified version of HBL which constructs the same belief
function but weights orders based on recency can be less
susceptible to spoofing. Intuitively, as the spoofing strat-
egy relies on frequent order cancellations and modifications,
spoof orders canceled recently are weighted more which in-
creases the rejected order term in the belief function as spec-
ified in (3). As a result, the rejected term in denominator
generally decreases the accept probability of orders with a
certain price and undermines the spoofed belief. This mod-
ified HBL is just one possible approach—more robust learn-
ing schemes that ignore skeptical orders but still learn from
market information can be explored based on our model.

Second, based on a model of this kind, can we design ef-
fective spoofing detection methods? An ability to generate
data streams with and without spoofing may provide a use-
ful resource for learning telltale signatures of a spoofer.
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