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Abstract

We introduce an approximate formula for the price of a spread option, assuming that the

two underlying assets are correlated via a Jacobi process. We also give an overview of the

related theory: pure stochastic analysis, Black-Scholes-Merton ideas applied to the classical

one-stock market and to the two-stocks market, and the extensions of the corresponding

models.
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Chapter 1

Introduction

The asset price modelling is important for those who wish to predict the change in market

prices over time, advance our understanding of how market works, and, ultimately, to be

able to make profit from the prices fluctuations. However, a model can only approximate

the reality. The more advanced the model is, the higher the chances that it will reflect the

real state of things well are.

A model is characterized by general expressions of how prices S evolve, e.g.

dS(t) = S(t)(µdt+ σdW (t))

(this is a stochastic differential equation discussed in the body of the thesis). Once these

expressions are set - it is a challenging practical task to set them - one can take the prices

known from real market history and calibrate the model, i.e. estimate the parameters the
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model depends on. The calibrated1 model can be used to predict prices.

When we trust our model, our calibration methods and their predictions, the next

logical step is to determine price of derivatives. Derivatives are financial instruments

(simply, contracts) which price depend on other underlying assets (such as commodities,

currencies, market indexes, stocks etc.)2. On the world market, thousands and millions

of various derivatives - futures, swaps, options - are being traded every minute. Hence,

millions of people are interested in derivatives pricing. Mathematics is here to suggest

pricing that is reasonable, logical and fair3.

The derivatives we focus on in the thesis are spread options. An option is a contract

that gives its owner the right to buy or sell an asset for a specific price, at a specific date

or within a specific period. In case of spread option, this asset is the difference (spread)

between two other assets. Spread options are simple and widely used derivatives, yet there

are still challenges to overcome regarding their pricing.

Of a particular interest when it comes to spread option pricing is dependance between

the two assets. Let us illustrate it with an example of a crack spread4, that is, a spread

option written on the difference between crude and refined petroleum products - let it

be crude oil and heating oil for definiteness. Prices of both depend on variety of hardly-

predictable (stochastic) factors like laws, taxes, technologies. The two prices are obviously

highly correlated - furthermore, the correlation coefficient itself can change over time. In

1Calibration is, of course, not a finished action but rather a process that needs to be performed when
there is a new market data available.

2Asset is a financial term best defined by examples. Often, this word can be replaced with ”something”
(or ”something that has a value”) without losing much sense.

3”Fair” from the market perspective, human definitions of ”fair” may differ.

4For more examples of spread options they use on real markets, see a wonderful review paper [5].
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the thesis, we consider different approaches to correlation, starting from it being a constant

and later developing a stochastic correlation model.

Modern financial theory would not be possible without mathematical tools that ap-

peared in 1940-1960s: Itô integral [17] and formula [18], stochastic differential equations,

Girsanov theorem [14]. All these go by name stochastic analysis (or stochastic calculus)

and are considered in chapter 2. Chapter 3 is a brief review of the classical 1973’s Black-

Scholes-Merton approach to pricing [4], [30] and of its extensions. In chapter 4, we turn to

the spread options. Again, we start from the 1978’s Margrabe model [28] and then outline

more recent ideas of [12]. Finally, in chapter 5 we (basing on methods presented in [26])

introduce a pricing formula for a spread option with stochastic correlation.
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Chapter 2

Stochastic analysis

Price dynamic is usually modelled as a stochastic process. A convenient way to work

with a stochastic process is to define it as a solution of a stochastic differential equation.

To introduce stochastic differential equations, we first need a notion of stochastic integral,

usually referred as Itô integral, for it was Kiyoshi Itô who pioneered the field in 1940-1950s.

Remark 2.0.1. Throughout the thesis we will assume, often without saying, that we

are given a filtered probability space (Ω,F,Ft, P ). Recall that the filtration Ft is a

monotonously increasing sequence of σ-algebras.

We will also use Φ to denote the cumulative distribution function of the standard normal

distribution.

Consider a real-valued stochastic process {Xt}t∈[0,T ] (∀t Xt : Ω → R is a random

variable). The index t will be interpreted as (continuous) time. Here, T 6∞, i.e. the time

horizon may be either finite or infinite. Note that one can also think about the set {Xt}

4



as a function X : [0, T ] → L1(Ω).1 This is why the notations Xt and X(t) are often used

interchangeably in the context.

2.1 Itô integral

Let us outline how to construct the Itô integral. In this section, we follow the approach of

[24], for Itô’s own 1944’s approach is somewhat overcomplicated due to the difficulties of

the wartime.

2.1.1 Integral of simple processes

Definition 2.1.1. Let

Xt =
n−1∑
i=0

αiI(ti,ti+1](t),

where 0 = t0 < t1 < . . . < tn = T , ∀i αi is an Fti-measurable and square-integrable random

variable, I(ti,ti+1] is an indicator function. Then the process X is called a simple process.

In particular, a simple process is left-continuous and adapted to the filtration Ft. Now

we define Itô integral of a simple process with respect to a Wiener process in a very

predictable and natural way.

Definition 2.1.2. Consider a simple process X and a Wiener process W . Then the Itô

integral

IT (X) =

∫ T

0

XsdWs :=
n−1∑
i=0

αi(Wti+1
−Wti).

1Here, L1(Ω) is the space of all integrable real random variables. Of course, not all random variable
are integrable, but they are usually assumed to be when it comes to financial applications. In fact, we will
not consider anything more general than semimartingales (see below).
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Note that IT (X) is a random variable. Also note that if we set X
(t)
s := XsI[0,t](s) for

some t ∈ [0, T ], then the process X(t) is again a simple one. Hence, we can define the

integral with the upper limit different from T .

Definition 2.1.3. With the above notations,

It(X) =

∫ t

0

XsdWs :=

∫ T

0

X(t)
s dWs =

∫ T

0

XsI[0,t](s).

One can see that the Itô integral is an integral of a stochastic process with respect to

a stochastic process. It is also a stochastic process itself as a function of the upper limit.

Itô integral of a simple process (and a more general Itô integral considered below) has

a few easy-to-prove properties: it is linear, additive, has continuous trajectories and is a

martingale. Among the more important ones, there is an equality

E(

∫ t

0

XsdWs) = 0

and the so-called Itô isometry

E

(∫ t

0

XsdWs

∫ t

0

YsdWs

)
= E

(∫ t

0

XsYsds

)
.

2.1.2 Integral of square-integrable processes

Just as in pure functional analysis, every ”good” process can be approximated by a sequence

of simple processes.

Theorem 2.1.4. Let Y be a measurable and Ft-adapted process with

E

(∫ T

0

(Ys)
2ds

)
<∞.
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Then there exists a sequence of simple processes X1, X2, . . . satisfying

E

(∫ T

0

(Ys −Xn
s )2ds

)
→ 0, n→∞.

In other words, Xn
s → Ys in L2([0, T ]× Ω).

This theorem, together with Itô isometry, allows to define Itô integral of a square-

integrable process.

Definition 2.1.5. With the notations of the theorem above,

∫ T

0

YsdWs := lim
n→∞

∫ T

0

Xn
s dWs.

For Itô integral of a square-integrable process, the above properties (linearity, continu-

ity, Itô isometry etc.) hold.

2.1.3 Further extensions

In a similar way, if a process Z is square-integrable only with probability 1, then there is

a sequence of square-integrable processes Y 1, Y 2, . . . such that

∫ T

0

(Zs − Y n
s )2ds→ 0

in probability when n → ∞. This fact allows to extend the notion of Itô integral to

processes that are square-integrable with probability 1.

Without going into details too much, let us note that by this ”limiting” approach an

Itô integral of any semimartingale2 can be defined. On the other hand, if we require the

2Semimartingale is a sum of a local martingale and an adapted process with locally bounded variation.
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integral to continuously depend on the integrands, there is no way to extend the notion

beyond the class of semimartingales. An important (for the Itô’s formula we introduce

below) fact about semimartingales is that they have a finite quadratic variation.

2.2 Itô’s formulae and stochastic differential equations

2.2.1 Itô process

Definition 2.2.1. Let W be a Wiener process, FWt the filtration generated by W . Let a,

b be FWt -adapted processes satisfying

∫ T

0

|as|ds <∞,
∫ T

0

(bs)
2ds <∞

with probability 1. Let X be a process satisfying

Xt = X0 +

∫ t

0

asds+

∫ t

0

bsdWs.

Then X is called an Itô process.

The main reason to introduce the Itô process now is to make the reader familiar with

the differential form of the definition of Itô process:

dXt = atdt+ btdWt.

This is the shorthand usually used to write the Itô’s formulae, stochastic differential equa-

tions, and, ultimately, pricing models.

Note that the shorthand also gives us a slightly tautological way to define the Itô
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integral (of a semimartingale Y ) with respect to an Itô process X:

∫ T

0

YsdXs :=

∫ T

0

Ysasds+

∫ T

0

YsbsdWs.

2.2.2 Itô’s formulae

One of the most important differences between the real calculus and stochastic one is the

change of variable formulae. They are again named after Kiyoshi Itô [18]. The simplest

Itô formula is given as a theorem below.

Theorem 2.2.2. Let f be a twice differentiable real function, W a Wiener process. Then

df(Wt) = f ′(Wt)dWt +
1

2
f ′′(Wt)dt.

A similar formula can be written for processes other than Wiener one.

Theorem 2.2.3. Let f be a twice differentiable real function, X an integrable continuous

martingale with quadratic variation [X]t <∞. Then

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)d[X]t.

The proofs of the theorems are based on the Tailor formula and the heuristic argument

(which can in fact be proven rigorously) that o((dXt)
2) = o(dt) for processes with finite

quadratic variation.

The latter Itô formula is frequently applied to Itô processes.

Theorem 2.2.4. Let f be a twice differentiable real function, X an Itô process

dXt = atdt+ btdWt
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(where at, bt satisfy the conditions in the definition 2.2.1 of Itô process). Then

df(Xt) = (f ′(Xt)at +
1

2
f ′′(Xt)b

2
t )dt+ f ′(Xt)btdWt.

If the function is not time homogenous, another term appears.

Theorem 2.2.5. Let f = f(t, x) be a twice differentiable function, X an Itô process

dXt = atdt+ btdWt.

Then

df(t,Xt) = (f
′

t (t,Xt) + f
′

x(t,Xt)at +
1

2
f
′′

xx(t,Xt)b
2
t )dt+ f

′

x(t,Xt)btdWt.

More generally:

Theorem 2.2.6. Let f = f(t, x1, . . . , xd) be a twice differentiable function, X = (X1, . . . , Xd)

an vector-valued integrable continuous martingale with quadratic variations [X i, Xj]t <

∞ ∀i, j ∈ {1, . . . , d}. Then

df(t,Xt) = f
′

t (t,Xt)dt+
d∑
i=1

f
′

xi(t,Xt)dX
i
t +

1

2

d∑
i,j=1

f
′′

xi,xj(t,Xt)d[X i, Xj]t.

2.2.3 Stochastic differential equations

The theory of stochastic differential equations is in fact independent of financial mathe-

matics. An interested reader is referred to, for example, [31].

Let W be a Wiener process, FWt the filtration generated by W . The equation

dXt = a(t,Xt)dt+ b(t,Xt)dWt, (2.1)

where a(t, x), b(t, x) are Borel-measurable real functions, is called a stochastic differential
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equation - SDE (on a process X). An SDE usually comes with an initial condition

X0 = ξ, (2.2)

where ξ is FW∞ -independent square-integrable random variable.

Strong solution

Definition 2.2.7. The strong solution of the equation (2.1) given this initial condition

(2.2) is an FWt ∨ σ(ξ)-adapted continuous stochastic process X satisfying

Xt = ξ +

∫ t

0

a(s,Xs)ds+

∫ t

0

b(s,Xs)dWs

and ∫ t

0

(|a(s,Xs)|+ b2(s,Xs))ds <∞

for every t with probability 1.

As one would expect, there is a existence and uniqueness theorem for the strong solution

of an SDE.

Theorem 2.2.8. Suppose the coefficients in (2.1) are Lipshitz-continuous linearly growing

functions:

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| < C|x− y|,

|a(t, x)|+ |b(t, x)| < K(1 + x2)

for some positive constants C and K and ∀t. Then there exists X - a strong solution of

(2.1) given (2.2). This solution is unique, i.e. P{Xt = X̂t ∀t} = 1 for a strong solution

X̂. Furthermore,

E

∫ t

0

(Xs)
2ds <∞ ∀t <∞.
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This theorem straightforwardly extends to multidimensional SDEs with vector-valued

solution process X. The Lipshitz condition can in fact be relaxed - see, for example, [40].

Weak solution

One can think about a strong solution as follows: we are given the Wiener process W ,

and then we construct a process X that is FWt -adapted (and satisfies the SDE). On the

contrary, if we only have the coefficients a, b of SDE, we construct a ”proper” Wiener

process W along with X in order to get a so-called weak solution.

Definition 2.2.9. The weak solution of the SDE (2.1) under the initial condition

X0 ∼ Qξ

is a filtered probability space (Ω,F,Ft, P ) and a pair of processes (X,W ) such that

• X is a Ft-adapted process with continuous trajectories;

• W is a Ft-adapted Wiener process;

• X satisfies (2.1) in a usual sense with the particular W ;

• X0 ∼ Qξ.

As the names suggest, a strong solution is a weak solution, but the converse is not

always true. A famous counterexample is known as Tanaka equation

dXt = sign(Xt)dWt, X0 = 0.

It has no strong solution, although a weak solution is easy to construct.

Theorem 2.2.10 (Skorokhod, Stroock, Varadhan). Suppose the coefficients of the stochas-

tic differential equation (2.1) are bounded and continuous functions, and the 2 + ε moment
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(for some ε > 0) of the distribution Qξ is finite. Then the SDE has a weak solution under

the initial condition

X0 ∼ Qξ.

When one transforms an SDE looking for a weak solution, she needs to follow what is

a Wiener process and what is not. Hence the interest in the relations between different

Wiener processes. A powerful mathematical tool to treat these issues is considered briefly

in the next section.

2.3 Measure change theory

Definition 2.3.1. Let X be an Itô process defined in 2.2.1, FXt the filtration generated

by X. X is called a diffusion process, if the coefficients a, b are FXt -adapted.

Trajectories of a diffusion process are continuous functions, so it makes sense to speak

about the distribution of a diffusion process, that is, a corresponding measure on the space

C[0, T ] with the Borel σ-algebra. Let µX denote the distribution of a diffusion process X.

In the next few statements, X is a diffusion process with diffusion coefficient 1:

dXt = atdt+ dWt. (2.3)

Lemma 2.3.2. Let the process a in (2.3) satisfy

P

(∫ T

0

a2
tdt <∞

)
= 1,

E exp

(
−
∫ T

0

atdWt −
1

2

∫ T

0

a2
tdt

)
= 1.
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Then µX � µW and µW � µX , with the Radon-Nikodim derivative given by

dµW
dµX

= E

(
exp

(
−
∫ T

0

atdXt +
1

2

∫ T

0

a2
tdt

) ∣∣FXT ) .
In an important special case, the formula simplifies.

Lemma 2.3.3. Let at in (2.3) be FXT -measurable ∀t. Then µX � µW and µW � µX , with

the Radon-Nikodim derivative given by

dµW
dµX

= exp

(
−
∫ T

0

atdXt +
1

2

∫ T

0

a2
tdt

)
.

Remark 2.3.4. FXT -measurability of at means that a depends on randomness only through

X, i.e. at(ω) = at(Xt(ω)).

Remark 2.3.5. Xt is not an Ft-martingale unless at ≡ 0. However, if we define

Mt = exp

(
−
∫ t

0

asdWs −
1

2

∫ t

0

a2
sds

)

and

Yt = MtXt,

then Yt is an Ft-martingale.

The latter statement is a special case of the Girsanov Theorem [14].

Theorem 2.3.6 (Girsanov). Let W be a Wiener process, a an FWt -adapted process with∫ T
0
a2
tdt <∞ with probability 1. Suppose that

Zt := exp

(∫ t

0

asdWs −
1

2

∫ t

0

a2
sds

)

14



is an FWt -martingale under the P measure. Define a new measure Qa as

dQa(ω) = ZT (ω)dP.

Then the process W̃t defined as W̃t = Wt +
∫ t

0
asds under the Qa measure.

Remark 2.3.7. Under the P measure, the process W̃ is nothing else but the same diffusion

process with diffusion coefficient 1, also known as a drifting Wiener process.

The martingale property of Z is not always easy to check, but with some restrictions

on a it holds. These restrictions are known as Novikov [25] and Kazamaki [25] conditions.

They are defined for any X local martingale on [0, T ] (T 6∞) with continuous trajectories.

Definition 2.3.8. We say that X satisfies the Novikov condition, if

E exp

(
1

2
[X]t

)
<∞ ∀t > 0.

Definition 2.3.9. We say that X satisfies the Kazamaki condition, if

sup
t
E exp

(
1

2
Xt

)
<∞.

Remark 2.3.10. • If exp
(

1
2
Xt

)
is a uniformly integrable submartingale, the Kaza-

maki condition holds.

• Novikov condition follows from Kazamaki condition.

• If X is uniformly integrable (sub)martingale, the Kazamaki condition simplifies to

E exp
(

1
2
XT

)
<∞.

There are modifications of the Girsanov theorem that allow to get the Wiener process

from diffusion processes with an arbitrary diffusion coefficient. Furthermore, a Wiener pro-

cess is, of course, not the only way to model the randomness. We will see that some pricing
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models put other processes under the differential in the SDE. So there are generalisations

of the Girsanov theorem that describe the measure and process change needed to get a

new-measure-local martingale from an old-measure-local martingale. We will, however, not

cover them here for it would require a set of new definitions.
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Chapter 3

Pricing models with one stock

In this chapter, we show how mathematical concepts considered before are applied to

finance. The whole story began in 1973, after works of Black and Scholes [4] and Merton

[30]. We will cover the most fundamental ideas, as well as some ways to generalize and

improve them. Many explanations in the chapter are quoted by [29].

The basis of modern economic life is the company owned by its shareholders; the shares

provide partial ownership of the company, pro rata with investment. Shares are issued by

companies to raise funds. They have value, reflecting both the value of the company’s real

assets and the earning power of the company’s dividends. Stock is the generic term for

assets held in the form of shares. With publicly quoted companies, shares are quoted and

traded on a stock exchange.
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3.1 Classical Black-Scholes approach

3.1.1 The model; derivative securities

Let us start with a market where only two assets are traded: a risk free bank account,

which is usually called a bond, and a stock (”defined” above). The market is described

by the bond and the stock prices. We will model the price processes of both bond and

stock by continuous time processes. In practice, it is impossible to observe stock prices

varying continuously in time, and the prices themselves are discrete. Nevertheless, the

continuous-variable, continuous-time process is proved to be a useful model for many pur-

poses. Throughout, we denote the bond price process by B and the stock price process by

S.

Let B satisfy an ordinary differential equation

dB(t) = rB(t)dt

with a constant r. Its solution is

B(t) = B(0)ert.

Naturally, the bank account value simply grows exponentially over time.

To model the stock price, we will employ stochastic differential equations introduced

in the previous chapter:

dS(t) = S(t)(µdt+ σdW (t)).

For now, let µ and σ be constants. In this model, as well as in more complicated non-

constant ones, µ is called drift and σ is called volatility.

Shorty after applying the Itô’s formula, one can get the (strong) solution of this SDE

18



as

S(t) = S(0) exp

((
µ− σ2

2

)
t+ σW (t)

)
.

Such process S is called Geometric Brownian Motion1. This is a process with continuous

trajectories, it has lognormal marginal distribution. Note that the growth proportions of

the process have independent increments.

Remark 3.1.1.

ln(S(t)) = ln(S(0)) +

(
µ− σ2

2

)
t+ σW (t),

i.e. the process ln(S) is just a drifting Wiener process.

Once we know the processes S and B, we can derive the price2 of derivative securities.

A derivative security (or derivative for short, or contingent claim) is a security whose value

depends on the value(s) of other more basic underlying securities. To be more precise, it

is a financial contract whose value at expiration date T is determined exactly by the price

process of the underlying financial assets (or instruments, typically the stock price) up to

time T .

A popular derivative to work with is a European (vanilla) option. European options

are contracts that give the owner the right (not the obligation), to buy (call option) or sell

(put option) the underlying asset at a prespecified price K (strike price), on the option’s

expiration date T (maturity). Thus, the price of a European option is determined by the

price process of the underlying assets at the time T only. More general derivatives with

1We do not use the term ”Brownian Motion” when we speak about a Wiener process in order to
avoid confusion with the physical meaning. Similarly, mathematicians could name S a ”Geometric Wiener
process”. However, the latter term is almost non-existent in the literature.

2More precisely, the fair price, not formally defined here. Intuitively, a fair price is the only reasonable
price within the framework of a given model. For a proper definition, including the concept of completely
admissible self-financial strategy, see e.g. [20].
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this property are called European-type derivatives. Their payoff can be written as f(S(T )).

For example, f(x) = (x − K)+
3 for a European call option and f(x) = (K − x)+ for a

European put option.

3.1.2 Equivalent martingale measure and the price

We now need an equivalent martingale measure (or for several) - that is, a measure Qµ

such that:

• Qµ ∼ P ;

• the discounted stock price S̃ := e−rtS(t) is a local martingale with respect to Qµ.

An equivalent martingale measure is also known as risk-neutral measure.

An integral with respect to the Wiener process is a local martingale, so it is enough

to give a representation of the discounted stock price as a Wiener-integral. To achieve

this, we change the probability measure by Girsanov’s theorem 2.3.6. Let a(t) ≡ µ−r
σ

, then

define

dQµ = exp

(∫ T

0

asdWs −
1

2

∫ T

0

a2
sds

)
dP = exp

(
µ− r
σ

W (T )− 1

2
(
µ− r
σ

)2T

)
dP.

With respect to Qµ, the process

Wµ :=
µ− r
σ

t+W (t)

is a standard Wiener process. On the other hand,

dS̃(t) = S̃(t)σdWµ, (3.1)

3y+ is the notation for max(y, 0).
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i.e. S̃ is a local martingale with respect to Qµ.

Remark 3.1.2. In general, there are conditions to be imposed on the model to ensure

that a risk-neutral measure exists. The strongest results in this direction is known as ”no

free lunch with vanishing risk” (NFLVR). The reader is referred to [23], [9] for the details

of this theory.

The existence of a risk-neutral measure allows one to compute the prices of derivatives.

Theorem 3.1.3. Within the framework of the Black-Scholes model, the fair price of the

European-type derivative with the payoff f(S(T )) is the expectation Eµ(e−rTf(S(T ))), taken

under the measure Qµ.

The expectation with respect to risk-neutral measure is called the risk-neutral expec-

tation for short; similarly, one can talk about risk-neutral pricing. There are, of course,

similar theorems for non-European derivatives, but they all operate with this fundamental

concept of risk-neutral.

3.1.3 Black-Scholes formula

The assumption that both drift and volatility are constants is a huge oversimplification,

and, as we will see, the Black-Scholes model can be improved in numerous ways. Never-

theless, there are reasons to like it as it is. One of the most important ones is the closed

formula for the option price.

Theorem 3.1.4 (Black-Scholes formula). Within the framework of the Black-Scholes model,

the fair price of a European call option with the strike K and maturity T at the time 0 is

C(S, 0) = S(0)Φ(d2)−Ke−rTΦ(d1),
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where4

d1 =
ln(S(0)/K) + Tr

σ
√
T

− 1

2
σ
√
T , d2 =

ln(S(0)/K) + Tr

σ
√
T

+
1

2
σ
√
T .

The fair price of a European put option with the same parameters is

P (S, 0) = Ke−rTΦ(−d1)− S(0)Φ(−d2).

The proof is based simply on a substitution of the payoff f(x) = (x −K)+ or f(x) =

(K − x)+ to the expectation in the theorem 3.1.3.

Note that µ is not presented in the formulae. Roughly speaking, we eliminate the drift

when switching to the risk-neutral measure (see (3.1). Therefore, in the next section we

mostly play with the volatility but not with the drift.

3.2 Extending the model

The issue with the Black-Scholes model is a considerable gap between the prices it suggests

and the real market prices. There is an immense number of somewhat better continuous-

time trading models, and there are hundreds of interesting and applicable results. This is

why this section mostly consists of references.

Before we introduce some real model extensions, let us mention one that came up in the

same year with the original model. If the interest rate and the volatility are not constant

but depend on time (r = r(t), σ = σ(t)), almost nothing changes, and an expression for the

price similar to classical Black-Scholes formula can still be derived. One should only put

the averaged parameter instead of the constant: 1
T

∫ T
0
r(t)dt instead of r and 1

T

∫ T
0
σ(t)dt

instead of σ. See [30].

4Throughout the thesis, Φ is the cumulative distribution function of the standard normal distribution.
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3.2.1 Volatility models

If we try to estimate the constant σ in the Black-Scholes formula from the real market

data, we get a so-called implied volatility - a function of strike K and maturity T . Its

empirical properties (e.g. a famous ”smile” - U-shape dependance on the strike price) are

desired properties of volatility in non-constant volatility models.

In local volatility models, we are given a deterministic function σ(t, s) and the stock

price as

dS(t) = S(t)(µdt+ σ(t, S(t))dW (t)).

The question is the choice of σ(t, s). In 1975, Cox and Ross [7] proposed the model with

Constant Elasticity of Variance: σ(t, S(t)) = σSβ(t), where σ on the right-hand side and

β are constants. However, the more constants we keep in the model for simplicity, the

further it is from the reality. There is a way to get the function σ(t, s) directly from the

observed option prices [10]. On the other hand, if one has a lot of data for options with

different strikes and maturities, one can get the local volatility function for a given strike

and maturity as a solution of a partial differential equation [11].

Local volatility models do not produce the proper dynamics of the implied volatility

surface, i.e. the parameters of equations calibrated at different times may well be entirely

different. There are other properties that conflict with empirical evidence, such as perfect

correlation with the stock price and lack of volatility clustering. To overcome these draw-

backs, one can use a stochastic volatility model instead. The local volatility is, of course,

already stochastic, but only through the stock price. In stochastic volatility models the

volatility is driven by its own SDE.
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A stochastic volatility model can usually be written as


dS(t) = S(t)(µdt+ σ(t)dW (t))

σ(t) = f(Y (t))

dY (t) = λ(η − Y (t))dt+ g(t, Y (t))dŴ (t))

,

where η, λ are constants and f , g are deterministic functions. η is the mean of Y (t), and

λ is a rate of mean reversion - indeed, a well-known empirical fact is that the volatility is

mean-reverting.

Remark 3.2.1. There is a not-yet-mentioned parameter in this system. Ŵ is, of course,

a Wiener process, but it is not necessarily independent from W . In general, they are

correlated with the correlation coefficient ρ ∈ [−1, 1]. It means that Ŵ can be written as

Ŵ (t) = ρW (t) +
√

1− ρ2W̃ (t),

with a further W̃ process independent of W .

For now, let ρ be constant. In fact, in the next few models ρ = 0.

In Hull-White model [16], Y is a Geometric Brownian Motion (η = 0, λ = −1, g(t, y) =

Cy), meaning it is rather simple to calibrate, but lacks the mean-reversion property. Scott

[35] employs the (mean-reverting) Gaussian Ornstein-Uhlenbeck process (η, λ 6= 0, g(t, y) ≡

β). However, it can take negative values, so a transformation f(y) = ey is needed for the

volatility to be positive, which affects the tractability of the model.

The shortcomings of these models made the Cox-Ingelsoll-Ross (CIR) [8] process a

popular choice for Y . CIR process is both mean-reverting and non-negative. In both Ball-

Roma [1] and Heston [15] models Y is a CIR process. The significant difference between

them is that Heston takes the dependance between price and volatility into account: ρ 6= 0.
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It allows5 the model to replicate the phenomenon known as leverage effect : the negative

shocks in the asset price are often followed by positive shocks in volatility. Therefore, often

in the applications ρ < 0, while there is, of course, no mathematical reasoning for this

limitation.

3.2.2 Random jumps models6

So far, the stock prices were changing continuously, driven by a Wiener process (under the

exponent). However, prices on the real markets can change rapidly (jump) when some new

information reaches the market. The mathematical framework covering these situations is

set by Lévy processes.

Definition 3.2.2. A stochastic process X(t) on [0, T ] is called a Lévy process, if it

• has independent increments, that is,

X(t0), X(t1)−X(t0), . . . , X(tn)−X(tn−1)

are independent for any t0 < t1 < · · · < tn ∈ [0, T ];

• has stationary increments, that is,

X(t+ h)−X(t) ∼ X(s+ h)−X(s) ∀t, s, t+ h, s+ h ∈ [0, T ];

5On the other hand, as mentioned in [1], this complication makes the model less tractable. We are not
trying to prove that some models are better than the others, but rather give the reader an idea about their
strengths and weaknesses.

6We recommend a good practical overview of this issue [38], or more detailed papers [29], [33].
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• is continuous in probability, that is,

∀t ∈ [0, T ], ε > 0 lim
h→0

P (|X(t+ h)−X(t)| ≥ ε) = 0;

• there exists a modification with càdlàg (everywhere right-continuous, and with left

limits everywhere) trajectories.

To help the reader understand what Lévy processes are, we give an informal version of

the important theorem. For details on the statement and proof see e.g. [32].

Theorem 3.2.3 (Lévy-Itô decomposition). Let X be a ”good-enough” Lévy process with

values in R. Then there exists a constants γ, σ and a standard Wiener process W such

that ∀t

X(t) = γt+ σW (t) + Y (t),

where Y is a pure jump process.

In other words, a Lévy process is a would-be diffusion process that also make random

jumps at random times. A degenerate examples of Lévy processes that only make zero

jumps are diffusion processes and Wiener process.

Definition 3.2.4. A Lévy process is called a subordinator, if its trajectories are non-

decreasing with probability 1.

Subordinators enable us to make ”snapshots” of another Lévy process - in particular,

a Wiener process - at random times.

Definition 3.2.5. Let S be a subordinator, W a Wiener process independent of S, µ, σ

constants. Then the process

X(t) = µS(t) + σW (S(t))
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is called a subordinated Brownian Motion.

The subordinated Brownian Motion is a Lévy process with jumps. In this model we look

at a drifting Brownian Motion in a new stochastic time scale. This time scale can be re-

garded as ”business time”, that is, the sequence of random times of information ”arrivals”.

Arriving information impulses the traders to enter transactions and instantaneously change

the price of an asset.

This subordinating technique allows us to ”get” useful processes ”from” a Wiener pro-

cess. The most famous processes obtained this way go under the names of variance gamma

(VG) process [27], normal inverse Gaussian (NIG) process [2], or, more generally, Carr-

Geman-Madan-Yor (CGMY) process [6]. After taking an exponent for non-negativity,

these processes can be used to model randomness in asset prices. Exponential Lévy is the

general prefix for these models.

Apart of the two mentioned parameters that enable to improve a one-stock pricing

model - volatility and the stochastic process driving the price - there is also the interest

rate r. Although the interest rate models and their effect on the pricing model are not

covered in the thesis, they provide an interesting separate line of research. For more

information, see e.g. [22] and references therein.

27



Chapter 4

Spread option pricing

The theory and models discussed in the previous chapter allow to price derivatives which

depend on one stock. However, when a derivative price depend on two or more underlying

prices, the situation may complicate. Spread options are among the derivatives that still

remain without absolutely efficient and reliable pricing methodologies. Some explanations

in the chapter are quoted by [5].

A spread option is an option written on the difference of two underlying assets, whose

values at time t we denote by S1(t) and S2(t). We consider only spread options of the

European type for which the owner has the right to be paid, at the maturity date T , the

difference S2(T ) − S1(T ), known as the spread. To exercise the option (i.e. to realize the

right), the buyer must pay at maturity a prespecified strike price K. In other words, the

payoff f(S1(T ), S2(T )) of a spread option at maturity T is (S2(T )− S1(T )−K)+.

We focus our attention on the particular case of a spread option with strike K = 0, that

are also called exchange options. Besides the fact that the case K = 0, as we will see, can

lead to a solution in closed form, it has also a practical appeal to the market participants.

Indeed, it can be viewed as an option to exchange one product for another at no cost. In
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order to illustrate this fact, let us suppose that we want to buy one of two stocks S1 or S2,

that we are indifferent to which one we own, but that at the end of a six-month period T

we would, naturally, like to be in the position of someone who owns the better performing

stock of the two. Obviously, we cannot tell which one will perform better over the next six

months. We finally decided that S1 is a better bet, but we are not quite sure of our pick,

so we buy an option to exchange S1 for S2 in case S2 outperforms S1 after six months.

Indeed, if the second stock ends up being the more valuable, i.e., if S2(T ) > S1(T ), then

the payoff S2(T ) − S1(T ) of the option will exactly compensate us for our wrong choice.

Short of the premium (i.e., the price we have to pay to own the option), our investment is

the better of the two stocks over the next six months.

4.1 Classical Margrabe approach

Consider the market where a bond (see section 3.1.1)

B(t) = B(0)ert

and two other assets are traded. The two assets are assumed to be interdependent - say,

gas and oil. More precisely, let the two prices be driven by stochastic differential equations


dS1(t) = S1(t)(µ1dt+ σ1dW1(t))

dS2(t) = S2(t)(µ2dt+ σ2dW2(t))
, (4.1)

where

dW1(t)dW2(t) = ρdt,

i.e. the Wiener processes W1 and W2 are correlated with the correlation coefficient ρ

(we encountered correlated Wiener processes before - see remark 3.2.1). For now, let r,
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µ1 = µ2
1, σ1, σ2 and ρ be constants2. This is known as Margrabe [28] model3. Its advantage

is a closed formula for the price of a spread option.

Theorem 4.1.1 (Margrabe formula). Within the framework of the Margrabe model, the

fair price of a European spread option with the strike K = 0 and maturity T at the time 0

is

C(S1, S2, 0) = S2(0)Φ(d2)− S1(0)Φ(d1),

where

d1 =
ln(S2(0)/S1(0))

σ0

√
T

− 1

2
σ0

√
T , d2 =

ln(S2(0)/S1(0))

σ0

√
T

+
1

2
σ0

√
T

and

σ0 =
√
σ2

1 − 2ρσ1σ2 + σ2
2.

The proof is based on the fact that, again, there exists a risk-neutral measure Qµ1,µ2 (see

section 3.1.2), and the price of the spread option is given by the risk-neutral expectation

Eµ1,µ2(e−rT (S2(T )−S1(T ))+). After this, the straightforward computation of the measure

and the expectation gives the formula.

1The model straightforwardly extends to the case when drifts are not equal, but we will keep this
assumption for simplicity.

2One can easily see the similarity with the Black-Scholes approach. This is why in the chapter 5 the
price derived by Margrabe will eventually be called the ”Black-Scholes” price.

3A fair name for the model would be Fisher-Margrabe model, for Fisher [13] reached similar conclusions
at the same time. In fact, Fisher’s results were published in the same issue of Journal of Finance with
Margrabe’s results. We would like to thank the author of [34] for putting this information into his paper.
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4.2 Extending the model

Margrabe formula was introduced in 1978. Thanks to the mathematicians’ efforts over

almost four decades, two-stocks pricing models got all the improvements that we mentioned

in section 3.2. In fact, both stochastic volatility and exponential Lévy model extensions

are provided by the general theory introduced in [12]. We will briefly overview the results

here, using also [3].

Consider a two-dimensional semimartingale H = (H1, H2) with the canonical represen-

tation (see II.2.34 in [19]) of the form

H(t) =

∫ t

0

b(s)ds+

∫ t

0

c
1
2 (s)dW (s)+

∫ t

0

∫
R2

h(z)(µ−ν)(ds, dz)+

∫ t

0

∫
R2

(z−h(z))µ(ds, dz),

where the ”drift” b(t) = b(ω, t) ∈ R2, the ”continuous volatility” c(t) = c(ω, t) ∈ R2×2,

and µ, ν are measures associated with the process H - respectively, the jump-measure

(a compound Poisson process here) and its compensator (see [33]). In a sense, this is a

generalisation of Lévy-Itô decomposition (theorem 3.2.3).

Remark 4.2.1. Here, W = (W1,W2) is a standard two-dimensional Wiener process. In

the model (4.1), it could be possible if ρ is a constant or a deterministic function. However,

if ρ is a stochastic process itself, W is not a two-dimensional Wiener process but rather

just a vector of two Wiener processes. See chapter 5 for things that work in this case.

Let the price process S = (S1, S2) be given by the stochastic exponential of H (see

[36]):

S(t) = S(0)(E(H))(t).

It turns out that if the price is defined this way, stochastic volatility and exponential

Lévy models come up as a special case.

Up to several assumptions not mentioned here, the price of a spread option is given by
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a one-dimensional expectation with respect to so-called dual measure.

Theorem 4.2.2. Within the framework of the above model, the fair price of a European

spread option with the strike K = 0 and maturity T at the time 0 is

C(S1, S2, 0) = S1(0)EP̃

(
exp

(∫ T

0

(r(s)− a(s))ds

)(
1− S2(T )

S1(T )

)
+

)
,

where r = r(t) is the interest rate4, and both the function a = a(t) and the dual measure

P̃ are defined in [3].

We will not go into more details; this section is intended only to give the reader an idea

about how to extend the model beyond classical approach. Instead, we turn out attention

to the empirically justified case of stochastically correlated price-driving processes.

4As always, we assume the bond being traded along with the stocks.
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Chapter 5

Extending the model - stochastic

correlation

As before, consider two prices driven by stochastic differential equations


dS1(t) = S1(t)(µ1dt+ σ1dW1(t))

dS2(t) = S2(t)(µ2dt+ σ2dW2(t))
, (5.1)

where

dW1(t)dW2(t) = ρdt,

i.e. the Wiener processes W1 and W2 are correlated with the correlation coefficient ρ.

We have seen before that drifts and volatilities are not necessarily constant. In the

previous chapter, the correlation coefficient could as well be time- and/or price-dependant.

However, just as with volatility, empirical evidence suggests that on the real-world markets

the correlation coefficient changes stochastically over time. As already hinted in remark

4.2.1, this case requires new methods.
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The correlation should never be greater than 1 or smaller than −1. This is why the

process that usually models the stochastic correlation is a Jacobi process.

Definition 5.0.1. The process ρ that satisfies

dρ(t) = (ρ̄− βρ(t))dt+ σ
√

(h− ρ(t))(ρ(t)− f)dW

(where W is, as always, a Wiener process) is called a Jacobi process.

Remark 5.0.2. For a Jacobi process ρ, f 6 ρ(t) 6 h ∀t almost surely, if the following

holds for the constants ρ̄, h, f and σ:

f < ρ̄ < h; ρ̄− βf > σ2(h− f)

2
; βh− ρ̄ > σ2(h− f)

2
. (5.2)

Since we are going to use the Jacobi process to model the correlation coefficient, we

take f and h such that

− 1 6 f 6 h 6 1. (5.3)

Let us note that this is not the only possible approach. For example, the authors of [39]

additionally employ Ornstein-Uhlenbeck process to model the correlation. However, the

computations with the Ornstein-Uhlenbeck process in this role are not absolutely rigorous,

for this process can leave the [−1, 1] interval with positive probability. Therefore, we focus

on the Jacobi process.

5.1 Black-Scholes-type pricing with stochastic corre-

lation

[26] is devoted to pricing of quanto-options with stochastic correlation. Their price depend

on two (stochastically correlated) asset prices, and this is the similarity between them and
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the spread options we consider in the thesis. Despite the fact that the payoff functions are,

of course, different, the methods presented in [26] can be applied to spread option pricing.

Whenever the reader feels stuck in this chapter, she is encouraged to check [26] and the

references therein for details.

Let ρ in our model for S1 and S2 (5.1) be a Jacobi process. We could additionally

assume that there is a non-zero correlation between the price processes and the correlation

process itself: 
dW1(t)dW (t) = ρ1dt

dW2(t)dW (t) = ρ2dt

,

However, the author of [26] empirically argues that it is safe to simplify the problem

and take ρ1 = ρ2 = 0. We follow this approach and only consider W independent from W1

and W2.

We begin our analysis with only the correlation being stochastic but the drifts and

volatilities being constant.

Let C = C(S1, S2, t) be the price of the spread option. Then we can apply Itô’s formula

to get

dC =

(
∂C

∂t
+

1

2
σ2

1S
2
1

∂2C

∂S2
1

+ ρσ1σ2S1S2
∂2C

∂S1∂S2

+
1

2
σ2(h− ρ)(ρ− f)

∂2C

∂ρ2

)
dt+

∂C

∂S1

dS1 +
∂C

∂S2

dS2 +
∂C

∂ρ
dρ

(the arguments are omitted here and after). We now skip few technical steps one can find

in [26] and simply state that the risk-neutral price in our case is given by the equation

∂C

∂t
+ (r1 − r2)S1

∂C

∂S1

+ (r1 − ρσ1σ2)S1
∂C

∂S1

+ (ρ̄− βρ)
∂C

∂ρ
+
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1

2
σ2

1S
2
1

∂2C

∂S2
1

+
1

2
σ2

2S
2
2

∂2C

∂S2
2

+ ρσ1σ2S1S2
∂2C

∂S1∂S2

+

1

2
σ2(h− ρ)(ρ− f)

∂2C

∂ρ2
− r1C = 0,

where r1, r2 are interest rates.

The option payoff is C(S1, S2, T ) = (S1(T ) − S2(T ) − K)+. One can solve the above

equation numerically, using this payoff as a terminal condition and a Monte-Carlo method

to sample ρ. On the other hand, there is a highly non-trivial way to get a closed form

approximation for the price C.

5.2 Closed form approximation for the price

As before, the reader can consult [26] for the computations that allow to get the results of

subsections 5.2.1 and 5.2.2.

5.2.1 Probability kernel for the Jacobi process

In our notations, the Markov generator of the Jacobi process ρ is

H =
σ

2
(h− ρ)(ρ− β)

d2

dρ2
+ (ρ̄− βρ)

d

dρ
.

Using the technique of [37], one can solve the eigenproblem

Hψn(ρ) = λnψn(ρ).

The solutions are

λn = −σ
2
n(n+

2β

σ2
− 1)

36



and

ψn(ρ′) =

 (2n+ 2β
σ2 − 1)Γ(n+ 2β

σ2 − 1)n!

2
2β

σ2−1Γ(n+ 2βh−2ρ̄
σ2(h−f)

)Γ(n+ 2ρ̄−2βf
σ2(h−f)

)

 1
2

P
( 2βh−2ρ̄

σ2(h−f)
−1, 2ρ̄−2βf

σ2(h−f)
−1)

n (ρ′),

where Pn are Jacobi polynomials given by

P
( 2βh−2ρ̄

σ2(h−f)
−1, 2ρ̄−2βf

σ2(h−f)
−1)

n (ρ′) =
Z( 2βh−2ρ̄

σ2(h−f)
)

n!
2F1(−n, n+

2β

σ2
− 1;

2βh− 2ρ̄

σ2(h− f)
;
1− 2ρ′

h−f + h+f
h−f

2
),

where

Z(
2βh− 2ρ̄

σ2(h− f)
) = (

2βh− 2ρ̄

σ2(h− f)
)(

2βh− 2ρ̄

σ2(h− f)
+ 1) · · · ( 2βh− 2ρ̄

σ2(h− f)
+ n)

and 2F1 is the hypergeometric function.

Finally, given all the formulae above, we can derive an expression for the probability

kernel of the Jacobi process P (ρ1, ρ2; t1, t2):

P (ρ(0), ρ′; 0, τ) =
∞∑
n=0

eλnτ (1− 2ρ′

h− f
+
h+ f

h− f
)

2βh−2ρ̄

σ2(h−f)
−1

(1+
2ρ′

h− f
−h+ f

h− f
)

2ρ̄−2βf

σ2(h−f)
−1
ψn(ρ(0))ψn(ρ′),

(5.4)

where τ = T − t. We will use this probability kernel to compute the first three moments

of the averaged Jacobi process in the next subsection.

5.2.2 Tailor-type expansion for the price

Let us define a random variable

ρ̂ =
1

τ

∫ τ

0

ρ(t)dt.

It is possible to show that the price of an option at the time t can be written as

C(S1, S2, t) = CBS(Eρ̂) +
1

2

∂2CBS
∂ρ2

∣∣
Eρ̂
V ar(ρ̂) +

1

6

∂3CBS
∂ρ3

∣∣
Eρ̂
Skew(ρ̂) + · · · , (5.5)
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where CBS stands for ”Black-Scholes price”, i.e. price of an option (that depend on two

underlying prices) given the constant correlation coefficient (between these prices). For

the spread options, CBS is given by nothing else but the Margrabe formula.

But before we substitute the Margrabe formula to the equation (5.5), we need to com-

pute the moments of the averaged Jacobi process ρ̂. Using our expression for the probability

kernel of Jacobi process (5.4),

Eρ̂ =
∞∑
n=0

1− e−
σ2

2
n(n+ 2β

σ2−1)τ

σ2

2
n(n+ 2β

σ2 − 1)
×

ψn(ρ(0))

∫ h

f

dρ′(ρ′(1− 2ρ′

h− f
+
h+ f

h− f
)

2βh−2ρ̄

σ2(h−f)
−1

(1 +
2ρ′

h− f
− h+ f

h− f
)

2ρ̄−2βf

σ2(h−f)
−1
ψn(ρ′)); (5.6)

E(ρ̂2) =
2

τ 2
×

∞∑
n,m=0

(
1− e−

σ2

2
n(n+ 2β

σ2−1)τ

σ4

4
n(n+ 2β

σ2 − 1)m(m+ 2β
σ2 − 1)

+

e−
σ2

2
n(n+ 2β

σ2−1)τ − e−
σ2

2
m(m+ 2β

σ2−1)τ

σ4

4
(n(n+ 2β

σ2 − 1)−m(m+ 2β
σ2 − 1))m(m+ 2β

σ2 − 1)

)
×

ψn(ρ(0))

∫ h

f

∫ h

f

dρxdρy

(
ρx(1−

2ρx
h− f

+
h+ f

h− f
)

2βh−2ρ̄

σ2(h−f)
−1

(1 +
2ρx
h− f

− h+ f

h− f
)

2ρ̄−2βf

σ2(h−f)
−1×

ρy(1−
2ρy
h− f

+
h+ f

h− f
)

2βh−2ρ̄

σ2(h−f)
−1

(1 +
2ρy
h− f

− h+ f

h− f
)

2ρ̄−2βf

σ2(h−f)
−1
ψn(ρx)ψm(ρx)ψm(ρy)

)
; (5.7)
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E(ρ̂3) =
6

τ 3
×

∞∑
n,m,l=0

(
1− e−

σ2

2
n(n+ 2β

σ2−1)τ

σ6

8
n(n+ 2β

σ2 − 1)m(m+ 2β
σ2 − 1)l(l + 2β

σ2 − 1)
+

e−
σ2

2
n(n+ 2β

σ2−1)τ − e−
σ2

2
m(m+ 2β

σ2−1)τ

σ6

8
(n(n+ 2β

σ2 − 1)−m(m+ 2β
σ2 − 1))m(m+ 2β

σ2 − 1)l(l + 2β
σ2 − 1)

+

e−
σ2

2
n(n+ 2β

σ2−1)τ − e−
σ2

2
l(l+ 2β

σ2−1)τ

σ6

8
(n(n+ 2β

σ2 − 1)− l(l + 2β
σ2 − 1))(m(m+ 2β

σ2 − 1)− l(l + 2β
σ2 − 1))l(l + 2β

σ2 − 1)
+

e−
σ2

2
m(m+ 2β

σ2−1)τ − e−
σ2

2
n(n+ 2β

σ2−1)τ

σ6

8
(n(n+ 2β

σ2 − 1)−m(m+ 2β
σ2 − 1))(m(m+ 2β

σ2 − 1)− l(l + 2β
σ2 − 1))l(l + 2β

σ2 − 1)

)
×

ψn(ρ(0))

∫ h

f

∫ h

f

dρxdρydρz

(
ρx(1−

2ρx
h− f

+
h+ f

h− f
)

2βh−2ρ̄

σ2(h−f)
−1

(1 +
2ρx
h− f

− h+ f

h− f
)

2ρ̄−2βf

σ2(h−f)
−1×

ρy(1−
2ρy
h− f

+
h+ f

h− f
)

2βh−2ρ̄

σ2(h−f)
−1

(1 +
2ρy
h− f

− h+ f

h− f
)

2ρ̄−2βf

σ2(h−f)
−1×

ρz(1−
2ρz
h− f

+
h+ f

h− f
)

2βh−2ρ̄

σ2(h−f)
−1

(1+
2ρz
h− f

−h+ f

h− f
)

2ρ̄−2βf

σ2(h−f)
−1
ψn(ρx)ψm(ρx)ψm(ρy)ψl(ρy)ψl(ρz)

)
.

(5.8)

These formulae, even though lengthy, allow to approximate the option price almost

directly. The infinite sums in the formulae are to be approximated by the finite ones; the

integrals from f to h are to be computed numerically. Then one can get the variance and

skewness via

V ar(ρ̂) = E(ρ̂2)− E(ρ̂)2

and

Skew(ρ̂) = E(ρ̂3)− 3E(ρ̂2)E(ρ̂) + 2E(ρ̂)3.

After this is done, one should only keep in mind that the equation (5.5) (taken without

· · · ) is only an approximation. However, itself it is very accurate, because the forth term

in (5.5) is very small - remember that ρ̂ is the averaged correlation coefficient, meaning

|ρ̂| 6 1.
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We are now ready to combine the results of the previous sections to get the pricing

formula that is, to the best of our knowledge, novel in the literature.

5.2.3 Margrabe formula + the theory above = solution

For the sake of readability, let us remind the Margrabe formula for the price of the spread

option with constant drift, volatility and correlation, strike K = 0 and maturity T at the

time 0:

C(S1, S2, 0) = S2(0)Φ(d2)− S1(0)Φ(d1), (5.9)

where

d1 =
ln(S2(0)/S1(0))

σ0

√
T

− 1

2
σ0

√
T , d2 =

ln(S2(0)/S1(0))

σ0

√
T

+
1

2
σ0

√
T

and

σ0 =
√
σ2

1 − 2ρσ1σ2 + σ2
2.

To compute the derivatives of C, we need

∂d2

∂ρ
=

ln(S2(0)/S1(0))√
T

∂((
√
σ2

1 − 2ρσ1σ2 + σ2
2)−1)

∂ρ
+

1

2

∂(
√
σ2

1 − 2ρσ1σ2 + σ2
2)

∂ρ

√
T =

ln(S2(0)/S1(0))√
T

(−1

2
)σ−3

0 (−2σ1σ2) +
1

2

1

2
σ−1

0 (−2σ1σ2)
√
T = d1σ

−2
0 σ1σ2.

Similarly,

∂d1

∂ρ
= d2σ

−2
0 σ1σ2.

Using these formulae, we get

∂2d2

∂ρ2
=
∂d1

∂ρ
σ−2

0 σ1σ2 + d1
∂(σ−2

0 )

∂ρ
σ1σ2 = (2d1 + d2)(σ−2

0 σ1σ2)2,

and
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∂2d1

∂ρ2
= (d1 + 2d2)(σ−2

0 σ1σ2)2.

Given all the above, we can begin to differentiate the Margrabe formula:

∂(Φ(d2))

∂ρ
=

1√
2π
e−

d22
2
∂d2

∂ρ
,

then

∂2(Φ(d2))

∂ρ2
=

1√
2π

(−d2e
− d

2
2
2 (
∂d2

∂ρ
)2 + e−

d22
2
∂2d2

∂ρ2
) =

1√
2π
e−

d22
2 (−d2

1d2 + 2d1 + d2)(σ−2
0 σ1σ2)2 (5.10)

and

∂3(Φ(d2))

∂ρ3
=

1√
2π

(−d2e
− d

2
2
2
∂d2

∂ρ
(−d2

1d2 + 2d1 + d2)(σ−2
0 σ1σ2)2+

e−
d22
2
∂(−d2

1d2 + 2d1 + d2)

∂ρ
(σ−2

0 σ1σ2)2 + e−
d22
2 (−d2

1d2 + 2d1 + d2)
∂(σ−4

0 )

∂ρ
(σ1σ2)2) =

1√
2π
e−

d22
2 (d3

1d
2
2 − d3

1 − 6d2
1d2 − 3d1d

2
2 + 9d1 + 6d2)(σ−2

0 σ1σ2)3 (5.11)

One can calculate the derivatives of Φ(d1) in the same way to get the symmetric answers:

∂2(Φ(d1))

∂ρ2
=

1√
2π
e−

d21
2 (−d1d

2
2 + d1 + 2d2)(σ−2

0 σ1σ2)2 (5.12)

∂3(Φ(d1))

∂ρ3
=

1√
2π
e−

d21
2 (d2

1d
3
2 − d3

2 − 6d1d
2
2 − 3d2

1d2 + 6d1 + 9d2)(σ−2
0 σ1σ2)3 (5.13)

Combining (5.10), (5.11), (5.12) and (5.13),
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∂2C

∂ρ2
=

1√
2π

(σ−2
0 σ1σ2)2(S2(0)e−

d22
2 (−d2

1d2+2d1+d2)−S1(0)e−
d21
2 (−d1d

2
2+d1+2d2)) (5.14)

and

∂3C

∂ρ3
=

1√
2π

(σ−2
0 σ1σ2)3(S2(0)e−

d22
2 (d3

1d
2
2 − d3

1 − 6d2
1d2 − 3d1d

2
2 + 9d1 + 6d2)−

S1(0)e−
d21
2 (d2

1d
3
2 − d3

2 − 6d1d
2
2 − 3d2

1d2 + 6d1 + 9d2)) (5.15)

Now recall that C here is CBS in (5.5). We already know the expectation, variance and

skewness in (5.5) from (5.6), (5.7), and (5.8). The last thing to do to get the approximated

price is to substitute these, (5.14) and (5.15) to (5.5). We will not do this directly in

order to avoid two-pages long final formula. However, let us summarize all the above as a

theorem.

Theorem 5.2.1. Let the prices S1, S2 of two assets be given by (5.1), and let C be the

price of spread option with strike K = 0 and maturity T written on the difference S2−S1.

Let ρ in (5.1) be a Jacobi process defined in 5.0.1, with the restrictions (5.2) and (5.3).

Then C is given by (5.5), where all the values are given by (5.6), (5.7), (5.8), (5.9), (5.14),

and (5.15).
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Chapter 6

Conclusion

The world market is affected by an immense amount of different factors, hence the prices

change in a hardly predictable way. Mathematical framework provided by stochastic analy-

sis is proven to be an efficient tool to harness this uncertainty. On the other hand, stochastic

analysis itself is an area of research for mathematicians. In the first chapters of the thesis,

we overviewed its methods from both purely mathematical and financial perspectives.

Application of financial mathematics techniques to derivative pricing leads to a number

of interesting models, yet there is always a certain gap between what these models predict

and the real-world prices. Therefore, models need to be constantly improved, for a better

model means better understanding of the reality. We picked a particular derivative known

as spread option. Their prices depend on two other prices that are additionally interde-

pendent. To specify and, in a sense, relax the assumptions we put on this dependance

structure seemed like a logical step to improve a model.

The key chapter of the thesis is chapter 5, where we use [26] methods to introduce

pricing formula for a spread options written on the difference of two correlated assets,

where the correlation itself is driven by a stochastic process. To the best of our knowledge,
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the formula is novel in the literature, yet there are, of course, more difficulties to overcome.

For example, same technique can be used to produce the pricing formula for spread options

with stochastic correlation and volatility, provided one has a ρ-constant pricing formula

to substitute instead of ”Black-Scholes price”. We leave this application for the further

research.

We mostly worked with Wiener process(es). Another interesting direction would be

to try to utilize the subordinated (see section 3.2.2) processes instead. An issue here is

that, when there are Wiener processes involved, their interdependence structure can be

evaluated in the simple correlation. However, imagine a pair of subordinated Brownian

motions, where the corresponding Wiener processes are correlated. The subordinated

processes obviously depend on each other, but more complex dependance measures, e.g.

tail dependance, must be used to make sense out of this interconnection.

Last but not least, numerical experiments are needed to validate the models considered

in the thesis, to compare them and to figure out when each of them can produce its best

results. For stochastic correlation models, an open question is if there are ”better” (and

in what sense) processes to model the correlation than the Jacobi one.
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