
Spreadsheets are Code
An Overview of Software Engineering Approaches applied to Spreadsheets

Felienne Hermans, Bas Jansen, Sohon Roy, Efthimia Aivaloglou, Alaaeddin Swidan and David Hoepelman
{f.f.j.hermans, b.jansen, s.roy-1, e.aivaloglou, alaaeddin.swidan}@tudelft.nl, d.j.hoepelman@student.tudelft.nl

Delft University of Technology

The Netherlands

Abstract—Spreadsheets can be considered to be the world’s
most successful end-user programming language. In fact, one
could say spreadsheets are programs. This paper starts with
a comparison of spreadsheets to software: spreadsheets are
similar in terms of applications domains, expressive power and
maintainability problems. We then reflect upon what makes
spreadsheets successful: liveness, directness and an easy deploy-
ment environment seem contribute largely to their success.

Being a programming language, several techniques from
software engineering can be applied to spreadsheets. We present
an overview of such research directions, including spreadsheet
testing, reverse engineering, smell detection, clone detection and
refactoring. Finally, open challenges and future plans for the
domain of spreadsheet software engineering are presented.

I. INTRODUCTION

In addition to professional programmers who are employed
to build, maintain and test software, there is also a large
community of people programming not as a job, but as a means
to an end. These workers, often called end-user programmers
write queries, small scripts or spreadsheets to support their
daily jobs. The number of end-user programmers in the USA
alone is conservatively estimated at 11 million compared
to only 2.75 million professional programmers [1]. Among
end-user programmers, spreadsheets are especially popular.
These are used for a large variety of different tasks, from
scheduling to financial reporting and from investment analysis
to corporate budgeting in all sorts of domains, from small
shops to multinationals.

Especially in the financial domain, spreadsheets are ubiqui-
tous. In 2004, the International Data Corporation interviewed
118 business leaders and found that 85% were using spread-
sheets in financial reporting and forecasting [2]. Financial
intelligence firm CODA reported in 2008 that 95% of all U.S.
companies use spreadsheets for financial reporting [2]. In a
survey held in 2003 by the US Bureau of Labor Statistics [3],
over 60% of 77 million surveyed workers in the US reported
using spreadsheets, making this the third most common use
of computers, after email and word processing. A more recent
survey among 95 companies world-wide, placed spreadsheets
fourth, after email, browsing and word processing, accounting
for 7.4% of computer time [4]. The Dutch Bureau of Statistics
investigates computer literacy among Dutch civilians every
year, and has reported a rise in people able to use formulas in
spreadsheets from 44% in 2006 to 54% in 2013 [5].

As artifacts of end-user programming, spreadsheets often
play a role similar to source code in many companies: they
support important organizational processes and often business

decisions are taken based on the information calculated and
presented in spreadsheets [6].

While spreadsheets are commonly used, their users often
have little training as programmers. In spite of that, they
often face many of the challenges of professional developers,
like choosing which functions to use [7], or understanding
someone else’s code [8]. Since spreadsheets, like software,
frequently contain errors [9], end-users test, verify and debug
their programs [10], [11].

These issues that end-users face—issues of program con-
struction, maintenance, testing and debugging—have been
topics of research in the programming and software engineer-
ing community for decades. Given the similarities between
spreadsheets and source code, it is feasible to transform
software engineering methods, tools and techniques to make
them applicable to spreadsheets. This exactly has been the
approach of a number of researchers over the last decade. This
paper highlights their past achievements, challenges and future
research directions.

II. END-USER PROGRAMMING

End-user programming has been a topic of study for
decades, mainly started by Nardi [12] in her investigations into
spreadsheet use in office workplaces. According to Nardi, the
difference between an end-user programmer and a professional
programmer lies in their goals. It is the responsibility of a
professional developer to build, debug, maintain and some-
times test software for others to use, while end-user developers
create programs to support their own domain of expertise, like
teaching, planning or bookkeeping [8]. As such, programs that
end-users create are, by definition, not meant for others to
use, while professional programming has the goal of producing
code for others to use.

One of the core problematic aspects of end-user pro-
gramming is that sometimes the created artifacts evolve from
personal solutions to programs used by many colleagues.
When that happens, an end-user suddenly, often unintended
and unprepared, has to take on challenges of professional
developers, like testing, maintaining and generalizing their
creations.

III. SPREADSHEETS ARE CODE

While end-user programming takes on many forms, and
their users can be as diverse as system administrators [13] or
interaction designers [7], [14], spreadsheets can be considered
to be the most successful form of end-user programming.

2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering

978-1-5090-1855-0/16 $31.00 © 2016 IEEE

DOI 10.1109/SANER.2016.86

56

Fig. 1. A Turing machine implementation in Excel, using only formulas.
Rows represents consecutive states of the machine and the cells in yellow
indicate its head.

Spreadsheets are crucial tools for many workers, enabling
millions of users to do reporting, planning, scheduling and
all else needed to succeed in their jobs. Of course, not all
spreadsheets are full-fledged applications: some are simply
used for word processing with an easier layout and do not even
contain formulas. Spreadsheets however are also commonly
used to create applications, or to perform business critical
calculations. We argue this second group of spreadsheets can
and should be seen as source code, paving the way to apply
methods from software engineering to them.

In the following paragraphs, we outline three reasons
why spreadsheets systems are programming languages, and
spreadsheets are code.

A. Similar Goals

Firstly, spreadsheets are used for very similar problems,
like financial calculations or data manipulation. In such sit-
uations, spreadsheets play a role that can also be played by
software.

In many cases, the end-users have investigated alternatives,
for example, the use of ’off the shelf’ solutions for their data
or analysis needs. However, these are often expensive and
do not fit their needs exactly. A second alternative could be
custom made software, either by software engineers within the
company or by a contractor. These projects unfortunately have
the tendency to go over budget, be delayed and sometimes
have disappointing results. Weighting all options: expensive off
the shelf product, unsatisfying tailor made software, making
a spreadsheet themselves often seems a non-expensive and
simple solution for many end-users.

B. Similar Expressive Power

Secondly, spreadsheets have quite some expressive power.
In fact, spreadsheet formulas are Turing complete, even with-
out taking Visual Basic for Applications code into account.
Using formulas only, you can construct a Turing machine, see
Figure 1 [15].

In Excel, it is not possible to continuously update cells—
unless some scripting is used such as VBA—so moving the
head is mimicked by using one row in the spreadsheet to
represent one state of the tape. Each following line represents
the state of the tape after one transition, and the head of the
machine is visualized with conditional formatting.

C. Similar Maintainability Issues

Finally spreadsheets suffer from typical software problems,
including, but not limited to the issues below.

Long life span In some cases, spreadsheets are specifically
created for one time use, but more often they stay ‘alive’:
enhanced with more data, reused for next year’s budget or
modified for a different department. Our research shows that
spreadsheets have an average lifespan of five years [6].

Many different users During this long lifespan, spread-
sheets are frequently shared among coworkers. On average,
twelve different people work with one spreadsheet, performing
a variety of tasks on them, including data entry, error checking
and analysis [6].

Lack of documentation We found that only one in three
spreadsheets contain documentation. We considered even a
basic manual to be documentation and did not limit the def-
inition to real technical documentation with design decisions.
And still, two thirds of spreadsheets did not contain any
explanation [6].

Quality issues Finally, like software, there have been
many accounts of big impact errors involving spreadsheets.
From somewhat silly errors, like an overbooked Olympic
stadium [16], to career wrecking data analysis mistakes [17],
the stories of errors are numerous. The European Risk Interest
Group keeps a list of these spreadsheet horror stories on their
website1.

IV. REFLECTIONS ON SPREADSHEET SUCCESS FACTORS

Given the wide adoption of spreadsheets, one could wonder
why spreadsheets are as successful as they are. In this section
we list three reasons contributing to their success.

A. Live Programming

First proposed as a design principle by Maloney and Smith
[19], liveness indicates that a user interface is always active
and reactive. According to [19] in a live interface “objects
respond to user actions, animations run, layout happens, and
information displays are updated continuously”. More recently
live programming has found its way to the public eye, among
others by Bret Victor in his talk ‘Inventing on Principle’ [18].
Figure 2, taken from Victor’s talk, illustrates the idea of live
programming: on the right, we have source code and on the
left, we have the result of that code, in this case: a tree.
Modifying the code will immediately affect the tree.

This liveness is also present in spreadsheet systems. When
a users enters a formula and presses enter, they see the
result, without any effort such as compilation. Liveness of
spreadsheets powers their flexibility, often praised as their key
success factor.

1www.eusprig.org/horror-stories

57

Fig. 2. Live programming: on the right the source code and on the left its
instantiation of the code which changes immediately when the code is updated,
screenshot from [18].

B. Directness

Another benefit of spreadsheets is that their interface
combines data, metadata and calculations together in one
view, and provides the user with easy access to all. Just by
clicking a formula, one can manipulate it. This is often called
‘directness’: “the feeling that one is directly manipulating
the object” [20]. From a cognitive perspective, directness in
computing means “a small distance between a goal and the
actions required of the user to achieve the goal”[21].

Maloney and Smith describe directness as the fact that a
user can “can initiate the process of examining or changing
the attributes, structure, and behavior of user interface com-
ponents by pointing at their graphical representations directly,
as opposed to navigating through an alternate representa-
tion.” [19]

This almost exactly describes the interface of a spreadsheet.
Instead of navigating to a code behind, a class or an object,
spreadsheet users have all ingredients: data, metadata and
calculations, in one view, and can access them with one click.

We have often wondered why more advanced spreadsheet
users did not use a database or source code, which would
have enforced a more structured approach. In our experience,
spreadsheet users felt that the distance between the meta-
data, data and analysis—tables, data and queries—was too big,
posing a cognitive load too high.

C. One-click deployment

Another problem which end-user programmers in company
settings face is the problem of deployment. Some more ad-
vanced users write, for example, Python scripts to analyze
data, but are faced with the question of how to get that to
run on their neighbor’s workstation, with a slightly different
version of the operating system, a newer Office and different
language settings? Spreadsheets are so universal that almost
everyone has a spreadsheet program on their machine. With
that, a spreadsheet becomes an executable package with data
and calculations packed together, that can run anywhere a
spreadsheet system is installed.

Fig. 3. A spreadsheet with a test formula in cell D12 expressing that the
SUM of the values in D6:D10 should be equal to 100%

V. ACHIEVEMENTS

As said, a core approach of research into end-user program-
ming has been to transfer methods from software engineering
to end-user languages, and this has been eagerly applied in
spreadsheet research. This section presents an overview of
successful research directions following this strategy.

A. Testing

One of the programming concepts that found its way
to spreadsheets the earliest is testing, with ‘What You See
Is What You Test’ (WYSIWYT) by Rothermel et al. [22].
In this paradigm, spreadsheet users have to mark formula
outcomes are correct or incorrect, after which the WYSIWYT
system calculates which formulas led to the checked values
and increases their testedness.

An evaluation of WYSIWYT showed that their approach
had an average fault detection percentage of 81% which is
“comparable to those achieved by analogous techniques for
testing imperative programs.” [23]. Other studies have con-
firmed the applicability of testing to spreadsheets [24]. Related
is the elegant work of Burnett on spreadsheet assertions that
allows spreadsheet users to define assertions and propagates
them through the cell dependencies using a similar propagation
system [25].

An downside of the WYSIWYT approach is that it requires
an annotation of right and wrong values as input, meaning
extra effort for the user. When inspecting spreadsheets from
practice, we noticed that spreadsheet users often already add
simple tests to their spreadsheets expressed with formulas. An
example of such a spreadsheet is shown in Figure 3. In the
EUSES corpus [26], 9.8% of formulas are such test formulas,
which we deemed common enough to be exploited. Hence,
we built a tool called Expector that can detect these formulas,
store them in a test suite and subsequently calculate coverage
and run the tests [10].

B. Reverse Engineering

Like software, spreadsheets often suffer from a lack of
documentation. In a field study we found, only one in three

58

Fig. 4. Spreadsheet shown in Microsoft Excel with the ‘trace dependents’
option enabled. As can be seen in this picture, this feature does not always
support easy understanding.

spreadsheets contained documentation [6]. Despite this lack of
documentation, users do often have to understand spreadsheets
created by someone else [8], [6]. An approach that was
therefore explored by several researchers is to reverse engineer
existing spreadsheets in some way.

1) Extracting class diagrams: There have been a number
of approaches to extract class diagrams from spreadsheets. We
described a method to do so by observing that spreadsheets
typically contain three types of data: actual data organized
in groups, computations over these groups, and dependencies
between them, closely resembling object oriented systems with
classes, methods and dependencies [27]. Based on this obser-
vation, we implemented a method to transform spreadsheets
to class diagrams and evaluated it on the EUSES corpus [26].
We found that we were able to extract diagrams similar to a
manually created benchmark in 40% of spreadsheets.

Following this work, Cunha et al. [28] described an ap-
proach to infer ClassSheets models [29] from spreadsheets,
by detecting and exploiting functional dependencies. Their
method was validated in a method similar to ours. They
manually extracted tables from 27 spreadsheet examples taken
from [30]. They found that their method was able to detect
correct ClassSheets in about 70% of the cases.

Specifically focusing on the spreadsheets made by scien-
tists, de Vos et al. [31] have designed a methodology to extract
ontologies in the form of class diagrams from spreadsheets.
While their described method is currently manual, they state
it could be automated too.

2) Dataflow visualization: In addition to approaches to
extract data models as documentation from spreadsheets, there
have also been a number of approaches aimed at extracting
and visualizing dependencies between cells. One could say
that spreadsheets consist of two layers: visual: the way in
which cells are organized into rows, columns, data blocks and
worksheets, and dependency: the way in which cells refer to
each other.

Firstly, Excel itself contains a feature to overlay a spread-
sheet with a dependency graph, which, unfortunately be-
comes incomprehensible for large and complex spreadsheets,
as shown in Fig 4. Observing that this feature did not always
support spreadsheet users, we studied the needs that industrial

Fig. 5. Formula view of the Leveled Dataflow Visualization as presented in
[6]

Fig. 6. Worksheet view of the Leveled Dataflow Visualization as presented
in [6]

spreadsheet users have when working with spreadsheets [6].
The results confirmed that the most important information
needs of spreadsheet users concern the structure of formula
dependencies. To meet this demand we developed an approach
for the automatic generation of leveled data-flow diagrams
from spreadsheets. The diagrams are organized in levels and
are thus able to represent larger spreadsheets without becoming
cluttered, as shown in Figure 6. We implemented the approach
and evaluated it with a group of 27 users at Robeco, a Dutch
financial services company. The results indicated that end-users
consider the tool helpful; the visualizations help them to create
story lines for explaining spreadsheets to colleagues, and they
scale well to large and complex spreadsheets.

There have been several related efforts to support spread-
sheet users in comprehension. Igarashi et al. developed a fluid
visualization technique based on overlaid animation for better
understanding of spreadsheets [32]. Shiozawa et al. proposed
a technique of cell dependence visualization in 3D based
on an interactive lifting up operation [33]. Ballinger et al.
developed a visualization toolkit that could ease understanding
of spreadsheets through visual abstractions in the form of
images that emphasize on layout and dependency rather than
values of cells [34]. The toolkit was successfully tested on a
corpus of 259 spreadsheets but there was no information about
the source or size of the spreadsheets.

In addition to these generic works on dataflow visual-

59

Fig. 7. Formula suffering from the Conditional Complexity smell, inhibiting
easy readability

ization, there is also work specifically tailored towards the
spreadsheets used by scientists. De Vos et al. [35] for example,
propose a semi automatic method to infer the calculation work-
flow underlying a set of spreadsheets. The starting point of
their methodology is, like in our approach, the cell dependency
graph. The difference is that 1) De Vos et al. automatically
aggregate all cells in the graph that represent instances and
duplicates of the same quantities, based on analysis of the
formula syntax. The method also needs an ontology of the
spreadsheets domain as input, which is then used to prune
the data flow graph by selecting only relevant nodes. They
have performed three case studies showing that their generated
calculation models approximate the ground truth calculation
workflows, both in terms of content and size, but are not a
perfect match.

C. Smell Detection

While the work on reverse engineering certainly proves
useful when users want to understand or migrate their spread-
sheets, sometimes users still got lost in unnecessarily complex
formulas. This, again, resembled the problems in source code.
Therefore we have coined the idea of spreadsheet smells,
taking the code smells metaphor of Fowler as a source of
inspiration [36].

1) Formula-level Smell Detection: We started by defin-
ing smells within individual formulas and we found that
many smells defined for code also applied nicely to spread-
sheets [37]. As an example, consider conditional complexity.
Most spreadsheet systems contain IF and other conditional
formulas, so spreadsheet formulas too can suffer from condi-
tional complexity, when many conditionals are nested within
one formula. An example of a formula suffering from the
conditional complexity smell is shown in Figure 7.

Other code smells need small modifications to be applica-
ble to spreadsheets: the many parameters smell becomes many
references: a formula that references a long list of different
ranges in a spreadsheet is as smelly as a method with lots
of parameters, and the long method smell becomes multiple
operations: a formula that uses a large number of different
functions can be hard to understand.

After defining the smells for spreadsheets, we performed an
empirical evaluation in which we found that smells occurred
within 42.7% of spreadsheets in the EUSES corpus [26]
and that Multiple References is the most common. We also
evaluated the smells with 10 spreadsheets and their users in
practice, and found two actual faults with the duplication. Also,

spreadsheet users agreed that the smells revealed which of the
formulas were least maintainable.

More recently, we compared two datasets: one containing
spreadsheets which users found unmaintainable, and a version
of the same spreadsheets rebuilt by professional spreadsheet
developers. The results show that the improved versions suf-
fered from smells to a lesser degree, increasing our confidence
that presence of smells indeed coincides with users finding
spreadsheets hard to maintain [38].

2) Data Smell Detection: Cunha et al. studied smells in
spreadsheets too, however they focus on smells in the data,
such as cells that do not follow a normal distribution or have
a big string distance to other cells in the same region, and
thus might be typos. They analyzed 180 spreadsheets from the
EUSES corpus, in which they found 3,841 cells suffering from
their smells. By manual inspection of the cells, they confirmed
that more than 20% of the detected smelly cells point to a
possible problem in the spreadsheet [39].

Related work into smells in data was done by Barowy et al.
who present a tool called CheckCell that identifies cells that
have an unusually high impact on the spreadsheet’s computa-
tions. In an evaluation, the authors showed that CheckCell out-
performs standard outlier detection techniques. It successfully
finds injected typographical errors produced by a generative
model trained with data entry from 169,112 Mechanical Turk
tasks [40].

3) Structural Smell Detection: In addition to smells occur-
ring within data or within a single formula, smells can occur
in the organization of the spreadsheet, for example when a
formula refers to a large number of cells in another worksheet.
This is comparable to Fowler’s Feature Envy smell, where a
method of class A uses a large number of fields from class B,
and hence can be considered ‘envious’ of the class B.

We defined three more structural smells in addition to
Feature Envy, namely: Inappropriate Intimacy, Middle Man
and Shotgun Surgery [41]. We again performed a quantitative
and qualitative evaluation of our approach, where we first
investigated the occurrence of inter-worksheet smells in the
EUSES [26] corpus and found that 23.3% of spreadsheets
suffered from at least on of the smells, with Feature Envy being
the most common smell. We also conducted a series of ten case
studies at the above described company Robeco. In these case
studies we found that inter-worksheet smells can indeed reveal
weaknesses in spreadsheets and that subjects confirmed their
negative impact on maintenance.

D. Clone Detection

Like in source code, clones or ‘copy-pasting’ occurs in
spreadsheets too, although there are important differences.
Copy-pasting in spreadsheets is common: spreadsheet users
typically mimic abstraction by copying a similar formula down
or left over multiple rows or columns. An example of this is
given in the lower part of Figure 8, where the formulas in cells
D2 and F2 are copied down and the formula in B2 is copied
left.

However, some forms of copying are error prone. In
our research we have focused on data clones: copies made
with the ‘paste as values’ option supported by Excel. We

60

Fig. 8. Two versions of a spreadsheet, with and without ambiguous
computation, taken from [42]

designed a detection algorithm [43] to help spreadsheet users
in finding and refactoring clones, based on existing clone
detection algorithms working on source code [44]. In addition
to exact clones, our approach also detects near-miss clones,
those where minor to extensive modifications have been made
to the copied fragments [45]. Our approach was validated
both quantitatively and qualitatively. Firstly, we analyzed the
EUSES corpus [26] to calculate the precision and performance
of our algorithm and to understand how often clones occur.
Secondly, we performed two case studies: one with a large
budget spreadsheet from our own university and a second
one for a large Dutch non-profit organization, for which we
analyzed 31 business critical spreadsheets.

Dou et al. studied clones in spreadsheets too, focusing
on the degeneration of clones formulas [42]. They state that
spreadsheet formulas are initially often similar in a row or
column. When a spreadsheet evolves however, some cells in
such a group will be updated, due to ad hoc modifications
or undisciplined copy-and-pastes. Dou et al. state these cells
suffer from the ambiguous computation smell. They find that
such smells are common and likely harmful and propose a
tool called AmCheck which automatically detects and repairs
ambiguous computation smells. They present a case study
on the spreadsheets of the EUSES corpus [26], showing that
44.7% of the spreadsheets suffer from at least one kind of
ambiguous computation smell. They then randomly selected
700 sampled smelly groups of cells and manually confirmed
that 319 (45.6%) of them were true smelly cell arrays.

E. Refactoring

A final direction on which end-user research has focused
on—a logical step after research on smells—is refactoring of
end-users artifacts.

We defined refactorings corresponding to our smells [37]
and applied them to 10 spreadsheets we received from em-

ployees at Robeco, demonstrating that a combination of one
or more refactorings from our set could relieve smells in 87%
of smelly formulas.

Inspired by our work on spreadsheet smells, Badame and
Dig [46] developed a tool called RefBook that supported
a number of refactorings for spreadsheet formulas including
extract column, replace awkward formula, string to dropdown,
introduce cell name, and extract literal. While some of their
refactorings can relieve known code smells—for example
extract column makes formulas shorter, thus addressing the
multiple operations smell—their refactorings were not directly
related to smells. RefBook was evaluated on 28 users in an
online experiment showing that RefBook increases spread-
sheet programmer productivity, increases the reliability of
transformations, and increases the quality of spreadsheets.
Furthermore they studied the EUSES corpus to show that
their refactorings can be widely applied. For example, 27% of
formulas demonstrated some form of duplication, meaning that
Extract Column could be applied to simplify the spreadsheet.

After this, we combined the above two approaches in a
new spreadsheet refactoring tool called Bumblebee, which
allows a formula to be transformed into another by defining
a transformation rule. Therefore, BumbleBee is more generic
than RefBook, which only supported a fix number of refactor-
ings [47]. However, initially, this approach has the downside
that it can only consider one formula, and not the spreadsheet
as a whole, meaning some of RefBook’s refactorings like
Extract Formula and Introduce Cell Name were not supported.
This was addressed by the work of Hoepelman [48], which fur-
thermore introduced new refactorings including Inline Formula
and Introduce Conditional Aggregate.

F. Conclusion

We conclude that a diverse range of approaches aimed at
source code are applicable to end-user programming in general
and spreadsheets in particular. From testing to smells, and
from refactoring to reverse engineering, software engineering
methods transfer well to end-user programming and a broad
range of evaluations demonstrate that users benefit from them.

VI. CHALLENGES

Now that we have described the key successes in the
application of software engineering to spreadsheets, including
testing, reverse engineering, smell detection, clone detection
and refactoring, we direct our attention to challenges in re-
searching software engineering methods in spreadsheets.

A. End-user’s Perception and Self Perception

One of the key challenges when researching end-user pro-
gramming is that users do not see themselves as programmers.
In one case where we were working with an investment
banker, who was almost insulted when we, impressed with
a risk management dashboard he built with Excel, called
him a programmer. Because end-user programmers do not
self-identify as developers, they often are unaware of tools,
methods and techniques that could support them in their
programming efforts.

61

The perception of end-user programmers as not being ‘real’
programmers is not limited to how programmers view them-
selves, but also to how they are seen by others. Coworkers,
especially those themselves trained as professional developers,
often fail to recognize and sometimes even belittle their
programming efforts, while professional developers in the
workplace could offer great support and could ease technology
transfer of spreadsheet solutions.

B. Lack of Best Practices

A challenge that follows from the previous one is the lack
of standards. Since spreadsheets and their creators are not seen
as source code and programmers respectively, they are often
outside of the scope of a diverse range of professionalization
efforts within companies. Software, but also numerous pro-
cesses are standardized; spreadsheets on the other hand rarely
are. While a number of spreadsheet standards exist234, they
have not found widespread adoption yet.

This lack of standards means spreadsheets can be created in
many different ways, which inhibits easy comprehension and
maintenance, but also makes it harder to automatically analyze
and process spreadsheets.

C. Lack of Data

Spreadsheets often contain models and calculations of vital
importance to companies, and therefore their users are reluctant
to share them with researchers. This is a big challenge with
industrial research in general, and spreadsheets in specific.
Contrary to source code, which developers often share on
online platforms like GitHub, spreadsheet users typically do
not share theirs.

While there are a number of public datasets available [26],
[49], [50], only one of these ([49]) stems from a company.
And even then, we lack information about their creation and
the maintenance process around them. Process information
that is often available for source code repositories, like issues
and version control history, are missing from spreadsheets,
prohibiting us from deeply understanding the problems with
spreadsheets. We have worked together with companies pro-
viding us with data [6], [51], [41], [37], [38] enabling us to
study spreadsheets in the wild. That however came at the price
of reduced repeatability, because we were not allowed to share
these spreadsheets.

D. Performance of Research Tools

While many spreadsheets are relatively small, spreadsheets
can also grow extremely large over their long lifespan. The
biggest spreadsheet from the Enron set had no less than 175
worksheets, and about 10% of spreadsheets in the corpus have
10 or more worksheets. Large spreadsheets, especially those
with heavy connections between the worksheets are hard for
users to understand and maintain, but also seem to hinder adop-
tion of research tools, especially for those aimed at supporting
maintenance and comprehension. For example, Igarashi et al.
reported that their animations degrade for spreadsheets larger

2http://www.fast-standard.org/
3http://www.ssrb.org/standards
4http://www.spreadsheetsafe.com/

than 400 cells [32]. Compared to spreadsheets that are found
in the industry, 400 cells is a very low limit. We ourselves
have also found that parsing and analyzing large numbers of
formulas can be more time-consuming that one would expect.
Thus it appears that although these tools typically perform
well on laboratory examples, industrial adoption is far away
for real-life spreadsheets, as tools get unreasonably slow on
large spreadsheets.

E. Proprietary Software

A final challenge that we identify in working with spread-
sheets is the fact that the most common spreadsheet system,
Microsoft Excel, is proprietary and closed source. Simply
accessing the formulas already poses a challenge. While there
is a way to programmatically access Excel worksheets through
Excel in C# and other languages5, this method does not scale
for big spreadsheets or for batch processing large amounts of
them.

This makes analysis hard, especially when there is a need
to parse spreadsheet formulas, which is needed for research
efforts, including for testing and refactoring approaches. There
is a formal specification of the Excel grammar available, but
this specification consists of about 30 pages of production
rules, making it a demanding effort to reimplement. This
resulted in the fact that several researchers had to reverse
engineer and approximate the excel formula grammar. Various
papers have attempted to cover a small subset. For example,
in his thesis, Badame presents a grammar that does not cover
all possible formulas [52]. Other papers process formulas, but
do not share their parser or grammar, like the CheckCell
paper [40] and the works by Cunha et al. [28], [39]. We
recently released an open source version of the grammar6

which is capable of parsing 99.9% of formulas in the EUSES
and Enron dataset [53].

Another problem is that Excel limits the power of add-
ins, most notably by disallowing access to the undo-stack,
but also limiting the possibilities to traverse cell dependencies
deeper than one level. These both increased our difficulties in
developing the refactoring plugin [47].

Obviously, one could avoid such these issues by imple-
menting a whole spreadsheet system from scratch, but there is
a trade off between easy extendability and power of tools on
the one hand and realism on the other hand. As a researcher
you also want to attract a large group of people to be able to
try your tools, so there is something to say for building on top
of Excel, even in the presence of the above challenges.

VII. FUTURE OPPORTUNITIES

In the previous sections we have described a number
directions in which the application of software engineering
to spreadsheets has proven to be successful. Given these
achievements and the challenges we identified in terms of
perception of end-users, best practices, lack of data, size and
performance of spreadsheets, we identify the following viable
directions for future work in the area of spreadsheet software
engineering.

5https://msdn.microsoft.com/en-us/library/office/Microsoft.Office.Interop.
Excel.aspx

6https://github.com/spreadsheetlab/XLParser

62

A. Performance

Understandability and maintainability are not the only
issues with large spreadsheets, large spreadsheets can also
suffer from serious performance problems.

Some researchers have attempted to improve spreadsheet
performance in various ways, for example, Pichitlamken et
a.l [54] proposed a method to offload a simulation model
built in spreadsheets into a grid of computing resources. Their
tool, while useful, was developed for a very specific set of
conditions, making it difficult to apply to spreadsheets in
general. A related effort is the work by Abramson et al.
in [55] who presented ActiveSheets, a solution designed to
evaluate “otherwise sequential” custom functions of Excel
spreadsheets, by creating a middle layer that processes the
requests for evaluations. Finally, there is ExcelGrid [56], in
which a middle ware tool was designed and built connecting
an Excel spreadsheet with either a private or a public cluster.

The fact that there is some preliminary research done in
this direction, indicates that this is a problem worthy of more
research. But, while the above tools and techniques do improve
performance in the spreadsheets under study, they do not take
the content of the spreadsheet into account, by for example
identifying hotspots in the spreadsheets calculation. We believe
that by combining High Performance Computing with smell
detection and refactoring, tailored spreadsheet improvements
could be made.

B. Deeply Understanding Spreadsheets in the Enterprise

So far, research on spreadsheets, both by us and by others,
has focused on individual spreadsheets and their users. In real-
ity, spreadsheets are often part of a larger end-user ecosystem,
where users, for example, import data from a data warehouse,
process it in a spreadsheet and then write a report about it
in Word. We see the broadening of the scope of end-user
programming as a very viable direction for future research.

This research direction will aim to understand why people
continue to resort to ‘home brew’ solutions, while there are
software systems in place. What functionality or power do they
miss in existing tools? Understanding what drives people to
spreadsheets will support us in building supporting or replacing
tools.

C. Domain-Specific Spreadsheets

Not all spreadsheets are created equally. While working
with spreadsheets in practice we have seen that there are
several high-level classifications to be made. For example:
some spreadsheets are used for financial modeling and project
future revenues and costs along a time-axis, other spreadsheets
are used for a calculation on a single point in time, for example
cost price calculations. In other cases spreadsheets are used
purely for reporting purposes and are lacking any complex
calculations. In some spreadsheets the calculations are even
missing, the spreadsheet is just a collections of lists and is
actually used as a database. We hypothesize that each of those
categories of spreadsheets needs a different type of support.
For example, there might be ‘budget specific’ smells or tests,
which are only useful to users making a budget, but would not
support, for example, a cost price calculation. By analyzing

Fig. 9. We envision the visual language to look like this. On top there is
the model the user would create and on the bottom we find the associated
spreadsheet

different types of spreadsheets, we could tailor our methods to
specialized spreadsheet types.

D. Higher Level of Abstraction

In previous work we have tried to understand what causes
spreadsheets to be error prone. Contrary to our initial hy-
potheses, studies have found that the level of complexity and
coupling in spreadsheets is not that large [38]. So one could
wonder what it is that makes spreadsheets error-prone and
hard to understand. One hypothesis is that the interface of
spreadsheets, with all its freedom for users in how to layout
spreadsheets, is a double-edged sword. While allowing the
users this total freedom, the interface is not supporting users
in making the right choices. One solution we envision is a
higher level language to create spreadsheets, as illustrated by
Figure 9. When we have a definition of the spreadsheet at a
higher level of abstraction, we can subsequently help users to
select the right formatting and also support them in changing
the layout of the spreadsheet later in the process.

E. Beyond Formulas

Spreadsheets themselves are changing, and many vendors,
including Microsoft, are trying to enable spreadsheet devel-
opers to build more powerful programs, for example with

63

QlikView7, Tableau8 and PowerBI9. Currently, these tools
are certainly bringing more power to end-users, but their
creators are mainly concerned with enabling users to build new
analyses and not with helping users maintaining them. We thus
hypothesise that this new generation of end-user programming
artifacts will again suffer from maintainablilty issues, like an
unexpectedly long life span, and will thus be be in need of
testing and refactoring.

VIII. CONCLUSION

This paper presents an overview of research papers that
apply software engineering to spreadsheets. We first make the
case that spreadsheets are code: they are used for similar
problems, have similar expressive power and suffer from
similar problems. We then reflect upon the success of spread-
sheets, what makes them the world’s most used programming
language for end-users? We assert their liveness, directness and
easy deployment are factors contributing to their widespread
adoption.

Because of their similarity to source code, applying meth-
ods from software engineering to them has proven a successful
research direction for many. In this paper we summarize
achievements in the area of testing, reverse engineering, smell
detection, clone detection and refactoring. We also highlight
challenges in researching spreadsheets, including the percep-
tion that spreadsheet developers are not real programmers, the
lack of best practices, the lack of readily available data, the
difficulties of analyzing large spreadsheets and issues building
upon on proprietary software like Excel.

We close this paper by identifying a number of viable
research directions, including investigating how to improve the
performance of spreadsheets, understanding the process around
them, making research more domain specific, raising the level
of abstraction for spreadsheet users and finally analyzing
reporting artifacts other than spreadsheets.

REFERENCES

[1] C. Scaffidi, M. Shaw, and B. A. Myers, “Estimating the numbers of
end users and end user programmers,” in Proc. of VL/HCC ’05, 2005,
pp. 207–214.

[2] R. Panko, “Security and sarbanes oxley: What about the spreadsheets?”

[3] USA Bureau of Labor Statistics. (2005) Computer and internet use
at work in 2003. [Online]. Available: http://www.bls.gov/news.release/
pdf/ciuaw.pdf

[4] Wellnomics. (2007) An analysis of computer use across 95
organisations in europe, north america and australasia. [Online].
Available: http://wellnomics.com/assets/Uploads/White-Papers/
Wellnomics-white-paper-Comparison-of-Computer-Use-across-dif.
ferent-Countries.pdf

[5] Dutch Bureau of Statistics. (2014) Ict ge-
bruik van personen naar persoonskenmerken. [Online].
Available: http://statline.cbs.nl/Statweb/publication/?DM=SLNL&PA=
71098ned&D1=23,29&D2=0-2&D3=a&VW=T

[6] F. Hermans, M. Pinzger, and A. van Deursen, “Supporting Professional
Spreadsheet Users by Generating Leveled Dataflow Diagrams,” in
Proceedings of the 33rd International Conference on Software
Engineering, ser. ICSE ’11. New York, NY, USA: ACM, 2011,
pp. 451–460. [Online]. Available: http://doi.acm.org/10.1145/1985793.
1985855

7http://www.qlik.com/products/qlikview
8www.tableau.com
9https://powerbi.microsoft.com

[7] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning
barriers in end-user programming systems,” in Proceedings of the
2004 IEEE Symposium on Visual Languages - Human Centric
Computing, ser. VLHCC ’04. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 199–206. [Online]. Available: http:
//dx.doi.org/10.1109/VLHCC.2004.47

[8] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett,
M. Erwig, C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers, M. B.
Rosson, G. Rothermel, M. Shaw, and S. Wiedenbeck, “The state
of the art in end-user software engineering,” ACM Comput. Surv.,
vol. 43, no. 3, pp. 21:1–21:44, Apr. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1922649.1922658

[9] R. R. Panko, “What we know about spreadsheet errors,” Journal of
End User Computing, vol. 10, no. 2, pp. 15–21, May 1998. [Online].
Available: http://dl.acm.org/citation.cfm?id=287893.287899

[10] F. Hermans, “Improving spreadsheet test practices,” in Center for
Advanced Studies on Collaborative Research, CASCON ’12, Toronto,
ON, Canada, November 18-20, 2013, 2013, pp. 56–69. [Online].
Available: http://dl.acm.org/citation.cfm?id=2555531

[11] A. J. Ko and B. A. Myers, “Designing the whyline: A debugging inter-
face for asking questions about program behavior,” in In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 2004, pp. 151–158.

[12] B. A. Nardi, A small matter of programming: perspectives on end user
computing. MIT Press, 1993.

[13] R. Barrett, E. Kandogan, P. P. Maglio, E. M. Haber, L. A. Takayama,
and M. Prabaker, “Field Studies of Computer System Administrators:
Analysis of System Management Tools and Practices,” in Proceedings of
the 2004 ACM Conference on Computer Supported Cooperative Work,
ser. CSCW ’04. New York, NY, USA: ACM, 2004, pp. 388–395.

[14] B. Myers, S. Y. Park, Y. Nakano, G. Mueller, and A. Ko, “How de-
signers design and program interactive behaviors,” in IEEE Symposium
on Visual Languages and Human-Centric Computing, 2008. VL/HCC
2008, pp. 177–184.

[15] F. Hermans. (2013) Excel turing machine. [Online]. Available:
http://www.felienne.com/archives/2974

[16] P. Kelso. (2012) London 2012 olympics: lucky
few to get 100m final tickets after synchronised
swimming was overbooked by 10,000. [Online].
Available: http://www.telegraph.co.uk/sport/olympics/8992490/
London-2012-Olympics-lucky-few-to-get-100m-final-tickets-after.
-synchronised-swimming-was-overbooked-by-10000.html

[17] T. Herndon, M. Ash, and R. Pollin, “Does high public debt consistently
stifle economic growth? a critique of reinhart and rogoff,” Cambridge
Journal of Economics, vol. 38, no. 2, pp. 257–279, 2014. [Online].
Available: http://cje.oxfordjournals.org/content/38/2/257.abstract

[18] B. Victor. (2012) Inventing on principle. Invited talk at the Canadian
University Software Engineering Conference (CUSEC). [Online].
Available: http://vimeo.com/36579366

[19] J. H. Maloney and R. B. Smith, “Directness and Liveness in the
Morphic User Interface Construction Environment,” in Proceedings
of the 8th Annual ACM Symposium on User Interface and Software
Technology, ser. UIST ’95. New York, NY, USA: ACM, 1995, pp.
21–28. [Online]. Available: http://doi.acm.org/10.1145/215585.215636

[20] B. Shneiderman, “Direct Manipulation: A Step Beyond Programming
Languages,” Computer, vol. 16, no. 8, pp. 57–69, Aug. 1983.

[21] M. M. Burnett, “Visual Programming,” in Wiley Encyclopedia of
Electrical and Electronics Engineering. John Wiley & Sons, Inc.,
2001. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/
047134608X.W1707/abstract

[22] G. Rothermel, L. Li, and M. Burnett, “Testing strategies for form-
based visual programs,” in Proceedings of the Eighth International
Symposium on Software Reliability Engineering, ser. ISSRE ’97.
Washington, DC, USA: IEEE Computer Society, 1997, pp. 96–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=851010.856084

[23] K. J. Rothermel, C. R. Cook, M. M. Burnett, J. Schonfeld, T. R. G.
Green, and G. Rothermel, “Wysiwyt testing in the spreadsheet
paradigm: an empirical evaluation,” in Proc. of INCSE ’00, 2000, pp.
230–239.

[24] S. E. Kruck, “Testing spreadsheet accuracy theory,” Information &
Software Technology, vol. 48, no. 3, pp. 204–213, 2006.

64

[25] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet, and
C. Wallace, “End-user software engineering with assertions in the
spreadsheet paradigm,” in Proc. of ICSE ’03, 2003, pp. 93–103.
[Online]. Available: http://dl.acm.org/citation.cfm?id=776816.776828

[26] M. Fisher and G. Rothermel, “The EUSES Spreadsheet Corpus: A
Shared Resource for Supporting Experimentation with Spreadsheet
Dependability Mechanisms,” in Proceedings of the First Workshop on
End-user Software Engineering, ser. WEUSE I. New York, NY, USA:
ACM, 2005, pp. 1–5. [Online]. Available: http://doi.acm.org/10.1145/
1082983.1083242

[27] F. Hermans, M. Pinzger, and A. v. Deursen, “Automatically Extracting
Class Diagrams from Spreadsheets,” in ECOOP 2010 Object-
Oriented Programming, ser. Lecture Notes in Computer Science,
T. DHondt, Ed. Springer Berlin Heidelberg, Jun. 2010, no. 6183, pp.
52–75. [Online]. Available: http://link.springer.com/chapter/10.1007/
978-3-642-14107-2 4

[28] J. Cunha, M. Erwig, and J. Saraiva, “Automatically Inferring
ClassSheet Models from Spreadsheets,” in Proceedings of the
2010 IEEE Symposium on Visual Languages and Human-Centric
Computing, ser. VLHCC ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 93–100. [Online]. Available: http:
//dx.doi.org/10.1109/VLHCC.2010.22

[29] G. Engels and M. Erwig, “ClassSheets: Automatic Generation
of Spreadsheet Applications from Object-oriented Specifications,”
in Proceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’05. New York,
NY, USA: ACM, 2005, pp. 124–133. [Online]. Available: http:
//doi.acm.org/10.1145/1101908.1101929

[30] S. Powell and K. Baker, The Art of Modeling with Spreadsheets.
Hoboken, N.J: John Wiley & Sons, Inc., 2003.

[31] M. D. Vos, W. R. V. Hage, J. Ros, and G. Schreiber, “G.: Reconstructing
Semantics of Scientific Models : a Case Study,” in In: Proceedings of
the OEDW workshop on, 2012.

[32] T. Igarashi, J. D. Mackinlay, B.-W. Chang, and P. T. Zellweger,
“Fluid visualization of spreadsheet structures,” in Proceedings. IEEE
Symposium on Visual Languages, 1998. IEEE, 1998, pp. 118–125.

[33] H. Shiozawa, K.-i. Okada, and Y. Matsushita, “3d interactive visual-
ization for inter-cell dependencies of spreadsheets,” in Proceedings.
1999 IEEE Symposium on Information Visualization, 1999.(Info Vis’
99). IEEE, 1999, pp. 79–82.

[34] D. Ballinger, R. Biddle, and J. Noble, “Spreadsheet visualisation to
improve end-user understanding,” in Proceedings of the Asia-Pacific
symposium on Information visualisation-Volume 24. Australian Com-
puter Society, Inc., 2003, pp. 99–109.

[35] M. de Vos, J. Wielemaker, G. Schreiber, B. Wielinga, and
J. Top, “A Methodology for Constructing the Calculation Model
of Scientific Spreadsheets,” in Proceedings of the 8th International
Conference on Knowledge Capture, ser. K-CAP 2015. New
York, NY, USA: ACM, 2015, pp. 2:1–2:8. [Online]. Available:
http://doi.acm.org/10.1145/2815833.2815843

[36] M. Fowler, Refactoring: improving the design of existing code. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[37] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and
refactoring code smells in spreadsheet formulas,” Empirical Software
Engineering, vol. 20, no. 2, pp. 549–575, 2014. [Online]. Available:
http://link.springer.com/article/10.1007/s10664-013-9296-2

[38] B. Jansen and F. Hermans, “Code smells in spreadsheet formulas
revisited on an industrial dataset,” in Proceedings of the International
Conference on Software Maintenance and Evolution (ICSME ’15),
2012, to appear.

[39] J. Cunha, J. P. Fernandes, H. Ribeiro, and J. Saraiva, “Towards a Catalog
of Spreadsheet Smells,” in Computational Science and Its Applications
ICCSA 2012, ser. Lecture Notes in Computer Science, B. Murgante,
O. Gervasi, S. Misra, N. Nedjah, A. M. A. C. Rocha, D. Taniar, and
B. O. Apduhan, Eds. Springer Berlin Heidelberg, Jun. 2012, no. 7336,
pp. 202–216, dOI: 10.1007/978-3-642-31128-4 15. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-642-31128-4 15

[40] D. W. Barowy, D. Gochev, and E. D. Berger, “CheckCell:
Data Debugging for Spreadsheets,” in Proceedings of the 2014
ACM International Conference on Object Oriented Programming
Systems Languages & Applications, ser. OOPSLA ’14. New
York, NY, USA: ACM, 2014, pp. 507–523. [Online]. Available:
http://doi.acm.org/10.1145/2660193.2660207

[41] F. Hermans, M. Pinzger, and A. v. Deursen, “Detecting and visualizing
inter-worksheet smells in spreadsheets,” in Proceedings of the 34th
International Conference on Software Engineering. IEEE Press, 2012,
pp. 441–451. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2337275

[42] W. Dou, S.-C. Cheung, and J. Wei, “Is Spreadsheet Ambiguity
Harmful? Detecting and Repairing Spreadsheet Smells Due to
Ambiguous Computation,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New
York, NY, USA: ACM, 2014, pp. 848–858. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568316

[43] F. Hermans, B. Sedee, M. Pinzger, and A. v. Deursen, “Data clone
detection and visualization in spreadsheets,” in Proceedings of the
2013 International Conference on Software Engineering. IEEE Press,
2013, pp. 292–301. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2486827

[44] J. H. Johnson, “Identifying redundancy in source code using finger-
prints,” in Proc. of CASCON ’93, 1993, pp. 171–183.

[45] C. K. Roy, “Detection and analysis of near-miss software clones,” in
Proc. of ICSM ’09, 2009, pp. 447–450.

[46] S. Badame and D. Dig, “Refactoring meets spreadsheet formulas,” in
2012 28th IEEE International Conference on Software Maintenance
(ICSM), Sep. 2012, pp. 399–409.

[47] F. Hermans and D. Dig, “BumbleBee: A refactoring environment
for spreadsheet formulas,” Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE, pp. 747–750, 2014. [Online]. Available: http://files.figshare.com/
1757475/bumblebee.pdf

[48] D. Hoepelman, “Tool-assisted spreadsheet refactoring and parsing
spreadsheet formulas,” Master’s thesis, Delft University of Technology,
the Netherlands, 2015.

[49] F. Hermans and E. Murphy-Hill, “Enron’s spreadsheets and related
emails: A dataset and analysis,” in Proceedings of the 37th International
Conference on Software Engineering - Volume 2, ser. ICSE ’15.
Piscataway, NJ, USA: IEEE Press, 2015, pp. 7–16. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2819009.2819013

[50] T. Barik, K. Lubick, J. Smith, J. Slankas, and E. R. Murphy-
Hill, “Fuse: A reproducible, extendable, internet-scale corpus of
spreadsheets.” in MSR. IEEE, 2015, pp. 486–489. [Online]. Available:
http://dblp.uni-trier.de/db/conf/msr/msr2015.html#BarikLSSM15

[51] F. Hermans, M. Pinzger, and A. V. Deursen, “Detecting Code Smells
in Spreadsheet Formulas,” Proceedings of the International Conference
on Software Maintenance (ICSM), 2012. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6405300

[52] S. Badame, “Refactoring meets spreadsheet formulas,” Master’s thesis,
University of Illinois at Urbana-Champaign, United States of America,
2012.

[53] E. Aivaloglou, D. Hoepelman, and F. Hermans, “A grammar for
spreadsheet formulas evaluated on two large datasets,” in 15th IEEE
International Working Conference on Source Code Analysis and Ma-
nipulation (SCAM ’15), 2015.

[54] J. Pichitlamken, S. Kajkamhaeng, P. Uthayopas, and R. Kaewpuang,
“High performance spreadsheet simulation on a desktop grid,” Journal
of Simulation, vol. 5, no. 4, pp. 266–278, 2010.

[55] D. ABRAMSON, P. ROE, L. KOTLER, and D. MATHER, ActiveSheets
Super-Computing with Spreadsheets, 2001.

[56] K. Nadiminti, Y.-F. Chiu, N. Teoh, A. Luther, S. Venugopal, and
R. Buyya, “Excelgrid: A .net plug-in for outsourcing excel spreadsheet
workload to enterprise and global grids,” 2004.

65

