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Spreadsheets: Laying a Foundation for Understanding Functions

Abstract
Linear, quadratic, and exponential functions, as well as polynomial functions, are the most basic mathematical
expressions. Despite being among the most basic expressions in algebra, these functions are often used to
approximate more complicated functions. The Common Core State Standards for Mathematics provide the
framework for a discussion of the basic functions presented here. To that extent, the content of this paper
consists of the use of spreadsheet technology in experimentation with linear transformations in the plane;
experimentation with the way quadratic functions behave; constructing and comparing linear, quadratic, and
exponential models of real-life data; and automation of the computation of real zeros of polynomials where
such calculations require implementation of time consuming iterative procedures. An iterative procedure
based on the Rational Zeros Theorem will be used to find exact values of rational zeros of a polynomial. A
second iterative procedure based on the Bounds on Zeros theorem and the Intermediate Value Theorem will
be used to approximate all real zeros of a polynomial.
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Abstract 

Linear, quadratic, and exponential functions, as well as polynomial functions, are the most basic 

mathematical expressions. Despite being among the most basic expressions in algebra, these functions are 

often used to approximate more complicated functions. The Common Core State Standards for Mathematics 

provide the framework for a discussion of the basic functions presented here. To that extent, the content of 

this paper consists of the use of spreadsheet technology in experimentation with linear transformations in the 

plane; experimentation with the way quadratic functions behave; constructing and comparing linear, 

quadratic, and exponential models of real-life data; and automation of the computation of real zeros of 

polynomials where such calculations require implementation of time consuming iterative procedures. An 

iterative procedure based on the Rational Zeros Theorem will be used to find exact values of rational zeros of 

a polynomial. A second iterative procedure based on the Bounds on Zeros theorem and the Intermediate 

Value Theorem will be used to approximate all real zeros of a polynomial. 

 

Keywords: experimentation with functions, mathematical modelling, real zeros of polynomials 
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Introduction 
Some eighty years ago, a University of Chicago mathematics professor by the name of Mayme I. 

Logsdon [6] wrote: 

[e]arly in a course in algebra students are assigned the task of learning to 

substitute numbers for letters and perform indicated operations of arithmetic. It 

is amazing how inaccurate college students are in this elementary exercise. (p. 

50) 

Logsdon’s remark resonates with every algebra teacher even today. Students at all levels of 

schooling, from middle school to college, have difficulty working with algebraic variables. But 

this issue isn’t exclusive to the learners of mathematics. 

A study conducted by Clement, Lochhead, and Monk [3] found evidence that even freshman 

engineering students encounter difficulty when trying to translate information nested in word 

problems in order to recreate the context in symbolic form.  Freshman engineering students 

were asked: 

“Write an equation using the variables C and S to represent the following statement: At Mindy’s 

restaurant, for every four people who ordered cheesecake, there were five who ordered strudel.” 

Many students gave the erroneous answer:  4C=5S.  Only 39% of the 497 students who took the 

test answered this question correctly as 5C=4S.  Overall, the fact that fewer than 50% of the 

students could solve the problems correctly indicated “the difficulty of translating into and out 

of algebraic notation” [3].  Moreover, the authors add that such “errors are also high for 

translations from pictures and data tables.”  Interestingly, more than 40% of the students failed 

the restaurant problem when it appeared once again on the final exam. 

Clement et al. [3] concluded that student errors were caused because “They cannot translate 

reliably between algebra and other symbol systems, such as English, data tables, and pictures. 

We do not believe that this is a trivial problem.” An in-depth study conducted by Abouchedid 

and Ramzi [1] corroborated those findings. 

Figures 1 and 2 depict the use of the Excel spreadsheet in solving the restaurant problem for few 

specific cases. The data for the first few cases can be created easily. Cells A4 and B4 have the 

obvious entries which follow from the problem statement. Subsequently, the entries in cells 

A5:A6 and B5:B6 can easily be obtained by adding the appropriate numbers.  Students can then 

be asked to fill in the column entitled “Strudel Column (formula)” with formula structures that 

would produce the results already placed in column B4:B6. 

 

�������
�	��
���� � �������

�	��
����  

                                    From cells A4 and B4 or the problem statement:        
�
� � �

� 

5� � 4� 
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Figure 1: Two alternative solutions to Mindy’s Restaurant problem in Excel. 

 

 

 
Figure 2: Excel Bar graph comparing strudel and cheesecake orders at Mindy’s Restaurant. 

 

Hence, a spreadsheet activity can be designed as intervention to provide practice in the very 

same areas of competency that the research found the students to be lacking: symbolic 

representation, data tables, and graphical representation. 

Clement et al. [3] repeated the above study with another group of 150 calculus level science 

students while modifying the question and asking students to “Write an equation for the 

following statement:” 

“There are six times as many students as professors at this university (use S for the number of students 

and P for the number of professors).” 

1

2

3

4

5

6

7

8

9

10

A B C D

Mindy's Restaurant

Strudel Column Strudel Column

Cheesecake Strudel (formula) (alternative formula)

4 5 =($B$4/$A$4)*A4 =1.25*A4

8 10 =($B$4/$A$4)*A5 =1.25*A5

12 15 =($B$4/$A$4)*A6 =1.25*A6

13 16.25 =($B$4/$A$4)*A7 =1.25*A7

14 17.5 =($B$4/$A$4)*A8 =1.25*A8

15 18.75 =($B$4/$A$4)*A9 =1.25*A9

16 20 =($B$4/$A$4)*A10 =1.25*A10

0 5 10 15 20 25

1

2
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4

5

6

7

Strudel

Cheesecake
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It was reported that 37% of the students missed the problem.  The same exact experiment was 

conducted with 47 non-science college students of whom 57% missed the problem.  All of the 

erroneous answers were given as: 6S=P. 

A spreadsheet solution for this problem consisting of symbolic representation, a data table, and 

the associated linear graph are shown in Figures 3 and 4. It is clear that the 57% of the students 

who incorrectly answered 6S=P in the study would – with high likelihood – not make the same 

error when working with spreadsheets, because it simply would not make any sense at all for 

the university to employ, say, 300 professors for 50 students. 

 

 
Figure 3: Excel Spreadsheet solution for the university problem. 

 

 

 
Figure 4: A linear graph of the number of Professors (as the dependent variable) 

 vs. students (as the independent variable). 
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50 300 =(B18/A18)*A18

75 450 =(B19/A19)*A19

100 600 =(B20/A20)*A20

125 750 =(B21/A21)*A21

150 900 =(B22/A22)*A22

175 1050 =(B23/A23)*A23

200 1200 =(B24/A24)*A24
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The Role that Spreadsheets Can Play to Help Teach and Learn About 

Mathematical Functions 
Variable terms are indispensable to functions. Before the first spreadsheets like “Lotus 1-2-3” 

came around in the early 1980s, the most common ways of teaching students the meaning and 

use of variable symbols in algebra included hours of practice solving equations using pencil and 

paper, and exercises that built on students’ generalization of some kind of numerical or 

geometrical pattern. On the other hand, science teachers often used real-world experiments like 

dropping a ball from different heights and measuring the height to which the ball bounced each 

time in order to demonstrate to their students the meaning and purpose of variables in a 

function and their connection to cause and effect phenomena in the real world. 

Despite teachers’ efforts, however, students continued to have difficulty bridging the gap 

between arithmetic problem solving and handling variable symbols in algebra. At the same 

time, the use of spreadsheet technology to aid in this transition was overlooked for the most 

part. Every college mathematics teacher in America today, for example, who has tried to use 

spreadsheets in his or her classroom knows about the large proportion of students who either 

have no prior experience with spreadsheet software or have worked with it so rarely that they 

are not proficient with it at all. 

Kaput [5] discussed how computer programs like spreadsheets can be used to turn algebraic 

variables that seem static when used in a pencil and paper based setting that leads to a single 

solution into dynamic terms that can be used to experiment with and test multiple scenarios. 

An initial series of examples will be used here to demonstrate how spreadsheets make this 

experimentation with multiple scenarios possible in a more efficient way than a pencil and 

paper format. Static cell contents entered directly by the user, as well as dynamic cell contents 

whose values change according to relative and absolute cell referencing will be used to 

highlight some of the most useful aspects of spreadsheets. 

After these initial series of examples, real life data from the World Wide Web will be used to 

compare trend that is linear with both quadratic and exponential patterns. Linear, quadratic, 

and exponential functions are important because they are often used to approximate more 

complicated functions. Absolute percentage change will be used to quantify the difference 

between trends that match that of a linear, quadratic, or exponential function. 

In the final portion of this paper, spreadsheets will be applied to iterative mathematical 

procedures for finding real zeros of polynomials. The procedures are based on the Rational Zeros 

Theorem, Bounds on Zeros Theorem, and the Intermediate Value Theorem. These methods would be 

extremely laborious and time consuming to implement in a pencil and paper setting.  

Spreadsheet as a tool for experimentation with linear transformations in the plane 
The Common Core State Standards for Mathematics [4] recommend that high school students 

should experiment with transformations in the plane using software. Furthermore, the 

transformations should involve systems of two linear equations in two variables such that the 

resulting straight lines either intersect at an angle at a unique point, or are parallel or 

perpendicular to each other. 
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Spreadsheet is an ideal tool of choice for this experimentation. For example, suppose two linear 

functions ���� and ���� have the standard forms: 

 

���� � ��� � ��                 � !                 ���� � �"� � �"                           (1) 

 

Where: 

 ��= slope of the linear function ���� 

 ��= y-intercept of the linear function ���� 

 �"= slope of the linear function ���� 

 �"= y-intercept of the linear function ���� 

 

The functions ���� and ���� are parallel if the condition in Equation 2 is true, and they are 

perpendicular if the condition in Equation 3 is true. If neither of these conditions is true, then 

the lines intersect at some other angle at a unique point. 

 

�� � �"   (2) 

�� # �" � $1   (3) 

 

Figure 5 shows an Excel worksheet that has been designed to conduct experimentations with 

transformations of two linear equations in two variables in the plane. Figure 6 shows a portion 

of the Excel worksheet that contains the formula structure for functions ���� and ����. The 

functions ���� � $2� � 6  and  ���� � $2� � 30 were used to demonstrate how the equal slope 

condition �� � �" � $2 creates the parallel lines shown in Figure 7. Students should be 

allowed to experiment with other pairs of equations with equal slopes on their own in order to 

understand that there are infinitely many possibilities for constructing parallel lines. 

Figure 8 shows the same Excel worksheet set up shown in Figure 5 adjusted to experiment with 

the perpendicular set of functions ���� � $2� � 24  and  ���� � 0.5� $ 5. The slopes of the 

linear functions satisfy the condition in Equation 3 (�� # �" � �$2��0.5� � $1� for 

perpendicular lines. A graph of the perpendicular linear system is shown in Figure 9. 

There are infinitely many possibilities which students can experiment with. One other such 

example has been captured in the Excel segment shown in Figure 10 and its associated plot in 

Figure 11. The scroll bars can be used by students to experiment with various slopes and y-

intercept values for both equations. 
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Figure 5. This is a partial Excel worksheet for experimenting with systems of linear equations in two variables 

       within the plane. The column for X continues down to x=20 in this case. The scroll bars are set up to enable  

       continuous incremental change of slope and y-intercept parameters for both equations F(x) and G(x), and to  

       make experimentation with the graph of the system shown in Figure 7 effortless. The “Initial_F(x)” and  

       “Initial_G(x)” cells for slope and y-intercept are set up to enable the user to use the scroll bars to choose  

       through any continuous negative range of slope and intercept values if desired. Note that both current slopes of  

      F(x) and G(x) are set to  �� � �" � $2 in order to satisfy the condition in Equation 2 and create the graph of  

       parallel lines shown in Figure 7.  

 

 

 

 
Figure 6. A partial list of the only formulas entered for the Excel spreadsheet shown in Figure 5. The 

               formulas follow the standard form of a linear equation  +��� � �� � � and are used to create a link 

               between different components of the worksheet. The ultimate objective is to create a dynamic graph 

               in order to make continuous experimentation with different systems of linear equations in two variables  

               possible. 

 

 

Slope Y-intercept
x F(x) G(x) Initial_F(x) 0 0
-20 46 70 Initial_G(x) 0 0

-19.5 45 69

-19 44 68

-18.5 43 67

-18 42 66

-17.5 41 65 Slope of F(x) Y-Intercept of F(x) Slope of G(x) Y-Intercept of G(x)

-17 40 64 -2 6 -2 30
-16.5 39 63

-16 38 62

-15.5 37 61

-15 36 60

-14.5 35 59 Slope of F(x)
-14 34 58

-13.5 33 57

-13 32 56 Y-Intercept F(x)
-12.5 31 55

-12 30 54

-11.5 29 53 Slope of G(x)
-11 28 52

-10.5 27 51

-10 26 50 Y-Intercept G(x)
-9.5 25 49

2
3

4
5
6
7
8
9

A B C
x F(x) G(x)

-20 =($F$2+$E$9)*A3+($G$2+$F$9) =($F$3+$G$9)*A3+($G$3+$H$9)

-19.5 =($F$2+$E$9)*A4+($G$2+$F$9) =($F$3+$G$9)*A4+($G$3+$H$9)

-19 =($F$2+$E$9)*A5+($G$2+$F$9) =($F$3+$G$9)*A5+($G$3+$H$9)

-18.5 =($F$2+$E$9)*A6+($G$2+$F$9) =($F$3+$G$9)*A6+($G$3+$H$9)

-18 =($F$2+$E$9)*A7+($G$2+$F$9) =($F$3+$G$9)*A7+($G$3+$H$9)

-17.5 =($F$2+$E$9)*A8+($G$2+$F$9) =($F$3+$G$9)*A8+($G$3+$H$9)

-17 =($F$2+$E$9)*A9+($G$2+$F$9) =($F$3+$G$9)*A9+($G$3+$H$9)
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Figure 7. Graph of two parallel linear functions ���� � $2� � 6  and  ���� � $2� � 30 

 

 

 

 

 

 
Figure 8. A partial Excel worksheet for graphing the two perpendicular linear functions 

            ���� � $2� � 24  and  ���� � 0.5� $ 5. 

 

 

 

-40

-20

0

20

40

60

80

-30 -20 -10 0 10 20 30

F(x)

G(x)

Slope Y-intercept
x F(x) G(x) Initial_F(x) 0 0
-20 64 -15 Initial_G(x) 0 0

-19.5 63 -14.75

-19 62 -14.5

-18.5 61 -14.25

-18 60 -14

-17.5 59 -13.75 Slope of F(x) Y-Intercept of F(x) Slope of G(x) Y-Intercept of G(x)

-17 58 -13.5 -2 24 0.5 -5
-16.5 57 -13.25

-16 56 -13

-15.5 55 -12.75

-15 54 -12.5

-14.5 53 -12.25 Slope of F(x)
-14 52 -12

-13.5 51 -11.75

-13 50 -11.5 Y-Intercept F(x)
-12.5 49 -11.25

-12 48 -11

-11.5 47 -10.75 Slope of G(x)
-11 46 -10.5

-10.5 45 -10.25

-10 44 -10 Y-Intercept G(x)
-9.5 43 -9.75
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Figure 9. Graph of two perpendicular linear functions ���� � $2� � 24  and 

      ���� � 0.5� $ 5. 

 

 

 

 

 
Figure 10. A partial Excel worksheet for experimenting with a system of two linear functions in two variables. 

        The functions in this particular snapshot are ���� � 208� � 424  and  ���� � 784� � 5526. 

 

 

 

-20

-10

0

10

20

30

40

50

60

70

-30 -20 -10 0 10 20 30

F(x)

G(x)

Slope Y-intercept
x F(x) G(x) Initial_F(x) -100 325
-20 -1411 -9154 Initial_G(x) 50 2000

-19.5 -1357 -8737

-19 -1303 -8320

-18.5 -1249 -7903

-18 -1195 -7486

-17.5 -1141 -7069 Slope of F(x) Y-Intercept of F(x) Slope of G(x) Y-Intercept of G(x)

-17 -1087 -6652 208 424 784 5526
-16.5 -1033 -6235

-16 -979 -5818

-15.5 -925 -5401

-15 -871 -4984

-14.5 -817 -4567 Slope of F(x)
-14 -763 -4150

-13.5 -709 -3733

-13 -655 -3316 Y-Intercept F(x)
-12.5 -601 -2899

-12 -547 -2482

-11.5 -493 -2065 Slope of G(x)
-11 -439 -1648

-10.5 -385 -1231

-10 -331 -814 Y-Intercept G(x)
-9.5 -277 -397
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Figure 11. Graph of two linear functions ���� � 208� � 424  and 

             ���� � 784� � 5526. 

 

Spreadsheet as a tool for experimenting with quadratic functions 
The Common Core State Standards for Mathematics [4] recommend spreadsheets as a tool for 

experimenting with how functions behave in high school mathematics classrooms. The quadratic 

formula is a common method for finding the solutions of a quadratic equation in high school 

algebra; especially if the equation is prime, which is to say it is not factorable [8]. More 

specifically: 

 

For: ��" � �� � . � 0  and � / 0    (4) 

 

Quadratic formula: � � 012√140���
"�     (5) 

 

Discriminant: �" $ 4�. �

56
66
66
7
66
66
68

�� 9+    �" $ 4�. � :;<+;.=   >?@�<;,=B;  =B; ?@�!<�=9. ;?@�=9C  9>+�.=C<��D;                                                                               �� 9+    �" $ 4�. E 0,   =B;  =FC         !9>=9 .= <;�D >CD@=9C > ;�9>=        .� 9+    �" $ 4�. � 0,   =B;  =B<; 9>    C ; <;:;�=;! <;�D >CD@=9C               !� 9+  �" $ 4�. G 0, =B;  =B;<; 9>     C <;�D >CD@=9C ;  >CD@=9C > �<;.C�:D;� .C I@J�=;>                      

K (6) 

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

30000

-30 -20 -10 0 10 20 30

F(x)

G(x)
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Before the invention of advanced programmable calculators and spreadsheets, in a traditional 

pencil and paper exercise, solving the quadratic equation  3�" $ 5� � 1 � 0 would require a 

basic calculator useful in computing the quadratic formula with coefficients                              � � 3,   � � $5,    . � 1. However, a mathematics instructor would have to assign many different 

problems of the same type in order to impress upon students the way solutions to the quadratic 

equation would vary depending on the value of the coefficients �, �, and .. Whereas, with 

spreadsheets, many experimentations with different sets of coefficient values may be carried 

out with the benefit of observing how the parabolic graph of the quadratic function changes 

instantaneously, given a change in the function’s parameters. 

For example, in Figure 12, the static cells B1, B2, and B3 contain the coefficients of a quadratic 

function whose values are determined by the user, while the values in cells E1, E2, E3, B5, and 

B6 are dynamic and change in response to input by the user. 

 

 

 
Figure 12. The Excel segment on top shows the contents of user defined static cells (B1:B3) and formula- 

    based dynamic cells (E1:E3  and  B5:B6) for quadratic equation  3�" $ 5� � 1 � 0. The Excel segment on  

    the bottom shows the formulas that compute the contents of the dynamic cells. 

 

A comparison of the value of the discriminant in Figure 12 with the set of expressions in (6) 

indicates that the equation  3�" $ 5� � 1 � 0  is not factorable. Additionally, the function has 

two real solutions, i.e. two real zeros, at � L 1.434  and  � L 0.232. 

A calculation of the coordinates of the minimum or maximum point of a quadratic function at 

its vertex is based on Expressions in 7. The top Excel segment in Figure 12 also shows the 

coordinates of the minimum point at the vertex. 

 

M� � $ 1
"� ,   N � + O$ 1

"�PQ    (7) 

 

1

2

3

4

5

6

A B C D E

a= 3 Discriminant= 13

b= -5 x 1.434258546

c= 1 x 0.232408121

X_minimum= 0.833333

Y_minimum= -1.083333

1

2

3

4

5

6

A B C D E

a= 3 Discriminant= =$B$2^2-4*$B$1*$B$3

b= -5 x =(-$B$2+SQRT($E$1))/(2*$B$1)

c= 1 x =(-$B$2-SQRT($E$1))/(2*$B$1)

=IF($B$1<0,"X_maximum","X_minimum") =-$B$2/(2*$B$1)

=IF($B$1<0,"Y_maximum","Y_minimum") =$B$1*$B$5^2+$B$2*$B$5+$B$3
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The following calculations demonstrate a sample application of the Expressions in (7) to 

computing the coordinates of the vertex (a minimum point in this case) for the quadratic 

function: +��� � 3�" $ 5� � 1. Because the coefficient of the quadratic term, �", is positive, the 

parabola that represents the function, shown in Figure 13, opens upward and has a vertex at the 

point of the minimum. 

 

� � 3            � � $5            . � 1 

�RST � $ $52 U 3 � 0.83333 

NRST � +�0.83333� � 3�0.83333�" $ 5�0.8333� � 1 � $1.08333 

��RST, NRST� � �0.83333, $1.08333� 

 

 

 
Figure 13. A plot of the quadratic function 3�" $ 5� � 1 � 0 with 

       vertex at �0.83333, $1.08333�. 

 

An instructor can ask students, just as easily, to experiment with different coefficient values, and 

observe the impact of this on the values of the discriminant, the real zeros or roots of the 

quadratic function, and the coordinates of the minimum or maximum point at the vertex. This 

has been demonstrated further in Figures 14, 15, and 16 using the quadratic function                  �" $ 0.1� � 6 � 0. The coefficient values � � 1 and  � � $0.1  and  . � 6  are entered in the 

respective cells B1:B3. This will lead to the results shown in Figure 14. 
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Figure 14. The results are for the quadratic function +��� � �" $ 0.1� � 6. The top Excel segment 

   shows the coordinates of the minimum point and a negative discriminant value which explains why 

                   the function has no real zeros or roots. This outcome is indicated by the output “#NUM!” in cells 

    E2:E3. The Excel segment on the bottom shows the formulas that generate the outcomes on top. 

    

Figure 15 shows the data and the associated formula for a plot of the quadratic function �" $ 0.1� � 6 � 0. The plot is shown in Figure 16. Note that the plot does not intersect the x-axis 

at any point. This is an indication that the function has complex conjugate solutions, and it is a 

reaffirmation of what we expected by comparing the negative discriminant in cell E1 of the top 

Excel segment shown in Figure 14 with Expressions in (6). 

 

                           
Figure 15. Function +��� � �" $ 0.1� � 6 evaluated at values of  �  ranging from -5 to 5. 

            The data were used to plot the function. 
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a= 1 Discriminant= -23.99

b= -0.1 x #NUM!

c= 6 x #NUM!

X_minimum= 0.05

Y_minimum= 5.9975
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a= 1 Discriminant= =$B$2^2-4*$B$1*$B$3

b= -0.1 x =(-$B$2+SQRT($E$1))/(2*$B$1)

c= 6 x =(-$B$2-SQRT($E$1))/(2*$B$1)

=IF($B$1<0,"X_maximum","X_minimum") =-$B$2/(2*$B$1)

=IF($B$1<0,"Y_maximum","Y_minimum") =$B$1*$B$5^2+$B$2*$B$5+$B$3
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x f(x)

-5 =$B$1*G2^2+$B$2*G2+$B$3

-4 =$B$1*G3^2+$B$2*G3+$B$3

-3 =$B$1*G4^2+$B$2*G4+$B$3

-2 =$B$1*G5^2+$B$2*G5+$B$3

-1 =$B$1*G6^2+$B$2*G6+$B$3

0 =$B$1*G7^2+$B$2*G7+$B$3

1 =$B$1*G8^2+$B$2*G8+$B$3

2 =$B$1*G9^2+$B$2*G9+$B$3

3 =$B$1*G10^2+$B$2*G10+$B$3

4 =$B$1*G11^2+$B$2*G11+$B$3

5 =$B$1*G12^2+$B$2*G12+$B$3
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Figure 16. The plot of the function +��� � �" $ 0.1� � 6 with vertex at 

             �0.05,5.9975�. Note that the plot does not intersect the x-axis at any point, 

             indicating that the solutions, or the real zeros, are complex conjugates.  

 

Experimenting with the case of a quadratic function that has a maximum instead of a minimum 

point is possible by simply changing only one of the coefficients in the function. To accomplish 

this, the function +��� � �" $ 0.1� � 6  needs to be changed to +��� � $�" $ 0.1� � 6. On the 

other hand, all three coefficients may be changed to experiment with a new quadratic function 

altogether just as conveniently and efficiently. 

For instance, the function +��� � $4�" $ 12� � 10  is one possible choice for a quadratic 

function that has its vertex at a maximum point. Thus, changing the coefficient values to  � � $4 and  � � $12  and  . � 10  in the same worksheet produces the discriminant (304), both 

solutions or real zeros (-3.679449, 0) and (0.679449, 0), the data needed for the chart (cells G2:G9; 

H2:H9), and the coordinates of the maximum point (-1.5, 19). Figures 17, 18, and 19 contain the 

Excel segments for these results. Once again, sample calculations of the Expressions in (7) to 

computing the coordinates of the vertex are shown below: 

 

� � $4            � � $12            . � 10 

�R�Z � $ $122 U �$4� � $1.5 

NR�Z � +�$1.5� � $4�$1.5�" $ 12�$1.5� � 10 � 19 

��R�Z, NR�Z� � �$1.5, 19� 
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Figure 17. The results are for the quadratic function +��� � $4�" $ 12� � 10. The top Excel segment 

shows the coordinates of the maximum point (-1.5, 19) and a positive discriminant value (304) which 

indicates the function has two real roots at (-3.679449, 0) and (0.6794495, 0). The Excel segment on the 

bottom shows the Excel formulas for the outcomes shown on top. 

 
 

 

                        
Figure 18. Function +��� � $4�" $ 12� � 10 evaluated at values of  �  ranging from -5 to 2. 

         This provides the data for a plot of the function. 
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Figure 19. The plot of the function +��� � $4�" $ 12� � 10 

       The coordinates of the maximum point are �$1.5,19�. 

 

 

Spreadsheet as a tool for modeling and comparing linear, quadratic, and exponential 

functions using real-life data 
The Common Core State Standards for Mathematics [4] recommends that mathematics 

instructors teach their students to “construct and compare linear, quadratic, and exponential 

models.”  Equations 8, 9, and 10 show the standard forms of these types of functions. 

 

Linear functions:    +��� � �� � �    (8) 

Quadratic functions:    +��� � ��" � �� � .   (9) 

Exponential functions:    +��� � .�Z    (10) 

 

Linear, quadratic, and exponential functions are covered in a typical high school algebra course. 

Although, some middle schools teach these topics in 8th grade, as well. But even college 

mathematics instructors are aware that the vast majority of their students do not have fluent 

understanding of these content areas. The large number of remedial algebra courses that are 

offered on nearly all of over 4000 college and university campuses in America is a clear 

indication of this fact. 

Alagic and Palenz [2] used spreadsheets to examine the learning and teaching habits of a group 

of middle school mathematics teachers “about linear and exponential growth.”  Although the 

study’s primary objective was to investigate how the teachers’ “calculational and conceptual” 

orientations to mathematics would change in response to the spreadsheet-based pedagogy, the 
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researchers believed that younger students would have “varying levels” of these same 

orientations. 

Thus, from the outset, it was decided that successful implications of applying the approach to 

teach the teachers would be transferrable to the way the students of these teachers learned, as 

well. It was determined in the study that effective transfer of the spreadsheet-based pedagogy 

from teaching the teachers to teaching younger students would require that: 1) students should 

be provided with clear goals in the exercise; 2) when necessary, students should receive 

prompts, especially in relation to the use of spreadsheet technology; 3) students should receive 

feedback; and 4) should have opportunities for reflection. The only other criterion was that all 

participants, teachers and students alike, would have to come up with a real-life story prior to 

collecting of the data. With this blueprint in mind, real-life data were collected, graphed, and 

analyzed and interpreted with the aid of spreadsheets. 

Although Alagic and Palenz [2] conducted their study seven years before the publishing of the 

Common Core State Standards for Mathematics in 2013, the four-step pedagogy used in their 

study is similar to the mathematical modeling process suggested by the Standards. Figure 20 

displays an adaptation of the “basic modeling cycle” as discussed in the Common Core State 

Standards for Mathematics [4]. 

 

 

 

 
Figure 20: An adaptation of the basic modeling process as described in the 

                       Common Core State Standards for Mathematics. 

 

The initial step in the modeling process is collecting data. Although, data may be measured and 

collected physically for an exercise in mathematical modeling, data from the World Wide Web 

were used for the example discussed here. For this reason, before discussing models of linear, 

quadratic, and exponential functions, two techniques for preparing electronic data for use in 

Excel will be discussed. 

Importing electronic data directly from the Web 

The “Data” menu in Excel 2007 or a later version of the software allows for importing electronic 

data directly from the Web. Under this menu, in the “Get External Data” category, one of the 

available options is “From Web.” Selecting this option opens a window entitled “New Web 

Query,” where the URL for where the data is located on the Web may be entered. The Query 

tool will then bring up the website that contains the data and a yellow arrow will allow the user 

to select and import tabulated data that are in a format other than that created by Excel. 

Importing electronic data from a compact disc 

Data in the form of portable space-delimited, comma-delimited, or tab-delimited text files are 

still a common form of creating very large data files. Oftentimes, these data files are over 10 

megabytes in size, contain hundreds of thousands of rows of data, and are commonly stored on 
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compact discs. As spreadsheets like Excel have expanded their data storage and manipulation 

capability by several fold, the potential for importing data from CD-ROMs into Excel has 

increased. The following steps outline the procedure for importing a space or character 

delimited data file into Excel. The procedure is mainly intended to be used with formatted data 

files located on a CD-ROM. However, in order to avoid the need for a CD-ROM in this exercise, 

a relatively small space-delimited data file will be imported from the Web. Nevertheless, the 

procedure to import larger data files of this type from a CD-ROM is the same for the most part. 

Exercise: The data will be imported from the website: http://lib.stat.cmu.edu/DASL. 

1. Once on the website, click on the rectangular block that reads “List all methods” 

2. Select “Correlation” from the list of methods 

3. Select “US Crime Story” from the list of datasets 

4. On the screen that comes up, there’s a line that reads “Datafile Name: US Crime”. Click 

on the hyperlink to go to the data page. It would be preferable to have students spend 

time on this page and familiarize themselves with the different variables and also to get 

a visual sense of what the dataset looks like. 

5. Use the mouse to click and select all of the data from this page and paste it into a blank 

WORD document. Because there are too many columns of data that can fit on a 

“portrait” page layout, before pasting the data, go to “Page Layout” menu  in WORD 

and change the page layout to “Landscape.” 

6. Save the WORD file on your DESKTOP with these settings: 

 File name: US_Crime_data   and   Save as Type: plain text 

7. After you select the settings mentioned above and as you try to save the file, another 

window may open up which is called “File Conversion – US_Crime_data.txt”. If this 

happens, make sure that the radio dial that says “Other encoding” is checked and then 

click OK to finish saving the file on your DESKTOP. 

8. Go to your DESKTOP and open the text file US_Crime_data file that you have just 

saved. Visually inspect the data and make sure that everything looks good. Close and 

exit the text file. 

9. Launch the Excel spreadsheet and from your DESKTOP open the text file 

US_Crime_data which you have just created. When doing this, make sure that “Text 

Files” is shown as the type of file you wish to open. Otherwise, Excel will not be able to 

see the file on your desktop. Next, click OK. 

10. At this point, a window will open up that is titled “Text import Wizard – Step 1 of 3.” In 

this window, make sure that the radio dial next to “Delimited” has been checked. Then 

click “Next” to go to the next window. 

11. This window has the title “Text import Wizard – Step 2 of 3” and is very important 

because towards the bottom it shows you how your data will be imported into Excel. 

Make sure the data in all the columns are nicely aligned. If they are not, experiment with 

several of the radio dials that are on the left side of the window to see which one of the 

selections will align the data in the right space. For example, note that if you uncheck the 

radio dial next to “Tab” your data will look scrambled. You do not want this. Check the 
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radio dial next to the “Tab” option back on again and hit the “Next” button to go to the 

next window. 

12. This window has the title “Text import Wizard – Step 3 of 3” and it is also very 

important in that it is here where you must choose the type of data stored in each 

column. If the type of data stored in a column is numeric, the heading for that column 

should be set to “GENERAL.” Otherwise, you must use the cursor to select the column 

that is non-numeric and set its type to one of the other available options of “Text”, 

“Date”, or “Do not import column (skip)” by clicking the radio dial next to the option. 

13. Once the correct types have been set for all columns of data, simply click the “Finish” 

button. At this point, you should see all the data imported into Excel neatly and in the 

right place. 

Although the modeling exercise discussed hereafter is based on real-life data obtained from the 

Web, neither of the two methods that have been explained for downloading of electronic data 

could be used because the data were not located in a single file or location. Therefore, the data 

for the following series of activities were obtained from the Web and entered into Excel, 

manually. 

Data about a real-life story were gathered in order to follow the pedagogy used by Alagic and 

Palenz [2] for providing a meaningful context for the exercise. The real-life story is one that 

made the national news in the United States in December 2013. 

Activity 1: Find A Story With Connection To Real-life 

In December 2013, New York City made national news for having unseasonably warm 

temperatures. Global warming has been the subject of controversy for at least two decades, and 

students might be experiencing strange weather patterns where they live, too. Hence, this 

example can easily be adapted to studying the historical temperature at other locations that may 

be of interest to individual students. 

Activity 2: Identify the Essential Variables for Collecting the Data and Graph the Data 

The variables that should be investigated depend on the goal of the exercise. The goal here is to 

develop a model in order to explain: How different the December 2013 weather in New York City was 

from any other year? 

To answer this question, we would need the daily temperatures for New York City area for 

December 2013 and at least one other year. Hence, we will create two variables for our study: 

the day in December (D) about which data from an officially operated thermometer was 

collected, and the temperature (T) for that day. 

The data used for this exercise was obtained from http://www.wunderground.com/history for 

New York City. Students may visit the website to obtain historical temperature data for where 

they live. Data is available at the website from 1945 to present. Minimum and maximum daily 

air temperatures were obtained for December 1990 and December 2013. Simple scatterplots for 

the “High” and “Low” temperatures for the two time periods were compared separately and 

inspected visually to see if there were any significant differences within each category for the 

selected periods. Figures 21 and 22 provide the full data as they were entered into an Excel 

worksheet. 
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            Figure 21: Daily “High” December temperatures               Figure 22: Daily “Low” December temperatures 

            for New York City from 1990 and 2013.                                For New York City from 1990 and 2013. 

 

Figures 23 and 24 show the scatter plots for each pair of high and low temperatures. According 

to the average “high” temperatures, December 2013 (44.45 ᵒF) was warmer than December 1990 

(43.03 ᵒF) by less than two degrees Fahrenheit. At the same time, according to the “low” 
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temperature averages, December 2013 (32.65 ᵒF) was warmer than December 1990 (32.03 ᵒF) by 

less than one degree Fahrenheit. 

Clearly, the average values do not reveal much as we look at the erratic behavior of the weather 

in New York City during December 2013 evident in both Figures 23 and 24. 

 

 
Figure 23: Comparison between December 1990 and 2013 “High” temperatures for New York City. 

 

 
Figure 24: Comparison between December 1990 and 2013 “Low” temperatures for New York City 
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Activity 3: Create Mathematical Models for the Most Salient Temperature Patterns in December 1990 

and 2013 

Although it seems feasible to use a single model to quantify the salient linear pattern apparent 

in the December 1990 data, it would be too complicated to do the same for 2013. However, 

linear, quadratic, and exponential models may be used to create piecewise mathematical models 

for any specific period of the data that is of interest. 

When comparing the December high temperatures (Figure 23), the most salient contrast is 

observed from December 17 to December 25.  We will first focus on this range of days for our 

mathematical modeling exercise. For these nine days, the daily high temperatures from 

December 1990 and 2013 were separated from the rest of the data and graphed in Figure 25. For 

December 1990, as expected, the graph is very nearly similar to the graph of a linear function, 

whereas the data for the same period from 2013 matches the graph of a quadratic function. 

Next, we will generate a quantitative mathematical model for each data segment. 

To do this we will make use of the “Trendline” feature in the Excel spreadsheet. First, the graph 

for which we wish to generate a model must be selected. This will bring up the “Chart Tools” at 

the top of the spreadsheet worksheet screen. There are three toolboxes available here: 1. 

“Design,” 2. “Layout,” and 3. “Format.” Clicking on the “Layout” toolbox will open it. This 

toolbox has several tool bins. In the “Analysis” bin, there is a tool called “Trendline.” Selecting 

the “Trendline” tool will give access to a window from where we can then choose “More 

trendline options.” In the window that opens next, an appropriate radio dial must be selected. 

The “Linear” dial in combination with “Display Equation on chart” option was used to generate 

the piecewise linear mathematical model for the data segment chosen from 1990. Separately, the 

radio dial “Polynomial” was selected to generate the piecewise quadratic mathematical model 

for the data segment from 2013. Both mathematical models are also shown in Figure 25. 

 

 
Figure 25: Daily High temperature graphs and piecewise mathematical models 

from December 17 through December 25 for the years 1990 and 2013. 
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The same steps were followed to generate the graphs and the piecewise mathematical models 

for the low daily temperatures of interest shown in Figure 26. Except, in this case, the chosen 

dates ranged from December 15 through 22. A “Linear” trendline and an “Exponential” 

trendline were used to generate the piecewise mathematical models for these data segments. 

 

 
Figure 26: Daily low temperature graphs and piecewise mathematical models 

from December 15 through December 22 for the years 1990 and 2013. 

 

Activity 4: Analyze and Interpret the Results of the Piecewise Models in Relation to the Original 

Question 

In Figure 25, we have the following piecewise linear model for the data segment of high 

temperatures from 1990: 

 

[ � $0.2333 \ � 46.233 

 

The validity of this model may be tested by substituting a value for “D” within the range 17 – 25 

(e.g. D=21) and calculating the expected temperature for that day using the model. This yields 

the following result: 

 

[ � $0.2333�21� � 46.233 L 41.3 ] 

 

From the plot in Figure 25, as well as from the actual data we have recorded in Figure 21, it can 

be verified that the outcome predicted by the model is very close to the actual temperature 

value of T=41 ]. The absolute percentage difference with respect to the actual field data is: 
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^41.3 $ 4141 ^ # 100 � 0.73% 

 

Other values within the range of the data segment shown in Figure 25 may be used to analyze 

the validity of the piecewise model for that period during the month. 

Next, we want to analyze the validity of the piecewise model we have for high temperatures 

during the same December days from 2013. The model we have from Figure 25 is: 

 

[ � $2.1418\" � 91.005\ $ 903.18 

 

Because this piecewise model is quadratic (i.e. non-linear), we will investigate its validity by 

calculating its value at several points, where D=17, D=22, and D=25. The actual temperatures for 

these days are shown in Figure 21, and they were T=32, 71, and 31 degrees Fahrenheit, 

respectively. The predicted results from our piecewise model are: 

 

[ � $2.1418�17�" � 91.005�17� $ 903.18 L 24.9 ] [ � $2.1418�22�" � 91.005�22� $ 903.18 L 62.3 ] [ � $2.1418�25�" � 91.005�25� $ 903.18 L 33.3 ] 

 

Therefore, the absolute percentage differences with respect to the actual field values are: 

 

^24.9 $ 3232 ^ # 100 � 22.2% 

^62.3 $ 7171 ^ # 100 � 12.3% 

^33.3 $ 3131 ^ # 100 � 7.4% 

 

The greatest deviation from the actual value is 22.2%, where the expected temperature for 

December 17 was calculated. If desired, one may choose to improve the accuracy of the 

piecewise quadratic model by excluding the December 17 data from the analysis and 

recalculating both the linear and quadratic models for December 18 through December 25 time 

period, instead. This would yield more accurate piecewise models but, of course, would narrow 

the range of days when the models could be applied. We will attempt trimming and improving 

a mathematical model in this way in our next analysis of the daily low temperatures, where the 

selected data segment gives a better demonstration of the degree to which a model can be 

improved using this method. 
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As shown in Figure 26, slightly different dates were chosen to create the piecewise models for 

the daily low temperatures category. Once again, a piecewise linear model could best quantify 

the pattern in the data segment from December 1990. 

 

[ � $0.3214\ � 37.071 

 

From the plot, it appears that the data point at D=18 has the least alignment with the other data 

points. Therefore, this would be an ideal data point to choose to get an idea about the measure 

of the validity of our piecewise linear model, since the variation between the expected value 

from the model and the actual data collected in the field is expected to be the greatest at this 

point; that is, the variation would be less for other data points within the same time period. We 

have: 

 

[ � $0.3214�18� � 37.071 L 31.3 ] 

 

On the other hand, from Figure 22, we can see that the actual low daily temperature for 

December 18, 1990 was T=31 ]. Thus, the absolute percentage difference with respect to the 

actual temperature is: 

 

^31.3 $ 3131 ^ # 100 � 0.97% 

 

This means that the actual temperature value deviates from the temperature predicted by the 

model for that day by less than 1%. 

We now turn to the same data segment for daily low temperatures, but from the year 2013, for 

which we have the following piecewise exponential model: 

 

[ � 3.3867;`.�"ab c 

 

Because this is not a linear model, we choose the three days of D=15, D=18, and D=22 to 

investigate its validity.  Figure 22 shows that the actual field low temperature measurements on 

these three days in 2013 were T=30, 23, and 61 degrees Fahrenheit, respectively. 

 

[ � 3.3867;`.�"ab���� L 21.7 ] [ � 3.3867;`.�"ab��d� L 31.5 ] 

[ � 3.3867;`.�"ab�""� L 51.7 ] 
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Accordingly, the absolute percentage differences between the expected and actual 

measurements are: 

 

^21.7 $ 3030 ^ # 100 � 27.7% 

^31.5 $ 2323 ^ # 100 � 37% 

^51.7 $ 6161 ^ # 100 � 15.2% 

 

These percentage differences seem rather large. Let us see if we can improve the model’s 

validity by omitting the data for December 15 and recalculating both piecewise models. Figure 

27 depicts the impact on the graph and piecewise models of removing December 15 from the 

analysis. 

First, using D=18 in the new piecewise linear model from 1990 data for low temperatures , we 

have the result: 

 

[ � $0.3571�18� � 37.786 L 31.4 ]  
 

 

 
Figure 27: Daily low temperature graphs and piecewise mathematical models 

from December 16 through December 22 for the years 1990 and 2013. 

 

This will give an absolute percentage difference of 1.3% for the piecewise linear model. Our 

action to remove December 15 from the data segment seems to have increased the absolute 
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percentage difference for the linear model somewhat from 0.97%, previously. However, this 

increase is not much and it may be a tradeoff worth having if it helps improve the exponential 

model for the same period. 

We will now look into calculating the absolute percentage differences for the low temperature 

data from 2013, using the new piecewise exponential model from the period. Choosing D=16, 

18, and 22, we have: 

 

[ � 1.3445;`.�e`���f� L 20.4 ]  
[ � 1.3445;`.�e`���d� L 28.7 ] 

[ � 1.3445;`.�e`��""� L 56.7 ] 

 

From these predicted results, the absolute percentage differences with respect to the actual 

temperatures are calculated as 18.4%, 24.5%, and 7.05%, respectively. It is apparent from 

comparing the percentage differences for December 18 and 22 temperatures with those from the 

previous model that the accuracy of the piecewise exponential model has been improved while 

the data for December 15 was removed from the analysis. 

The question that guided this modeling exercise was: How different the December 2013 weather in 

New York City was from any other year? The spreadsheet graphs and mathematical models of the 

data for December 1990 and 2013 suggest that linear models are a good fit for the 1990 data, 

whereas piecewise exponential and quadratic models were a better match for the 2013 data. 

These models indicate a stable weather pattern for December 1990, but a volatile and unstable 

pattern of changing temperatures for the same period in 2013. The 1990 data was chosen at 

random to compare with and shed light on how different daily temperatures in 2013 were from 

any given year in the city’s past. 

The above analyses and interpretations provide only one way of approaching a mathematical 

modeling exercise. It is preferable to allow students to use the spreadsheet to explore with the 

graphs and the mathematical models on their own in order to develop their own analytical and 

interpretive skills. Albeit, guidance and prompting provided by the instructor are indispensable 

to the successful implementation of the modeling process. 

Spreadsheet as a tool for finding the real zeros of polynomial functions of higher degree 
A polynomial is a function of one variable with a power that can only be a positive integer. 

Polynomials have the following standard form [8]: 

 

g��� � �T�T � �T0��T0� � �T0"�T0" � h � ��� � �`   (11) 

 

Where ��, �T0", �T0�, and �T are coefficients of the polynomial. The coefficient of the � term 

with the highest power, i.e. the coefficient �T, is called the leading coefficient of the polynomial. 
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The degree of a polynomial in one variable, �, is the largest power of  � that appears in the 

function. A few examples of polynomials are: 

 

 g��� � 16  (leading coefficient = 0 ; the degree of the polynomial = 0) 

 g��� � 2� � 5  (leading coefficient = 2; the degree of the polynomial = 1) 

 g��� � 3�� $ 7 (leading coefficient = 3; the degree of the polynomial = 4) 

 g��� � 5�f $ �� � 0.5�� � 3�" � 2� � 9 (leading coefficient = 5; the degree of the  

              polynomial = 6) 

 

Like linear, quadratic, and exponential models, polynomials are among the simplest functions 

in algebra. Because of this, they are useful in modeling many natural and social phenomena 

ranging from climate to market conditions. 

The Common Core State Standards for Mathematics [4] recommend the identification of zeros of 

a polynomial an essential part of a course in high school algebra. The real root, or real zero, of a 

polynomial g��� is any number, i�, such that g�i�� � 0; that is, the polynomial intersects the � $ ��9>  at its real zero. 

The zeros of a polynomial function, real or complex, may be of interest for various reasons. 

According to the Factor Theorem [8], for instance, knowledge of zeros of a polynomial makes it 

possible to rewrite a polynomial in terms of simpler functions. That is, given a polynomial 

function, g���, if g�i�� � 0, then �� $ i�� is a factor of polynomial g���. The factor �� $ i�� of a 

polynomial always is a simpler function than the original polynomial it factorizes. A 

polynomial g��� of degree     has exactly    zeros. 

For example, the quadratic polynomial function g��� � �" $ 1 may be solved for its real zeros 

and written in terms of its easier to understand linear factors as follows: 

 

g��� � �" $ 1 

�" $ 1 � 0       j         �" � 1       j       � � 21  �<; =FC <;�D k;<C> 

Therefore:       �" $ 1 � �� $ 1��� � 1� 

 

By the same token, suppose that the polynomial described in Equation 11 has   real zeros i�, i", … , i�. Thus, this means: 

 

g�i�� � g�i"� � h � g�i�� � 0 

 

Where, <, is an index such that < � 1,2,3, … ,  . 
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If the real zeros i�, i", … , i� are all distinct (i.e. non-repeating), then we can write Equation 11 in 

terms of its factors (Riley et al., 2008): 

 

g��� � m�� $ i���� $ i"� … �� $ i��   (12) 

 

Where m must be some non-zero constant. 

Recall from our discussion of quadratic polynomial functions, however, that zeros of a 

polynomial may repeat; that is, zeros may have multiplicity greater than one. In such cases, 

when there are real zeros that repeat, factorized form of Equation 12 takes the form shown in 

Equation 13, where powers ��, �", … , �� are the multiplicity of the real zeros i�, i", … , i�, 

respectively. 

 

g��� � m�� $ i��Rn�� $ i"�R4 # … # �� $ i��Ro   (13) 

 

Because a polynomial has exactly   zeros, the number of real zeros of a polynomial cannot 

exceed,  , the degree of the polynomial. Therefore, the following condition must be satisfied if all 

zeros of a polynomial are real; i.e. there are no complex zeros. 

 

�� � �" � �a � h � �� �   

 

When a polynomial function is of the linear form  g��� � �� � � , its only real zero may be 

found easily by setting the equation equal to zero and solving for the value of �. When a 

polynomial is of quadratic form  g��� � ��" � �� � . , its real and complex zeros may be found 

either with factoring or using the quadratic formula. But these methods are not sufficient, or 

even applicable, in finding the zeros of the vast majority of polynomials that do not fall in these 

two categories. 

Special software is often used when mathematicians need to find approximations of all or few 

particular zeros of a polynomial, where other simpler methods are not available. However, 

effective use of this kind of software often requires an understanding of mathematics that is not 

yet attained by a pupil who is just beginning to learn about functions. 

Nevertheless, it is possible to find the real zeros of a polynomial of higher degree with a 

spreadsheet, because the methods to accomplish this are based on iterative procedures that 

would be possible to simulate within the software. It would be laborious and very time 

consuming to apply the iterative procedures using a pencil and paper, however. 

Exact rational zeros of polynomials 
The Rational Zeros Theorem [8] provides an iterative procedure that helps find all the rational real 

zeros of a polynomial. The method is based on the value of the leading coefficient, �T, and the 
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value of the constant term, �`, in Equation 11, where these coefficients must be non-zero. That 

is, if: 

 

g��� � �T�T � �T0��T0� � �T0"�T0" � h � ��� � �`          FB;<;:    �T / 0     ,     �` / 0        (14) 

 

The theorem states that if the coefficients  �T  and  �` are non-zero integers, then let  :  be all 

possible factors of �` and  ?  be all possible factors of �T. Then, all rational zeros of the 

polynomial  g���  may be found among one or more combinations of the ratio,  
q
r. 

Because there could be many combinations of 
q
r, and not all combinations will be a zero of the 

polynomial, a spreadsheet program that sifts through all possible iterations in a timely manner 

is desirable. The following example is a case in point: 

Example: We would like to identify all the rational zeros of the polynomial: 

 

+��� � 2�a � 11�" $ 7� $ 6 

 

  Therefore:  ::     2 1, 22, 23, 26 

     ?:     2 1, 22 

                 
q
r:    21, 22, 23, 26, 2 �" , 2 a" 

 

Hence, we must go through 12 iterations of  + Oq
rP to find which one or ones lead to the result     

+ Oq
rP � 0. 

The spreadsheet shown in Figure 28 is designed to run iterations for up to 22 values. If a 

polynomial requires more iterations, the “click-and-drag” technique can copy the formula down 

to checking as many numbers as it is needed. The sample Excel formula shown below comes 

from cell B3 of the worksheet. Basically, it is a single “IF” statement that is checking each value 

entered in column “A” as a potential rational zero. 

 

=IF($C$3+$C$4*A3^$D$4+$C$5*A3^$D$5+$C$6*A3^$D$6+$C$7*A3^$D$7+$C$8*A3^$D$8+
$C$9*A3^$D$9+$C$10*A3^$D$10+$C$11*A3^$D$11+$C$12*A3^$D$12+$C$13*A3^$D$13+$
C$14*A3^$D$14+$C$15*A3^$D$15+$C$16*A3^$D$16+$C$17*A3^$D$17+$C$18*A3^$D$18+
$C$19*A3^$D$19+$C$20*A3^$D$20+$C$21*A3^$D$21+$C$22*A3^$D$22+$C$23*A3^$D$23
+$C$24*A3^$D$24=0,"Rational Root!","N/A") 

It is clear from the output shown in column B of Figure 28 that the only rational zeros of the 

polynomial are: 1, $ �" , and $ 6. Because a polynomial can only have as many total zeros of any 
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kind as the degree of the polynomial, and because the polynomial in this example has degree 3, 

therefore, the three rational zeros that have been identified are all of the zeros of the polynomial. 

 

 
Figure 28. Excel spreadsheet designed to find the rational zeros of a polynomial. In this case, 

       the output in column B is for the polynomial +��� � 2�a � 11�" $ 7� $ 6. The coefficients 

       and the power of the terms in the polynomial are shown in columns C and D, respectively. 

 

The Rational Zeros Theorem leads to exact zeros of a polynomial as long as they are rational 

numbers. Thus, the method is limited because it does not find irrational zeros. 

The Bounds on Zeros theorem and the Intermediate Value Theorem, however, may be used in 

conjunction to find approximations of all real zeros of a polynomial function. This approach is 

useful when complex zeros of a polynomial are not a concern. 

Approximate real zeros of polynomials 

The Bounds on Zeros theorem is an elegant method for determining the interval within which the 

real zeros of a polynomial may be found [8]. The method is based on using the coefficients of a 

polynomial while the leading coefficient is set to 1. Thus, in case the leading coefficient is not 1, 

coefficients must be factored such that the leading coefficient becomes 1. 
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To understand the method, suppose there exists a polynomial  +���  whose leading coefficient is 

1. 

 

+��� � �T � �T0��T0� � h � ��� � �`   (15) 

 

Then, taking the notation  s��t u  to mean “choose the largest entry in t u,” consider: 

 

s��t1, |�`| � |��| � h � |�T0�|u   (16) 

 

� ! 

 

1 � s��t|�`|, |��|, … , |�T0�|u    (17) 

 

Then, 2 of the smaller of the results obtained from Expressions 16 and 17 set the upper and 

lower boundaries for the interval of real numbers that contains the real zeros of the polynomial. 

At the same time, the Intermediate Value Theorem states that for a polynomial  +��� , if two 

numbers  � and  �  exist such that  � G �  and +���  and  +��� have opposite algebraic signs, then 

there is at least one real zero of the polynomial between  �  and  � [8]. This means that sign 

changes of a polynomial evaluated over the interval found using the Bounds on Zeros theorem 

indicate the approximate locations of all the real zeros of the polynomial. Subsequent iterations 

over subintervals of decreasing size will be necessary to find reasonably accurate 

approximations of the real zeros. The following two examples demonstrate this. 

Example #1: We would like to find all real zeros of the polynomial  +��� � �� $ 2�" $ 3. 

Solution: Note that the leading coefficient of the polynomial is already 1. Thus, no factorization 

of the coefficient terms is necessary.  Expressions 16 and 17 may be calculated using the 

coefficients: 

 

�` � $3,     �� � 0,     �" � $2,     �a � 0,     �� � 0,     �� � 1 

 

s��t1, |$3| � |0| � |$2| � |0| � |0|u � s��t1,5u � 5 

 

1 � s��t|$3|, |0|, |$2|, |0|, |0|u � 1 � 3 � 4 

 

The number 4 is the smaller of the two values calculated from applying Expressions 16 and 17. 

Therefore, all real zeros of the polynomial must be within the interval w$4, 4x. 
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The Excel segment in Figure 29 shows that in the first iteration, the value of the polynomial 

(cells B8:B18) changes only once over the interval w$4, 4x of  �  values (cells A18:A18). This 

means that the polynomial has only one real zero and the other four zeros are all complex 

conjugate numbers. The additional iterations 2, 3, 4, and 5 were carried out to obtain a close 

approximation of the real zero. We can see that at � � 1.49512 (cell I17), the polynomial has 

value +�1.49512� � 0.000258, which is nearly zero. This result matches that obtained by Riley, 

Hobson, and Bence [7] using the Rearrangement of Equation method. 

 

 
Figure 29. Excel spreadsheet showing the iterations needed for finding the real zeros of the polynomial 

              +��� � �� $ 2�" $ 3. Five iterations were carried out to approximate the real zero with reasonable accuracy.  

              The lower and upper bounds for the first iteration were determined using the Bounds on Zeros theorem. 

              The lower and upper bounds for the second through fifth iterations were selected based on where in the  

               previous iteration the polynomial changed sign. 

 

Figures 30 and 31 give details of the sample Excel formulas that were used to run the five 

iterations shown in Figure 29. 

 

 
Figure 30. Sample Excel segment showing the calculation of the subinterval within each Bounds on Zeros interval.  

 Iterations for finding the real zeros of the polynomial +��� � �� $ 2�" $ 3 were carried out on the intervals: [-4, 4], 

     [0.8, 1.6], [1.44, 1.52], [1.488, 1.496], [1.4944, 1.4952] as shown in Figure 29. Each interval was split into 10 equal  

     subintervals. The formula in cell B4 shown in this segment was then simply copied over to cells C4, D4, E4, F4 in  

     order to establish the width of each of the subintervals. 
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A B C D E F G H I J

1st_Iteration 2nd_Iteration 3rd_Iteration 4th_Iteration 5th_Iteration

Lower_bound -4 0.8 1.44 1.488 1.4944

Upper_bound 4 1.6 1.52 1.496 1.4952

Parsing Increment 0.8 0.08 0.008 0.0008 0.00008

1st_ Iteration f(x)_1 2nd_Iteration f(x)_2 3rd_Iteration f(x)_3 4th_Iteration f(x)_4 5th_Iteration f(x)_5

-4 -1059 0.8 -3.95232 1.44 -0.955463578 1.488 -0.1334667 1.4944 -0.01341

-3.2 -359.02432 0.88 -4.021068083 1.448 -0.827757223 1.4888 -0.1185988 1.49448 -0.01189

-2.4 -94.14624 0.96 -4.027827302 1.456 -0.696420694 1.4896 -0.1036911 1.49456 -0.01037

-1.6 -18.60576 1.04 -3.946547098 1.464 -0.561389223 1.4904 -0.0887438 1.49464 -0.00886

-0.8 -4.60768 1.12 -3.746458317 1.472 -0.422597327 1.4912 -0.0737566 1.49472 -0.00734

0 -3 1.2 -3.39168 1.48 -0.279978803 1.492 -0.0587295 1.4948 -0.00582

0.8 -3.95232 1.28 -2.840826163 1.488 -0.133466725 1.4928 -0.0436625 1.49488 -0.0043

1.6 2.36576 1.36 -2.046612582 1.496 0.017006562 1.4936 -0.0285554 1.49496 -0.00278

2.4 65.10624 1.44 -0.955463578 1.504 0.171509442 1.4944 -0.0134083 1.49504 -0.00126

3.2 312.06432 1.52 0.492881203 1.512 0.330111036 1.4952 0.00177904 1.49512 0.000258

4 989 1.6 2.36576 1.52 0.492881203 1.496 0.01700656 1.4952 0.001779

1

2

3

4

A B

1st_Iteration

Lower_bound -4

Upper_bound 4

Parsing Increment =IF(AND(B2<0,B3<0),(B3-B2)/10,IF(B2<0,(ABS(B2)+ABS(B3))/10,(B3-B2)/10))
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Figure 31. Sample Excel formulas for the first iteration to find the real zero of the polynomial 

      +��� � �� $ 2�" $ 3. Column “1st_Iteration” is calculating the 10 subintervals based on the 

       provided lower and upper limits for the main interval. In this case, that would be the interval 

       [-4, 4]. Column “f(x)_1” evaluates the polynomial at values from column “1st_iteration.” It is 

       the sign change in column “f(x)_1” that determines the lower and upper limits of the interval 

       over which the next set of iterations of the polynomial will be run. 

 

Example #2:  We would like to find all real zeros of the polynomial  +��� � 4�� $ 2�a � 2�" � 1. 

Solution: Note that the leading coefficient of the polynomial is 4. This must be converted to 1 

before Bounds on Zeros and the Intermediate Value Theorem can be applied. Factoring the 

coefficients can achieve this. 

 

+��� � 4�� $ 2�a � 2�" � 1 � 4 M�� $ 12 �a � 12 �" � 14Q 

 

The leading coefficient of the factorized polynomial is now equal to 1, and it is in the correct 

format for the application of the Bounds on Zeros theorem. 

 

�` � 14,     �� � 0,     �" � 12,     �a � $ 12,     �� � 0,     �� � 1 

 

s�� y1, ^14^ � |0| � ^12^ � ^$ 12^ � |0|z � s�� y1, 54z � 54 

 

1 � s�� y^14^ , |0|, ^12^ , ^$ 12^ , |0|z � 1 � 12 � 32 
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14

15

16

17
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A B

1st_ Iteration f(x)_1

=$B$2 =A8^5-2*A8^2-3

=IF(A8<0,IF(A8+$B$4>-0.0001,0,A8+$B$4),A8+$B$4) =A9^5-2*A9^2-3

=IF(A9<0,IF(A9+$B$4>-0.0001,0,A9+$B$4),A9+$B$4) =A10^5-2*A10^2-3

=IF(A10<0,IF(A10+$B$4>-0.0001,0,A10+$B$4),A10+$B$4) =A11^5-2*A11^2-3

=IF(A11<0,IF(A11+$B$4>-0.0001,0,A11+$B$4),A11+$B$4) =A12^5-2*A12^2-3

=IF(A12<0,IF(A12+$B$4>-0.0001,0,A12+$B$4),A12+$B$4) =A13^5-2*A13^2-3

=IF(A13<0,IF(A13+$B$4>-0.0001,0,A13+$B$4),A13+$B$4) =A14^5-2*A14^2-3

=IF(A14<0,IF(A14+$B$4>-0.0001,0,A14+$B$4),A14+$B$4) =A15^5-2*A15^2-3

=IF(A15<0,IF(A15+$B$4>-0.0001,0,A15+$B$4),A15+$B$4) =A16^5-2*A16^2-3

=IF(A16<0,IF(A16+$B$4>-0.0001,0,A16+$B$4),A16+$B$4) =A17^5-2*A17^2-3

=IF(A17<0,IF(A17+$B$4>-0.0001,0,A17+$B$4),A17+$B$4) =A18^5-2*A18^2-3
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The number  
�
�  is the smaller of the two values calculated from Expressions 16 and 17. Then, all 

real zeros of the polynomial must be within the interval {$ �
� , �

�| or w$1.25,1.25x. 
The Excel segment in Figure 32 shows that in the first iteration, the algebraic sign of the 

polynomial changes only once within the interval w$1.25, 1.25x of  �  values. This means that the 

polynomial has only one real zero and the other four zeros must be complex conjugates. The 

additional iterations 2, 3, 4, and 5 were carried out to obtain a close approximation of the real 

zero. We can see that at  � � $1.078425, the polynomial has value +�$1.078425� � $0.00016, 

which is nearly zero. This yields �$1.078425, $0.00016� a satisfactory approximation of the real 

zero of the polynomial  +��� � 4�� $ 2�a � 2�" � 1. Higher accuracy of the result may be 

obtained by increasing the number of iterations. 

 

 
Figure 32. Excel spreadsheet showing the iterations needed for finding the real zeros of the polynomial 

              +��� � 4�� $ 2�a � 2�" � 1. Five iterations were carried out to approximate the real zero with reasonable  

               near zero accuracy. 

 

Both polynomials discussed had only one real zero. In case more real zeros are identified within 

the initial interval, a separate set of iterations will need to be carried out for each instance where 

the polynomial changes sign over a particular subinterval. 

 

Conclusion  

Functions have been part of the school mathematics in K-12 and college mathematics curricula 

for over a century. For at least as long, mathematics teachers have looked for better ways of 

teaching the content so that all of their students understand it. Recently, the Common Core Sate 

Standards for Mathematics [4] have renewed the call for improvement of mathematics 

education. A large portion of the Standards focuses on how functions ought to be taught for 

better understanding of all students. The Common Core State Standards for Mathematics urge 

the use of spreadsheets in various capacities ranging from mathematical modeling to 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

A B C D E F G H I J

1st_Iteration 2nd_Iteration 3rd_Iteration 4th_Iteration 5th_Iteration

Lower_bound -1.25 -1.25 -1.1 -1.08 -1.0785

Upper_bound 1.25 -1 -1.075 -1.0775 -1.07825

Parsing Increment 0.25 0.025 0.0025 0.00025 0.000025

1st_ Iteration f(x)_1 2nd_Iteration f(x)_2 3rd_Iteration f(x)_3 4th_Iteration f(x)_4 5th_Iteration f(x)_5

-1.25 -4.17578125 -1.25 -4.17578125 -1.1 -0.36004 -1.08 -0.0250883 -1.0785 -0.00135

-1 1 -1.225 -3.356408164 -1.0975 -0.316263276 -1.07975 -0.0211181 -1.078475 -0.00095

-0.75 2.01953125 -1.2 -2.61728 -1.095 -0.273040214 -1.0795 -0.0171531 -1.07845 -0.00056

-0.5 1.625 -1.175 -1.953070586 -1.0925 -0.230366495 -1.07925 -0.0131933 -1.078425 -0.00016

-0.25 1.15234375 -1.15 -1.35867875 -1.09 -0.18823782 -1.079 -0.0092388 -1.0784 0.000231

0 1 -1.125 -0.829223633 -1.0875 -0.146649911 -1.07875 -0.0052895 -1.078375 0.000625

0.25 1.09765625 -1.1 -0.36004 -1.085 -0.105598511 -1.0785 -0.0013454 -1.07835 0.001019

0.5 1.375 -1.075 0.053326445 -1.0825 -0.065079382 -1.07825 0.0025935 -1.078325 0.001412

0.75 2.23046875 -1.05 0.41512375 -1.08 -0.025088307 -1.078 0.00652717 -1.0783 0.001806

1 5 -1.025 0.729398398 -1.0775 0.01437891 -1.07775 0.01045564 -1.078275 0.0022

1.25 12.42578125 -1 1 -1.075 0.053326445 -1.0775 0.01437891 -1.07825 0.002594
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experimentation with functions and numerical methods. Indeed, the properties of spreadsheets 

make it possible to engage students with the kind of abstract mathematical thinking that makes 

understanding functions inevitable. Not to mention the strategic benefits that students will reap 

from gathering such skills later in life as professionals. 

This paper intended to offer practical spreadsheet-based ideas for implementing a wide range 

of recommendations that have been outlined and discussed with respect to teaching functions 

in the Common Core State Standards for Mathematics. 
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