

Spring does that?
A SAMPLER ON SPRING AND

RELATED TECHNOLOGIES FROM

MANNING PUBLICATIONS AUTHORS

EDITED BY KEN RIMPLE

M A N N I N G
SHELTER ISLAND

Save 40% on these great books!
Enter Promotional Code 13sprsav when you check out at manning.com

NEW MEAP! Spring in Action, Fourth Edition is a hands-on
guide to the Spring framework. It covers the latest features,
tools, and practices including Spring MVC, REST, Security, Web
Flow, and more. You'll move between short snippets and an
ongoing example as you learn to build simple and efficient
Java EE applications.

Spring in Practice diverges from other cookbooks because it
presents the background you need to understand the domain in
which a solution applies before it offers the specific steps to
solve the problem. You're never left with the feeling that you
understand the answer, but find the question irrelevant.

Spring Integration in Action is an introduction and guide to
enterprise integration and messaging using the Spring Integra-
tion framework. The book starts off by reviewing core messaging
patterns, such as those used in transformation and routing. It
then drills down into real-world enterprise integration scenarios
using JMS, Web Services, filesystems, email, and more. You'll
find an emphasis on testing, along with practical coverage of
topics like concurrency, scheduling, system management, and
monitoring.

Spring Batch in Action is a thorough, in-depth guide to writing
efficient batch applications. Starting with the basics, it discusses
the best practices of batch jobs along with details of the Spring
Batch framework. You'll learn by working through dozens of
practical, reusable examples in key areas like monitoring, tun-
ing, enterprise integration, and automated testing.

http://www.manning.com/templier/
http://www.manning.com/fisher/
http://www.manning.com/wheeler/
http://www.manning.com/walls5/
http://www.manning.com/walls5/
http://www.manning.com/wheeler/
http://www.manning.com/fisher/
http://www.manning.com/templier/

Spring Dynamic Modules in Action is a comprehensive tutorial
that presents OSGi concepts and maps them to the familiar ideas
of the Spring framework. In it, you'll learn to effectively use
Spring DM. You will master powerful techniques like embedding
a Spring container inside an OSGi bundle, and see how Spring's
dependency injection compliments OSGi. Along the way, you'll
learn to handle data access and web-based components, and
explore topics like unit testing and configuration in OSGi.

Spring Roo in Action teaches you to code Java more efficiently
using Roo. With the help of many examples, it shows you how to
build application components from the database layer to the
user interface. The book takes a test-first approach and points
out how Roo can help automate many of the mundane details of
coding Java apps. Along the way, you'll address important topics
like security, messaging, and cloud computing.

You may also be interested in

Groovy in Action, Second Edition
Grails in Action, Second Edition
Gradle in Action
Griffon in Action
Making Java Groovy
The Well-Grounded Java Developer
Camel in Action

Purchase of any print book from Manning
includes free eBook versions in PDF, ePub, and Kindle formats

 For quantities over 20 copies, contact Candace Gillhoolley (cagi@manning.com)
for additional discount pricing

http://www.manning.com/koenig2/
http://www.manning.com/gsmith2/
http://www.manning.com/muschko/
http://www.manning.com/almiray/
http://www.manning.com/kousen/
http://www.manning.com/evans/
http://www.manning.com/ibsen/
http://www.manning.com/rimple/
http://www.manning.com/cogoluegnes/
http://www.manning.com/cogoluegnes/
http://www.manning.com/rimple/

Spring does that?

A special edition eBook

 Copyright 2013 Manning Publications

contents

about the Spring framework vi

about this eBook viii

about the authors ix

1 ■ Spring and JPA 1

2 ■ JPA Setup and DAO 8

3 ■ Spring and Integration 13

4 ■ Processing batch Jobs 22

5 ■ Integrating Spring with JMS 32

6 ■ Rapid Application Development Using Grails 52
v

about the Spring framework
and its ecosystem

Agile and adaptive development on the leading edge

by Ken Rimple, author of Spring Roo in Action

It’s been more than ten years since Rod Johnson first conceived of the highly produc-
tive Spring Framework. At the time, Java programmers were taught to “program”and
then “configure” their applications using special build scripts, EJB compilers, and
somewhat (but not completely) compatible application servers.

 The Spring framework eliminated the ceremony required when developing appli-
cations on the Enterprise Java platform: no more compiling and packaging tedious
EJBs or EAR files, dealing with mostly tedious deployment descriptors, or getting hung
up on platform-specific issues or vendor lock-in. In fact, Spring code can be tested
within a JUnit system test, executed within a Java main method, in a servlet container,
or even behind your EJBs.

 The reason Spring has such staying power more than ten years later is because it
consistently and efficiently simplifies programming tasks by eliminating boilerplate.
Spring developers hand-configure as little as they can, try to eschew state where possi-
ble, and let the wiring of components take place outside of the code itself. Your com-
ponents are essentially simple Java interfaces and classes, and any external API
features are given to you through dependency injection.

 Spring programmers know that if they are looking to integrate with a particular
technology, they should check to see if there is a Spring Enterprise configuration
vi

http://www.manning.com/rimple/

ABOUT THE SPRING FRAMEWORK AND ITS ECOSYSTEM vii
component available for it. They also look for any Spring-provided helper APIs, such
as templates, which may make it easier to issue complex but repetitive sets of calls,
such as sending and receiving JMS messages, calling a RESTful web service, or send-
ing an email.

 Finally, for more complex configurations, Spring provides domain-specific config-
uration helpers in the form of JavaConfig components, or using XML, Scala, or
Groovy-based DSLs. The Spring Security framework, Spring Integration, and even
Grails are places where you’ll see this technique applied.

 Over the years, a number of projects have emerged built on top of the Spring
framework: Spring MVC, Spring Web Flow, Spring Integration, Spring Batch, and
Spring Security, to name a few. All of these projects run as Spring beans and infra-
structure APIs. None of them are proprietary. They all live in GitHub, available for
pull requests whenever a contributer finds a bug and wants to donate a fix. Many of
these projects have Manning In Action books dedicated to them. A number of other
technologies, such as ActiveMQ, are written using Spring itself.

 It is heartening to see Javascript frameworks like AngularJS embrace dependency
injection natively. Java EE itself has adopted the Container Dependency Injection spec-
ification, contributed to by Rod Johnson, the innovator who ended up bringing simpli-
fication back into the container from which he originally wanted to run screaming.

 This sampler will explore some of the more interesting features of the Spring
Framework and Spring-based APIs. We hope to show the scope of what is available to
you to help integrate and simplify your applications and take advantage of some of the
more modern APIs and tools coming out of the developers who developed the Spring
container API all of those years ago.

about this eBook
This sampler consists of six excerpts taken from five of Manning’s bestselling Spring
books, selected by Ken Rimple. Click on the titles below to learn more or to purchase.

Spring in Action, Third Edition
by Craig Walls
Published June 2011

Spring Roo in Action
by Ken Rimple and Srini Penchikala
Published April 2012

Spring Integration in Action
by Mark Fisher, Jonas Partner, Marius Bogoevici, and Iwein Fuld
Published September 2012

Spring Batch in Action
by Arnaud Cogoluegnes, Thierry Templier, Gary Gregory, Olivier Bazoud
Published September 2010

Grails in Action, Second Edition
by Glen Smith and Peter Ledbrook
Published September 2012
viii

http://manning.com/walls4/
http://www.manning.com/rimple/
http://www.manning.com/fisher/
http://www.manning.com/templier/
http://www.manning.com/gsmith2/

about the authors
KEN RIMPLE is a veteran Java developer, trainer, mentor, and head of Chariot's Educa-
tion Services team, a VMWare training partner. He lives in the Philadelphia area. SRINI

PENCHIKALA is a security architect with over 16 years of experience in software design
and development. He lives in Austin, Texas.

CRAIG WALLS is a software developer at SpringSource. He's a popular author who has
written four previous books for Manning, and a frequent speaker at user groups and
conferences. Craig lives in Plano, Texas.

A Java EE architect, ARNAUD COGOLUÈGNES specializes in middleware. THIERRY TEMPLIER is
a Java EE and rich web architect. He contributed the JCA and Lucene to Spring. ANDY

PIPER is a software architect with Oracle and a committer on the Spring DM project.

ARNAUD COGOLUEGNES, THIERRY TEMPLIER, and OLIVIER BAZOUD are Java EE architects with
a focus on Spring. GARY GREGORY is a Java developer and software integration specialist.

A frequent speaker and the co-host of the Grails podcast, GLEN SMITH launched the
first public-facing Grails app (an SMS Gateway) on Grails 0.2. PETER LEDBROOK is a core
Grails developer and author of several popular plugins, who has worked as an engi-
neer for both G2One and SpringSource.
ix

Spring and JPA
From Spring in Action, Third Edition

by Craig Walls

Spring’s biggest strengths lie in its integration with various databases. A good place to
start researching database access APIs is JPA. This excerpt from Spring in Action, Third Edi-
tion, details how to configure and use Spring with the JPA API.

From its beginning, the EJB specification has included the concept of entity beans.
In EJB, entity beans are a type of EJB that describes business objects that are persisted
in a relational database. Entity beans have undergone several tweaks over the years,
including bean-managed persistence (BMP) entity beans and container-managed persis-
tence (CMP) entity beans.

 Entity beans both enjoyed the rise and suffered the fall of EJB’s popularity. In
recent years, developers have traded in their heavyweight EJBs for simpler POJO-
based development. This presented a challenge to the Java Community Process to
shape the new EJB specification around POJOs. The result is JSR-220—also known as
EJB 3.

 The Java Persistence API (JPA) emerged out of the rubble of EJB 2’s entity beans
as the next-generation Java persistence standard. JPA is a POJO-based persistence
mechanism that draws ideas from both Hibernate and Java Data Objects (JDO), and
mixes Java 5 annotations in for good measure.

 With the Spring 2.0 release came the premiere of Spring integration with JPA.
The irony is that many blame (or credit) Spring with the demise of EJB. But now
that Spring provides support for JPA, many developers are recommending JPA for
persistence in Spring-based applications. In fact, some say that Spring-JPA is the
dream team for POJO development.

 The first step toward using JPA with Spring is to configure an entity manager fac-
tory as a bean in the Spring application context.
1

http://manning.com/walls4/

Configuring an entity manager factory
In a nutshell, JPA-based applications use an implementation of EntityManager-
Factory to get an instance of an EntityManager. The JPA specification defines two
kinds of entity managers:

 Application-managed—Entity managers are created when an application directly
requests one from an entity manager factory. With application-managed entity
managers, the application is responsible for opening or closing entity managers
and involving the entity manager in transactions. This type of entity manager is
most appropriate for use in standalone applications that don’t run within a
Java EE container.

 Container-managed—Entity managers are created and managed by a Java EE con-
tainer. The application doesn’t interact with the entity manager factory at all.
Instead, entity managers are obtained directly through injection or from JNDI.
The container is responsible for configuring the entity manager factories. This
type of entity manager is most appropriate for use by a Java EE container that
wants to maintain some control over JPA configuration beyond what’s specified
in persistence.xml.

Both kinds of entity manager implement the same EntityManager interface. The key
difference isn’t in the EntityManager itself, but rather in how the EntityManager is cre-
ated and managed. Application-managed EntityManagers are created by an Entity-
ManagerFactory obtained by calling the createEntityManagerFactory() method of
the PersistenceProvider. Meanwhile, container-managed EntityManagerFactorys
are obtained through PersistenceProvider’s createContainerEntityManager-

Factory() method.
 So what does this all mean for Spring developers wanting to use JPA? Not much.

Regardless of which variety of EntityManagerFactory you want to use, Spring will
take responsibility for managing EntityManagers for you. If you’re using an applica-
tion-managed entity manager, Spring plays the role of an application and transpar-
ently deals with the EntityManager on your behalf. In the container-managed
scenario, Spring plays the role of the container.

 Each flavor of entity manager factory is produced by a corresponding Spring fac-
tory bean:

 LocalEntityManagerFactoryBean produces an application-managed Entity-
ManagerFactory.

 LocalContainerEntityManagerFactoryBean produces a container-managed
EntityManagerFactory.

It’s important to point out that the choice made between an application-managed
EntityManagerFactory and a container-managed EntityManagerFactory is com-
pletely transparent to a Spring-based application. Spring’s JpaTemplate hides the
intricate details of dealing with either form of EntityManagerFactory, leaving your
data access code to focus on its true purpose: data access.

3Configuring an entity manager factory
 The only real difference between application-managed and container-managed
entity manager factories, as far as Spring is concerned, is how each is configured
within the Spring application context. Let’s start by looking at how to configure the
application-managed LocalEntityManagerFactoryBean in Spring. Then we’ll see how
to configure a container-managed LocalContainerEntityManagerFactoryBean.

Configuring application-managed JPA

Application-managed entity manager factories derive most of their configuration
information from a configuration file called persistence.xml. This file must appear in
the META-INF directory within the classpath.

 The purpose of the persistence.xml file is to define one or more persistence units.
A persistence unit is a grouping of one or more persistent classes that correspond to a
single data source. In simple terms, persistence.xml enumerates one or more persis-
tent classes along with any additional configuration such as data sources and XML-
based mapping files. Here’s a typical example of a persistence.xml file as it pertains to
the Spitter application:

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
version="1.0">

<persistence-unit name="spitterPU">
<class>com.habuma.spitter.domain.Spitter</class>
<class>com.habuma.spitter.domain.Spittle</class>
<properties>

<property name="toplink.jdbc.driver"
value="org.hsqldb.jdbcDriver" />

<property name="toplink.jdbc.url" value=
"jdbc:hsqldb:hsql://localhost/spitter/spitter" />

<property name="toplink.jdbc.user"
value="sa" />

<property name="toplink.jdbc.password"
value="" />

</properties>
</persistence-unit>

</persistence>

Because so much configuration goes into a persistence.xml file, little configuration is
required (or even possible) in Spring. The following <bean> declares a LocalEntity-
ManagerFactoryBean in Spring:

<bean id="emf"
class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">

<property name="persistenceUnitName" value="spitterPU" />
</bean>

The value given to the persistenceUnitName property refers to the persistence unit
name as it appears in persistence.xml.

 The reason why much of what goes into creating an application-managed Entity-
ManagerFactory is contained in persistence.xml has everything to do with what it
means to be application-managed. In the application-managed scenario (not involving
Spring), an application is entirely responsible for obtaining an EntityManagerFactory

4 Spring and JPA
through the JPA implementation’s PersistenceProvider. The application code would
become incredibly bloated if it had to define the persistence unit every time it
requested an EntityManagerFactory. By specifying it in persistence.xml, JPA can look
in this well-known location for persistence unit definitions.

 But with Spring’s support for JPA, we’ll never deal directly with the Persistence-
Provider. Therefore, it seems silly to extract configuration information into persis-
tence.xml. In fact, doing so prevents us from configuring the EntityManagerFactory
in Spring (so that, for example, we can provide a Spring-configured data source).

 For that reason, we should turn our attention to container-managed JPA.

Configuring container-managed JPA

Container-managed JPA takes a different approach. When running within a container,
an EntityManagerFactory can be produced using information provided by the con-
tainer—Spring, in our case.

 Instead of configuring data source details in persistence.xml, you can configure
this information in the Spring application context. For example, the following <bean>
declaration shows how to configure container-managed JPA in Spring using
LocalContainerEntityManagerFactoryBean.

<bean id="emf" class=
"org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">

<property name="dataSource" ref="dataSource" />
<property name="jpaVendorAdapter" ref="jpaVendorAdapter" />

</bean>

Here we’ve configured the dataSource property with a Spring-configured data
source. Any implementation of javax.sql.DataSource is appropriate. Although a
data source may still be configured in persistence.xml, the data source specified
through this property takes precedence.

 The jpaVendorAdapter property can be used to provide specifics about the partic-
ular JPA implementation to use. Spring comes with a handful of JPA vendor adaptors
to choose from:

 EclipseLinkJpaVendorAdapter

 HibernateJpaVendorAdapter

 OpenJpaVendorAdapter

 TopLinkJpaVendorAdapter

In this case, we’re using Hibernate as a JPA implementation, so we’ve configured it
with a HibernateJpaVendorAdapter:

<bean id="jpaVendorAdapter"
class="org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter">

<property name="database" value="HSQL" />
<property name="showSql" value="true"/>
<property name="generateDdl" value="false"/>
<property name="databasePlatform"

value="org.hibernate.dialect.HSQLDialect" />
</bean>

5Configuring an entity manager factory
Several properties are set on the vendor adapter, but the most important one is the
database property, where we’ve specified the Hypersonic database as the database we’ll
be using. Other values supported for this property include those listed in table 1.

 Certain dynamic persistence features require that the class of persistent objects be
modified with instrumentation to support the feature. Objects whose properties are
lazily loaded (they won’t be retrieved from the database until they’re accessed) must
have their class instrumented with code that knows to retrieve unloaded data upon
access. Some frameworks use dynamic proxies to implement lazy loading. Others,
such as JDO, perform class instrumentation at compile time.

 Which entity manager factory bean you choose will depend primarily on how
you’ll use it. For simple applications, LocalEntityManagerFactoryBean may be suffi-
cient. But because LocalContainerEntityManagerFactoryBean enables us to config-
ure more of JPA in Spring, it’s an attractive choice and likely the one that you’ll choose
for production use.

Pulling an EntityManagerFactory from JNDI

It’s also worth noting that if you’re deploying your Spring application in some applica-
tion servers, an EntityManagerFactory may have already been created for you and
may be waiting in JNDI to be retrieved. In that case, you can use the <jee:jndi-
lookup> element from Spring’s jee namespace to nab a reference to the Entity-
ManagerFactory:

<jee:jndi-lookup id="emf" jndi-name="persistence/spitterPU" />

Regardless of how you get your hands on an EntityManagerFactory, once you have
one, you’re ready to start writing a DAO. Let’s do that now.

Database platform Value for database property

IBM DB2 DB2

Apache Derby DERBY

H2 H2

Hypersonic HSQL

Informix INFORMIX

MySQL MYSQL

Oracle ORACLE

PostgreSQL POSTGRESQL

Microsoft SQL Server SQLSERVER

Sybase SYBASE

Table 1 The Hibernate JPA vendor
adapter supports several databases.
You can specify which database to
use by setting its database
property.

6 Spring and JPA
Writing a JPA-based DAO
Just like all of Spring’s other persistence integration options, Spring-JPA integration
comes in template form with JpaTemplate and a corresponding JpaDaoSupport class.
Nevertheless, template-based JPA has been set aside in favor of a pure JPA approach.

 Since pure JPA is favored over template-based JPA, we’ll focus on building Spring-
free JPA DAOs in this section. Specifically, JpaSpitterDao in the following listing
shows how to develop a JPA DAO without resorting to using Spring’s JpaTemplate.

package com.habuma.spitter.persistence;
import java.util.List;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

import org.springframework.dao.DataAccessException;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Transactional;

import com.habuma.spitter.domain.Spitter;
import com.habuma.spitter.domain.Spittle;

@Repository("spitterDao")
@Transactional
public class JpaSpitterDao implements SpitterDao {

private static final String RECENT_SPITTLES =
"SELECT s FROM Spittle s";

private static final String ALL_SPITTERS =
"SELECT s FROM Spitter s";

private static final String SPITTER_FOR_USERNAME =
"SELECT s FROM Spitter s WHERE s.username = :username";

private static final String SPITTLES_BY_USERNAME =
"SELECT s FROM Spittle s WHERE s.spitter.username = :username";

@PersistenceContext
private EntityManager em;

public void addSpitter(Spitter spitter) {
em.persist(spitter);

}

public Spitter getSpitterById(long id) {
return em.find(Spitter.class, id);

}

public void saveSpitter(Spitter spitter) {
em.merge(spitter);

}
...
}

JpaSpitterDao uses an EntityManager to handle persistence. By working with an
EntityManager, the DAO remains pure and resembles how a similar DAO may appear
in a non-Spring application. But where does it get the EntityManager?

Listing 1 A pure JPA DAO doesn’t use any Spring templates.

Inject
EntityManager

Use
EntityManager

7Summary
 Note that the em property is annotated with @PersistentContext. Put plainly, that
annotation indicates that an instance of EntityManager should be injected into em. To
enable EntityManager injection in Spring, we’ll need to configure a Persistence-
AnnotationBeanPostProcessor in Spring’s application context:

<bean class="org.springframework.orm.jpa.support.
 ➥PersistenceAnnotationBeanPostProcessor"/>

You may have also noticed that JpaSpitterDao is annotated with @Repository and
@Transactional. @Transactional indicates that the persistence methods in this DAO
will be involved in a transactional context.

 As for @Repository, it serves the same purpose here as it did when we developed
the Hibernate contextual session version of the DAO. Without a template to handle
exception translation, we need to annotate our DAO with @Repository so that
PersistenceExceptionTranslationPostProcessor will know that this is one of those
beans for which exceptions should be translated into one of Spring’s unified data
access exceptions.

 Speaking of PersistenceExceptionTranslationPostProcessor, we’ll need to
remember to wire it up as a bean in Spring just as we did for the Hibernate example:

<bean class="org.springframework.dao.annotation.
 ➥PersistenceExceptionTranslationPostProcessor"/>

Note that exception translation, whether it be with JPA or Hibernate, isn’t mandatory.
If you’d prefer that your DAO throw JPA-specific or Hibernate-specific exceptions,
then you’re welcome to forgo PersistenceExceptionTranslationPostProcessor
and let the native exceptions flow freely. But if you do use Spring’s exception transla-
tion, you’ll be unifying all of your data access exceptions under Spring’s exception
hierarchy, which will make it easier to swap out persistence mechanisms later.

Summary
We saw how to build the persistence layer of a Spring application using Java Persis-
tence API (JPA) . Some other options are Java Database Connectivity (JDBC) and
Hibernate. Which you choose is largely a matter of taste, but because we developed
our persistence layer behind a common Java interface, the rest of our application can
remain unaware of how data is ferried to and from the database.

 JPA setup and DAO
From Spring Roo in Action

by Ken Rimple and Srini Penchikala

Spring Roo has a good deal of support for testing JPA out of the box and can be used as a
great tool to design your database schemas. Chapters 3 and 4 of the book cover entities and
relationships. This excerpt from chapter 3 explains how the Spring Data API can be used to
simplify JPA calls.

What if you don’t like the approach of encapsulating your JPA code within each
entity? Perhaps you have a more complex model, one where the boundaries for
queries and transactions are a bit more blurred, and some of the code fits best
when manipulating or querying more than one entity at a time? If this is your situa-
tion, or if you prefer a layered approach that separates the data logic from your
entity classes, you can tell Roo to build JPA repositories for you.

 Roo repositories are built using the relatively new Spring Data API. Spring Data
provides support for dynamically generated proxy classes for a given entity, and
those classes handle all of the methods you’re used to coding by hand (or using in
the Active Record entities).

 It is quite easy to generate a repository. Let’s build a repository to back the
Course entity:

repository jpa --interface ~.db.CourseRepository ➥
--entity ~.model.Course

This command generates a repository class:

package org.rooinaction.coursemanager.db;

import org.rooinaction.rooinaction.coursemanager.model.Course;
import org.springframework.roo.addon.layers.repository➥

.jpa.RooJpaRepository;

@RooJpaRepository(domainType = Course.class)
8

http://manning.com/rimple/

public interface CourseRepository {
}

There are no methods defined in this interface; it exists merely as a holding place for
the @RooJpaRepository annotation. The interface is backed by an ITD. In this case,
the file is named CourseRepository_Roo_Repository.aj:

package org.rooinaction.rooinaction.coursemanager.db;

import java.lang.Long;
import org.rooinaction.rooinaction.coursemanager.model.Course;
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.data.jpa.repository.JpaSpecificationExecutor;
import org.springframework.stereotype.Repository;

privileged aspect CourseRepository_Roo_Jpa_Repository {

declare parents: CourseRepository ➥
extends JpaRepository<Course, Long>;

declare parents: CourseRepository ➥
extends JpaSpecificationExecutor<Course>;

declare @type: CourseRepository: @Repository;

}

These two files may be a bit baffling to you if you’re used to coding your own reposito-
ries. Roo uses the typical Spring pattern of annotating the repository with
@Repository, which marks it as a Spring bean and provides exception translation, but
it also extends it with two additional interfaces—JpaRepository and Jpa-

SpecificationExecutor. Let’s take a look at each one, starting with JpaRepository.

The JpaRepository API
Look at the methods implemented by the JpaRepository class:

java.util.List<T> findAll();
java.util.List<T> findAll(org.springframework.data.domain.Sort sort);
java.util.List<T> save(java.lang.Iterable<? extends T> iterable);
void flush();
T saveAndFlush(T t);
void deleteInBatch(java.lang.Iterable<T> tIterable);

These are all methods to search, save, and remove data from the entity. Note that the
<T> designation is a Java generic type. Since the CourseRepository is defined as
implementing JpaRepository<Course, Long>, all of the generic <T> methods will
take Course entities as arguments, and expect a Long-based primary key.

 Let’s test this API using a JUnit test. Add the following test to your Course-
IntegrationTest class:

@Test
@Transactional
public void addAndFetchCourseViaRepo() {

Course c = new Course();
c.setCourseType(CourseTypeEnum.CONTINUING_EDUCATION);

10 JPA setup and DAO
c.setName("Stand-up Comedy");
c.setDescription(

"You'll laugh, you'll cry, it will become a part of you.");
c.setMaximumCapacity(10);

courseRepository.saveAndFlush(c);
c.clear();

Assert.assertNotNull(c.getId());

Course c2 = courseRepository.findOne(c.getId());
Assert.assertNotNull(c2);
Assert.assertEquals(c.getName(), c2.getName());
Assert.assertEquals(c2.getDescription(), c.getDescription());
Assert.assertEquals(

c.getMaximumCapacity(), c2.getMaximumCapacity());
Assert.assertEquals(c.getCourseType(), c2.getCourseType());

}

So now you can use a Roo repository to implement your JPA code. The methods save-
AndFlush() and getOne(Long) are provided dynamically at runtime via the Spring
Data API.

Queries with JpaSpecificationImplementor
But wait, there are more features to explore here. What does the second interface,
JpaSpecificationImplementor, provide?

T findOne(Specification<T> tSpecification);
List<T> findAll(Specification<T> tSpecification
Page<T> findAll(Specification<T> tSpecification, Pageable pageable);
List<T> findAll(Specification<T> tSpecification, Sort sort);
long count(Specification<T> tSpecification);

This interface provides access to the Spring Data features for providing criteria-based
query and paging support. The methods accept a Specification class, which is used
to define the search criteria to pass to the repository to find, sort, and page through a
list of entities, or fetch a single entity. For example, to provide a predicate that expects
a non-null run date:

public class CourseSpecifications {

public static Specification<Course> hasRunDate() {

return new Specification<Course>() {
@Override
public Predicate toPredicate(

Root<Course> root,
CriteriaQuery<?> query,

CriteriaBuilder cb) {
return cb.isNotNull(

root.get("runDate"));
}

};
}

}

Exposes
field types

Literate API

11Annotation-driven queries with @Query
The toPredicate() method takes a Root<Course>, which provides access to the types
in the JPA entity, a JPA CriteriaQuery, which is built by Spring and passed into the
method automatically at runtime to be executed, and a CriteriaBuilder, which
allows you to add predicates to the query using English language–like calls‚ such as
cb.isNotNull above.

 To use the specification, you just need to call the static CourseSpecifications
.hasRunDate() method, and pass it to the appropriate finder:

List<Course> courses = courseRepository.findAll(
CourseSpecifications.hasRunDate());

This approach is similar to writing criteria-based JPA queries, but is in marked contrast
to Roo finders, which are attached normally to Active Record entities annotated with
@RooJpaActiveRecord.

Annotation-driven queries with @Query
One of the most powerful features of the Spring Data JPA API is providing annotation-
driven queries. Since Spring Data builds the implementation class at runtime, you can
define methods in your interface that Roo can use to implement custom queries and
even updates.

 Let’s look at an example method. You can define a query method in your Course-
Repository interface to find all student registrations for a given student and date
range:

@Query("select distinct r from Registration as r " +
"where r.student.id = :studentId " +
"and r.offering.offerDate between :start and :end")

@Transactional(readOnly = true)
List<Registration> findStudentRegistrationForOfferingsInDateRange(

@Param("studentId") long studentId,
@Param("start") Date start,
@Param("end") Date end);

Roo implements the code for this method at runtime, based on the Spring Data
@Query annotation. All parameters in the example above are defined using the @Param
annotation, and the type returned is defined as the return type of the method,
List<Registration>. Note that you’ve also passed the @Transactional annotation,
and marked the query as a read-only transaction.

 You can perform updates using the @Query method as well, as long as you mark the
method as @Modifying:

@Query("update Registration r set attended = :attended " +
"where r.student.id = :studentId")

@Modifying
@Transactional
void updateAttendance(

@Param("studentId") long studentId,
@Param("attended") boolean attended);

12 JPA setup and DAO
In this example, you’ve marked your interface method with @Modifying to signify that
you’re expecting a data manipulation statement, not just a simple SELECT statement.
You also define your method with @Transactional, so that it’s wrapped with a read/
write transaction.

 Spring Roo builds the implementation classes automatically, based on a Spring
configuration file in META-INF/spring named applicationContext-jpa.xml. This file
contains the Spring Data XML configuration element, <repositories/>, which scans
for and mounts interface-driven repositories:

<repositories base-package="org.rooinaction.coursemanager" />

The package defined in this Spring XML configuration element is your root project
package. You can now add repositories in whatever subpackage makes sense. You
don’t have to use Roo to generate your Spring Data classes either, so if you’re already
a Spring Data or JPA expert, just code away!

 For more about the Spring Data JPA API, visit the project website at http://
mng.bz/63xp.

Summary
As you’ve seen, you can use repositories in a more traditional Spring layered applica-
tion instead of applying the Active Record pattern. Roo even rewrites your automated
entity integration tests automatically, when it detects that you’ve added a repository
for a given entity. You can always fall back to the typical interface-and-implementation
JPA repository where necessary.

 As an added bonus, you can skip the Active Record generation for Roo entities by
issuing the --activeRecord false attribute when defining an entity:

roo> entity jpa --class ~.model.Course --activeRecord false

IF YOU’VE BEEN USING ACTIVE RECORD AND WANT TO MIGRATE... Just edit your
entity, and replace @RooJpaActiveRecord with @RooJpaEntity. Fire up the
Roo shell and watch it remove all of those Active Record ITDs. Follow up by
creating a JPA repository and you’re all set. If you take advantage of Roo’s web
interface scaffolding, Roo will even reroute calls in the controller to the
repository after you create one.

http://mng.bz/63xp
http://mng.bz/63xp

Spring and integration
from Spring Integration in Action

by Mark Fisher, Jonas Partner,
Marius Bogoevici, and Iwein Fuld

A well-established system integration approach involves the use of middleware that
implements Gregor and Wolfe's Enterprise Integration Patterns, documented in the book by the
same name. Spring Integration is a message-oriented middleware platform built atop the
Spring container and using EIP terms for configuring components such as routers, hubs, wire-
taps, load balancers, and other features.

 This excerpt shows how to configure communication channels, a foundational component
conveying data to parts of your application.

Messages don’t achieve anything by sitting there all by themselves. To do something
useful with the information they’re packaging, they need to travel from one com-
ponent to another, and for this they need channels, which are well-defined conduits
for transporting messages across the system.

 Let’s use a letter analogy. The sender creates the letter and hands it off to the
mailing system by depositing it in a well-known location: the mailbox. From there on,
the letter is completely under the control of the mailing system, which delivers it to
various waypoints until it reaches the recipient. The most that the sender can expect
is a reply. The sender is unaware of who routes the message or, sometimes, even who
may be the physical reader of the letter (think about writing to a government
agency). From a logical standpoint, the channel is much like a mailbox: a place
where components (producers) deposit messages that are later processed by other
components (consumers). This way, producers and consumers are decoupled from
each other and are only concerned about what kinds of messages they can send and
receive, respectively.

 One distinctive trait of Spring Integration, which differentiates it from other
enterprise integration frameworks, is its emphasis on the role of channels in
13

http://manning.com/fisher/

defining the enterprise integration strategy. Channels aren’t just information transfer
components; they play an active role in defining the overall application behavior. The
business processing takes place in the endpoints, but you can alter the channel con-
figuration to completely change the runtime characteristics of the application.

 We explain channels from a logical perspective and offer overviews of the various
channel implementations provided by the framework: what’s characteristic to each of
them, and how you can get the most from your application by using the right kind of
channel for the job.

Using channels to move messages
To connect the producers and consumers configured in an application, you use a
channel. All channels in Spring Integration implement the following MessageChannel
interface, which defines standard methods for sending messages. Note that it provides
no methods for receiving messages:

package org.springframework.integration;

public interface MessageChannel {

boolean send(Message<?> message);

boolean send(Message<?> message, long timeout);

}

The reason no methods are provided for receiving messages is because Spring Inte-
gration differentiates clearly between two mechanisms through which messages are
handed over to the next endpoint—polling and subscription—and provides two dis-
tinct types of channels accordingly.

I’ll let you know when I’ve got something!
Channels that implement the SubscribableChannel interface, shown below, take
responsibility for notifying subscribers when a message is available:

package org.springframework.integration.core;

public interface SubscribableChannel extends MessageChannel {

boolean subscribe(MessageHandler handler);

boolean unsubscribe(MessageHandler handler);

}

Do you have any messages for me?
The alternative is the PollableChannel, whose definition follows. This type of chan-
nel requires the receiver or the framework acting on behalf of the receiver to periodi-
cally check whether messages are available on the channel. This approach has the
advantage that the consumer can choose when to process messages. The approach
can also have its downsides, requiring a trade-off between longer poll periods, which
may introduce latency in receiving a message, and computation overhead from more
frequent polls that find no messages:

15The right channel for the job
package org.springframework.integration.core;

public interface PollableChannel extends MessageChannel {

Message<?> receive();

Message<?> receive(long timeout);
}

It’s important to understand the characteristics of each message delivery strategy
because the decision to use one over the other affects the timeliness and scalability of
the system. From a logical point of view, the responsibility of connecting a consumer
to a channel belongs to the framework, thus alleviating the complications of defining
the appropriate consumer types. To put it plainly, your job is to configure the appro-
priate channel type, and the framework will select the appropriate consumer type
(polling or event-driven).

 Also, subscription versus polling is the most important criterion for classifying
channels, but it’s not the only one. In choosing the right channels for your applica-
tion, you must consider a number of other criteria, which we discuss next.

The right channel for the job
Spring Integration offers a number of channel implementations, and because
MessageChannel is an interface, you’re also free to provide your own implementations.
The type of channel you select has significant implications for your application, includ-
ing transactional boundaries, latency, and overall throughput. This section walks you
through the factors to consider and through a practical scenario for selecting appro-
priate channels. In the configuration, we use the namespace, and we also discuss which
concrete channel implementation will be instantiated by the framework.

 In our flight-booking internet application, a booking confirmation results in a
number of actions. Foremost for many businesses is the need to get paid, so making
sure you can charge the provided credit card is a high priority. You also want to ensure
that, as seats are booked, an update occurs to indicate one less seat is available on the
flight so you don’t overbook the flight. The system must also send a confirmation
email with details of the booking and additional information on the check-in process.
In addition to a website, the internet booking application exposes a REST interface to
allow third-party integration for flight comparison sites and resellers. Because most of
the airline’s premium customers come through the airline’s website, any design
should allow you to prioritize bookings originating from its website over third-party
integration requests to ensure that the airline’s direct customers experience a respon-
sive website even during high load.

 The selection of channels is based on both functional and nonfunctional require-
ments, and several factors can help you make the right choice. Table 1 provides a brief
overview of the technical criteria and the best practices you should consider when
selecting the most appropriate channels.

 Let’s see how these criteria apply to our flight-booking sample.

16 Spring and integration

Table 1 How do you decide what channel to use?

Decision factor What factors must you consider?

Sharing
context

– Do you need to propagate context information between the successive steps of a
process?

– Thread-local variables are used to propagate context when needed in several places
where passing via the stack would needlessly increase coupling, such as in the
transaction context.

– Relying on the thread context is a subtle form of coupling and has an impact when
considering the adoption of a highly asynchronous staged event-driven architecture
(SEDA) model. It may prevent splitting the processing into concurrently executing
steps, prevent partial failures, or introduce security risks such as leaking permis-
sions to the processing of different messages.

Atomic
boundaries

– Do you have all-or-nothing scenarios?
– Classic example: bank transaction where credit and debit should either both suc-

ceed or both fail.
– Typically used to decide transaction boundaries, which makes it a specific case of

context sharing. Influences the threading model and therefore limits the available
options when choosing a channel type.

Buffering
messages

– Do you need to consider variable load? What is immediate and what can wait?
– The ability of systems to withstand high loads is an important performance factor,

but load is typically fluctuating, so adopting a thread-per-message-processing sce-
nario requires more hardware resources for accommodating peak load situations.
Those resources are unused when the load decreases, so this approach could be
expensive and inefficient. Moreover, some of the steps may be slow, so resources
may be blocked for long durations.

– Consider what requires an immediate response and what can be delayed; then use
a buffer to store incoming requests at peak rate, and allow the system to process
them at its own pace. Consider mixing the types of processing—for example, an
online purchase system that immediately acknowledges receipt of the request, per-
forms some mandatory steps (credit card processing, order number generation),
and responds to the client but does the actual handling of the request (assembling
the items, shipping, and so on) asynchronously in the background.

Blocking and
nonblocking
operations

– How many messages can you buffer? What should you do when you can’t cope with
demand?

– If your application can’t cope with the number of messages being received and no
limits are in place, you may exhaust your capacity for storing the message backlog
or breach quality-of-service guarantees in terms of response turnaround.

– Recognizing that the system can’t cope with demands is usually a better option
than continuing to build up a backlog. A common approach is to apply a degree of
self-limiting behavior to the system by blocking the acceptance of new messages
when the system is approaching its maximum capacity. This limit commonly is a
maximum number of messages awaiting processing or a measure of requests
received per second.

– Where the requester has a finite number of threads for issuing requests, blocking
those threads for long periods of time may result in timeouts or quality-of-service
breaches. It may be preferable to accept the message and then discard it later if
system capacity is being exceeded or to set a timeout on the blocking operation to
avoid indefinite blocking of the requester.

17A channel selection example
A channel selection example
Using the default channel throughout, we have three channels—one accepting
requests and the other two connecting the services:

<channel id="bookingConfirmationRequests"/>

<service-activator input-channel="bookingConfirmationRequests"
output-channel="chargedBookings"
ref="billForBookingService" />

<channel id="chargedBookings" />

<service-activator input-channel="chargedBookings"
output-channel="emailConfirmationRequests"
ref="seatAvailabilityService" />

<channel id="emailConfirmationRequests" />

<outbound-channel-adapter channel="emailConfirmationRequests"
ref="emailConfirmationService" />

In Spring Integration, the default channels are SubscribableChannels, and the mes-
sage transmission is synchronous. The effect is simple: one thread is responsible for
invoking the three services sequentially, as shown in figure 1.

 Because all operations are executing in a single thread, a single transaction
encompasses those invocations. That assumes that the transaction configuration
doesn’t require new transactions to be created for any of the services.

Consumption
model

– How many components are interested in receiving a particular message?
– There are two major messaging paradigms: point-to-point and publish-subscribe. In

the former, a message is consumed by exactly one recipient connected to the chan-
nel (even if there are more of them), and in the latter, the message is received by all
recipients.

– If the processing requirements are that the same message should be handled by
multiple consumers, the consumers can work concurrently and a publish-subscribe
channel can take care of that. An example is a mashup application that aggregates
results from searching flight bookings. Requests are broadcast simultaneously to
all potential providers, which will respond by indicating whether they can offer a
booking.

– Conversely, if the request should always be handled by a single component (for
example, for processing a payment), you need a point-to-point strategy.

Table 1 How do you decide what channel to use? (continued)

Decision factor What factors must you consider?

chargedBookings

billForBooking
Service

seatAvailability
Service

emailConfirmationRequests

emailConfirmation
Service

Figure 1 Diagram of
threading model of service
invocation in the airline
application

18 Spring and integration
Figure 2 shows what you get when you configure an application using the default
channels, which are subscribable and synchronous. But having all service invocations
happening in one thread and encompassed by a single transaction is a mixed blessing:
it could be a good thing in applications where all three operations must be executed
atomically, but it takes a toll on the scalability and robustness of the application.

But email is slow and our servers are unreliable

The basic configuration is good in the sunny-day case where the email server is always
up and responsive, and the network is 100% reliable. Reality is different. Your applica-
tion needs to work in a world where the email server is sometimes overloaded and the
network sometimes fails. Analyzing your actions in terms of what you need to do now
and what you can afford to do later is a good way of deciding what service calls you
should block on. Billing the credit card and updating the seat availability are clearly
things you need to do now so you can respond with confidence that the booking has
been made. Sending the confirmation email isn’t time critical, and you don’t want to
refuse bookings simply because the mail server is down. Therefore, introducing a
queue between the mainline business logic execution and the confirmation email ser-
vice will allow you to do just that: charge the card, update availability, and send the
email confirmation when you can.

 Introducing a queue on the emailConfirmationRequests channel allows the thread
passing in the initial message to return as soon as the credit card has been charged and
the seat availability has been updated. Changing the Spring Integration configuration
to do this is as trivial as adding a child <queue/> element to the <channel/>:1

<channel id="bookingConfirmationRequests"/>

<service-activator input-channel="bookingConfirmationRequests"
output-channel="chargedBookings"
ref="billForBookingService" />

<channel id="chargedBookings" />

<service-activator input-channel="chargedBookings"
output-channel="emailConfirmationRequests"
ref="seatAvailabilityService" />

<channel id="emailConfirmationRequests">
<queue />

</channel>

<outbound-channel-adapter channel="emailConfirmationRequests"
ref="emailConfirmationService" />

1 This will also require either an explicit or default poller configuration for the consuming endpoint connected
to the queue channel.

DirectChannel
Sender Receiver

Figure 2 Diagram of threading
model of service invocation when
using a default channel

19A channel selection example
Let’s recap how the threading model changes by introducing the QueueChannel,
shown in figure 3.

 Because a single thread context no longer encompasses all invocations, the trans-
action boundaries change as well. Essentially, every operation that’s executing on a
separate thread executes in a separate transaction, as shown in figure 4.

 By replacing one of the default channels with a buffered QueueChannel and setting
up an asynchronous communication model, you gain some confidence that long-
running operations won’t block the application because some component is down or
takes a long time to respond. But now you have another challenge: what if you need to
connect one producer with not just one, but two (or more) consumers?

Telling everyone who needs to know that a booking occurred

We’ve looked at scenarios where a number of services are invoked in sequence with
the output of one service becoming the input of the next service in the sequence. This
works well when the result of a service invocation needs to be consumed only once,
but it’s common that more than one consumer may be interested in receiving certain
messages. In our current version of the channel configuration, successfully billed
bookings that have been recorded by the seat availability service pass directly into a
queue for email confirmation. In reality, this information would be of interest to a
number of services within the application and systems within the enterprise, such as
customer relationship management systems tracking customer purchases to better tar-
get promotions and finance systems monitoring the financial health of the enterprise
as a whole.

 To allow delivery of the same message to more than one consumer, you introduce
a publish-subscribe channel after the availability check. The publish-subscribe chan-
nel provides one-to-many semantics rather than the one-to-one semantics provided by
most channel implementations. One-to-many semantics are particularly useful when
you want the flexibility to add additional consumers to the configuration; if the name
of the publish-subscribe channel is known, that’s all that’s required for the configura-
tion of additional consumers with no changes to the core application configuration.

 The publish-subscribe channel doesn’t support queueing, but it does support asyn-
chronous operation if you provide a task executor that delivers messages to each of

QueueChannel
Sender Receiver

Asynchronous handoff

Figure 3 Diagram of threading
model of service invocation when
using a QueueChannel

Transaction A Transaction B

Figure 4 Diagram of transactional
boundaries when a QueueChannel is used

20 Spring and integration
the subscribers in separate threads. But this approach may still block the main thread
sending the message on the channel where the task executor is configured to use the
caller thread or block the caller thread when the underlying thread pool is exhausted.

 To ensure that a backlog in sending email confirmations doesn’t block either the
sender thread or the entire thread pool for the task executor, you can connect the
new publish-subscribe channel to the existing email confirmation queue by means of
a bridge. The bridge is an enterprise integration pattern that supports the connection
of two channels, which allows the publish-subscribe channel to deliver to the queue
and then have the thread return immediately:

<channel id="bookingConfirmationRequests"/>

<service-activator input-channel="bookingConfirmationRequests"
output-channel="chargedBookings"
ref="billForBookingService" />

<channel id="chargedBookings" />

<service-activator input-channel="chargedBookings"
output-channel="completedBookings"
ref="seatAvailabilityService" />

<publish-subscribe-channel id="completedBookings" />

<bridge input-channel="completedBookings"
 output-channel="emailConfirmationRequests" />

<channel id="emailConfirmationRequests">
<queue />

</channel>

<outbound-channel-adapter channel="emailConfirmationRequests"
ref="emailConfirmationService" />

Now it’s possible to connect one producer with multiple consumers by means of a
publish-subscribe channel. Let’s get to the last challenge and emerge victoriously with
our dramatically improved application: what if “first come, first served” isn’t always
right?

Some customers are more equal than others

Let’s say you want to ensure that the airline’s direct customers have the best possible
user experience. To do that, you must prioritize the processing of their requests so
you can render the response as quickly as possible. Using a comparator that prioritizes
direct customers over indirect, you can modify the first channel to be a priority queue.
This causes the framework to instantiate an instance of PriorityChannel, which
results in a queue that can prioritize the order in which the messages are received. In
this case, you provide an instance of a class implementing Comparator<Message<?>>:

<channel id="bookingConfirmationRequests">
 <priority-queue comparator="customerPriorityComparator" />
</channel>

<service-activator input-channel="bookingConfirmationRequests"

21Summary
output-channel="chargedBookings"
ref="billForBookingService" />

<channel id="chargedBookings" />

<service-activator input-channel="chargedBookings"
output-channel="completedBookings"
ref="seatAvailabilityService" />

<publish-subscribe-channel id="completedBookings" />

<bridge input-channel="completedBookings"
output-channel="emailConfirmationRequests" />

<channel id="emailConfirmationRequests">
<queue />

</channel>

<outbound-channel-adapter channel="emailConfirmationRequests"
ref="emailConfirmationService" />

The configuration changes made in this section are an example of applying different
types of channels for solving the different requirements. Starting with the defaults and
working through the example, we replaced several channel definitions with the ones
most suitable for each particular situation encountered. What’s most important is that
every type of channel has its own justification, and what may be advisable in one use
case may not be advisable in another. We illustrated the decision process with the cri-
teria we find most relevant in each case.

Summary
The concepts of messages and channels are essential to the flexibility inherent in
applications built on Spring Integration. The ease of swapping channel implementa-
tions provides a high degree of flexibility in controlling threading models, thread uti-
lization, and latency. In choosing the correct channel, it’s vital to understand the
behavior of the provided implementations because choosing incorrectly can have seri-
ous performance implications or can invalidate the correctness of the application by
altering the transactional boundaries. You’ve learned what channels are, and we gave
you examples to help you choose the right channel for the job.

Processing batch jobs
From Spring Batch in Action

by Arnaud Cogoluegnes, Thierry Templier,
Gary Gregory, Olivier Bazoud

Another powerful API, Spring Batch, lets developers process data in bulk to and from a
variety of data sources, from flat files to databases and anything in between. This excerpt
details the components of a Spring Batch job.

The job is the central concept in a batch application: it’s the batch process itself. A
job has two aspects that we examine in this excerpt: a static aspect used for job
modeling and a dynamic aspect used for runtime job management. Spring Batch
provides a well-defined model for jobs and includes tools—such as Spring Batch
XML—to configure this model. Spring Batch also provides a strong runtime foun-
dation to execute and dynamically manage jobs. This foundation provides a reli-
able way to control which instance of a job Spring Batch executes and the ability
to restart a job where it failed. This section explains these two job aspects: static
modeling and dynamic runtime.

Modeling jobs with steps
A Spring Batch job is a sequence of steps configured in Spring Batch XML. Let’s
delve into these concepts and see what they bring to your batch applications.

Modeling a job

The import products job consists of two steps: decompress the incoming archive
and import the records from the expanded file into the database. We could also
add a cleanup step to delete the expanded file. Figure 1 depicts this job and its
three successive steps.

 Decomposing a job into steps is cleaner from both a modeling and a pragmatic
perspective because steps are easier to test and maintain than is one monolithic job.
22

http://manning.com/templier/

23Modeling jobs with steps
Jobs can also reuse steps; for example,
you can reuse the decompress step from
the import products job in any job that
needs to decompress an archive—you
only need to change the configuration.

 Figure 1 shows a job built of three
successive linear steps, but the
sequence of steps doesn’t have to be
linear, as in figure 2, which shows a
more advanced version of the import
products job. This version generates
and sends a report to an administrator
if the read-write step skipped records.

 To decide which path a job takes,
Spring Batch allows for control flow
decisions based on the status of the pre-
vious step (completed, failed) or based on custom logic (by checking the content of a
database table, for example). You can then create jobs with complex control flows that
react appropriately to any kind of condition (missing files, skipped records, and so
on). Control flow brings flexibility and robustness to your jobs because you can
choose the level of control complexity that best suits any given job.

 The unpleasant alternative would be to split a big, monolithic job into a set of
smaller jobs and try to orchestrate them with a scheduler using exit codes, files, or
some other means.

 You also benefit from a clear separation of concerns between processing (imple-
mented in steps) and execution flow, configured declaratively or implemented in

Import products job

Decompress

Read-write

Cleanup

Send report

Generate report

Skipped
records?

Yes No

Figure 2 A Spring Batch job
can be a nonlinear sequence of
steps, like this version of the
import products job, which
sends a report if some records
were skipped.

Job repository

Job launcher

Job
Step

Step

Step Step

Updates
Updates

Launches

Figure 1 The main Spring Batch components. The
framework provides a job repository to store job
metadata and a job launcher to launch jobs, and the
application developer configures and implements
jobs. The infrastructure components—provided by
Spring Batch—are in gray, and application compo-
nents—implemented by the developer—are in white.

24 Processing batch jobs
dedicated decision components. You have less temptation to implement transition
logic in steps and thus tightly couple steps with each other.

 Let’s see some job configuration examples.

Configuring a job

Spring Batch provides an XML vocabulary to configure steps within a job. The follow-
ing listing shows the code for the linear version of the import products job.

<job id="importProductsJob">
 <step id="decompress" next="readWrite">
 <tasklet ref="decompressTasklet" />
 </step>
 <step id="readWrite" next="clean">
 <tasklet>
 <chunk reader="reader" writer="writer"
 commit-interval="100" />
 </tasklet>
 </step>
 <step id="clean">
 <tasklet ref="cleanTasklet" />
 </step>
</job>

The next attribute of the step tag sets the execution flow, by pointing to the next step
to execute. Tags like tasklet or chunk can refer to Spring beans with appropriate
attributes.

 When a job is made of a linear sequence of steps, using the next attribute of the
step elements is enough to connect the job steps. The next listing shows the configu-
ration for the nonlinear version of the import products job from figure 2.

<job id="importProductsJob"
 xmlns="http://www.springframework.org/schema/batch">
 <step id="decompress" next="readWrite">
 <tasklet ref="decompressTasklet" />
 </step>
 <step id="readWrite" next="skippedDecision">
 <tasklet>
 <chunk reader="reader" writer="writer" commit-interval="100" />
 </tasklet>
 </step>
 <decision id="skippedDecision"
 decider="skippedDecider">
 <next on="SKIPPED" to="generateReport"/>
 <next on="*" to="clean" />
 </decision>
 <step id="generateReport" next="sendReport">
 <tasklet ref="generateReportTasklet" />
 </step>

Listing 1 Configuring a job with linear flow

Listing 2 Configuring a job with nonlinear flow

Refers to flow decision logic

Defines decision
logic

25Modeling jobs with steps
 <step id="sendReport" next="clean">
 <tasklet ref="sendReportTasklet" />
 </step>
 <step id="clean">
 <tasklet ref="cleanTasklet" />
 </step>
</job>

<bean id="skippedDecider"
 class="com.manning.sbia.ch02.structure.

 ➥ SkippedDecider" />

Notice from the previous XML fragment that Spring Batch XML is expressive enough
to allow job configuration to be human readable. If your editor supports XML, you
also benefit from code completion and code validation when editing your XML job
configuration. An integrated development environment like the Eclipse-based Spring-
Source Tool Suite also provides a graphical view of a job configuration, as shown in
figure 3. To get this graph, open the corresponding XML file and select the Batch-
Graph tab at the bottom of the editor.

Figure 3 A job flow in the SpringSource Tool Suite. The tool displays a graph based on the job model
defined in Spring Batch XML.

26 Processing batch jobs
NOTE The SpringSource Tool Suite is a free Eclipse-based product that pro-
vides tooling for Spring applications (code completion for Spring XML files,
bean graphs, and much more). It also provides support for projects in the
Spring portfolio like Spring Batch.

Now that you know that a Spring Batch job is a sequence of steps and that you can
control job flow, let’s see what makes up a step.

Processing with TaskletStep

Spring Batch defines the Step interface to embody the concept of a step and provides
implementations like FlowStep, JobStep, PartitionStep, and TaskletStep. The only
implementation you care about as an application developer is TaskletStep, which
delegates processing to a Tasklet object. The Tasklet Java interface contains only
one method, execute, to process some unit of work. Creating a step consists of either
writing a Tasklet implementation or using one provided by Spring Batch.

 You implement your own Tasklet when you need to perform processing, such as
decompressing files, calling a stored procedure, or deleting temporary files at the end
of a job.

 If your step follows the classic read-process-write batch pattern, use the Spring
Batch XML chunk element to configure it as a chunk-processing step. The chunk ele-
ment allows your step to use chunks to efficiently read, process, and write data.

NOTE The Spring Batch chunk element is mapped to a Tasklet imple-
mented by the ChunkOrientedTasklet class.

You now know that a job is a sequence of steps and that you can easily define this
sequence in Spring Batch XML. You implement steps with Tasklets, which are either
chunk oriented or completely customized. Let’s move on to the runtime.

Running job instances and job executions
Because batch processes handle data automatically, being able to monitor what they’re
doing or what they’ve done is a must. When something goes wrong, you need to decide
whether to restart a job from the beginning or from where it failed. To do this, you
need to strictly define the identity of a job run and reliably store everything the job
does during its run. This is a difficult task, but Spring Batch handles it all for you.

The job, job instance, and job execution

We defined a job as a batch process composed of a sequence of steps. Spring Batch also
includes the concepts of job instance and job execution, both related to the way the frame-
work handles jobs at runtime. Table 1 defines these concepts and provides examples.

27Running job instances and job executions

Figure 4 illustrates the correspondence between a job, its instances, and their execu-
tions for two days of executions of the import products job.

 Now that we’ve defined the relation-
ship between job, job instance, and job
execution, let’s see how to define a job
instance in Spring Batch.

Defining a job instance

In Spring Batch, a job instance consists
of a job and job parameters. When we
speak about the June 27, 2010, instance
of our import products job, the date is
the parameter that defines the job
instance (along with the job itself). This
is a simple yet powerful way to define a
job instance, because you have full con-
trol over the job parameters, as shown
in the following snippet:

jobLauncher.run(job, new JobParametersBuilder()
 .addString("date", "2010-06-27")
 .toJobParameters()
);

As a Spring Batch developer, you must keep in mind how to uniquely define a job
instance.

JOB INSTANCE A job instance consists of a job and job parameters. We define
this contract with the following equation: JobInstance = Job + JobParameters.

The previous equation is important to remember. In our example, a job instance is
temporal, as it refers to the day it was launched. But you’re free to choose what
parameters constitute your job instances thanks to job parameters: date, time, input
files, or simple sequence counter.

 What happens if you try to run the same job several times with the same parame-
ters? It depends on the lifecycle of job instances and job executions.

Table 1 Definitions for job, job instance, and job execution

Term Description Example

Job A batch process, or sequence of steps The import products job

Job instance A specific run of a job The import products job run on June 27, 2010

Job execution The execution of a job instance (with
success or failure)

The first run of the import products job on
June 27, 2010

Job
import products job

Job execution
completed

Job execution
failed

Job execution
completed

Job instance
2010-06-27

Job instance
2010-06-28

Figure 4 A job can have several job instances,
which can have several job executions. The import
products job executes daily, so it should have one
instance per day and one or more corresponding
executions, depending on success or failure.

28 Processing batch jobs
The lifecycle of a job instance and job execution

Several rules apply to the lifecycle of a job instance and job execution:

 When you launch a job for the first time, Spring Batch creates the correspond-
ing job instance and a first job execution.

 You can’t launch the execution of a job instance if a previous execution of the
same instance has already completed successfully.

 You can’t launch multiple executions of the same instance at the same time.

We hope that by now all these concepts are clear. As an illustration, let’s perform runs
of the import products job and analyze the job metadata that Spring Batch stores in
the database.

Multiple runs of the import products job

To see how Spring Batch updates the job metadata in the persistent job repository pre-
viously configured, make the following sequence of runs:

 Run the job for June 27, 2010. The run will succeed.
 Run the job a second time for June 27, 2010. Spring Batch shouldn’t launch the

job again because it’s already completed for this date.
 Run the job for June 28, 2010, with a corrupted archive. The run will fail.
 Run the job for June 28, 2010, with a valid archive. The run will succeed.

Starting the database:

Step 1 Launch the LaunchDatabaseAndConsole program.

Running the job for June 27, 2010:

Step 1 Copy the products.zip file from the input directory into the root directory
of the ch02 project.

Step 2 Run the LaunchImportProductsJob class: this launches the job for June 27,
2010.

Step 3 Run the LaunchSpringBatchAdmin program from the code samples to start
an embedded web container with the Spring Batch Admin application
running.

Step 4 View instances of the import products job at the following URL: http://
localhost:8080/springbatchadmin/jobs/importProducts. Figure 5 shows
the graphical interface with the job instances and the job repository cre-
ated for this run.

Step 5 Follow the links from the Job Instances view to get to the details of the cor-
responding execution, as shown in figure 6.

29Running job instances and job executions
NOTE You must check the job parameters to be sure of the execution
identity. For example, the date job parameter tells you that this is an
execution of the June 27, 2010, instance. The Start Date attribute indi-
cates exactly when the job ran.

Running the job a second time for June 27, 2010:

Step 1 Run the LaunchImportProductsJob class. You get an exception because an
execution already completed successfully, so you can’t launch another exe-
cution of the same instance.

Figure 5 After the run for June 27, 2010, Spring Batch created a job instance in the job
repository. The instance is marked as COMPLETED and is the first and only execution to complete
successfully.

Figure 6 Details (duration, number of steps executed, and so on) of the first and only job
execution for June 27, 2010. You can also learn about the job instance because the job
parameters appear in the table.

30 Processing batch jobs
Running the job for June 28, 2010, with a corrupted archive:

Step 1 Delete the products.zip file and the importproductsbatch directory cre-
ated to decompress the archive.

Step 2 Copy the products_corrupted.zip from the input directory into the root of
the project and rename it products.zip.

Step 3 Simulate launching the job for June 28, 2010, by changing the job parame-
ters in LaunchImportProductsJob; for example:

jobLauncher.run(job, new JobParametersBuilder()
 .addString("inputResource", "file:./products.zip")
 .addString("targetDirectory", "./importproductsbatch/")
 .addString("targetFile","products.txt")
 .addString("date", "2010-06-28")
 .toJobParameters()
);

Step 4 Run the LaunchImportProductsJob class. You get an exception saying that
nothing can be extracted from the archive (the archive is corrupted).

Step 5 Go to http://localhost:8080/springbatchadmin/jobs/importProducts,
and you’ll see that the import products job has another instance, but this
time the execution failed.

Running the job for June 28, 2010 with a valid archive:

Step 1 Replace the corrupted archive with the correct file (the same as for the
first run).

Step 2 Launch the job again.

Step 3 Check in Spring Batch Admin that the instance for June 28, 2010, has com-
pleted. Figure 7 shows the two executions of the June 28, 2010, instance.

Figure 7 The two June 28, 2010, executions. The first failed because of a corrupted archive,
but the second completed successfully, thereby completing the job instance.

31Summary
NOTE To run the tests from scratch after you run the job several times,
stop and restart the LaunchDatabaseAndConsole class.

You just put into practice the concepts of job instance and job execution. To do so,
you used a persistent job repository, which allowed you to visualize job instances and
executions. In this example, job metadata illustrated the concepts, but you can also
use this metadata for monitoring a production system.

3.4 Summary
You saw the static and dynamic aspects of jobs: static by modeling and configuring jobs
with steps, dynamic through the job runtime handling of job instances and execu-
tions. Restarting failed jobs is an important requirement for some batch applications,
and you saw how Spring Batch implements this feature by storing job execution meta-
data; you also saw the possibilities and limitations of this mechanism.

Integrating Spring
with JMS

From Spring Integration in Action
by Mark Fisher, Jonas Partner,

Marius Bogoevici, and Iwein Fuld

Spring Integration can easily work with traditional JMS. This excerpt explains how to set
up a JMS provider and integrate it with the channels to process messages.

For many Java developers, the first thing that comes to mind when they hear “mes-
saging” is the Java Message Service (JMS). That’s understandable considering it’s the
predominant Java-based API for messaging and sits among the standards of the Java
Enterprise Edition (JEE). The JMS specification was designed to provide a general
abstraction over message-oriented middleware (MOM). Most of the well-known ven-
dor products for messaging can be accessed and used through the JMS API. A num-
ber of open source JMS implementations are also available, one of which is
ActiveMQ, a pure Java implementation of the JMS API. We use ActiveMQ in some of
the examples in this excerpt because it’s easy to configure as an embedded broker.
We don’t go into any specific ActiveMQ details, though. If you want to learn more
about it, please refer to ActiveMQ in Action by Bruce Snyder, Dejan Bosanac, and
Rob Davies (Manning, 2011).

 Hopefully, by this point in the book, you realize that messaging and event-
driven architectures don’t necessarily require the use of such systems. In a simple
application with no external integration requirements, producer and consumer
components may be decoupled by message channels so that they communicate
only with messages rather than direct invocation of methods with arguments. Mes-
saging is really a paradigm; the same underlying principles apply whether messag-
ing occurs between components running within the same process or between
components running under different processes on disparate systems.
32

http://manning.com/fisher/

33The relationship between Spring Integration and JMS
 Nevertheless, by supporting JMS, Spring Integration provides a bridge between its
simple, lightweight intraprocess messaging and the interprocess messaging that JMS
enables across many MOM providers. In this excerpt, you learn how to map between
Spring Integration messages and JMS messages. You also learn about several options
for integrating with JMS messaging destinations. Spring Integration provides channel
adapters and gateways as well as message channel implementations that are backed by
JMS destinations. In many cases, the configuration of these elements is straightfor-
ward. But, obtaining the most benefit from the available features, such as transactions,
requires a thorough understanding of the underlying JMS behavior as dictated by the
specification. Therefore, we alternate between the Spring Integration role and the
specific JMS details as necessary.

The relationship between Spring Integration and JMS
Spring Integration provides a consistent model for intraprocess and interprocess mes-
saging. The primary role of channel adapters and messaging gateways is to connect a
local channel to some external system without impacting the producer or consumer
components’ code. Another benefit the adapters provide is the separation of the mes-
saging concerns from the underlying transports and protocols. They enable true
document-style messaging whether the particular adapter implementation is sending
requests over HTTP, interacting with a filesystem, or mapping to another messaging
API. The JMS-based channel adapters and messaging gateways fall into that last cate-
gory and are therefore excellent choices when external system integration is required.
Given that the same general messaging paradigm is followed by Spring Integration
and JMS, we can conceptualize the intraprocess and interprocess components as
belonging to two layers but with a consistent model. See figure 1.

 Even though we tend to focus on external system integration when discussing the
roles of JMS, there are also benefits to using JMS internally within an application. JMS
may be useful between producers and consumers running in the same process because
a JMS provider can support persistence, transactions, load balancing, and failover. For
this reason, Spring Integration provides a message channel implementation that dele-
gates to JMS behind the scenes. That channel looks like any other channel as far as the

JVM-1 JVM-2

JMS
producer

JMS
consumer

Spring
Integration
producer

Spring
Integration
consumer

JMS queue

JVM

Message Channel

Figure 1 The top configuration
shows interprocess integration
using JMS. The bottom
configuration shows intraprocess
integration using Spring Integration.
Which type of integration is
appropriate depends on the
architecture of the application.

34 Integrating Spring with JMS
message-producing and message-consuming components are concerned, so it can be
used as an alternative at any point within a message flow as shown in figure 2.

 Even for messaging within a single process, the use of a JMS-backed channel pro-
vides several benefits. Consider a message channel backed by a simple in-memory
queue, as occurs when using the <queue> subelement within a <channel> without ref-
erencing any MessageStore. By default, such a channel doesn’t persist messages to a
transactional resource. Instead, the messages are only stored in a volatile queue such
that they can be lost in the case of a system failure. They’ll even be lost if the process is
shut down intentionally before those messages are drained from the queue by a con-
sumer. In certain cases, when dealing with real-time event data that doesn’t require
persistence, the loss of those event messages upon process termination might not be a
problem. It may be well worth the trade-off for asynchronous delivery that allows the
producer and consumer to operate within their own threads, on their own schedules.
With these message channels backed by a JMS Destination, though, you can have the
best of both worlds. If persistence and transactions are important, but asynchronous
delivery is also a desired feature, then these channels offer a good choice even if
they’re only being used by producers and consumers in the same process space.

 The main point here is that even though we often refer to JMS as an option for mes-
saging between a number of individual processes, that’s not the only time to consider
JMS or other interprocess broker-based messaging solutions, such as Advanced Mes-
sage Queuing Protocol (AMQP), as an option. When multiple processes are involved,
the other advantages become more evident. First among these is the natural load bal-
ancing that occurs when multiple consuming processes are pulling messages from a
shared destination. Unlike producer-side load balancing, the consumers can naturally
distribute the load on the basis of their own capabilities. For example, some processes
may be running on slower machines or the processing of certain messages may require
more resources, but the consumers only ask for more messages when they can handle
them rather than forcing some upstream dispatcher to make the decisions.

 The second, related benefit is increased scalability. Message-producing processes
might be sending more messages than a single consuming process can handle without
creating a backlog, resulting in a constantly increasing latency. By adding enough con-
suming processes to handle the load, the throughput can increase to the point that a
backlog no longer exists, or exists only within acceptable limits in rarely achieved
high-load situations that occur during bursts of activity from producers.

JMS provider

Spring
Integration
producer

Spring
Integration
consumer

JMS destination-backed
Message Channel

JVM

JMS queue

Figure 2 Design of the
destination-backed channel of
Spring Integration. It benefits
from the guarantees supported
by a JMS implementation, but it
hides the JMS API behind a
channel abstraction.

35The relationship between Spring Integration and JMS
 The third benefit is increased availability. If a consuming process crashes, messages
can still be processed as long as one or more other processes are still running. Even if
all processes crash, the mediating broker can store messages until those processes
come back online. Likewise, on the producing side, processes may come and go with-
out directly affecting any processes on the consuming side. This is nothing more than
the benefit of loose coupling inherent in any messaging system, applied not only
across producers and consumers themselves but the processes in which they run.
Keep in mind when we discuss these scenarios where processes come and go, we’re
not merely talking about unforeseen system outages. It’s increasingly common for
modern applications to have “zero downtime” requirements. Such an application
must have a distributed architecture with no tight coupling between components in
order to accommodate planned downtime of individual processes, one at a time, for
system migrations and rolling upgrades.

 One last topic we should address briefly here is transactions. In the scenario
described previously, where a consuming process crashes or is taken offline while
responsible for an in-flight message, transactions play an important role. If the con-
sumer reads a message from a destination but then fails to process it, such as might
occur when its host process crashes, then the message might be lost depending on how
the system is configured. In JMS, a variety of options correspond to different points on
the spectrum of guaranteed delivery. One configuration option is to require an
explicit acknowledgment from the consumer. It might be that a consumer acknowl-
edges each message after it successfully stores it on disk. A more robust option is to
enable transactions. The consumer would commit the transaction only upon success-
ful processing of the message, and it would roll back the transaction in case of a known
failure. When this functionality is enabled, not only do the multiple consuming pro-
cesses share the load, they can even cover for each other in the event of failures. One
consumer may fail while a message is in flight, but its transaction rolls back. The mes-
sage is then made available to another consuming process rather than being lost.

 Table 1 provides a quick overview of the benefits of using JMS with Spring
Integration.

 It’s worth pointing out that the benefits listed in table 1 aren’t limited to JMS. Any
broker that provides support for reliable messaging across distributed producer and

Table 1 Benefits of using JMS with Spring Integration

 Benefit Description

Load balancing Multiple consumers in separate virtual machine processes pull messages
from a shared destination at a rate determined by their own capabilities.

Scalability Adding enough consumer processes to avoid a backlog increases throughput
and decreases response time.

Availability With multiple consumer processes, the overall system can remain operational
even if one or more individual processes fail. Likewise, consumer processes
can be redeployed one at a time to support a rolling upgrade.

36 Integrating Spring with JMS
consumer processes would provide the same benefits. For example, Spring Integra-
tion 2.1 adds support for RabbitMQ, which implements the AMQP protocol. Using the
AMQP adapters would offer the same benefits. Likewise, although not as sophisticated,
even using Spring Integration’s queue-backed channels along with a MessageStore
can provide the same benefits because that too enables multiple processes to share
the work. For now, let’s get back to the discussion at hand and explore the mapping of
Spring Integration message payloads and headers to and from JMS message instances.

Mapping between JMS and Spring Integration messages

When considering interprocess messaging from the perspective of Spring Integration,
the primary role of channel adapters is to handle all of the communication details so
that the component on the other side of the message channel has no idea that an
external system is involved. That means the channel adapter not only handles the
communication via the particular transport and protocol being used, but also must
provide a Messaging Mapper (http://mng.bz/Fl0P) so that whatever data representa-
tion is used by the external system is converted to and from simple Spring Integration
messages. Some of that data might map to the payload of such a message, whereas
other parts of the data might map to the headers. That decision should be based on the
role of the particular pieces of data, keeping in mind that the headers are typically
used by the messaging infrastructure, and the payload is usually the business data that
has some meaning within the domain of the application. Thinking of a message as ful-
filling the document message pattern from Hohpe and Woolf’s Enterprise Integration Pat-
terns (Addison-Wesley, 2003), the payload represents the document, and the headers
contain additional metadata, such as a timestamp or some information about the orig-
inating system.

 It so happens that the construction of a JMS message, according to the JMS specifi-
cation, is similar to the construction of a Spring Integration message. This shouldn’t
surprise you given that the function of the message is the same in both cases. It does
mean that the messaging mapper implementation used by the JMS adapters has a sim-
ple role. We’ll go into the details in a later section, but for now it’s sufficient to point
out that there are merely some differences in naming. In JMS, the message has a body,
which is the counterpart of a payload in Spring Integration. Likewise, a JMS message’s
properties correspond to a Spring Integration message’s headers. See figure 3.

Message Message

Headers

Payload

Properties

Body

Spring Integration JMS

Figure 3 Spring Integration and
JMS messages in a side-by-side
comparison. The terminology is
different, but the structure is the
same.

http://mng.bz/Fl0P

37JMS support in the Spring Framework
Comparing JMS destinations and
Spring Integration message channels

By now you’re familiar with the vari-
ous message channel types available
in Spring Integration. One of the
most important distinctions we cov-
ered is the difference between point-
to-point channels and publish-sub-
scribe channels. You saw that when it
comes to configuration, the default
type for a channel element in XML is
point-to-point, and the publish-subscribe channel is clearly labeled as such. The JMS
specification uses destination instead of message channel, but it makes a similar distinc-
tion. The two types of JMS Destination are Queues and Topics. A JMS Queue provides
point-to-point semantics, and a Topic supports publish-subscribe interaction. When
you use a Queue, each message is received by a single consumer, but when you use a
Topic, the same message can be received by multiple consumers. See table 2 for the
side-by-side comparison.

 Now that we’ve discussed the relationship between Spring Integration and JMS at a
high level, we’re almost ready to jump into the details of Spring Integration’s JMS
adapters. First, it’s probably a good idea to take a brief detour through the JMS sup-
port in the core Spring Framework. For one thing, the Spring Integration support for
JMS builds directly on top of Spring Framework components such as the JmsTemplate
and the MessageListener container. Additionally, the general design of Spring Inte-
gration messaging endpoints is largely modeled after the Spring JMS support. You
should be able to see the similarities as we quickly walk through the main components
and some configuration examples in the next section.

JMS support in the Spring Framework
The logical starting point for any discussion of the Spring Framework’s JMS support is
the JmsTemplate. This is a convenience class for interacting with the JMS API at a high
level. Those familiar with Spring are probably already aware of other templates, such
as the JdbcTemplate and the TransactionTemplate. These components are all real-
izations of the Template pattern described in the Gang of Four's Design Patterns: Ele-
ments of Reusable Object-Oriented Software (Gamma et al., Addison-Wesley, 1994). Each of
these Spring-provided templates satisfies the common goal of simplifying usage of a
particular API. One quick example should be sufficient to express this idea. First, we
look at code that doesn’t use the JmsTemplate but instead performs all actions directly
with the JMS API. Note that even a simple operation such as sending a text-based mes-
sage involves a considerable amount of boilerplate code. Here’s a simple send-and-
receive echo example:

Table 2 Comparing enterprise integration patterns
(EIP) to JMS

 EIP JMS

 Message Channel Destination

 Point-to-point channel Queue

 Publish-subscribe channel Topic

38 Integrating Spring with JMS
public class DirectJmsDemo {

public static void main(String[] args) {
try {

ConnectionFactory connectionFactory =
new ActiveMQConnectionFactory("vm://localhost");

Connection connection = connectionFactory.createConnection();
connection.start();
int autoAck = Session.AUTO_ACKNOWLEDGE;
Session session = connection.createSession(false, autoAck);
Destination queue = new ActiveMQQueue("siia.queue.example1");
MessageProducer producer = session.createProducer(queue);
MessageConsumer consumer = session.createConsumer(queue);
Message messageToSend = session.createTextMessage("Hello World");
producer.send(messageToSend);
Message receivedMessage = consumer.receive(5000);
if (!(receivedMessage instanceof TextMessage)) {

throw new RuntimeException("expected a TextMessage");
}
String text = ((TextMessage) receivedMessage).getText();
System.out.println("received: " + text);
connection.close();

}
catch (JMSException e) {

throw new RuntimeException("problem occurred in JMS code", e);
}

}

}

This code is about as simple as it can get when using the JMS API directly. ActiveMQ
enables running an embedded broker (as you can see from the "vm://localhost"
URL provided to the ConnectionFactory). Many JMS providers would be configured
within the Java Naming and Directory Interface (JNDI) registry, and that would
require additional code to look up the ConnectionFactory and Queue. Now, let’s see
how the same task may be performed using Spring’s JmsTemplate:

public class JmsTemplateDemo {

public static void main(String[] args) {
ConnectionFactory connectionFactory =

new ActiveMQConnectionFactory("vm://localhost");
JmsTemplate jmsTemplate = new JmsTemplate(connectionFactory);
jmsTemplate.setDefaultDestination(new ActiveMQQueue("siia.queue"));
jmsTemplate.convertAndSend("hello world");
System.out.println("received: " + jmsTemplate.receiveAndConvert());

}

}

The code is much simpler, and it also provides fewer chances for developer errors.
Any JMSExceptions are caught and converted into RuntimeExceptions in Spring’s
JmsException hierarchy. The JMS resources, such as Connection and Session, are
also acquired and released as appropriate. In fact, if a transaction is active when this
send operation is invoked, and some upstream process has already acquired a JMS

39JMS support in the Spring Framework
Session, this send operation is executed in the same transactional context. If you’ve
ever worked with Spring’s transaction management for data access, this concept
should be familiar to you. The idea is roughly the same. If one particular operation in
the transaction throws an uncaught RuntimeException, all operations that occurred
in that same transactional context are rolled back. If all operations are successful, the
transaction is committed.

 You probably also noticed that the template method invoked is called convertAnd-
Send and that its argument is an instance of java.lang.String. There are also send()
methods that accept a JMS Message you’ve created, but by using the convertAndSend
versions, you can rely on the JmsTemplate to construct the Messages. The conversion
itself is a pluggable strategy. The JmsTemplate delegates to an instance of the
MessageConverter interface, and the default implementation (SimpleMessage-
Converter) automatically performs the conversions shown in table 3.

The receiveAndConvert method performs symmetrical conversion from a JMS Mes-
sage. When used on the receiving end, the SimpleMessageConverter extracts the JMS
message’s body and produces a result with the same mappings shown in the table (for
example, TextMessage to java.lang.String).

 Sometimes the default conversion options aren’t a good fit for a particular applica-
tion. That’s why the MessageConverter is a strategy interface that can be configured
directly on the JmsTemplate. Spring provides an object-to-XML (OXM) marshalling
version of the MessageConverter that supports any of the implementations of
Spring’s Marshaller and Unmarshaller interfaces within its toMessage() and from-
Message() methods respectively. For example, an application might be responsible
for sending and receiving XML-based text messages over a JMS queue, but the applica-
tion’s developers prefer to hide the XML marshalling and unmarshalling logic in the
template itself. Spring’s MarshallingMessageConverter may be injected into the
JmsTemplate, and in turn, that converter can be injected with one of the options sup-
ported by Spring OXM, such as Java Architecture for XML Binding (JAXB).

 It’s also possible to provide a custom implementation of the Marshaller and
Unmarshaller interfaces or even a custom implementation of the MessageConverter.
For example, you could implement the MessageConverter interface to create a
BytesMessage directly from an object using some custom serialization. That same

Table 3 Default type conversions SimpleMessageConverter

 Type passed to SimpleMessageConverter JMS Message type

java.lang.String TextMessage

byte[] BytesMessage

java.util.Map MapMessage

java.io.Serializable ObjectMessage

40 Integrating Spring with JMS
implementation could then use symmetrical deserialization to map back into objects
on the receiving side. Likewise, you might implement the MessageConverter inter-
face to map directly between objects and text messages where the actual text content
is formatted using JavaScript Object Notation (JSON).

 In this section, you learned how the JmsTemplate can greatly simplify the code
required to do some basic messaging when compared with using the JMS API directly.
The examples covered both sending and receiving, but the receive operations were
synchronous. Before we discuss how Spring Integration can simplify things even fur-
ther, we cover the support for asynchronous message reception in the Spring Frame-
work, which provides the foundation upon which the most commonly used JMS
adapters in Spring Integration are built.

Asynchronous JMS message reception with Spring
The polling consumer and event-driven consumer patterns are both important. Even
with simple intraprocess messaging in a Spring Integration–based application, each
pattern has a role in accommodating various message channel options and the use
cases that arise from those choices. When dealing with external systems, some trans-
ports and protocols are limited to the polling consumer pattern. The JMS model
enables both polling and event-driven message reception. This section covers the rea-
sons to consider the event-driven approach and how the Spring Framework supports
it, ultimately with message-driven plain old Java objects (POJOs) that keep your code
simple and unaware of the JMS API.

Why go asynchronous?

Receiving messages is usually more complicated than sending them. Even though the
receiving part of the JmsTemplate example looks as simple as the sending part, it’s
important to recognize that, in that example, the receive operation is synchronous.
The JmsTemplate has a receiveTimeout property. The JmsTemplate receive opera-
tions return as soon as a message is available at the JMS destination or the timeout
elapses, whichever occurs first. That means that if no message is available immediately,
the operations may block for as long as indicated by the receiveTimeout value.

 When relying on blocking receive operations, such JmsTemplate usage is an exam-
ple of the polling consumer pattern. In an application in which an extremely low vol-
ume of messages is expected, polling in a dedicated background thread might be okay.
But most applications using messaging would prefer to have event-driven consumers.

 Support for event-driven consumers could be implemented on top of the simple
polling receive calls, though all but the most naive implementations would quickly
become complex. A proper and efficient solution requires support for concurrent
processing of the received messages. Such a solution would also support transactions,
and ideally, it would accommodate a thread pool that adjusts dynamically according to
the volume of messages being received. Those same requirements apply to any

41Asynchronous JMS message reception with Spring
attempt to adapt an inherently polling-based source of data to an event-driven one.
Obviously, that’s a common concern for many components in Spring Integration.

 As far as the JMS adapters are concerned, the crux of the problem is that the invo-
cation of the JMS receive operation must be performed within the context of the
transaction. Then, if the subsequent handling of the message causes a failure, that’s
most likely a reason to roll back the transaction. Some other consumer may be able to
process the message, or perhaps this same handler could handle the message success-
fully if retried after a brief delay. For example, some system that it relies on might be
down at the moment but will be available again shortly. If a JMS consumer rolls back a
transaction, then the message won’t be removed from the destination; that’s what
enables redelivery. But if the Exception is thrown by the handler in a different thread,
it’s too late: the JMS consumer has already performed its role, and by passing off the
responsibility to an executor that invokes the handler in a different thread, it
would’ve returned successfully after that handoff. It would be unable to react to a roll-
back based on something that happens later, downstream in the handler’s processing
of the message content.

Spring’s MessageListener container

You’re probably convinced that implementing an asynchronous message-driven solu-
tion isn’t trivial. It’s the type of generic, foundational code that should be provided by
a framework so developers don’t have to spend time dealing with the low-level thread-
ing and transaction management concerns. Spring provides this support for JMS with
its MessageListener containers. Let’s look at a modified version of the earlier Hello
World example. We use JmsTemplate for the sending side only. The message is
received by a MessageListener asynchronously, and the DefaultMessageListener-
Container handles all of the low-level concerns:

public class MessageListenerContainerDemo {

public static void main(String[] args) {

// establish common resources
ConnectionFactory connectionFactory =

new ActiveMQConnectionFactory("vm://localhost");
Destination queue = new ActiveMQQueue("siia.queue");

// setup and start listener container
DefaultMessageListenerContainer container =

new DefaultMessageListenerContainer();
container.setConnectionFactory(connectionFactory);
container.setDestination(queue);
container.setMessageListener(new MessageListener() {

public void onMessage(Message message) {
try {

if (!(message instanceof TextMessage)) {
throw new IllegalArgumentException("expected TextMessage");

}
System.out.println("received: " +

((TextMessage) message).getText());

42 Integrating Spring with JMS
}
catch (JMSException e) {

throw new RuntimeException(e);
}

}
});
container.afterPropertiesSet();
container.start();

// send Message
JmsTemplate jmsTemplate = new JmsTemplate(connectionFactory);
jmsTemplate.setDefaultDestination(queue);
jmsTemplate.convertAndSend("Hello World");

}

}

The code shows how you can take advantage of asynchronous message reception by
depending on Spring’s DefaultMessageListenerContainer to handle the low-level
concerns. Nevertheless, you might be thinking we added a lot more code to the exam-
ple, and we’re back to dealing with some JMS API code directly. For example, we pro-
vided an implementation of the JMS MessageListener interface, and we’re catching
the JMSExceptions to convert into RuntimeExceptions ourselves. In the next section,
we take things two steps further. First, we rely on Spring’s MessageListenerAdapter to
decouple our code from the JMS API completely. Second, we refactor the example to
use declarative configuration and a dedicated Spring XML schema. In other words, we
demonstrate a message-driven POJO.

Message-driven POJOs with Spring

The code and configuration for asynchronous reception can be much simpler. One
goal for simplification should be to reduce the dependency on the JMS API. Rather
than having to create an implementation of the MessageListener interface, you can
rely on Spring’s MessageListenerAdapter to handle that responsibility. It’s straight-
forward: the adapter implements the MessageListener interface, but it invokes oper-
ations on a delegate when a message arrives. That instance to which it delegates can
be any object. The previous code could be updated with the following replacement
for the registration of the listener:

container.setMessageListener(new MessageListenerAdapter(somePojo));

An even better option is to use configuration rather than code. Spring provides a jms
namespace that supports the configuration of a container and adapter in a few lines of
XML:

<jms:listener-container>
<jms:listener destination="aQueue" ref="aPojo" method="someMethod"/>

</jms:listener-container>

Many configuration options are available on both the listener-container and
listener elements, but the preceding example provides a glimpse of the simplest

43Sending JMS messages from a Spring Integration application
possible working case. The XML schema is well documented if you’d like to explore
the other options. Our goal here is to provide a sufficient level of background infor-
mation so you can appreciate that Spring Integration builds directly on top of the JMS
support within the base Spring Framework. At this point, you should have a fairly
good understanding of that support. We now turn our focus back to Spring Integra-
tion to see how it offers an even higher-level approach.

Sending JMS messages
from a Spring Integration application
Now that you’ve seen the similarities between Spring Integration messages and JMS
messages and learned about the core Spring support for JMS, you’re well prepared to
look at the process of sending JMS messages from a Spring Integration application. As
with most adapters in Spring Integration, a unidirectional channel adapter and a
request/reply gateway are available. Because it’s considerably simpler, we begin the
discussion with the unidirectional channel adapter.

 Spring Integration’s outbound JMS channel adapter is a JMS message publisher
encapsulated in an implementation of Spring Integration’s MessageHandler inter-
face. That means it can be connected to any MessageChannel so that any Spring Inte-
gration Messages sent to that channel are converted into JMS Messages and then sent
to a JMS Destination. The JMS Destination may be a Queue or a Topic, but from the
perspective of this adapter implementation, that’s a configuration detail.

 The main class involved in the one-way outbound JMS adapter is called JmsSending-
MessageHandler. If you look at its implementation, you’ll see that it builds completely
on the JMS support of the underlying Spring Framework. The most important respon-
sibilities are handled internally by an instance of Spring’s JmsTemplate. Most of the
code in Spring Integration’s adapter handles the various configuration options, of
which there are many. As far as most users are concerned, even those configuration
options are handled by the XML namespace support. In most cases, only a small subset
of those options would be explicitly configured, but there are many options for han-
dling more nuanced usage requirements. We walk through several of these in a
moment, but first let’s look at a typical configuration for one of these adapters:

<int-jms:outbound-channel-adapter channel="toJMS"
destination-name="samples.queue.fromSI" />

That looks simple enough, right? Hopefully so, and if you can rely on the defaults,
then that’s all you need to configure. It’s literally adapting the Spring Integration
toJMS channel so that it converts the messages into JMS Messages and then sends them
to the JMS Queue named samples.queue.fromSI. If you want to use a Topic instead of
a Queue, be sure to provide the pub-sub-domain attribute with a value of true, as in
the following example:

<int-jms:outbound-channel-adapter channel="toJMS"
destination-name="samples.topic.fromSI"
pub-sub-domain="true" />

44 Integrating Spring with JMS
Sometimes it’s not practical to rely on just the name of the JMS destination. In fact, it’s
common that the Queues and Topics are administered objects that developers should
always access via JNDI lookups. Fortunately, you can rely on the Spring Framework’s
ability to handle that. Instead of using the destination-name attribute, you could pro-
vide a destination attribute whose name is a reference to another object being man-
aged by Spring. That other object could then be a result of a JNDI lookup. For
handling that lookup, Spring provides a FactoryBean implementation called the
JndiObjectFactoryBean. Although it’s perfectly acceptable to define that Factory-
Bean instance as a low-level bean element, there’s XML namespace support for much
more concise configuration options, as shown here:

<int-jms:outbound-channel-adapter channel="toJMS" destination="fromSI"/>

<jee:jndi-lookup id="fromSI" jndi-name="jms/queue.fromSI"/>

The functionality would be exactly the same. The difference is limited to the configu-
ration. Access by name is often sufficient in development and testing environments,
but JNDI lookups might be required for a production system. In those cases, you can
manage the configuration excerpts appropriately by using import elements in the con-
figuration or other similar techniques. The important factor is that you don’t need to
modify any code to handle those different approaches for resolving JMS destinations.

 Fortunately, the configuration of the ConnectionFactory and Destinations can
be shared across both the sending and receiving sides. Likewise, for commonly config-
ured references, such as these destinations, there is consistency between the inbound
and outbound adapters. In the next section, we focus on the receiving side. We begin
with the inbound channel adapter that serves as a polling consumer.

Receiving JMS messages
in a Spring Integration application
When receiving JMS messages in a unidirectional way, there are two options. You can
define an inbound channel adapter that acts a polling consumer or one that acts as an
event-driven consumer. The polling option is configured with an <inbound-channel-
adapter> element as defined in the JMS schema. It accepts a destination-name attri-
bute for the JMS Queue or Topic. Its default DestinationResolver looks up the desti-
nation accordingly, and if you need to customize that behavior for some reason, you can
provide a destination-resolver attribute with the bean name reference of your own
implementation. The <inbound-channel-adapter> element also requires a poller
unless you’re relying on a default context-wide poller element. Here’s a simple example
of an inbound channel adapter that polls for a JMS message every three seconds:

<int-jms:inbound-channel-adapter id="pollingJmsInboundAdapter"
channel="jmsMessages" destination-name="myQueue">
<int:poller fixed-delay="3000" max-messages-per-poll="1"/>

</int-jms:inbound-channel-adapter>

Like the outbound version, if you’re specifying a Topic name rather than a Queue
name, you should also provide the pub-sub-domain attribute with a value of true. If

45Request-reply messaging
instead you want to reference a Queue or Topic instance, you can use the destination
attribute in place of destination-name. This is a common practice when defining this
adapter alongside Spring’s JNDI support, as shown previously in the outbound chan-
nel adapter examples. The following is an example of the corresponding inbound
configuration:

<int-jms:inbound-channel-adapter id="pollingJmsInboundAdapter"
channel="jmsMessages" destination="myQueue">
<int:poller fixed-delay="3000" max-messages-per-poll="1"/>

</int-jms:inbound-channel-adapter>

<jee:jndi-lookup id="myQueue" jndi-name="jms/someQueue"/>

As mentioned earlier, polling is rarely the best choice when building a JMS-based solu-
tion. Considering that the underlying JMS support in the Spring Framework enables
asynchronous invocation of a MessageListener as soon as a JMS message arrives, that’s
almost always the better option. The only exceptions might be when you want to con-
figure a poller to run infrequently or only at certain times of the day. If the poller is
limited to run at certain times of the day, you’d most likely use the cron attribute on a
poller element. Other than in those rare situations, the responsiveness will be better
and the configuration will be simpler if you stick with Spring Integration’s message-
driven-channel-adapter. The basic configuration will look the same, but there’s no
longer a need to define a poller:

<int-jms:message-driven-channel-adapter id="messageDrivenAdapter"
channel="jmsMessages" destination-name="myQueue"/>

It may seem odd that, unlike most adapters you’ve seen, the element doesn’t include
inbound in its name. Considering it’s message-driven, it should be relatively clear
that this channel adapter is reacting to inbound JMS messages that arrive at the given
Queue or Topic. It sends those messages to the channel referenced by the channel
attribute.

Request-reply messaging
The discussion and examples in this excerpt have thus far focused on unidirectional
channel adapters. On the sending side, we haven’t yet discussed the case where we
might be expecting a reply, and on the receiving side, we haven’t yet discussed the
case where we might be expected to send a reply. We saw that Spring Integration’s
inbound JMS channel adapters can receive messages with either polling or message-
driven behavior. On the other hand, the outbound channel adapter can be used to
send messages to a JMS destination, be it a Queue or a Topic. In both cases, the Spring
Integration message is mapped to or from the JMS message so that the payload as well
as the headers can correspond to the JMS message’s body and properties, respectively.

 This section introduces Spring Integration’s bidirectional gateways for utilizing
JMS in a request-reply model of interaction. Much of the functionality, such as map-
ping between the JMS and Spring Integration message representations, is the same.
The difference is that these request-reply gateways are responsible for mapping in

46 Integrating Spring with JMS
both directions. As with the unidirectional channel adapter discussions, we begin with
the outbound side. Whereas earlier we could describe the outbound behavior as solely
responsible for sending messages, in the gateway case, there is a receive as well, assum-
ing that the JMS reply message arrives as expected. The simplest way to think of the
outbound gateway is as a send-and-receive adapter.

The outbound gateway

In the simplest case, the outbound configuration will look similar to the outbound-
channel-adapter configuration we saw earlier:

<int-jms:outbound-gateway request-channel="toJMS"
reply-channel="jmsReplies"
request-destination-name="examples.gateway.queue"/>

The request-channel and reply-channel attributes refer to Spring Integration
MessageChannel instances. Any Spring Integration message that’s sent to the request
channel will be converted into a JMS message and sent to the gateway’s request desti-
nation (in this context, destination always refers to a JMS component, and channel is the
Spring Integration message channel). In this example, the destination is a queue. If it
were a topic, the request-pub-sub-domain attribute would need to be provided with a
value of true. Because the gateway must manage sending and receiving separately,
many of its attributes are qualified as affiliated with either the request or the reply.
The reply-channel is where any JMS reply messages are sent after they’re converted
to Spring Integration messages.

 You may have noticed that we didn’t provide a reply-destination-name. That
attribute is optional, but it’s common to leave it out. The gateway implementation
provides the JMSReplyTo property on each request message it sends to JMS. If you
don’t provide a specific destination for that, then it’ll handle creation of a temporary
queue for that purpose. This assumes that wherever these JMS messages are being
sent, a process is in place to check for the JMSReplyTo property so it knows where to
return a reply message. We discuss the server-side behavior in the next section when
we cover the inbound gateway. For the time being, we discuss this interaction with a
hypothetical server side where we assume such behavior is in place. The JMSReplyTo
property is a standard part of the message contract and is defined in the JMS specifica-
tion. Therefore, it’s commonly supported functionality for server-side JMS implemen-
tations that accept request messages from a sender who is also expecting reply
messages. You must be sure that you’re sending to a destination that’s backed by a lis-
tener implementation with that behavior. The inbound channel adapter we discussed
earlier would not be a good choice because, as we emphasized, it’s intended for unidi-
rectional behavior only. On the other hand, the inbound gateway we discuss in the
next section would be a valid option for such server-side request-reply behavior. The
core Spring Framework support for message-driven POJOs also supports the JMS-
ReplyTo properties of incoming messages as long as the POJO method being invoked
has a nonvoid and non-null return value.

47Request-reply messaging
The inbound gateway

Like the outbound gateway, Spring Integration’s inbound gateway for JMS is an alter-
native to the inbound channel adapters when request-reply capabilities are required.
Perhaps the quickest way to get a sense of what this means is to consider that this
adapter covers the functionality we described in abstract terms as the server side in the
previous section. The outbound gateway would be the client side as far as that discus-
sion is concerned. The inbound gateway listens for JMS messages, maps each one it
receives to a Spring Integration message, and sends that to a message channel. Thus
far, that’s no different than the role of an inbound channel adapter. The difference is
that the message channel in this case would be the initiating end of some pipeline
that’s expected to produce a reply at some point downstream. When such a reply mes-
sage is eventually returned to the inbound gateway, it’s mapped to a JMS message. The
gateway then sends that JMS message to the reply destination. That particular JMS mes-
sage fulfills the role of the reply message from the client’s perspective.

 The reply destination is an example of the return address pattern. It may have
been provided in the original message’s JMSReplyTo property, and if so, that takes pre-
cedence. If no JMSReplyTo property was sent, the inbound gateway falls back to a
default reply destination, if configured. As with the request destination, that can
either be configured by direct reference or by name. The attribute used for a direct
reference is called default-reply-destination (again, it’s the default because the
JMSReplyTo property on a request message takes precedence). If configuring the
name of the reply destination so that it can be resolved by the gateway’s Destination-
Resolver strategy, use either the default-reply-queue-name attribute or the
default-reply-topic-name attribute. If there’s neither a JMSReplyTo property on the
request message nor a configured reply destination, then an exception will be thrown
by the gateway because it would have no way of determining where to send the reply.

 That description of the inbound gateway’s role probably sounds like it involves a
complex implementation. Keep in mind that it builds directly on top of the underly-
ing Spring JMS support that we described earlier. Now you can probably appreciate
why we went into considerable detail about that underlying support. As a result, you
already have a basic understanding of how the inbound gateway handles the server-
side request-reply interaction. As with any Spring Integration inbound gateway, once it
maps to a Spring Integration message, it sends that message to a message channel.
What makes each gateway unique is what it receives and how it maps what it receives
into a Spring Integration message.

 Now that you understand the role of the inbound gateway for JMS, let’s look at an
example. We start with the simplest configuration options:

<int-jms:inbound-gateway id="exampleGateway"
request-destination-name="someQueue"
request-channel="requestChannel"/>

The request-channel indicates where the inbound messages should be sent after
they’re created by mapping from the JMS source message, and the request-
destination-name is where those JMS messages are expected to arrive. You may have

48 Integrating Spring with JMS
noticed that no reply-channel attribute is present. This attribute is an optional value
for inbound gateways in general. If it’s not provided, then the gateway creates a tem-
porary, anonymous channel and sets it as the replyChannel header for the message
that it sends downstream. As with the <inbound-channel-adapter> for JMS, the
connection-factory attribute is also optional, as long as a JMS ConnectionFactory
instance is named connectionFactory in the application context. Add that attribute
if for some reason the JMS ConnectionFactory you need to reference has a different
bean name.

 As you might expect, knowing that we’re building on top of Spring’s message
listener container, a number of other attributes are available. Many of them are passed
along to that underlying container. For example, you might want to control the con-
currency settings. Following is an example that indicates five core consumers should
always be running, but when load increases beyond the capacity of those five, the
number of consumers can increase up to 25. At that point, each of those extra con-
sumers can have up to three idle tasks—those where no message is received within the
receive timeout of 5 seconds, at which point the consumer will be cleared. The end
result of such configuration is that the number of consumers can dynamically fluctu-
ate between 5 and 25 based on the demand for handling incoming messages:

<int-jms:inbound-gateway id="exampleGateway"
request-destination-name="someQueue"
request-channel="requestChannel"
concurrent-consumers="5"
max-concurrent-consumers="25"
idle-task-execution-limit="3"/>

This example shows that various settings of the underlying message listener container
can be configured directly on the XML element that represents the Spring Integration
gateway. The preceding attributes are a small subset of all the configurable properties
of the container. When defining your elements in an IDE with good support for XML,
such as the SpringSource Tool Suite, you can easily explore the entire set of available
attributes.

 We’ve now covered the various Spring Integration adapters. You saw how such
adapters can be used on both the sending side and the receiving side. You saw the uni-
directional channel adapters as well as the bidirectional gateways that enable request-
reply messaging. Next, we consider the scenario in which the JMS messaging occurs
between two applications that are both using Spring Integration.

Messaging between multiple Spring Integration runtimes
In the previous sections, you saw the inbound gateway and the outbound gateway.
Both play a role in supporting request-reply messaging, but they were discussed sepa-
rately thus far. That’s because each can be used when you’re limited in the assump-
tions you can make about the application on the other side. As you might expect, the
two gateways can work well together when you have Spring Integration applications
on both sides. Figure 4 captures this situation

49Messaging between multiple Spring Integration runtimes
In the scenario depicted in the figure, it will obviously be necessary to map between
the Spring Integration messages used in each application and the JMS messages that
are being passed between the applications. We saw several examples of how the adapt-
ers use Spring’s JMS MessageConverter strategy to convert to and from JMS messages.
So far, the examples have mapped between the JMS message body and the Spring Inte-
gration message payload. Likewise, the JMS properties have mapped to and from the
Spring Integration message headers. These are by far the most common usage pat-
terns for message mapping with JMS, and they make minimal assumptions about the
system on the other side of the message exchange.

 In a particular deployment environment, though, it might be well known that
Spring Integration–based applications exist on both sides of the JMS destination. One
Spring Integration application would act as a producer, and the other would act as a
consumer. The interaction may be unidirectional, using the channel adapters, or the
interaction might involve request-reply exchanges wherein one of the applications
contains an outbound gateway and the other contains an inbound gateway (keep in
mind that a gateway acts as both a producer and a consumer). If that’s the nature of
the deployment model, it may or may not be desirable to pass the entire Spring Inte-
gration Message instance as the JMS message body. The default mapping behavior
would obviously work in such an environment, but if you want to “tunnel” through
JMS instead, for some reason, then you can override the default configuration. To
send a Spring Integration Message as the actual body of a JMS message, provide a
value of false to the extract-request-payload property of an outbound gateway:

<int-jms:outbound-gateway id="exampleGateway"
request-destination-name="someQueue"
request-channel="requestChannel"
extract-request-payload="false"/>

When passing the Spring Integration Message as the JMS message body, it’s necessary
to have a serialization strategy. The standard Java serialization mechanism is one
option, because Spring Integration Messages implement the Serializable interface.
One thing to keep in mind when choosing that option is that nonserializable values
that are stored in the message headers won’t be passed along because they can’t be
serialized with that approach. An even more important factor to keep in mind is that
Java serialization requires that the same class be defined on both the producer and
the consumer sides. Not only must it be the same class, but the version of the class
must be the same. JMS facilitates this option by providing support for ObjectMessages,
where the body is a Serializable instance.

Outbound Gateway Inbound Gateway

Application
A

Application
B

Reply Destination

Request Destination

Figure 4 A pair of gateways, one
outbound and the other inbound. Each is
hosted by a separate Spring Integration
application. Those two applications
share access to a common JMS broker
and a pair of destinations.

50 Integrating Spring with JMS
 At first, it seems convenient to pass your domain objects around without any need
to think about conversion or serialization, but it’s almost always a bad idea in reality.
By requiring exactly the same classes to be available to both the producer and the con-
sumer, this approach violates the primary goal of messaging: loose coupling. Even if
you control both sides of the messaging exchange, the fewer assumptions one side
makes about the other, the more flexible the application will be. As any experienced
developer knows, some of the most regrettable assumptions are those made about the
future of an application. For example, if an application needs to evolve to support
multiple versions of a certain payload type, reliance on default serialization to and
from a single version of a class will be a sure source of regret.

 With these twin goals of reducing assumptions and increasing flexibility in mind,
let’s consider some other options for serializing data. Probably the most common
approach in enterprise integration is to rely on XML representations. Spring Integra-
tion provides full support for that option with the object-to-XML marshaller and XML-
to-object unmarshaller implementations from the Spring Framework’s oxm module.
Another increasingly popular option for serializing and deserializing the payload is to
map to and from a portable JSON representation. The advantage of building a solu-
tion based on either XML or JSON instead of Java serialization is that the system can
be much more flexible. It’s not necessary to have the same version on both sides. In
fact, as long as the marshaller and unmarshaller implementations account for it, the
producer and consumer sides may even convert to and from completely different
object types.

 Regardless of the chosen serialization mechanism, you must configure a Message-
Converter on the gateway any time you don’t want to rely on the default, which uses
Java serialization. You might choose the MarshallingMessageConverter provided by
Spring for object-to-XML conversion, or you might implement MessageConverter
yourself. Either way, define the MessageConverter within the same Application-
Context, and then provide the reference on the outbound gateway or channel
adapter’s configuration:

<int-jms:outbound-gateway id="exampleGateway"
request-destination-name="someQueue"
request-channel="requestChannel"
extract-request-payload="false"
message-converter="customConverter"/>

<bean id="customConverter" class="example.CustomMessageConverter"/>

Generally, we recommend avoiding the tunneling approach because having the map-
ping behavior on both sides promotes loose coupling. Even then, it’s worth consider-
ing the serialization strategy. If a Spring Integration payload is a simple string or byte
array, then it’ll map to a JMS TextMessage or BytesMessage respectively when relying
on the default MessageConverter implementation. The default conversion strategy
also provides symmetric behavior when mapping from JMS. A TextMessage maps to a
string payload, and a BytesMessage maps to a byte array payload. But if your Spring
Integration payload or JMS body is a domain object, then it’s definitely important to

51Summary
consider the degree of coupling because the default MessageConverter will rely on
Java serialization at that point.

 Spring Integration provides bidirectional XML transformers in its XML module
and it provides bidirectional JSON transformers in the core module. Both the XML
and JSON transformers can be configured using simple namespace-defined elements
in XML. You can provide the object-to-XML or object-to-JSON transformer upstream
from an outbound JMS channel adapter or gateway, and you can provide the XML-to-
object or JSON-to-object transformer downstream from an inbound JMS channel
adapter or gateway. One advantage of relying on the transformer instances is that you
can reuse them in multiple messaging flows. For example, you might also be receiving
XML or JSON from an inbound file adapter, and you might be sending XML or JSON to
an outbound HTTP gateway.

 If such opportunities for reuse aren’t relevant in your particular application, you
may prefer to encapsulate the serialization behavior. You can rely on any implementa-
tion of Spring’s MessageConverter strategy interface. As mentioned earlier, the
MarshallingMessageConverter is available in the Spring Framework. A similar JSON-
based implementation was introduced in Spring 3.1, but if you're using an earlier ver-
sion, it wouldn’t be difficult to implement in the meantime. You can provide any
other custom logic or delegate to any other serialization library that you choose. If
going down that path, you would define the chosen MessageConverter implementa-
tion as a bean and then reference it from the channel adapter or gateway’s message-
converter attribute.

Summary
Considering the central role that JMS plays in many enterprise Java applications, we
wanted to make sure it was clear where Spring Integration overlaps with JMS and
where the two can complement each other. You saw the relationship between the two
message structures and how to map between them. You also learned how the underly-
ing Spring Framework provides base functionality that greatly simplifies the use of JMS
and how Spring Integration takes that even further with its declarative configuration
and higher level of abstraction.

Rapid application
development using Grails

From Grails in Action, Second Edition
by Glen Smith and Peter Ledbrook

Grails, a Groovy-language-based application platform, is based on Hibernate and
Spring. Existing for more than five years, it was purchased by SpringSource shortly before
VMware bought SpringSource. Grails has a growing, loyal following of developers, mainly
because it makes developing web applications a joy and integrates with existing Spring and
Hibernate code easily. This excerpt walks through setting up a sample application.

Great strides have been made in the field of Java-based web application frame-
works, but creating a new application with them still seems like a lot of work. Grails’
core strength is developing web applications quickly, so we’ll jump into writing our
first application right away.

 We’ll expose you to the core parts of Grails by developing a simple Quote of the
Day application from scratch. You’ll store and query the database, develop business
logic, write tests, and even add some AJAX functionality. By the end of this discus-
sion, you’ll have a good feel for all the basic parts of Grails.

 In order to develop serious Grails applications, you’ll need a firm grasp of
Groovy—the underlying dynamic language that makes Grails tick. In order to get
Grails up and running, you’ll need to walk through the installation process shown
in figure 1.

 First, you’ll need to have a JDK installed (version 1.5 or later—run javac-ver-
sion from your command prompt to check which version you have). Most PCs
come with Java preinstalled these days, so you may be able to skip this step.
52

http://manning.com/gsmith2/

53Our sample program: a Web 2.0 QOTD
Once you’re happy that your JDK is installed, download the latest Grails distro from
www.grails.org and unzip it to your favorite installation area.

 You’ll then need to set the GRAILS_HOME environment variable, which points to
your Grails installation directory, and add GRAILS_HOME/bin to your path. On Mac
OS X and Linux, this is normally done by editing the ~/.profile script to contain lines
like these:

export GRAILS_HOME=/opt/grails
export PATH=$PATH:$GRAILS_HOME/bin

On Windows, you’ll need to go into System Properties to define GRAILS_HOME and
update your PATH setting.

 You can verify that Grails is installed correctly by running grails help from the
command line. This will give you a handy list of Grails commands, and it’ll confirm
that everything is running as expected.

 When you develop more sophisticated Grails applications, you’ll probably want to
take advantage of some of the fantastic Grails IDE support out there. There’s now
Grails plugin support for IntelliJ, NetBeans, and Eclipse—whichever your preferred
IDE, there will be a plugin to get you going. We won’t be developing too much code,
so a basic text editor will be all you need. Fire up your favorite editor, and we’ll talk
about our sample application.

Our sample program: a Web 2.0 QOTD
If we’re going to the trouble of writing a small application, we might as well have some
fun. Our example is a quote-of-the-day (QOTD) web application where we’ll capture
and display famous programming quotes from development rock stars throughout
time. We’ll let the user add, edit, and cycle through programming quotes, and we’ll
even add some Ajax sizzle to give it a Web 2.0 feel. We’ll want a nice short URL for our
application, so let’s make “qotd” our application’s working title.

Figure 1 The Grails
installation process

54 Rapid application development using Grails
NOTE You can download the sample apps for this book, including CSS and
associated graphics, from the book’s site at manning.com/gsmith.

It’s time to get started with our world-changing Web 2.0 quotation app, and all
Grails projects begin the same way. First, find a directory to work in. Then create the
application:

grails create-app qotd
cd qotd

Well done. You’ve created your first Grails application. You’ll see that Grails created a
qotd subdirectory to hold our application files. Change to that directory now, and
we’ll stay there for the rest of this discourse.

 Because we’ve done all the hard work of building the application, it’d be a shame
not to enjoy the fruit of our labor. Let’s give it a run:

grails run-app

Grails ships with a copy of Jetty (an embeddable Java web server—there is talk that a
future version will switch to Tomcat), which Grails uses to host your application during
the development and testing lifecycle. When you run the grails run-app command,
Grails will compile and start your web application. When everything is ready to go,
you’ll see a message like this on the console:

Server running. Browse to http://localhost:8080/qotd

This means it’s time to fire up your favorite browser and take your application for a
spin: http://localhost:8080/qotd/. Figure 2 shows our QOTD application up and run-
ning in a browser.

 Once you’ve taken in the home page, you can stop the application by pressing Ctrl-
C. Or you can leave it running and issue Grails commands from a separate console
window in your operating system.

Running on a custom port (not 8080)
If port 8080 is just not for you (because perhaps you have another process running
there, like Tomcat), you can customize the port that the Grails embedded application
server runs on using the -Dserver.port command-line argument. If you want to run
Grails on port 9090, for instance, you could run your application like this:

grails -Dserver.port=9090 run-app

If you decide to always run a particular application on a custom port, you can create
a custom /grails-app/conf/BuildConfig.groovy file with an entry for grails.server.
port.http=9090 to make your custom port the default. Or make a system-wide
change by editing the global $HOME/.grails/settings.groovy file.

manning.com/gsmith

55Our sample program: a Web 2.0 QOTD
Writing your first controller

We have our application built and deployed, but we’re a little short on an engaging
user experience. Before we go too much further, now’s a good time to learn a little
about how Grails handles interaction with the user—that’s via a controller.

 Controllers are at the heart of every Grails application. They take input from your
user’s web browser, interact with your business logic and data model, and route the
user to the correct page to display. Without controllers, your web app would be a
bunch of static pages.

 Like most parts of a Grails application, you can let Grails generate a skeleton con-
troller by using the Grails command line. Let’s create a simple controller for handling
quotes:

grails create-controller quote

Figure 2 Our first app is up and running.

56 Rapid application development using Grails
Grails will respond by telling you the artifacts it has generated:

| Created file grails-app/controllers/qotd/QuoteController.groovy
| Created file grails-app/views/quote
| Created file test/unit/qotd/QuoteControllerTests.groovy

Grails will create this skeleton controller in /grails-app/controllers/qotd/QuoteCon-
troller.groovy. You’ll notice that Grails sorted out the capitalization for you. The basic
skeleton is shown in listing 1.

package qotd

class QuoteController {
 def index() { }
}

Not so exciting, is it? The index entry in listing 1 is a Grails action, which we’ll return
to in a moment. For now, let’s add a home action that sends some text back to the
browser—it’s shown in listing 2.

package qotd

class QuoteController {
 def index() { }

 def home() {
 render "<h1>Real Programmers do not eat Quiche</h1>"
 }
}

Grails provides the render() method to send content directly back to the browser.
This will become more important when we dip our toes into Ajax waters, but for now
let’s use it to deliver our “Real Programmers” heading.

Listing 1 Our first quote controller

Listing 2 Adding some output

A Word on Package Naming
If you omit the package name for a Grails artifact, it will default to the name of the
app (in the example above if we simply do a “grails create-controller quote”, it will
create an artifact called /grails-app/qotd/QuoteController.groovy).

For production code, the Grails community has settled on the standard Java-based
convention where your artifacts should be created with your org domain name. Grails
lets you change the default package name for your app in /grails-app/conf/Con-
fig.groovy. For our featured example, I would change the setting in that file to read:

grails.project.groupId = "com.grailsinaction.qotd"

With the new setting in play, when I do a “grails create-controller quote” it will create
the class in /grails-app/controller/com/grailsinaction/qotd/QuoteController.groovy.
It’s a great keysaver change to make at the start of a new Grails project.

57Our sample program: a Web 2.0 QOTD
 How do we invoke our action in a browser? If this were a Java web application, the
URL to get to it would be declared in a configuration file, but not in Grails. This is
where we need to introduce you to the Convention over Configuration pattern.

 Ruby on Rails introduced the idea that tons of XML configuration (or configura-
tion of any sort) can be avoided if the framework makes some opinionated choices for
you about how things will fit together. Grails embraces the same philosophy. Because
our controller is called QuoteController, Grails will expose its actions over the URL /
qotd/quote/youraction. The following gives a visual breakdown of how URLs translate
to Grails objects.

In the case of our hello action, we’ll need to navigate to this URL:

http://localhost:8080/qotd/quote/home

Figure 3 shows our brand new application up and running, without a single line of
XML.

 If you were wondering about that index() routine in listing 1, that’s the method
that’s called when the user omits the action name. If we decide that all references to
/qotd/quote/ should end up at /qotd/quote/home, we need to tell Grails about
that with an index action, like the one in listing 3.

package qotd

class QuoteController {
 def index() {
 redirect(action: "home")
 }

 def home() {
 render "<h1>Real Programmers do not eat Quiche</h1>"
 }
}

Listing 3 Handling redirects

Figure 3 Adding our first
bit of functionality

58 Rapid application development using Grails
It’s looking pretty good so far, but it’s pretty nasty to have that HTML embedded in our
source. Now that we’ve learned a little about controllers, it’s time to get acquainted
with views.

Writing stuff out: the view

Embedding HTML inside your code is always a bad idea. Not only is it difficult to read
and maintain, but your graphic designer will need access to your source code in order
to design the pages. The solution is to move your display logic out to a separate file,
which is known as the view, and Grails makes it simple.

 If you’ve done any work with Java web applications, you’ll be familiar with Java-
Server Pages (JSP). JSPs render HTML to the user of your web application. Grails appli-
cations, conversely, make use of Groovy Server Pages (GSP). The concepts are quite
similar.

 We’ve already discussed the Convention over Configuration pattern, and views
take advantage of the same stylistic mindset. If we create our view files in the right
place, everything will hook up without a single line of configuration.

 First, in listing 4, we implement our random action. Then we’ll worry about the view.

def random() {
 def staticAuthor = "Anonymous"
 def staticContent = "Real Programmers don't eat much quiche"
 [author: staticAuthor, content: staticContent]
}

What’s all that square bracket-ness? That’s how the controller action passes informa-
tion to the view. If you’re an old-school servlet programmer, you might think of it as
request-scoped data. The [:] operator in Groovy creates a Map, so we’re passing a
series of key/value pairs through to our view.

 Where does our view fit into this, and where will we put our GSP file so that Grails
knows where to find it? We’ll use the naming conventions we used for the controller,
coupled with the name of our action, and we’ll place our GSP in /grails-app/views/
quote/random.gsp. If we follow that pattern, there’s no configuration required.

 Let’s create a GSP file and see how we can reference our Map data, as shown in
listing 5.

<html>
<head>
 <title>Random Quote</title>
</head>
<body>
 <q>${content}</q>
 <p>${author}</p>
</body>
</html>

Listing 4 A random quote action

Listing 5 Implementing our first view

59Our sample program: a Web 2.0 QOTD
The ${content} and ${author} format is known as the GSP Expression Language,
and if you’ve ever done any work with JSPs, it will probably be old news to you. If you
haven’t worked with JSPs before, you can think of those ${} tags as a way of displaying
the contents of a variable. Let’s fire up the browser and give it a whirl. Figure 4 shows
our new markup in action.

Adding some style with Grails layouts

We now have our first piece of backend functionality written. But the output isn’t
engaging—there are no gradients, no giant text, no rounded corners. Everything
looks pretty mid-90s.

 You’re probably thinking it’s time for some CSS action, but let’s plan ahead a little.
If we mark up random.gsp with CSS, we’re going to have to add those links to the
header of every page in the app. There’s a better way: Grails layouts.

 Layouts give you a way of specifying layout templates for certain parts of your appli-
cation. For example, we might want all of the quote pages (random, by author, by
date) to be styled with a common masthead and navigation links; only the body con-
tent should change. To do this, let’s first mark up our target page with some IDs that
we can use for our CSS. This is shown in listing 6.

<html>
<head>
 <title>Random Quote</title>
</head>
<body>
 <div id="quote">
 <q>${content}</q>
 <p>${author}</p>
 </div>
</body>
</html>

Now, how can we apply those layout templates (masthead and navigation) we were dis-
cussing earlier? Like everything else in Grails, layouts follow a Convention over Con-
figuration style. To have all our QuoteController actions share the same layout, we’ll

Listing 6 Updating the view

Figure 4 Our first
view in action

60 Rapid application development using Grails

Mer
eleme

tar
create a file called /grails-app/views/layouts/quote.gsp. There are no Grails shortcuts
for layout creation, so we’ve got to roll this one by hand. Listing 7 shows our first
attempt at writing a layout.

<html>
 <head>
 <title>QOTD » <g:layoutTitle/></title>
 <link rel="stylesheet" href="
 <g:createLinkTo dir='css' file='snazzy.css' />
 " />
 <g:layoutHead />
 <r:layoutResources />
 </head>
 <body>
 <div id="header">
 <img src="
 <g:createLinkTo dir='images' file='logo.png'/>
 " alt="logo"/>
 </div>
 <g:layoutBody />
 </body>
</html>

That’s a lot of angle brackets—let’s break it down. The key thing to remember is that
this is a template page, so the contents of our target page (random.gsp) will be merged
with this template before we send any content back to the browser. Under the hood,
Grails is using SiteMesh, the popular Java layout engine, to do all of that merging for
you. The general process for how SiteMesh does the merge is shown in figure 5.

 In order for our layout template in listing 7 to work, it needs a way of accessing ele-
ments of the target page (when we merge the title of the target page with the tem-
plate, for example). That access is achieved through Grails’ template taglibs, so it’s
probably time to introduce you to the notion of taglibs in general.

 If you’ve never seen a tag library (taglib) before, think of it as groups of custom
HTML tags that can execute code. In list-
ing 7, we took advantage of the g:cre-
ate-LinkTo, g:layoutHead, and
g:layoutBody tags. When the client’s
browser requests the page, Grails
replaces all of those tag calls with real
HTML, and the contents of the HTML
will depend on what the individual tag
generates. For instance, that first cre-
ate-LinkTo tag C will end up generat-
ing a link fragment like /qotd/css/
snazzy.css.

Listing 7 Adding a layout

Merges title
from our
target page

B

Creates
relative link
to CSS fileCges head

nts from
get page D

Merges in
JavaScript,
CSS, and other E

Merges body elements
from target pageF

Figure 5 SiteMesh decorates a raw GSP file with
a standard set of titles and sidebars

61Creating the domain model
 In the title block of the page, we include our QOTD title and then follow it with
some chevrons (>>) represented by the HTML character code », and then add
the title of the target page itself B.

 After the rest of the head tags, we use a layoutHead call to merge the contents of
the HEAD section of any target page D. This can be important for search engine opti-
mization (SEO) techniques, where individual
target pages might contain their own META tags
to increase their Google-ability.

 Finally, we get to the body of the page. We
output our common masthead div to get our
Web 2.0 gradient and cute icons, and then we
call <g:layoutBody> to render the BODY section
of the target page E.

 Let’s refresh our browser to see how we’re
doing. Figure 6 shows our styled page.

Our app is looking good. Notice how we’ve made no changes to our relatively bland
random.gsp file. Keeping view pages free of cosmetic markup reduces your mainte-
nance overhead significantly. And if you need to change your masthead, add some
more JavaScript includes, or incorporate a few additional CSS files. You do it all in one
place: the template.

 Fantastic. We’re up and running with a controller, view, and template. But things
are still pretty static in the data department. We’re probably a little overdue to learn
how Grails handles stuff in the database. Once we have that under our belt, we can cir-
cle back and implement a real random action.

Creating the domain model
We’ve begun our application, and we can deploy it to our testing web container. But
let’s not overstate our progress—Google isn’t about to buy us just yet. Our app lacks a
certain pizzazz. It’s time to add some interactivity so that our users can add new quota-
tions to the database. To store those quotations, we’re going to need to learn how
Grails handles the data model.

 Grails uses the term “domain class” to describe those objects that can be persisted
to the database. In our QOTD app, we’re going to need a few domain classes, but let’s
start with the absolute minimum: a domain class to hold our quotations.

Getting the CSS and Artwork
If you’re following along step-by-step at your workstation, I’m sure you’ll be keen to
grab the CSS and image files that go along with the styling above (so your local app
can look just the same). You can grab the few files that you need (/web-app/css/
snazzy.css and /web-app/images/) directly from the source code that you can down-
load from the book website at manning.com/gsmith.

Figure 6 QOTD with some funky CSS
skinning

manning.com/gsmith

62 Rapid application development using Grails
 Let’s create a Quote domain class:

grails create-domain-class quote

You’ll see that Grails responds by creating a fresh domain class, and a matching unit
test to get you started:

| Created file grails-app/domain/qotd/Quote.groovy
| Created file test/unit/qotd/QuoteTests.groovy

In your Grails application, domain classes always end up under /grails-app/domain.
Take a look at the skeleton class Grails has created in /grails-app/domain/qotd/
Quote.groovy:

package qotd

class Quote {

 static constraints = {
 }
}

That’s pretty uninspiring. We’re going to need some fields in our data model to hold
the various elements for each quote. Let’s beef up our class to hold the content of the
quote, the name of the author, and the date the entry was added, as shown in listing 8.

package qotd

class Quote {
 String content
 String author
 Date created = new Date()

 static constraints = {
 }

}

Now that we’ve got our data model, we need to go off and create our database
schema, right? Wrong. Grails does all that hard work for you behind the scenes. Based
on the definitions of the types in listing 8, and by applying some simple conventions,
Grails creates a quote table, with varchar fields for the strings, and Date fields for the
date. The next time we run grails run-app, our data model will be created on the fly.

 But how will it know which database to create the tables in? It’s time to configure a
data source.

Configuring the data source

Grails ships with an in-memory database out of the box, so if you do nothing, your data
will be safe and sound in volatile RAM. The idea of that makes most programmers a lit-
tle nervous, so let’s look at how we can set up a database that’s a little more persistent.

Listing 8 Our first domain class with teeth

63Creating the domain model

Spe
in-m

d

Spec
 In your /grails-app/conf/ directory, you’ll find a file named DataSource.groovy.
This is where you define the data source (database) that your application will use—
you can define different databases for your development, test, and production envi-
ronments. When you run grails run-app to start the local web server, it uses your
development data source. Listing 9 shows an extract from the standard DataSource
file, which shows the default data source.

development {
 dataSource {
 dbCreate = "create-drop"
 url = " jdbc:h2:mem:devDb;MVCC=TRUE;LOCK_TIMEOUT=10000"
 }
}

We have two issues here. The first is that the dbCreate strategy tells Grails to drop and
re-create your database on each run. This is probably not what you want, so let’s
change that to update, so Grails knows to leave our database table contents alone
between runs (but we give it permission to add columns if it needs to).

 The second issue relates to the URL—it’s using an H2 in-memory database (see
www.h2database.com for more info about H2 databases). That’s fine for test scripts,
but not so good for product development. Let’s change it to a file-based version of H2
so we have some real persistence.

 Our updated file is shown in listing 10.

development {
 dataSource {
 dbCreate = "update"
 url = " jdbc:h2:devDb;MVCC=TRUE;LOCK_TIMEOUT=10000"
 }
}

Now we have a database that’s persisting our data, so let’s look at how we can populate
it with some sample data.

Exploring database operations

We haven’t done any work on our user interface yet, but it would be great to be able to
save and query entries in our quotes table. To do this for now, we’ll use the Grails con-
sole—a small GUI application that will start your application outside of a web server
and give you a console to issue Groovy commands.

 You can use the grails console command to tinker with your data model before
your app is ready to roll. When we issue this command, our QOTD Grails application is
bootstrapped, and the console GUI appears, waiting for us to enter some code.
Figure 7 shows saving a new quote to the database via the console.

Listing 9 Data source definition—in memory

Listing 10 Data source definition—persistent

Re-creates database
on every runcifies an

emory
atabase

Preserves tables
between runsifies file-

based
database

www.h2database.com

64 Rapid application development using Grails
For our first exploration of the data model, it would be nice to create and save some
of those Quote objects. Type the following into the console window, and then click the
Run button (at the far right of the toolbar):

new qotd.Quote(author: 'Larry Wall',
 content: 'There is more than one method to our madness.').save()

The bottom half of the console will let you know you’re on track:

Result: qotd.Quote : 1

Where did that save() routine come from? Grails automatically endows domains with
certain methods. Let’s add a few more entries, and we’ll get a taste of querying:

new qotd.Quote(author: 'Chuck Norris Facts', content: 'Chuck Norris always
uses his own design patterns, and his favorite is the Roundhouse
Kick').save()

new qotd.Quote(author: 'Eric Raymond', content: 'Being a social outcast helps
you stay concentrated on the really important things, like thinking and
hacking.').save()

Let’s use another one of those dynamic methods (count()) to make sure that our
data is being saved to the database correctly:

println qotd.Quote.count()
3

Looks good so far. It’s getting a bit tedious typing in that qotd package name before
every command, so let’s put an import into our script so we can cut down on the boil-
erplate and get on with business:

Figure 7 The Grails console lets your run commands from a GUI.

65Adding UI actions

m quote
import qotd.*
println Quote.count()
3

Much clearer. Next it’s time to roll up our sleeves and do some querying on our Quote
database. To simplify database searches, Grails introduces special query methods on
your domain class called dynamic finders. These special methods utilize the names of
fields in your domain model to make querying as simple as this:

import qotd.*
def quote = Quote.findByAuthor("Larry Wall")
println quote.content
There is more than one method to our madness.

Now that we know how to save and query, it’s time to start getting our web application
up and running. Exit the Grails console, and we’ll learn a little about getting those
quotes onto the web.

Adding UI actions
Let’s get something on the web. First, we’ll need an action on our QuoteController to
return a random quote from our database. We’ll work out the random selection later—
for now, let’s cut some corners and fudge our sample data, as shown in listing 11.

def random() {
 def staticQuote = new Quote(author: "Anonymous",
 content: "Real Programmers Don't eat quiche")
 [quote : staticQuote]
}

We’ll also need to update our /grails-app/views/quote/random.gsp file to use our
new Quote object:

<q>${quote.content}</q>
<p>${quote.author}</p>

There’s nothing new here, just a nicer data model. This would be a good time to
refresh your browser and see our static quote being passed through to the view. Give it
a try to convince yourself it’s all working.

 Now that you have a feel for passing model objects to the view, and now that we
know enough querying to be dangerous, let’s rework our action in listing 12 to imple-
ment a real random database query.

def random() {
 def allQuotes = Quote.list()
 def randomQuote
 if (allQuotes.size() > 0) {
 def randomIdx = new Random().nextInt(allQuotes.size())
 randomQuote = allQuotes[randomIdx]

Listing 11 Random refactored

Listing 12 A database-driven random query

Obtains list of quotesB

Selects randoC

66 Rapid application development using Grails

uote

 } else {
 randomQuote = new Quote(author: "Anonymous",
 content: "Real Programmers Don't eat Quiche")
 }
 [quote : randomQuote]
}

With our reworked random action, we’re
starting to take advantage of some real
database data. The list() method B will
return the complete set of Quote objects
from the quote table in the database and
populate our allQuotes collection. If
there are any entries in the collection, we
select a random one C based on an
index into the collection; otherwise, we
use a static quote D. With all the heavy
lifting done, we return a randomQuote
object to the view in a variable called
quote E, which we can access in the GSP file.

 Now that we’ve got our random feature implemented, let’s head back to http://
localhost:8080/qotd/quote/random to see it in action. Figure 8 shows our random
feature in action.

Scaffolding: just add rocket fuel

We’ve done all the hard work of creating our data model. Now we need to enhance
our controller to handle all the CRUD actions to let users put their own quotes in the
database.

 That’s if we want to do a slick job of it. But if we want to get up and running
quickly, Grails offers us a fantastic shortcut called scaffolding. Scaffolds dynamically
implement basic controller actions and views for the common things you’ll want to do
when CRUDing your data model.

 How do we scaffold our screens for adding and updating quote-related data? It’s a
one-liner for the QuoteController, as shown in listing 13.

class QuoteController {
 static scaffold = true
 // our other stuff here...
}

That’s it. When Grails sees a controller marked as scaffold = true, it goes off and cre-
ates some basic controller actions and GSP views on the fly. If you’d like to see it in
action, head over to http://localhost:8080/qotd/quote/list and you’ll find something
like the edit page shown in figure 9.

Listing 13 Enabling scaffolding

Generates default qD

Passes quote to the viewE

Figure 8 Our random quote feature in action

67Adding UI actions
Click the New Quote button, and you’ll be up and running. You can add your new
quote as shown in figure 10.

 That’s a lot of power to get for free. The generated scaffolds are probably not tidy
enough for your public-facing sites, but they’re absolutely fantastic for your admin
screens and perfect for tinkering with your database during development (where you
don’t want the overhead of mocking together a bunch of CRUD screens).

Figure 9 The list() scaffold in action

Figure 10 Adding a quote has never been easier.

68 Rapid application development using Grails
Surviving the worst case scenario

Our model is looking good and our scaffolds are great, but we’re still missing some
pieces to make things a little more robust. We don’t want users putting dodgy stuff in
our database, so let’s explore some validation.

 Validation is declared in our Quote object, so we just need to populate the con-
straints closure with all the rules we’d like to apply. For starters, let’s make sure that
users always provide a value for the author and content fields, as shown in listing 14.

class Quote {
 String content
 String author
 Date created = new Date()
 static constraints = {
 author(blank:false)
 content(maxSize:1000, blank:false)
 }
}

These constraints tell Grails that neither author nor content can be blank (neither
null nor 0 length). If we don’t specify a size for String fields, they’ll end up being
defined VARCHAR(255) in our database. That’s probably fine for author fields, but our
content may expand on that a little. That’s why we’ve added a maxSize constraint.

 Entries in the constraints closure also affect the generated scaffolds. For exam-
ple, the ordering of entries in the constraints closure also affects the order of the
fields in generated pages. Fields with constraint sizes greater than 255 characters are
rendered as HTML TEXTAREAs rather than TEXT fields. Figure 11 shows how error mes-
sages display when constraints are violated.

Listing 14 Adding basic validation

Enforces
data
validation

Figure 11
When constraints
are violated, error
messages appear
in red.

69Summary and best practices
Summary and best practices
Congratulations, you’ve written and deployed your first Grails app, and now you have
a feel for working from scratch to completed project. The productivity rush can be
quite addictive.

 Here are a few key tips you should take-away from this discussion:

 Rapid iterations are key. The most important take-away is that Grails fosters rapid
iterations to get your application up and running in record time, and you’ll
have a lot of fun along the way.

 Noise reduction fosters maintenance and increases velocity. By embracing Convention
over Configuration, Grails gets rid of tons of XML configuration that used to kill
Java web frameworks.

 Bootstrapping saves time. For the few cases where you do need scaffolding code
(for example, in UI design), Grails generates all the shell boilerplate code to get
you up and running. This is another way Grails saves you time.

