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Abstract

Demand for spring onion seeds is variable and maintaining its supply is crucial to the suc-

cess of seed companies. Spring onion seed demand forecasting, which can help reduce the

high operational costs increased by long-period propagation and complex logistics, has not

previously been investigated yet. This paper provides a novel perspective on spring onion

seed demand forecasting and proposes a hybrid Holt-Winters and support vector machine

(SVM) forecasting model. The model uses dynamic factors, including historical seed sales,

seed inventory, spring onion crop market price and weather data, as inputs to forecast

spring onion seed demand. Forecasting error, i.e. the difference between actual and fore-

casted demand, is assessed. Two advanced machine learning models are trained on the

same dataset as benchmark models. Numerical experiments using actual commercial sales

data for three spring onion seed varieties show the proposed hybrid model outperformed the

statistical-based models for all three forecasting errors. Seed inventory, spring onion crop

market price and historical seed sales are the most important dynamic factors, among

which seed inventory has short-term influence while other two have mid-term influence on

seed demand forecasting. The absolute minimum temperature is the only factor having

long-term influence. This study provides a promising spring onion seed demand forecasting

model that helps understand the relationships between seed demand and other dynamic

factors and the model could potentially be applied to demand forecasting of other crop

seeds to reduce total operational costs.

Introduction

Spring onion (Allium fistulosum L., also known as Welsh onion or scallion) probably origi-

nated in north-western China and is widely cultivated throughout South-East Asia and

Europe. Spring onion maintains vegetative growth all year round, except in winter, and is

commercially grown as an annual that is usually sown and/or transplanted as seedlings in early

spring, summer or autumn. The majority of spring onion seeds are bought by seedling compa-

nies, agents or growers’ cooperatives.
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There is large demand for spring onion seeds in China. Seed companies aim to provide a

reliable supply of seed in the right quantities at the right time to growers. However, seed pro-

curement, storage, packaging and logistics are complicated because of various reasons such as

marketing, supply chain and seed deterioration. They require seed companies use significant

manpower and finance to maintain their inventory to satisfy their customers, which leads to

high operational costs. Moreover, it usually takes three years to propagate spring onion seeds

from the parent plant, highlighting the importance of demand forecasting during seed produc-

tion planning. Therefore, accurate demand forecasting is crucial for inventory control, in

order to reduce operational costs and ensure market share growth for seed companies, as well

as ensuring sufficient seed supply for customers and growers. It is essential for seed companies

to develop more accurate demand forecasting methods for spring onion seeds (Fig 1).

Since 1990, both empirical and statistical-based models have been developed in an attempt

to forecast demand for a variety of crop seeds and other agricultural products. However, the

performance of these models varies dramatically from case to case, as various factors affect

demand, such as weather conditions, crop prices, seed inventory, and even growers’ prefer-

ences [1].

Although the term ‘demand’ is used when referring to forecasting in this paper, the actual

demand is usually considered unknown and sales information is used as an approximation of

demand [2]. Thus, sales information is used to forecast future demand, and the terms

‘demand’ and ‘sales’ are used interchangeably.

Since demand forecasting problems were first proposed and studied in 1970’s, numerous

statistical-based models such as autoregressive integrated moving average (ARIMA), seasonal

ARIMA [3], Holt-Winters [4] and other regression models have been developed. Many

researchers have attempted to forecast demand in agriculture using time-series and statistical-

based models, such as models for forecasting wheat production [5] or rice yield [6] based on

historical yield and weather data. The forecasting errors were 32.5%-41.6% and 23.6%-25.7%,

respectively. Naidu (2015) used historical sales data and an ARIMA model to forecast whole-

sale data for potato and onion crops, for which the forecasting errors were 28.30% and 29.51%,

respectively [7]. Da Veiga et al. (2014) found the Holt-Winters model performed well for fore-

casting the food demand [8]. The forecasting errors were 14.97%-15.66% among various prod-

ucts. Researches showed that the forecasting performance of statistical-based models is

unstable when applied to actual data, as statistical-based models employ hard computing

based on exact models, and most are based on linear analysis [9]. However, the demand for

agricultural products is usually affected by many non-linear factors, which can significantly

reduce the accuracy of statistical-based models.

The use of advanced machine learning models in forecasting has developed rapidly. For

example, an artificial neural network (ANN) was used to forecast water resource variables in

river systems [10]. The forecasting errors were smaller than 18.00% and the authors suggested

the input independence should be high in order to reduce model outputs uncertainty. Fuzzy

rule-based systems were used to predict storage times for pork based on five pork quality

parameters with the forecasting accuracy of 93.93%-94.41% [11]. A random forest (RF) model

was used to predict sugarcane yield based on simulated biomass indices, observed climate and

seasonal climate prediction indices [12]. The forecasting accuracy reached 95.45%. A support

vector machine (SVM) approach was used to forecast sales of five computer products based on

weekly sales data and the forecasting errors were 4.09%-8.62% [13]. Compared with statistical-

based models, whose forecasting error is difficult to be lower than 20%, all these advanced

machine learning models have demonstrated better performance in terms of forecasting error

or accuracy within their specific contexts.
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The non-linearity of ANN models, which are simulated from biological systems, enables

more accurate demand forecasting compared to statistical-based models [14]. Several

researchers have used advanced machine learning models to address agricultural forecasting

problems. Co and Boosarawongse (2007) found an ANN performed well in forecasting the

weekly export price of Thai rice, but could not explain how agricultural and environmental

factors influence the price of rice [15]. In general, the accuracy and robustness of statistical-

based models in agricultural contexts vary dramatically from case to case, and advanced

machine learning models generally outperform statistical-based models in most cases. How-

ever, Fortin et al. (2011) suggested advanced machine learning models may not replace previ-

ous statistical-based models, and a good forecasting model should not completely abandon

statistical methods [16].

The SVM approach was first proposed as a new statistical learning tool for pattern classifi-

cation by Boser et al. in 1992 [17]. SVM models have achieved higher accuracy and provided

global optimal solutions with fewer over-fitting problems than ANN models in many areas of

research [18]. Unlike ANN models, which follow the empirical risk minimization principle,

SVM models try to minimize the upper bound of the generalization error rather than minimiz-

ing the training error; this approach is called the structural risk minimization principle. SVM

models offer the advantage of converting complex nonlinear regression problems into linear

Fig 1. Spring onion seed demand forecasting methodology and its importance. The left side shows the relationships between demand forecasting and

other processes. The right side shows the hybrid Holt-Winters (HW) and support vector machine (SVM) demand forecasting methodology proposed in

this study.

https://doi.org/10.1371/journal.pone.0219889.g001
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regression problems in high dimensional feature space, which is useful for forecasting prob-

lems [13].

Since the introduction of the ε-insensitive loss function, SVM models have been extended

to solve regression problems and become another important tool for forecasting problems

[19]. Many studies of demand forecasting in areas outside agriculture have demonstrated the

outstanding performance of SVM models based on different kernel functions compared to

ANN models and other models [20]. Kumar and Thenmozhi (2014) also found SVM models

outperformed other models and stated SVM have excellent capability to be used to create

hybrid forecasting models with statistical-based models [21]. In agricultural research, SVM

has been widely applied in image and sensor data detection [22]. However, SVM applications

have not yet been reported for crop product or seed demand forecasting.

Spring onion seed demand forecasting has huge impact on the seed processing and market-

ing. Thus, the main objective of this paper is to compare the performances of statistical-based

methods (ARIMA and Holt-Winters), advanced machine learning methods (ANN, random

forest and SVM) and the hybrid model in forecasting the demand for spring onion seeds based

on dynamic factors including historical sales, seed inventory, spring onion price and weather

data. Secondly, the optimal and most accurate method for spring onion seed demand forecast-

ing is proposed and the influences of dynamic factors on forecasting are discussed. Finally, the

contributions, perspectives and remarks are presented.

Materials and methods

ARIMA model

The ARIMA model, also known as the Box-Jenkins model [3], has been a popular forecasting

model since the late 1970’s. The key hypothesis in the ARIMA model is that the future value of the

time series is a linear combination of past values and errors. The model is expressed as follows:

Dt ¼ a0 þ a1Dt� 1 þ a2Dt� 2 þ � � � þ apDt� p
þεt � b1εt� 1 � b2εt� 2 � � � � � bqεt� q

ð1Þ

where,Dt is the actual value of demand and εt is the random error at time t, ai and bi are coeffi-

cients, and p and q are integers called the autoregressive and moving average parameters, respec-

tively. The ARIMA model is a linear data-based approach that adapts parameters from the actual

time series data. Therefore, non-linearity in the data significantly affects the performance of the

ARIMA model; hybrid ARIMA and advanced machine learning models are widely proposed to

be able to deal with non-linear data [23].

Holt-Winters model

The Holt-Winters model is a speculation smoothing-based forecasting technique proposed in

1960 by Holt and Winters [24]. Unlike ARIMA, which uses parameters in the equations to

address the seasonal trend in the original data, Holt’s linear equations have a built-in seasonal

factor equation that can capture the seasonality directly. The Holt-Winters model is widely

applied to time series that show seasonal increases and decreases. Three smoothing equations

are designed to calculate and estimate the deseasonalized series, trend and seasonal factors.

Unlike ARIMA, Holt-Winters forecast values are generated from iterative steps, instead of cal-

culations based on fitting to statistical models. There are two methods of seasonal factor

modeling: additive and multiplicative Holt-Winters models. Although the multiplicative Holt-

Winters (mul-HW) model cannot be utilized on data with null or negative values, it is incom-

patible with ARIMA and necessary to use. Nevertheless, the additive trend and seasonality
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found by the additive Holt-Winters model are covered by the output of ARIMA models [25]

and it is not considered. The multiplicative Holt-Winters equations are:

Series : St ¼ a
Dt
ct� N
þ ð1 � aÞðSt� 1 þ Gt� 1Þ ð2Þ

trend : Gt ¼ bðSt � St� 1Þ þ ð1 � bÞGt� 1 ð3Þ

Seasonal factors : ct ¼ g
Dt
St
þ ð1 � gÞct� N ð4Þ

Forecast : ftþm ¼ ðSt þ GtmÞct� Nþm ð5Þ

where, N is the length of the seasonal cycle, Dt is the actual value of demand, St is the deseaso-

nalized series, Gt is the trend, ct is the seasonal factor, ft+m is the forecast value form periods

ahead, and α, β and γ are smoothing constants that are theoretically between 0 and 1. Since

there are no general rules for choosing the smoothing constants and large smoothing constants

will result in less stable forecasts, the optimal values are obtained via iteration by minimizing

the squared one-step prediction error [26].

SVM model

As previously stated, SVM models are based on the structural risk minimization principle, and

attempt to minimize the upper bound of the generalization error rather than minimizing the

training error [13]. SVM maps data in a non-linear manner onto a high-dimensional feature

space and conducts linear regression in this space. The regression function is:

y ¼ ωφðXÞ þ b ð6Þ

where, φ(X) is the feature for which data are non-linearly mapped into space X. The coeffi-

cients ω and b are estimated by minimizing the risk function, R(C):

Minimize RðCÞ ¼ C
1

N

XN

i¼1

Lεðdi; yiÞ þ
1

2
kωk2

ð7Þ

s:t: Lεðd; yÞ ¼
jd � yj � ε; jd � yj � ε

0; jd � yj < ε
ð8Þ

(

where, di is the actual demand value in period i, N is the length of total data. C is the regular-

ized constant determining the trade-off between the empirical error and the regularization

term, and ε is a prescribed parameter that determines the upper bound of the error penalty.

Lε(d,y) is called the ε-insensitive loss function. The first term in Eq (7) is the empirical error

and the second term is used to measure the function flatness.

By introducing Lagrange multipliers, αi, αi
�

(αiαi
�

= 0, αi, αi
�

� 0), and letting the partial

derivatives of ω, b and zi
�

equal zero, the problem can be expressed as:

Maximize Rðai � a�i Þ ¼
XN

i¼1

diðai � a
�

i Þ � ε
XN

i¼1

ðai þ a
�

i Þ

�
1

2

XN

i¼1

XN

j¼1

ðai � a
�

i Þðaj � a
�

j Þ � KðXi;XjÞ

ð9Þ
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s:t:
XN

i¼1

ðai � a
�

i Þ ¼ 0;

ai; a
�
i 2 ½0;C�; ai � a

�
i ¼ 0;

i ¼ 1; 2; . . . ;N:

ð10Þ

where, K(Xi, Xj) = φ(Xi) φ(Xj) is called the kernel function. The basic advantage of using a ker-

nel function is avoidance of the problem of seeking and performing mapping φ(X). Hence,

applying kernel functions gives the solution directly, regardless of the actual mapping. Note

that any function that satisfies Mercer’s condition can be used as the kernel function [19].

Finally, the regression function from Eq (6) can formulated explicitly, as:

y ¼ f ðX; ai; a
�

i Þ ¼
XN

i¼1

ðai � a
�

i Þ � KðX;XiÞ þ b ð11Þ

There are various Kernel functions: including linear, radial basis and polynomial. The linear

kernel (K(Xi, Xj) = Xi � Xj), the simplest, is equivalent to a statistical autoregressive model. The

radial basis function, (RBF) kernel (K(Xi, Xj) = exp(-γkXi—Xjk2), γ> 0 is a free parameter),

evaluates the similarity of two samples based on their Euclidian distance, is used to find outli-

ers in a time series, and has proven promising in time series forecasting [27]. The polynomial

kernels (K(Xi, Xj) = (Xi � Xj + C)d, where integer d is the degree of the kernel function, deter-

mined before model training) are extremely useful in non-linear data training. Low-degree

polynomial kernels tend to save computing time without sacrificing accuracy while high-

degree polynomial kernels require more computing time yet cannot promise to increase accu-

racy. Since d = 1 is equivalent to linear kernel, d is usually set to 2, and is generally smaller than

5 [28].

Training and testing datasets

Commercial spring onion seed sales exhibit complex trends that are affected by biological, sea-

sonal and economic factors. However, seed companies usually only have limited datasets for

seed demand forecasting. Firstly, only monthly spring onion seed sales data are generally avail-

able. Secondly, seed procurement occurs during specific windows of time, as different varieties

have different growth cycles (i.e. the planting times in each year; e.g. March, June and Septem-

ber for one variety, and May, August and October for another variety) and seed inventories.

Thus, these seasonal trends present as seasonal peaks and valleys in monthly sales data. It is

worth noting that different varieties of spring onion may have different seasonal trends. For

example, seed variety A may have peak sales between September and November, whereas vari-

ety B may have peak sales in March. Thirdly, both seed price and spring onion crop market

price influence seed sales. However, the seed prices of different spring onion varieties will

remain similar if the seed company has a fixed seed procurement plan [29]. Nevertheless,

spring onion seed sales are influenced by fluctuating spring onion crop market prices [30].

Last but not the least, while data on the climate and weather at the production sites, including

monthly temperature (average, absolute maximum and minimum) and precipitation are avail-

able, the correlations between these meteorological data and seed demand are unclear.

In this study, monthly sales data for three varieties of spring onion seeds between August

2011 and December 2016 from one of the vegetable seed companies in China are selected for

numerical experiments. These three varieties of spring onion combined have covered more

than 85% of the sales amount of spring onion seed in the company. The authors have obtained

Spring onion seed demand forecasting using a hybrid model
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the consent of the company to publicly use these data. The detailed sales data is presented in

Fig 2 and S1 Table. The seed inventory data is presented in S2 Table. The varieties are named

as A, B and C. The three varieties represent three different types of spring onion seed demand:

variety A has high annual demand that increases yearly, variety B has high annual demand that

barely increases yearly, and variety C has relatively low annual demand that increases yearly.

Since variety A has a different growth cycle (one-year rotation cycle starting in January) to the

two other varieties (one-year rotation cycles starting in August), the data from August 2011 to

July 2016 were used as a training set and the remaining data (August to December 2016) were

employed as the testing set to measure forecasting performance. Standard leave-one-out or

10-fold cross-validation could not be used as the data are time-series based; forecasting of the

future could only depend on historical data. The spring onion crop market price data was

obtained from the Chinese agriculture information website (jgsb.agri.cn), which monitors the

price of agricultural products every month. The meteorological data of Shanghai, where the

production sites located, were obtained from the Chinese weather data website (data.cma.cn).

These data are listed in S3 Table.

Hybrid modeling

Although the basic idea of time series forecasting is to investigate patterns in the historical data

and predict future trends, variables like sales can be influenced by one or more dynamic fac-

tors. To address the influence from dynamic factors, advanced machine learning models are

applied. In the case of spring onion seeds, the sales not only follow historical seasonal trends,

but may also be influenced by seed inventories and spring onion crop market prices. As statis-

tical-based models only use historical data, their results reflect the linearity and seasonal trends

in the data. Inputting the results of statistical-based models into a SVM model is the key point

of forecasting using hybrid SVM models.

Fig 2. Historical monthly sales data for the three spring onion seed varieties between August 2011 and December 2016.

https://doi.org/10.1371/journal.pone.0219889.g002
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In the hybrid forecasting model (Fig 1), the monthly sales training set data is inputted into

the Holt-Winters model. These statistical-based forecasting results, which reflect the linearity

and seasonal trends in the historical data, are then prepared for the SVM model. Then, the

results of the Holt-Winters model for the training set and the dynamic factors are inputted

into the SVM model as variables. Since there are no general rules for selecting the parameters

(C, ε, γ) for the SVM model, the data are learned and the model is tuned to adjust the parame-

ters to optimal values using a grid search method [31]. The starting point and the boundaries

of the grid search are determined by a method proposed by Frohlich and Zell [32]. The sea-

sonal trends in the sales data, which would probably be recognized as outliers in statistical-

based models, are learned in the SVM model using the RBF kernel. Thus, during training, the

RBF kernel is used to obtain the forecasting values. In addition, due to the non-linearity of the

sales data, the polynomial kernel (d is set to 2) is used to train the SVM model again, and recal-

culate the results after the initial forecasting values are obtained.

The spring onion seed price, seed inventory and weather data values of the current period

are not considered as variables in the hybrid model, as the current values are unknown when

forecasting. Therefore, 27 dynamic factor variables, including historical seed sales, seed inven-

tories, spring onion crop market prices and weather data are constructed in the hybrid

demand forecasting model (Table 1). For seed inventories and spring onion crop market

prices, short-term, mid-term and long-term information is provided by the variables (t-1) (t-
2),MA3MA6 and (t-12), respectively. Moving averages of the temperature and precipitation

data were not calculated, as these data are already average values for the time periods.

Model validation

In order to estimate the performance of the hybrid forecasting model, the results of the

ARIMA, mul-HW, RF and ANN forecasting models (as benchmarks) were compared with the

proposed hybrid model. For the RF and ANN models, all 27 dynamic factor variables were

inputted. To determine the effect of spring onion crop market price, seed inventory and

weather data on forecasting accuracy, the results of the proposed hybrid model including dif-

ferent combinations of dynamic factor variables were compared. The Morris method, which

analyzes the changes in output due solely to changes in a particular input, was used to estimate

the influence and interaction between dynamic factors and the forecasting results [33]. The

ARIMA model was run in IBM SPSS Statistics 22.0.0.0 and the other models were run in R ver-

sion 3.3.1 on an Intel Core i7 PC running at 2.90 GHz with 4 GB memory. For the advanced

machine learning models and Morris method, the R packages tseries, e1071, neuralnet, ran-
domForest and sensitivity were used.

Forecasting performance was evaluated using three error measurements: mean absolute

error (MAE), mean squared error (MSE) and mean absolute percentage error (MAPE),

defined as:

MAE ¼
1

n

Xn

i¼1

jFi � Aij ð12Þ

MSE ¼
1

n

Xn

i¼1

ðFi � AiÞ
2

ð13Þ

MAPE ¼
1

n

Xn

i¼1

Fi � Ai
Ai

�
�
�
�

�
�
�
�� 100% ð14Þ
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where, Fi and Ai represent the forecasting values and actual demand values, respectively.

Notice that MAPE is calculated from the ratio of absolute error and the actual value, while

MAE and MSE is calculated in terms of the absolute error. This means that MAE and MSE can

compare different forecasting methods based on the same data set, whereas MAPE is able to

compare the forecasting methods even if different data sets are used.

Results and discussion

Forecasting performance of the different models

After all of the models were trained on the training set, forecasting was conducted on the test-

ing set and the three error measurements were calculated (Table 2 and Fig 3). As shown in

Table 2, the forecasting results for the two time-series models (ARIMA and mul-HW) had

Table 1. The forecasting performance of the proposed hybrid model with different variables of dynamic factors

input.

Variables MAPE (%) of forecasting without the variable

input

Variety A Variety B Variety C

All variables included a 17.65 49.83 13.35

Seed sales previous month S(t-1) b 43.69 99.72 30.99

Seed sales previous 2 months S(t-2) 45.14 107.38 21.48

Seed sales 3-month moving average S-MA3 57.78 117.07 28.25

Seed sales 6-month moving average S-MA6 43.21 132.33 30.07

Seed sales the same time last year S(t-12) 29.65 83.33 24.05

Seed inventory previous month I(t-1) 21.82 66.78 16.79

Seed inventory previous 2 months I(t-2) 21.37 64.60 16.62

Seed inventory 3-month moving average I-MA3 18.22 44.12 11.46

Seed inventory 6-month moving average I-MA6 16.38 42.12 11.53

Seed inventory the same time last year I(t-12) 18.81 53.95 15.05

Spring onion market price previous month P(t-1) 35.38 91.40 22.72

Spring onion market price previous 2 months P(t-2) 31.28 85.33 22.35

Spring onion market price 3-month moving average P-MA3 41.63 95.11 27.86

Spring onion market price 6-month moving average P-MA6 41.67 110.92 25.14

Spring onion market price the same time last year P(t-12) 29.36 76.73 19.96

Average temperature previous month T(t-1) 23.23 66.41 18.27

Average temperature previous 2 months T(t-2) 23.12 66.09 18.18

Average temperature the same time last year T(t-12) 22.48 64.25 17.68

Absolute max. temperature previous month TX(t-1) 24.64 71.23 20.21

Absolute max. temperature previous 2 months TX(t-2) 24.63 71.19 20.20

Absolute max. temperature the same time last year TX(t-12) 23.39 67.61 19.18

Absolute min. temperature previous month TN(t-1) 24.32 76.65 20.79

Absolute min. temperature previous 2 months TN(t-2) 24.66 77.73 21.09

Absolute min. temperature the same time last year TN(t-12) 26.96 84.98 23.05

Precipitation previous month PC(t-1) 18.09 47.13 12.83

Precipitation previous 2 months PC(t-2) 19.48 54.91 12.36

Precipitation the same time last year PC(t-12) 20.66 53.93 16.79

a This row represents the results of the proposed hybrid model with all variables inputted

b S(t-1) refers to seed sales one month before the current month t, S-MA3 =
Pt� 3

t� 1
SðiÞ=3, S-MA6 =

Pt� 6

t� 1
SðiÞ=6; other

variables are expressed in a similar manner.
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larger error measurements than the other three models. The mul-HW model outperformed

the ARIMA model for all three seed varieties based on all three error measurements, with the

exception that the MAE and MSE values of variety B were lower for the ARIMA model than

mul-HW model. The MAPE values of both time-series models were relatively large, in some

cases even larger than 100%, suggesting time-series models have unacceptable accuracy for

spring onion seed demand forecasting. In addition, the MAPE for variety B was unreasonably

high, while the MAPE for variety B excluding the sales value for August 2016 (31.50 kg, mul-

HW forecast value was 100.03 kg) was 42.28%, which is close to the MAPE of the two other

varieties. This is because the sales value for August 2016 was extremely low compared to the

historical sales data (Fig 3), which is a typical example of non-linearity in spring onion seed

sales data. Overall, these results suggest that statistical-based models cannot be directly applied

for spring onion seed demand forecasting.

Despite the poor performance of the two statistical-based models in processing non-linear

data, the results of the mul-HW model reflected the linear trends in the sales data, which pro-

vides important information for training of–and forecasting by–the proposed hybrid model.

Table 2 compares the forecasting performance of the mul-HW model and proposed hybrid

model. The proposed hybrid model had dramatically lower error measurement values than the

mul-HW model, indicating the forecasting accuracy of the proposed hybrid model is promis-

ing for agricultural production planning and supply chain management in terms of MAPE.

Compared to the three advanced machine learning models (ANN, RF, SVM), the proposed

hybrid SVM model had the best forecasting performance in terms of all three error measure-

ments. The RF model for demand forecasting consisted of 200 trees with three variables sam-

pled in each tree; the ANN model was constructed with two hidden layers, each having 200

neurons.

This analysis raises three points worth discussing. Firstly, the actual sales value for August

2016 was much lower than the other historical sales values, confirming that extreme variations

in spring onion seed sales are possible and do influence the forecasting error of the proposed

hybrid model. Secondly, the MAPE values of the RF model, ANN model and proposed hybrid

SVM model were higher for variety B than the other two varieties, whereas the MAE values of

all three varieties were similar. This suggests that the influence of extreme variation in sales

Table 2. The comparison of demand forecasting performance on the testing set among different models.

Error type ARIMA mul-HW ANN RF Proposed hybrid model

Variety A a MAPE 67.70% 36.90% 30.27% 32.68% 17.65%

MAE 289.962 222.280 117.157 177.280 83.2094

MSE 131271 117031 19305.2 64329.7 11524.3

Variety B MAPE 446.00% 221.80% 120.92% 104.74% 49.83%

MAE 98.6893 104.778 39.7028 65.9704 16.7287

MSE 15583.4 20054.7 1985.59 14737.5 447.259

Variety B

(Sep.—Dec. 2016) b
MAPE 39.84% 42.28% 20.32% 18.14% 17.88%

MAE 114.991 120.396 43.7411 77.3880 18.4626

MSE 29513.2 24621.7 2343.33 18318.8 535.098

Variety C MAPE 55.30% 38.60% 35.82% 26.22% 13.35%

MAE 217.845 184.033 136.930 131.409 64.2900

MSE 51321.1 48359.8 19578.6 28913.1 6062.61

a The one-year growth cycle of variety A starts in January, while the growth cycles of varieties B and C start in August
b Variety B (Sep.—Dec. 2016) refers to the results for variety B excluding the sales value for August 2016.

https://doi.org/10.1371/journal.pone.0219889.t002
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values is non-negligible and needs to be evaluated using other error measurements. However,

the MAE and MSE values of the proposed hybrid model were much lower for variety B than

the other varieties. Thirdly, with the exception of the sales value for August 2016, the MAPE

values of these three models for variety B are close to the MAPE values for the other two varie-

ties. Thus, it is believed that the proposed hybrid model remarkably reduces spring onion seed

demand forecasting error, though MAPE may be high–but still acceptable–in some extreme

cases.

SVM parameters on forecasting performance

In order to analyze the influence of SVM parameters on the forecasting performance of the

proposed hybrid model, MAPE was selected as the criteria to evaluate the forecasting perfor-

mance of different parameters, and variety C was selected because it had the lowest MAPE of

the three varieties. The candidate parameters are ε, γ and C. However, during training and

testing of spring onion seed demand forecasting using the proposed hybrid model, ε was

found have little effect on forecasting error. Thus, ε was set to the default value (ε = 0.1).

Table 3 shows the influence of parameters γ and C on the forecasting performance of the

proposed hybrid model for variety C. Generally, when γ was larger than 1E-03, MAPE was

insensitive to γ and C. When γ was within the range of 1E-06–1E-07 and C was larger than 1E

+04, MAPE remained within the small range of 13.90 ± 0.60% and was insensitive to the

parameters C and γ. In the numerical experiment, the parameters of the proposed hybrid

model were set to C = 1E+05, γ = 1E-07 and ε = 0.1, and the MAPE of the forecasting result

was 13.35%. This analysis indicates it is necessary to properly tune these parameters for each

specific case, and the grid search method can be used for this process.

Dynamic factors on forecasting performance

The spring onion crop market price, seed inventory, temperature and precipitation data were

inputted into the proposed hybrid model. These dynamic factors provide additional informa-

tion for demand forecasting beyond the results of the historical sales data. Analysis of the influ-

ence and interaction between dynamic factors using the Morris method (factors = 6, r = 4,

where ‘factors’ is the number of factors and ‘r’ is the number of repetitions) is shown in Fig 4.

All dynamic factors were located below the dashed line, indicating the factors influence the

output of the model independently–more so than via interaction with other factors. Based on

the results of Morris method, it is clear that historical seed sales, spring onion crop market

price and seed inventory form a cluster that has the highest importance on seed demand, while

the three temperature factors form another cluster with medium importance, and precipitation

has the lowest importance.

Since the dynamic factors influence the output independently, the forecasting performance

of the proposed hybrid model with individual dynamic factor variables omitted was compared

with the results of the original hybrid model that included all 27 variables. In Table 1, each row

shows the MAPE values for forecasting using the proposed hybrid model with the individual

variables excluded. The first row shows the MAPE value of the model that includes all 27

variables.

With respect to historical seed sales (S), omission of S(t-1) and S(t-2) increased MAPE from

17.64% to 49.89% and 8.13% to 57.55%, respectively. Exclusion of S-MA3 and S-MA6 led to

the largest increases in MAPE, from 14.90% to 67.24% and 16.72% to 82.50%, respectively.

Exclusion of S(t-12) increased MAPE from 10.70% to 33.50%. Thus, historical seed sales has a

strong influence on forecasting accuracy, with mid-term historical seed sales data having the

largest influence.
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With respect to seed inventory (I), omission of I(t-1) and I(t-2) led to the largest increases

in MAPE, from 3.44% to 16.95% and 3.27% to 14.77%, respectively. Exclusion of I-MA3 and

I-MA6 did not alter–or even decreased MAPE–and exclusion of I(t-12) increased MAPE from

1.16% to 4.12%. Thus, seed inventory has a strong influence on forecasting accuracy, with

short-term seed inventory data having the largest influence.

With respect to spring onion crop market price (P), exclusion of P(t-1) and P(t-2) increased

MAPE from 9.37% to 41.57% and 9.00% to 35.50%, respectively. Exclusion of P-MA3 and

P-MA6 led to the largest increases in MAPE, from 14.51% to 45.28% and 11.79% to 61.09%,

respectively. Exclusion of P(t-12) increased MAPE from 6.61% to 26.90%. In short, spring

onion crop market price has a strong influence on forecasting accuracy, with mid-term spring

onion crop market price data having the largest influence.

With respect to average temperature (T), exclusion of T(t-1) increased MAPE from 4.92%

to 16.58% Exclusion of T(t-2) increased MAPE from 4.83% to 16.26%. Exclusion of T(t-12)
increased MAPE from 4.33% to 14.42%. Thus, average temperature has limited influence on

forecasting accuracy, with short-term average temperature data having the largest influence.

With respect to absolute maximum temperature (TX), exclusion of TX(t-1) increased

MAPE from 6.86% to 21.40%, exclusion of TX(t-2) increased MAPE from 6.85% to 21.36%,

and exclusion of TX(t-12) increased MAPE from 5.74% to 17.78%. Therefore, absolute maxi-

mum temperature has limited influence on forecasting accuracy, with the short-term data hav-

ing the largest influence.

With respect to absolute minimum temperature (TN), exclusion of TN(t-1) increased

MAPE from 6.67% to 26.82%, exclusion of TN(t-2) increased MAPE from 7.01% to 27.90%,

and exclusion of TN(t-12) increased MAPE from 9.31% to 35.15%. In short, absolute mini-

mum temperature has a strong influence on forecasting accuracy; with the long-term data hav-

ing the largest influence.

Fig 3. Comparison of actual sales and the forecasting results of the different models in the testing set.

https://doi.org/10.1371/journal.pone.0219889.g003

Table 3. MAPEs of the proposed hybrid model forecasting using different SVM parameters.

C γ MAPE (%) of testing set

1.00E+03 1.00E-05 15.23

1.00E-06 14.19

1.00E-07 21.19

1.00E-08 24.86

1.00E+04 1.00E-05 16.09

1.00E-06 13.82

1.00E-07 14.15

1.00E-08 21.19

1.00E+05 1.00E-05 17.27

1.00E-06 14.16

1.00E-07 13.35
1.00E-08 18.99

1.00E+06 1.00E-05 19.22

1.00E-06 14.51

1.00E-07 13.56

1.00E-08 18.67

https://doi.org/10.1371/journal.pone.0219889.t003

Spring onion seed demand forecasting using a hybrid model

PLOS ONE | https://doi.org/10.1371/journal.pone.0219889 July 25, 2019 13 / 18

https://doi.org/10.1371/journal.pone.0219889.g003
https://doi.org/10.1371/journal.pone.0219889.t003
https://doi.org/10.1371/journal.pone.0219889


With respect to precipitation (PC), exclusion of PC(t-1) and PC(t-2) did not affect–or even

decreased–MAPE and exclusion of PC(t-12) increased MAPE from 3.01% to 4.10%. In short,

precipitation barely has an effect on forecasting accuracy.

Among all these variables, historical seed sales has the largest influence on forecasting

error, followed by spring onion crop market price and seed inventory, in agreement with the

results of the Morris method. On the other hand, seed inventory, average temperature and

absolute maximum temperature have short-term influences on forecasting error and absolute

minimum temperature has a long-term influence. Moreover, I-MA3, I-MA6 and the precipita-

tion data could barely influence the forecasting results.

As mentioned in section Training and testing datasets, the three spring onion seed varieties

selected for the numerical experiment represent three types of demand, thus the forecasting

performance for different seed varieties reflects the performance of the proposed hybrid model

for different types of seed demand. As shown in Table 2, the three error measurements of the
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Fig 4. Analysis of the influence and interaction between dynamic factors using the Morris method. The horizontal axis is the mean absolute value of the elementary

effect (μ�), which represents the influence of a factor on output. The vertical axis is the standard deviation (σ), which represents the interaction of a factor with other

factors. The dashed line σ = μ� represents point at which interaction with other factors equals the influence on output.

https://doi.org/10.1371/journal.pone.0219889.g004
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hybrid model were larger for varieties A and B than variety C. Noting that varieties A and B

both have high annual demand, this suggests the proposed hybrid model has better forecasting

performance for varieties with low, increasing demand (variety C) than varieties with high,

constant demand (varieties A and B). When the data for August 2016 were excluded, the

MAPE values for varieties A and B were almost similar and the two other error measurements

were similar, indicating the annual demand of a seed variety does not influence the forecasting

performance of the proposed hybrid model. Consider a growing seed company with high

spring onion seed sales. In order to maintain growth in sales over the long term, it is more

important to forecast the trends for varieties that will have increased demand in the future

(variety C in this case) than those with high demand at present (varieties A and B). Thus, the

proposed hybrid model better forecasts the demand for varieties with low, but increasing,

annual demand; thus the hybrid model may help a seed company determine whether a seed

variety with low demand will undergo increased demand, and what the increase in demand

will be.

Conclusion

The idea of applying SVM to spring onion seed demand forecasting has been realized in this

paper, and a hybrid Holt-Winters and SVM model for spring onion seed demand forecasting

is proposed. Our analysis showed the proposed hybrid model outperforms statistical-based

models and other two advanced machine learning models, and provides accurate forecasting

results for three varieties spring onion seed with different growth cycles and levels of demand.

In addition, we discussed the forecasting performance for different varieties when different

dynamic factors were used as inputs. Analysis suggested the proposed hybrid model is more

promising for forecasting the demand of seed varieties with low, growing annual demand than

varieties with high, constant annual demand. Seed inventory, spring onion crop market price,

and historical seed sales were the three most important dynamic factors, among which seed

inventory has short-term influence while other two have mid-term influence on seed demand

forecasting. The absolute minimum temperature is the only dynamic factor having long-term

influence. The influence of the parameters of the SVM model on the proposed hybrid model

were also explored. The forecasting performance was insensitive to ε, while γ and C play

important roles in spring onion seed demand forecasting performance. While the proposed

forecasting model is based on spring onion seed production, it could also be applied to other

crop seeds whose demand is also influenced by dynamic factors such as historical sales, inven-

tories, crop market prices and weather conditions, etc.

In real life, it is difficult to predict and consider the growers’ reaction to a specific event

such as an increase in crop market prices or extreme weather events, either of which may be

the reason for the sudden reduction in the sale of variety B in August, 2016. To explore this

point, future works should focus on additional factors, such as weather and region. However,

the key findings of this paper support the use of a hybrid SVM model for high accuracy

demand forecasting to guide decision-making processes in sustainable agricultural

production.
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