MSR-TR-2010-27

SPUR: A Trace-Based JIT Compiler for CIL

Michael Bebenita *
Wolfram Schulte

Florian Brandner T
Nikolai Tillmann

Manuel Fahndrich ~ Francesco Logozzo

Herman Venter

Microsoft Research

{hermanv,logozzo,maf,nikolait,schulte } @microsoft.com

Abstract

Tracing just-in-time compilers (TJITs) determine frequently
executed traces (hot paths and loops) in running programs
and focus their optimization effort by emitting optimized
machine code specialized to these traces. Prior work has
established this strategy to be especially beneficial for dy-
namic languages such as JavaScript, where the TJIT inter-
faces with the interpreter and produces machine code from
the JavaScript trace.

This direct coupling with a JavaScript interpreter makes it
difficult to harness the power of a TJIT for other components
that are not written in JavaScript, e.g., the DOM implemen-
tation or the layout engine inside a browser. Furthermore, if
a TJIT is tied to a particular high-level language interpreter,
it is difficult to reuse it for other input languages as the opti-
mizations are likely targeted at specific idioms of the source
language.

To address these issues, we designed and implemented a
TJIT for Microsoft’s Common Intermediate Language CIL
(the target language of C#, VisualBasic, F#, and many other
languages). Working on CIL enables TJIT optimizations for
any program compiled to this platform. In addition, to vali-
date that the performance gains of a TJIT for JavaScript do
not depend on specific idioms of JavaScript that are lost in
the translation to CIL, we provide a performance evaluation
of our JavaScript runtime which translates JavaScript to CIL
and then runs on top of our CIL TJIT.

1. Introduction

Tracing just-in-time compilers (TJITs) determine frequently
executed traces (hot paths and loops) in running programs

* Contributed to this project during an internship at Microsoft Research.
T Contributed to this project during an internship at Microsoft Research.

[Copyright 2010 Microsoft Corporation. All rights reserved.]

Microsoft Research Technical Report MSR-TR-2010-27, March 2010

and focus their optimization effort by emitting optimized
machine code specialized to these traces. Tracing JITs have
a number of advantages over traditional JITs and static com-
pilers in that they are able to harness runtime information,
such as indirect jump and call targets, dynamic type special-
ization, and the ability to inline calls and unroll loops more
aggressively due to the focus on hot traces [2].

Prior work has established this strategy to be beneficial
for dynamic languages such as JavaScript, where the TIIT
interfaces with an interpreter and produces machine code
from the JavaScript trace [17]. In such a setting, the TJIT
works on the high-level programming constructs from the
original source language (e.g., JavaScript) and can take ad-
vantage of that information for its optimizations. As a result,
it is not clear whether similar performance benefits can be
achieved by first using standard compilation of the high-level
dynamic language to an intermediate typed language such as
Microsoft’s Common Intermediate Language [14] (CIL) and
applying trace jitting to this intermediate language instead.

In this paper we thus examine the following hypothesis:
Trace jitting a typed intermediate language (such as CIL)
and compiling high-level dynamic languages and their run-
times to that intermediate level, enables similar performance
gains as directly trace jitting the high-level language.

To confirm this hypothesis, we designed and imple-
mented SPUR, a trace JIT for CIL (the target language of
C#, VisualBasic, F#, and many other languages). Working
on CIL enables TJIT optimizations for any program com-
piled to this platform. To validate that the performance gains
of a trace JIT for JavaScript do not depend on specific id-
ioms of JavaScript that are lost in the translation to CIL,
we provide a performance evaluation of our JavaScript run-
time which translates JavaScript to CIL and then runs on
top of our CIL trace JIT. Our evaluation shows that the per-
formance of the final machine code generated for standard
JavaScript benchmarks on SPUR is competitive with the best
current JavaScript engines.

1.1 Basic Insight

Statically compiling dynamic languages, such as JavaScript,
to efficient code ahead of runtime is difficult due to the dy-
namic nature of the operations in the language. For instance,

1 2010/3/26

the addition operation + of JavaScript has numerous seman-
tics, based on the actual runtime types of its arguments. It
can be the addition of numbers, or concatenation of strings,
along with conversions of operands to appropriate types.
E.g., adding a string and a number forces the number to be
converted to a string and the operation ends up being string
concatenation.

TIHTs such as [17] produce efficient code for such an
addition operation by observing the particular types of the
operands at runtime and then specializing the operation to
those operand types, thereby saving many otherwise neces-
sary tests to determine what operation to apply. Note that
some tests still remain as guards in the trace to determine if
the special case applies on future executions, but the number
and placement of guards can usually be optimized or hoisted
out of inner loops.

In contrast, our TJIT knows nothing about the semantics
of JavaScript’s addition operation. Instead, our JavaScript
runtime (written in C# and compiled to CIL with the stan-
dard C# compiler) simply contains methods for each prim-
itive JavaScript operation such as addition. These methods
perform the necessary tests to determine the types of the
operands and what operation to actually perform. Thus,
these methods encode all the necessary tests and conversions
in CIL code.

If a JavaScript program translated to CIL contains an ad-
dition operation, it will show up as a call into the JavaScript
runtime’s addition method. Our TJIT then traces from the
CIL instructions resulting from the JavaScript code into the
CIL instructions of the JavaScript runtime’s addition oper-
ation. The trace produced navigating the numerous condi-
tional branches in the implementation of addition is the trace
specialized to the current operand types.

As a result, our TJIT does not depend on any JavaScript
semantics but still specializes the dynamic behavior of the
CIL code just as a TJIT working at the source language level
would.

1.2 Motivation

Coupling a TJIT with a high-level language makes it difficult
to harness the power of the TJIT for other components that
are not written in that language, e.g., the DOM implementa-
tion or the layout engine inside a browser. Furthermore, if a
TIJIT is tied to a particular high-level language, it is difficult
to reuse it for other input languages as the instructions traced
and optimized are language specific.

Instead, our approach of adding trace jitting to a language
neutral intermediate language provides a basis for reaping
the benefit of trace compilation for an entire platform and
multiple languages compiled onto the platform. The ability
to trace through multiple software components and abstrac-
tion layers provides an excellent way to optimize away the
“abstraction tax” of good software engineering, which calls
for many small components and abstraction barriers. As part
of the SPUR project, we are also in the process of imple-

Microsoft Research Technical Report MSR-TR-2010-27, March 2010

menting a browser DOM and layout engine in C#, which will
enable us in the future to optimize traces that span JavaScript
code, JavaScript runtime code, DOM, and layout code.

In comparison to previous work on trace jitting interme-
diate languages such as Java byte code [19, 29], our work
differentiates itself by not having an interpreter for CIL at
all. Instead, we use multiple levels of jitting: 1) a fast pro-
filing JIT producing unoptimized code that determines hot
paths, 2) a fast tracing JIT producing instrumented code for
recording traces, and 3) the optimizing JIT for traces itself.

Our JITs are not based on the production Microsoft CLR
JIT; instead, they have been written from scratch for the
SPUR project; besides our trace optimizations, our JITs do
not perform any optimizations, and employ a simple register
allocator. One design goal was to enable efficient transitions
between the different code versions.

Having all code compiled and run as machine code in a
common environment allows our JIT to support scenarios
not handled by previous work, such as calling into pre-
compiled runtime code from an optimized trace without any
additional overhead, even if that code may throw exceptions
or causes garbage collection. In fact, there are no inherent
operations that force us to abort a trace.

Our contributions in this paper are:

e We provide a positive answer to the hypothesis that trac-
ing of a typed intermediate language results in similar
performance gains when JavaScript is compiled to that
level, as trace jitting JavaScript directly.

¢ To our knowledge, SPUR is the first tracing JIT based
on jitting alone, without the need for an interpreter and
without the need for adapter frames to mediate between
different code versions. We provide details of how to
transition between the different code versions emitted by
our system.

e Our approach is also unique in that we have both precom-
piled x86 and CIL code for some components (e.g., the
JavaScript runtime) available at runtime. This allows us
to either call into precompiled code, or record a trace, op-
timize and recompile the original CIL intermediate form
for particular calling contexts.

e Our approach avoids duplicating the JavaScript seman-
tics in both an interpreter and a compiler, as we use a sin-
gle compiler-runtime implementing JavaScript’s seman-
tics.

® The machine code generated for optimized traces seam-
lessly integrates with other machine code, including stat-
ically precompiled machine code, and code jitted at run-
time. This enables difficult scenarios not found in pre-
vious tracing JITs, such as unified calling conventions,
garbage collection, and exception handling, without hav-
ing to exit the trace.

2 2010/3/26

e We present a number of novel optimizations for traces,
such as store-load elimination (or sinking), and specula-
tive guard strengthening.

The rest of the paper is organized as follows. Section 2 gives
a motivating example of a loop in C#, Section 3 describes
the SPUR architecture and engine, Section 4 describes our
various versions of just-in-time compilers and transitions be-
tween them, whereas Section 5 focusses on our trace record-
ing and optimizations. Section 6 shows how we compile
JavaScript to CIL and Section 7 re-examines our motivat-
ing example, which we re-write in JavaScript, showing how
it is translated and eventually optimized. Section 8 contains
our performance evaluation, and Section 9 discusses related
work.

2. Example 1: A Loop in C#

Consider the following example, which is written in C#,
but shows the basic problem of the “abstraction tax” paid
in JavaScript programs, where all values are (potentially
boxed) objects. An interface IDictionary describing a gen-
eral mapping from objects to objects is used in method Ar-
raySwap with the implicit assumption that it is a dense array,
mapping integers to doubles.

interface IDictionary {
int GetLength();
object GetElement(object index);
void SetElement(object index, object value);

}

void ArraySwap(IDictionary a) {
for (int i = 0; i < a.GetLength() - 1; i++) {
var tmp = a.GetElement(i);
a.SetElement (i, a.GetElement(i + 1));
a.SetElement(i + 1, tmp);
}
}

Furthermore, let us assume that ArraySwap is most com-
monly used with the following implementation of |Dic-
tionary, which can only store floating point values in a dense
array:

class DoubleArray : IDictionary {
private double[] _elements;

override int GetLength() {
return _elements.Length;

}

override object GetElement(object index) {
return (object)_elements[(int)index];

}

override void SetElement(object index,

object value) {

_elements[(int)index] = (double)value;

}

}

Microsoft Research Technical Report MSR-TR-2010-27, March 2010

Without tracing through the virtual calls in ArraySwap to
the interface methods, the arguments and results of GetEle-
ment and SetElement are continually boxed, type-checked
for proper types, and unboxed. With tracing, only a few sim-
ple checks, called guards, need to remain in place which en-
sure that all explicit and implicit branching decisions that
were observed during tracing will repeat later on. If not, then
the optimized code will jump back into unoptimized code.
Here, we need guards to ensure that the actual dictionary is
not null and actually has type DoubleArray, that a._elements
is not null, and also that i is a valid index, and fulfills the loop
condition. All virtual method calls can be inlined, all box-
ing, type-checks and unboxing code eliminated. Here, most
guards can be hoisted out of the loop, and code similar to the
following is produced by SPUR for the loop, preceeded by
the hoisted guards:

if (a == null ||
a.GetType() != typeof (DoubleArray))

{ ... /* transfer back to unoptimized code */ }
var elements = a._elements;

if (elements == null)

{ ... /* transfer back to unoptimized code */ }

var lengthl = elements.Length - 1;
while (true) {
if (i < 0 || i >= lengthl)

{ ... /* transfer back to unoptimized code */ }
double tmp = elements[i];

elements[i] = elements[i + 1];

elements[i + 1] = tmp;

it+;

>

}

We will revisit this example in Section 7, where we see
in more detail how a similar method written in JavaScript
source gets compiled, traced, and optimized by SPUR.

3. SPUR

The basic input program to run on top of SPUR is any pro-
gram compiled to Microsoft’s Common Intermediate Lan-
guage CIL [14]. CIL is a stack based intermediate language
with support for object-oriented features such as inheritance,
interfaces, and virtual dispatch. It also supports value types
(like C structs), pointers to object fields and to locals on the
runtime stack, and method pointers (usually wrapped in CIL
delegate types) with indirect method calls. Instructions oper-
ate on the evaluation stack by popping operands and pushing
results. CIL is the target for languages such as C#, Visual-
Basic, F#, and in this paper, JavaScript.

3.1 Architecture

Figures 1 and 2 show the architecture of SPUR configured
to run JavaScript code. JavaScript source code is compiled
by the JavaScript compiler which produces CIL. The SPUR
engine jits this CIL to profiling code that we run on the
Bartok runtime. Bartok is a managed runtime and static
compiler developed at Microsoft Research. When profiling

3 2010/3/26

X86 CiL

X86 Code created ahead-of-time

CIL Code (original)

JavaScript Runtime

Bartok Runtime

[Spur Engine] [JavaScript Compiler

[Native Bridge] [JavaScript Runtime
Bartok Runtime [X86 Code Generator
[Garbage Collector] [Tracer

[Stubs, GC Tables, EH Tables] [CIL Reader

)
)
] (relevant parts)
)
)

awigunJ-jo-peaye

pajesauasd

X86 Code created at runtime by Spur JIT Engine

CIL Code created by JavaScript
compiler

awuna je
pajesauasd

[Profiling Code] [Tracing Code] [Optimized Trace Code] JavaScript Methods

A

Figure 1. Code Quadrants of SPUR.

JavaScript compiled with JavaScript
Compiler Source

generates

linked with JavaScript
Runtime

ey

Spur Engine

e/

records &
optimizes traces

Optimized Trace Code

AR
\

. tracer profiles and)
Profiling Code records traces Tracing Code

Native Bridge

Bartok Runtime

[Garbage Collector]

Figure 2. The SPUR architecture.

Microsoft Research Technical Report MSR-TR-2010-27, March 2010

determines a hot path, tracing code is jitted and executed.
The recorded trace is then optimized and jitted.

The native bridge in the figures refers to linking informa-
tion that is generated ahead-of-time via the Bartok compiler.
This linking information consists of runtime entry-points as
well as object layout information of runtime types. It is used
in order to make dynamically compiled X86 interoperate
with ahead-of-runtime produced X86. In the following, we
often refer to ahead-of-runtime code as native code.

Figure 1 elucidates what code is produced ahead-of-
runtime (native code), what code is produced dynamically
(jitted code), and whether the code is CIL or X86. The upper
part of the figure refers to code produced ahead-of-runtime,
while the bottom of the figure shows code produced during
SPUR’s execution. The left side of the figure shows code in
the form of X86 binary instructions (our native target), while
the right side of the figure shows code in the form of CIL
instructions. The four quadrants thus give rise to all combi-
nations of ahead-of-runtime or dynamically generated, X86
or CIL code.

Examples of ahead-of-runtime code in X86 form are the
JavaScript compiler code, the garbage collector (GC), and
our X86 code generator itself. An example of ahead-of-
runtime code in CIL form is the CIL for the JavaScript
runtime, produced by compiling our C# sources to CIL.

CIL code generated at runtime consists of the code pro-
duced by the JavaScript compiler for JavaScript source code.
X86 code generated at runtime is code produced by our JIT
for CIL instructions from the right-side of the architecture,
both from CIL generated ahead-of-runtime and CIL gener-
ated by the JavaScript compiler at runtime.

4 2010/3/26

3.2 Runtime

Our runtime for CIL code consists of an adaption of the pro-
duction generational “mark and sweep” garbage collector of
the Microsoft CLR, and the Bartok runtime. The garbage
collector maintains three separate generations, and a sepa-
rate large-object heap; all write accesses of references re-
quire a write barrier.

The Bartok system also provides a static compiler de-
veloped at Microsoft Research, compiling CIL to X86 code
ahead-of-time.

Most of the Bartok runtime, including the base class li-
braries is written in C# itself and compiled to CIL via C#’s
compiler and then to X86 code via the Bartok compiler. The
same holds for the JavaScript compiler and runtime. As Fig-
ure 1 shows, we actually have both X86 and CIL versions
of the Bartok runtime code and the JavaScript runtime code
available at runtime. Having the CIL form may seem unnec-
essary at first as we can just call directly into the X86 form.
However, in order to optimize traces that span calls into the
runtime, we use the CIL of runtime methods and dynami-
cally compile them into a form that contains profiling coun-
ters or callbacks to our trace recorder. This way, the recorded
trace contains CIL instructions of any inlined runtime meth-
ods along with CIL instructions from compiled JavaScript
code. This is crucial in order to optimize traces that span
runtime code, in particular for the JavaScript runtime, as its
methods contain most of the specialization opportunities.

3.2.1 Data Representations

CIL objects (instances of classes) are represented at runtime
using two header words, followed by the field representa-
tions. The header contains a pointer to the virtual dispatch
table of the type and the other header word is used during
garbage collection.

Value types, including all primitive types such as Boolean
values, integers, and floating point values, are not repre-
sented as heap objects, but stored either in registers, the run-
time stack, or as fields of other objects.

Pointers in our runtime are not tagged, meaning that there
are no unions encompassing pointers and primitive types in
the same storage location. The garbage collector depends on
GC tables of each type to identify the offsets of managed
pointers within the object layout.

Garbage collector tables also exist to identify the off-
sets of managed pointers within stack frames. Exception
handlers are identified via exception tables identifying pro-
tected code regions and the appropriate handlers are found
via lookup operations.

3.2.2 Code Representations

In a preprocessing step before jitting code, CIL is trans-
formed into an equivalent representation where all implicit
operand stack accesses have been made explicit, using aux-

Microsoft Research Technical Report MSR-TR-2010-27, March 2010

iliary local variables. This simplifies SPUR’s JIT, and the
transfers into and out of optimized traces.

3.3 New Instructions

SPUR adds a few instructions to CIL to aid in tracing.

3.3.1 Trace Anchors

A trace anchor is an instruction representing a potential start
point of a trace. Trace anchors are inserted in a preprocessing
step for all targets of loop back-edges, as trace compilation
is most profitable for loops. We also place trace anchors af-
ter all potential exit points from existing traces in order to
combine multiple traces together into trace trees. Trace an-
chors are also inserted at entry points of potentially recursive
methods.

3.3.2 Transfers

A transfer instruction is the only way optimized trace code
may give control back to regular profiling code. A transfer
instruction details the layout of nested stack frames that
may have to be reconstructed, corresponding to methods that
were inlined during tracing.

3.4 Execution Modes

At any point in time, a thread running under SPUR is either
in native mode (running code pre-compiled with Bartok,
e.g., the X86 code generator itself), or in one of the following
JIT modes depicted in Figure 3:

e Profiling: runs unoptimized code with counters to iden-
tify hot loops and paths.

® Tracing: runs unoptimized code with call-backs to record
a trace.

e On-trace: runs the optimized trace code.

The execution mode is uniquely determined by the kind of
code pointed at by the program counter. Thus, no extra state
for maintaining the mode is used.

A transition from profiling mode to tracing mode occurs
when a hot loop or path is identified at a trace-anchor.

At trace anchors, the code can be patched to jump to
optimized trace code. If such an anchor is reached while
in profiling mode, the thread transitions to on-trace mode.
During tracing mode, execution transitions back to profiling
mode when one of the following cases occurs:

¢ The initial trace anchor is reached again. This means, we
identified a loop trace.

e For traces starting from a loop anchor, we end the trace
when it leaves the loop body. For nested loops within
a single method, we consider the outer loop part of the
inner loop as well, in order to trace entire loop nests.

e When a trace anchor is reached for which we already
have an optimized trace.

5 2010/3/26

Tracing JIT Profiling JIT Optimizing JIT

produces

executes | v aaaas’ | Vemmmaaaaaas

Tracing Mode Profiling Mode On-Trace Mode

Figure 3. JIT version, code, and execution modes.

® When the trace length exceeds a configurable threshold
(currently 100k instructions).

e When the stack depth through inlining exceeds a config-
urable threshold (currently 20).

e When an instruction throws an exception.

When a non-loop trace ends, we determine via heuristics if it
is profitable to optimize the trace and patch it as a non-loop
trace into the trace anchor.

When running optimized trace code, execution remains
on-trace as long as all guards hold. (Guards arise from con-
ditional control flow decisions that were recorded earlier
during tracing.) Otherwise, a trace exit is reached, at which
point the execution transfers back to profiling.

4. Just-in-Time Compilers

SPUR uses different JITs to produce different code versions.
The JITs are not based on the production Microsoft CLR
JIT, but have been developed from scratch to enable efficient
transitions between the different code version. The current
implementation of SPUR targets the 32-bit X86 architecture.

All JITs are derived by subclassing a basic visitor pattern
over CIL instructions. In addition to the three main JITs
depicted in Figure 3, there is one additional specialized JIT
called the transfer-tail JIT. Its job is to bridge the execution
from an arbitrary instruction within a block from tracing
or on-trace mode to the next safe point to transfer to the
profiling code.

We use an abstract JIT base class without a register al-
locator from which the tracing, transfer-tail, and an abstract
base class for JITs with a register allocator are derived. From
the latter, the profiling JIT and the optimizing JIT are de-
rived, both of which perform register allocation.

The register allocator is very simple. We distinguish ba-
sic blocks with multiple predecessors as head basic blocks
from basic blocks with a single predecessor. At all head ba-
sic block boundaries, all registers are spilled. We don’t allo-
cate registers across head basic blocks in order to simplify
the transition into and out of profiling mode. For each ba-
sic block, the register allocator performs one backward scan
to determine if generated values will be used. Then it per-
forms a forward register allocation, allocating up to three
callee-save X86 registers (EBX, ESI, EDI). EBP serves as
the frame pointer, ESP is the stack pointer, and the caller-

Microsoft Research Technical Report MSR-TR-2010-27, March 2010

save X86 registers (EAX, ECX, EDX) are used as scratch
registers in the compilation of the individual CIL instruc-
tions. The X86 floating-point stack is used to allocate float-
ing point values in registers. Write barriers for the garbage
collector are inlined within loops.

4.1 Code Transitions

The virtual dispatch table of any object at runtime always
points to the native version of a method (ahead-of-time X86,
see Figure 1). This invariant is trivially maintained as SPUR
does not support dynamic type creation at the moment. In the
future, when types are created dynamically, their dispatch
tables would point to profiling versions of the methods.

Delegate objects represent closures and consist of a
method pointer and an optional target object. Delegates
created in native mode point to the native mode version,
whereas delegates created in any JIT mode always point to
the profiling version.

The initial execution mode is native. Transitions from na-
tive mode can only occur via indirect calls through method
pointers, and thus only to profiling mode. Otherwise execu-
tion remains in native mode.

Transitions from JIT modes to native mode occur only
through indirect method calls through delegates created in
native mode, or when calling methods marked with [Native-
Call] attributes. Such annotations are useful to prevent trac-
ing through runtime methods that were written in C, con-
tain unsafe pointer manipulations, or whose trace expansion
would be non-beneficial.

Execution may transfer from tracing or optimized trace
code back to profiling code at any instruction in a basic
block. Instead of persisting and restoring register allocation
decisions at every instruction, we only do so at head basic
block boundaries; we use transfer-tail code jitted without
register allocation to execute the instructions up to the start
of the next head basic block. Thus the actual transitions from
tracing and on-trace mode in Figure 3 goes through a small
portion of transfer-tail code.

4.2 Profiling JIT

For each dynamically generated CIL method an X86 stub is
put in place. The purpose of the stub is to determine if an
X86 version of the method has been compiled and is ready
to call. If not, the stub invokes the profiling JIT (when in
profiling mode) to translate the CIL to X86.

The profiling JIT is a very simple and direct JIT perform-
ing no optimizations, but it does employ a register allocator.
The task of the profiling JIT is to allow us to start running
dynamic code immediately and to emit profiling counters to
identify hot paths.

For each trace anchor, the profiling JIT inserts a counter
variable. For loop-related trace anchors, these counters
are local variables. Counters for individual trace exits and
counters for trace anchors for tracing potentially recursive
method calls are global. A counter decrement operation

6 2010/3/26

and a conditional branch is inserted at each trace anchor.
The counter starts at a certain threshold (default: 3 for lo-
cal counter, and 317 for global counters); when it reaches
zero, execution transitions to tracing mode, which involves
branching to the corresponding basic block in the tracing
code version of the current method. The tracing code ver-
sion is emitted by the tracing JIT.

Direct calls always invoke the profiling code of the target
method, except if the target method is marked [NativeCall].
In the latter case, execution proceeds in native mode until
the call returns, at which point it reverts back to profiling. At
virtual call sites, the profiling JIT produces code that finds
the profiling version of the target method via table lookups.
To amortize the lookup cost, we employ inline caches in the
code. Finally, at indirect call sites through method pointers,
the method pointer is directly invoked. According to our
invariants, the method pointer points to native code (in which
case we temporarily transition to native mode), or the pointer
points to the profiling code version of the method.

Note that we jit profiling versions of methods in the
runtime using the CIL versions depicted in the upper right
quadarant of Figure 1. As a result, profiling might determine
the start of a hot loop or path inside the runtime.

4.3 Tracing JIT

In tracing mode, we need X86 code that performs call-backs
to our trace infrastructure in order to record the sequence of
CIL instructions being executed on the current path. We call
this code tracing code and it is emitted by the tracing JIT
(Figure 3).

The tracing JIT handles method calls similarly to the
profiling JIT but with the goal of remaining in tracing mode.
At direct call sites, the JIT simply emits a direct call to the
tracing version of the target method, unless the method is
marked [NativeCall]. At virtual call sites, we determine the
target method via a table lookup and use inline caches to
amortize the cost. For indirect calls via method pointers, the
tracing JIT needs to do more work than the profiling JIT. It
uses the method pointer as an index into a table of profiling
code methods. If found, the JIT targets the corresponding
tracing JIT version of the method. Otherwise, the method
pointer must be a native method and it is called directly,
transitioning temporarily out of tracing mode until the return
from the native method.

Thus, by default, traces extend through runtime methods,
except when the target method is marked as [NativeCall] or
cannot be determined due to an indirect call with a native
code target.

The ability to selectively inline runtime methods into
traces is the major advantage of our approach and enables
on-demand specialization of complicated runtime methods
to particular calling contexts.

Microsoft Research Technical Report MSR-TR-2010-27, March 2010

4.4 Optimizing JIT for On-Trace Code

Via call-backs, the tracing code can record a trace of CIL
instructions. When a profitable trace has been recorded, it is
optimized by our optimizing trace compiler, which produces
a special CIL method for the trace. The optimizing JIT for
on-trace code compiles this trace method to machine code.
A trace method is special in several ways:

e It inherits the arguments and local variables of the
method where the trace started.

e [t does not contain a regular return instruction, and
its control-flow must not allow the termination of the
method via an exception. Instead, execution may only
leave this method via a special transfer instruction.

Even though the code generated by the Optimizing JIT has
these unusual entry and exit semantics, the result is a seam-
less integration into the existing calling conventions and
stack layouts, garbage collector and exception handling ta-
bles.

Because our trace recorder inlines method calls aggres-
sively and a trace may exit in the middle of many inlined
calls, a transfer instruction must recover all of the stack
frames of all active inlined methods of the current trace. This
involves reconstructing the local variables and architecture
dependent state, such as frame pointers, return addresses,
registers, etc.

When transfering out of the trace method, transfer-tail
code is employed. Once machine code for the optimized
trace code has been generated, a jump to the resulting X86
code is patched into the trace anchor code of the profiling
code, overriding the original counting logic.

The optimizing JIT uses the standard register allocator.
Note that a trace tree with a loop has exactly one head basic
block which acts as the loop head. Thus, in this case, register
allocation happens globally over the entire tree.

4.5 Transfer-Tail JIT

Transfer-tail code enables transitions from tracing or op-
timized trace code back to profiling code. At the transfer
source, all registers are spilled onto the stack. Transfer-tail
code itself does not use any register allocation, and so exe-
cution can start at any instruction. At the beginning of each
head basic block, control transfers back to regular profiling
code. Transfer-tail code is jitted on demand.

4.6 Design Implications
This section briefly touches on a few consequences of our
design.

4.6.1 Stack Reconstruction

At trace exits, we have to reconstruct the stack layout of
inlined active methods. This reconstruction is complicated
by the fact that CIL supports managed pointers into the
runtime stack, e.g., for passing the address of a local to
another method. Consider the following example method:

7 2010/3/26

void SwapWithSmaller(ref int x, int[] data) {
for (int i=0; i< data.Length; i++) {
if (datali]l < x) {
int temp = datalil;
datali] = x;
X = temp;
return;

void Use(int[] data) {
int a = 55;
SwapWithSmaller(ref a, data);
}

SwapWithSmaller takes an address to an integer x and an
array of integers and swaps the first element in the array that
is smaller than the current value of x. The runtime stack for
the call from within Use looks as follows:

top-of-stack

SwapWithSmaller X &a
data P
(fp.sps...)
Use a 55
data P
(fp,sp,..-)

Here, p refers to the address of the array and (sp,fp,...) refers
to calling convention registers and saved registers. Note how
x points to the stack location of a. If a trace is compiled
that inlines the call from Use and the trace needs to be
exited in the middle of the execution, then the exact stack
configuration above must be produced.

The optimized trace code typically needs a fraction of the
original stack space. E.g., it doesn’t need duplicate locations
for data and stack elements for calling conventions can also
be saved.

If we naively optimize the stack frame of the trace we
have the problem that the address of local a in the opti-
mized frame is different from the address in the configura-
tion above, which implies that we have to adjust all locations
containing pointers to a, such as x. Worse, the CIL execution
model assumes and requires that stack locations do not move
at runtime. Thus, such an approach isn’t viable.

To address this issue, our trace code uses stack frames that
are as large as the reconstructed stack frames it might need
to produce on trace exit. This allows us to place stack locals
whose address is taken into the exact position they occupy
in the reconstructed frames. The resulting optimized frame
simply contains gaps of memory that may remain unused
until a trace exit forces the reconstruction of the stack.

4.6.2 Stacks of Trace Contexts

Allowing native calls from within our jitted code results in
interesting runtime configuration that may not be immedi-
ately apparent. Recall that indirect calls via delegates from

Microsoft Research Technical Report MSR-TR-2010-27, March 2010

native contexts may enter profiling code if the delegate was
constructed in jitted code. As native contexts can be invoked
from any mode (profiling, tracing, on-trace), it is possible to
build up a stack of distinct trace contexts at runtime, sepa-
rated by native stack frames as shown below:

profiling
native
tracing
profiling
native
on-trace
profiling
native

context 3

context 2

context 1

In principle any combination of active modes is possible at
runtime, in particular, there might be multiple contexts ac-
tively recording a trace. In order to simplify our infrastruc-
ture, we currently allow only a single trace to be recorded at
a time. Thus, if a nested context wants to start tracing, but
an outer context is already recording a trace, we remain in
profiling mode instead of entering tracing mode.

5. Trace Recording and Optimization

The trace tree optimizer performs many standard optimiza-
tions, such as constant folding, common subexpression elim-
ination, arithmetic simplifications, and dead code elimi-
nation. In addition, we perform some novel optimizations
which we describe in more detail.

5.1 Simplifying Assumptions

The SPUR infrastructure is not a full implementation of
Microsoft’s .NET platform. In particular, we don’t support
the following core features:

e Runtime reflection is limited to the generation of new
methods. In particular, new types cannot yet be gener-
ated dynamically and metadata cannot be inspected at
runtime.

e We do not yet support multiple user threads, which sim-
plifies stub patching and counter management.

® We do not yet support tracing of code involving

= typed references, which are used to realize C-like
vararg calling conventions (ordinary managed point-
ers realizing interior pointers are supported),

» multi-dimensional arrays (jagged arrays are supported),
or

= unsafe code.
The addition of these missing features does not require a
change in the architecture and we don’t anticipate any major

issues. The addition of threading will impact certain opti-
mizations as mentioned below.

8 2010/3/26

trace anchor
guard with attached trace

——0 non-looping trace with exit

e * looping trace

o

guard with trace exit

Figure 4. Trace Trees in SPUR.

5.2 Growing Trace Trees

Figure 4 illustrates the structure of trace trees in SPUR. A
trace tree is created when the first trace is recorded for a par-
ticular trace anchor in the profiling code. Along the recorded
trace, guards make sure that future executions will take the
previously recorded path. If not, the trace is exited. After
optimized trace tree code has been jitted, a jump to the op-
timized code is patched into the original trace anchor in the
profiling code. Later, when the optimized trace tree code is
executed, a particular guard may fail frequently. In that case,
a trace for the continuation after the corresponding trace exit
is recorded; it is attached to the previously recorded trace at
the previously failing guard, which now selects between the
old and the new trace continuation. All associated recorded
traces are composed to form the trace tree. Individual traces
may or may not loop back to the trace anchor. SPUR does
not currently support nested trace trees.

Up to five tracing attempts are made from each trace
anchor; if each attempt is aborted, e.g. because execution left
the relevant loop body, or an exception is thrown, or because
a non-loop trace was not profitable, then the trace anchor is
retired, and the trace anchor code is patched with X86 no-
operation (NOP) instructions.

During trace recording, some trivial optimizations, in par-
ticular constant folding, are already applied to reduce the
amount of collected data.

5.3 Trace Intermediate Representation

We represent recorded traces in an SSA form. Whenever
possible, indirect memory accesses, which can occur in CIL
via managed pointers, are resolved. We represent updates
of value types and selection of fields from values types in
SSA form as well. Most instructions which can throw an

Microsoft Research Technical Report MSR-TR-2010-27, March 2010

exception implicitly—a null-dereference, a bounds check
at an array access, or an arithmetic exceptions—are split
into guard instructions to ascertain that the operation won’t
fail, and the actual operation without the check. All guard
instructions are annotated with the live stack state that needs
to reconstructed on exiting the trace.

However, some instructions for which the check for the
exceptional case would be too complicated or redundant, e.g.
a multiplication with overflow check, or a call to a native
method, are instead annotated with live stack state to recon-
struct inlined stack frames, so that they can be reconstructed
when an exception is actually thrown. Besides spilling of
registers around the protected region with exception han-
dling, there is no overhead for exception handling.

5.4 Guards

A recorded trace typically contains many guards, i.e., in-
structions corresponding to conditional branches and other
conditions which would force a deviation of the execution
from the recorded trace (e.g., via an exception). A typical
place where a guard is needed is at a virtual call instruction.
The guard makes sure the target method is the same as the
one recorded during tracing.

We perform aggressive guard optimizations, which are
crucial for gaining performance. The main optimization per-
formed is evidently guard implication, i.e., guards that have
been checked earlier and are thus redundant don’t need to be
checked again. In simple cases, this corresponds to common
subexpression elimination combined with constant propaga-
tion and dead code elimination. SPUR can also detect non-
trivial implications by analyzing the relationship of integer
equalities and inequalities.

To further reduce the number of guards and possibly hoist
them out of loops, we perform novel guard strengthening
optimizations. These optimizations are speculative (but safe)
in that they might cause a trace to be exited earlier than
absolutely necessary. Guard strengthening identifies guards
implied by later guards and then strengthens earlier guards
to the stronger guard occurring later in the trace. This change
makes the later guard redundant but might cause execution
to leave the optimized trace at the earlier guard rather than
the later guard. Leaving a trace earlier isn’t really a problem,
as the trace would be left anyway in the same loop iteration.
There is a small performance loss in the final iteration where
the trace is left, but no semantic problem. If a particular
trace exit is triggered frequently, SPUR will record a trace
starting from that trace exit. If the guard that caused the
trace exit was involved in speculative guard strenghtening,
then it might be the case that the recorded trace initially
takes an already known path after the failing guard through
the trace tree, and only later deviates at the later guard that
was made redundant by the speculative guard strengthening.
SPUR detects this scenario, and then only attaches the new
part of the trace at the later guard. Once a new trace has been

9 2010/3/26

attached, speculative guard strengthening will no longer be
performed at or above the branching point.

5.5 Hints and Guarantees

SPUR supports annotations in the traced code to guide trac-
ing and enable further optimizations: Some JavaScript run-
time methods are annotated with a [TraceUnfold] attribute,
that indicates that contained loops should be unfolded in
outer traces, and no local trace trees should be constructed.
This annotation is used mainly on those runtime methods
that implement traversals of JavaScript prototype chains in a
loop, as these prototype chains tend to be stable at particular
callsites.

SPUR also supports annotations to propagate safety
guarantees of the JavaScript runtime. In particular, we use
[DoNotCheckArrayAccesses] attributes to eliminate bounds
checks on certain JavaScript runtime functions written in C#
which access array elements holding object properties which
are guaranteed to be present according to the JavaScript type
of the object.

5.6 Store-Load Propagation

We use an alias analysis to perform a store-load propaga-
tion along the trace to avoid (or delay) writes and reads to
the heap and the runtime stack. Recall that CIL allows man-
aged pointers into the stack and call-by-reference parame-
ters. Store-load propagation enables short-circuiting such in-
direct stores and loads when inlining methods with by-ref
parameters.

When applied to heap locations, this optimization relies
on the single-threaded assumption of our current infrastruc-
ture. In the presence of threads, the alias analysis will need
to restrict this optimizations according to the CIL memory
model, and it can only be applied fully to thread local data
(typically allocated on the trace). Note that the optimization
applied to stack locations remains fully applicable even in
the presence of multiple threads.

Store-load optimizations are often able to eliminate tem-
porary object allocations in a trace. Object fields may be kept
in registers, and the allocation of value types may be delayed
until a trace exits.

5.7 Invariant code motion

We first determine which local variables are guaranteed to
not change during execution along any looping path of a
trace tree. We mark those memory locations as invariant. All
pure non-exception-throwing computations which depend
only on invariant values are marked invariant as well. All
invariant computations are hoisted.

Invariant code motion is extended to guards, load oper-
ations from the heap, and memory allocations as well: If
a guard only depends on invariant values, and if it appears
somewhere along all looping paths of the trace tree, then the
guard is hoisted. This might disable non-looping paths as a

Microsoft Research Technical Report MSR-TR-2010-27, March 2010

result (similarly to guard strengthening), but optimizing the
looping paths is more important.

Similarly, if a load operation from the heap only de-
pends on invariant references and indices, and it appears
somewhere along all looping paths of the trace tree, and
any required implicit null and/or type check has been al-
ready hoisted, and no looping path can possibly overwrite
the memory to be loaded, then the load operation is hoisted.
Memory allocations which do not escape are also hoisted;
in the case of an array, the array size must be invariant. In
that case, at the end of each path that may write to a field
or element of a hoisted memory allocation, an instruction is
inserted to fill all fields or elements of the new object with a
zero bit pattern to restore the initial state of the object as if it
were re-allocated.

5.8 Loop Unrolling

For looping trace trees with limited branches, we aggres-
sively unroll the loop. Our heuristic tries to keep the size of
the unrolled trace tree reasonable, as it potentially explodes
with the number of branches in the trace tree. We only unroll
the most frequently taken branches.

5.9 Delayed Computations in Transfers

Besides optimizing the trace, the optimizer is responsible
for emitting guard checks at each potential trace exit, and
transfer instructions to exit the trace. When a guard fails,
some values used in the transfer instruction to reconstruct
nested stack frames might still have to be computed, as they
were not used in the main execution of the optimized trace
code. All pure and non-exceptional computations might be
delayed until a transfer requires them.

6. JScript Compiler

On startup, SPUR starts executing the JavaScript compiler,
which in turn reads the JavaScript source, compiles it to CIL
in memory. Then SPUR jits the CIL to machine code, which
finally gets invoked.

Our JavaScript compiler evolved from the JScript. NET
code base [1], a JavaScript compiler for the standard .NET
platform. Before targeting SPUR, we put a fair amount of
work into the compiler and the JavaScript runtime to in-
crease performance when running on Microsoft’s standard
.NET platform.

6.1 Argument and Variables of Primitive Types

Arguments and local variables of functions are specialized
to be of type bool, int, or double, if the static type inference
can prove that the values of these arguments or variables will
always be in the range of the specialized type.

6.2 Function Calls

When a function is called that was defined in JavaScript
code, the function is type-specialized according to the

10 2010/3/26

statically known argument types at the call site. A cache
maintains jitted variations of a function, one per type-
specialization.

When the function being called is implemented as a na-
tive runtime method in C#, rather than as a JavaScript func-
tion, then the native function cannot be specialized and jitted
to suit the call site. Instead, an adaptor stub is generated to
convert the call site arguments to the type signature expected
by the native method.

6.3 Object Representation

JavaScript objects are represented as CIL objects, deriving
from a common base class. In this CIL base class, one field
holds a reference to a type object, and another field holds a
reference to an array of property values. (Fields of an object
in JavaScript are called properties.) The type object maps
property and function names to indices into the property
array. When a JavaScript object gets a new property, or
loses a property, its type object is replaced with another type
object and its property value array is resized (if need be).

When a JavaScript object is used as a hash table from
strings to values, a naive version of this scheme would gen-
erate a new type object every time a new key is added. To
avoid this proliferation of types, any JavaScript object whose
(non-array index) properties are created via the [] syntax gets
a mutable (unshared) copy of its type object and thus all fur-
ther additions of properties to the object are done in place
in the mutable type object. In effect, the type object itself
becomes a non-shared hash table.

JavaScript arrays are derived fom JavaScript objects that
in our implementation additionally have a native field that
tracks the types of array elements (bool, int, double or any).
Depending on the element type of the array one of four ad-
ditional fields is initialized with a native array with the ap-
propriate element type. JavaScript arrays can be either dense
or sparse. When sparse, the first n entries are represented
densely in the native array and the rest are stored in a special-
ized hash table. Note that whenever the name of a property
is an array index, the property is not added to the type ob-
ject. It either goes to the native array or the specialized (per
instance) hash table. If the object is not a JavaScript array, it
only maintains the specialized hash table.

6.4 Lookup Implementation

Every type object is a mapping from property name to prop-
erty offset. Every code location where an object property
is accessed has a dedicated “cache” object'. When control
reaches the access, the current type of the object is extracted
and compared to the type stored in the cache. If there is a hit,
the cache contains the corresponding property offset. If there
is a miss, the type object is asked to map the property name
to an offset and the cache is updated with the type object and

'In the current SPUR implementation, these caches are two-way, out-of-
line.

Microsoft Research Technical Report MSR-TR-2010-27, March 2010

offset. In this context “property offset” means index of the
value in the array of property values.

6.5 Eval

Since eval needs to be able to inspect and modify the stack
frame of a function, a function containing eval cannot store
its locals in true locals, but uses a heap allocated “activation
object” to represent locals as properties. These properties are
modeled and accessed exactly like the properties of normal
JavaScript objects.

The code generated by eval is turned into a function
whose (heap allocated) scope chain is the same as the calling
function. Global code is also represented as a function with
a heap allocated activation object. Thus, global variables live
in properties of an implicit global JavaScript object, whose
type evolves just as the type of all other JavaScript objects.

Note that other constructs, such as nested functions and
with statements also cause a function to allocate its locals on
the heap.

6.6 Static Analysis

We use abstract interpretation on the JavaScript code to
perform sound type-specialization by inferring ranges for
atomic local variables and function arguments [22]. Expres-
sions that involve constants or local variables and function
arguments that are type-specialized are compiled into typed
CIL, rather than into calls to polymorphic helper functions.
This results in shorter traces and fewer guards.

6.7 Boxed Values

JavaScript object properties, elements of polymorphic Java-
Script arrays, and local variables and arguments whose type
could not be restricted by the static analysis, hold boxed
values. However, in the context of SPUR’s runtime, boxed
objects are not allocated on the heap. Instead, they are stored
in a 16-byte value type (in a 32-bit environment), which
is usually passed around by-reference (and sometimes by-
value). This value type effectively implements a union via
an explicit struct layout in C#:

[StructLayout (LayoutKind.Explicit)]
struct ValueWrapper {
[FieldOffset(0)] object wrappedObject;
[FieldOffset(4)] TypeCode typeCode;
[FieldOffset(8)] bool wrappedBool;
[FieldOffset(8)] char wrappedChar;
[FieldOffset(8)] double wrappedDouble;
[FieldOffset(8)] int wrappedInt;
[FieldOffset(8)] uint wrappedUInt;
[FieldOffset(8)] long wrappedLong;
[FieldOffset(8)] ulong wrappedULong;
}
enum TypeCode {
Empty, Int32, Double,
String, Object, DBNull,
Boolean, Char, UInt16, UInt32, Missing,
}

11 2010/3/26

void arraySwap(ref ValueWrapper a) {
for (double i = 0.0;
Less(i,

Minus (GetProperty(c, a, "length"), 1.0));

i+=1.0) {
ValueWrapper tmp = GetElement(a, i);
SetElement(a, i, GetElement(a, i + 1.0));
SetElement(a, i + 1.0, tmp);
}
}

Figure 5. C# corresponding roughly to JavaScript example

6.8 Tweaking the JScript Compiler for Tracing

We found a few idioms in the generated code of the JScript
compiler that needed to be changed in order to get the best
performance out of the TJIT.

® Our caches for property lookups are realized as objects
which live on the heap. However, only persistent data
should be stored in such a cache object, and all temporary
data involved in cache lookups should be passed via the
stack.

® We use a high-water mark for non-empty slots in arrays;
this often allows hoisting checks for empty elements out
of loops.

® General guidelines to improve performance of object ori-
ented programs apply here as well, in particular avoiding
casts to non-sealed classes.

7. Example 2: A Loop in JavaScript

In this section, we will revisit the C# example from Sec-
tion 2, which we now rewrite in JavaScript as the source lan-
guage:
function arraySwap(a) {
for (var i = 0; i < a.length - 1; i++) {
var tmp = al[il;
ali]l = a[i + 11;
ali + 1] = tmp;
}
}

Static analysis determines that i is a number, but a could be
any object (it doesn’t have to be an array), so the type of
a.length is unknown statically, so the arithmetic expression
a.length-1 as well as the comparison against i has to be
computed with boxed values. The type of the array elements
is also not known.

The CIL code generated by our JavaScript compiler is
roughly the code corresponding to the C# in Figure 5. Note
that JavaScript values of unknown types are stored in the
value type called ValueWrapper shown in Section 6.7. We
don’t write out the implicit boxing of double values to Val-
ueWrapper nor do we show that value wrappers are actually
passed by reference. The JavaScript runtime helper methods
Less and Minus implement the corresponding JavaScript se-

Microsoft Research Technical Report MSR-TR-2010-27, March 2010

————————— hoisted loop invariant code
guard a Cne null
(2) = a.typeCode
guard (2) Ceq TypeCode.0Object
(6) = a.wrappedObject
(7) = (6) as MS.JScript.ObjectInstance
(23) = (6) as MS.JScript.ArrayInstance
guard (6) Ceq (23)
guard (6) Cne null
(12) = (6) .type
(13) = c.typel
guard (12) Ceq (13)
(15) = c.dynamicPropertyOffsetl
guard (15) Clt O
(17) = c.propertyl
guard (17) Cne null
(21) = call (17).System.0Object: :GetType()

guard (21) Ceq MS.JScript.ArrayLengthProperty

(27) = (6).1len
(28) = Conv_R_Un (27)
(34) = (28) Sub 1.0D
guard (7) Cne null
(68) = call (7).System.Object::GetType()
guard (58) Ceq MS.JScript.ArrayInstance
(62) = (7).denseArraylLength
(65) = (7).elementTypeCode
guard (65) Ceq TypeCode.Double
(68) = (7).index0fFirstMissingEntry
(71) = (7) .doubleArray
(143) = (6) as System.String
guard (143) Ceq null
(69) = (68) Min_Un (62)
--------- loop body
guard i Clt (34) // exitl
(60) = Conv_I4 i
guard (60) Clt_Un (69) // exit2
(72) = (71) [(60)]
(121) = i Add 1.0D
(127) = Conv_I4 (121)
guard (127) Clt_Un (69) // exit3
(139) = (71) [(127)]
(71) [(60)] = (139)
(71) [(127)] = (72)

(81) = update default(ValueWrapper) .wrappedDouble=(72)

(82) = update (81).typeKind = TypeCode.Double
(83) = update (82).wrappedObject = null
loop tail state: i = (121), tmp = (83)

Figure 6. The trace intermediate representation.

mantics for < and —; GetProperty implements the retrieval
of an object property; a cache object c stores information
about the index of the property given a particular JavaScript
object type; GetElement and SetElement implement array
accesses.

12 2010/3/26

loop:
// guard i Clt (34)
fld qword ptr [ebp-1Ch]
fld qword ptr [ebp-17Ch]
fucomip st,st(1)
jp exitl
jbe exitl
fstp st (0)
// (60) = Conv_I4 i
cvttsd2si ebx,mmword ptr [ebp-1Ch]
// guard (60) Clt_Un (69)
mov esi,dword ptr [ebp-16Ch]
cmp ebx,esi
jae exit2
// (72) = (71) [(60)]
mov edi,dword ptr [ebp-164h]
fld qword ptr [edi+ebx*8+0Ch]
// (121) = i Add 1.0D
£f1d qword ptr [ebp-1Ch]

fadd qword ptr ds:[3D80008h]
fstp qword ptr [ebp-194h]

// (127) = Conv_I4 (121)

mov dword ptr [ebp-180h],ebx

cvttsd2si ebx,mmword ptr [ebp-194h]

// guard (127) Clt_Un (69)

cmp ebx,esi

jae exit3

// (139) = (71) [(127)]

fld qword ptr [edi+ebx*8+0Ch]

// (71) [(60)] = (139)

mov ecx,dword ptr [ebp-180h]

fstp qword ptr [edi+ecx*8+0Ch]

// (71) [(127)]1 = (72)

fst qword ptr [edi+ebx*8+0Ch]

// loop tail state: i = (121), tmp = (83)
fld qword ptr [ebp-194h]

fstp qword ptr [ebp-1Ch]

// (81)=update default(.).wrappedDouble=(72)
// (82)=update (81).typeKind = Double

// (83)=update (82).wrappedObject = null
lea ebx, [ebp-2Ch]

fst qword ptr [ebx+8]

mov dword ptr [ebx+4],2

xor eax,eax

mov dword ptr [ebx],eax

fstp st (0)

// book-keeping how often loop gets executed
inc dword ptr [ebp-12Ch]

jmp loop

Figure 7. The optimized trace loop body X86 code.

The unoptimized trace recorded for this loop, inlining all
helper methods, has 210 instructions, including guards, and
is not shown.

After optimization, 37 loop invariant instructions and 13
loop variant instructions remain, some of which can be de-

Microsoft Research Technical Report MSR-TR-2010-27, March 2010

layed until an exit is triggered. Figure 6 shows the optimized
trace intermediate representation, omitting delayed instruc-
tions. In the first part, the hoisted loop invariant computa-
tions are shown. Numbers in parentheses, e.g. (2), repre-
sent SSA values that are defined along the hoisted or loop
body code. The instructions shown include field accesses
((x) = (y).f), guards (guard (x) op (y)) where the oper-
ator op can be equality (Ceq), disequality (Cne), inequality
(Clt for signed integers/ordered floating point values, Clt_Un
for unsigned integers/unordered floating point values), type
casts that yield null on failure ((x) as T), calls to native
methods (call (x).f()), conversion from unsigned integers to
floating point (Conv_R_Un), conversion from floating point
to signed integer (Conv_l4), arithmetic operations ((x) op
(y)) where the operator op can be subtraction (Sub), addition
(Add), minimum of unsigned integers (Min_Un), struct up-
dates (update (x).f = (y)), and default values (default(T)),
i.e. the struct value where are fields are filled with a zero bit
pattern.

The Min_Un instruction was not present in the origi-
nally recorded trace, but resulted from a speculative guard
strengthening optimization, in which two separate guards
were combined. The accesses to typel, dynamicProperty-
Offsetl, and propertyl are related to the access of a.length,
which refers to the access of the array length property in this
calling context.

Figure 7 shows the resulting machine code for the loop
body. We show the loop body here without loop unrolling,
but SPUR will actually unroll the loop body at least once.
The generated machine code is not optimal, and there is
room for further improvement: The value (60) is spilled and
later reloaded, and the temporary tmp of type ValueWrapper
is fully constructed and written back at the end of the loop;
this is because SPUR currently does not perform a liveness
analysis of local variables typed as ValueWrapper.

8. Evaluation

Figure 8 shows steady-state execution times for the SunSpi-
der benchmarks in milliseconds, on a Intel Core2 Quad CPU,
Q9650 @ 3.00 GHz, 8 GB Ram, Windows 7 Enterprise, 64-
bit version, running 32-bit versions of all browsers. Each
benchmark was embedded in a loop iteration 30 times; the
lowest reported execution time is quoted in the table. As a
result, jitting or tracing overhead is effectively not included
in the quoted times. Note that we used abbreviated bench-
mark names to reduce the size of the table. V8 refers to V8
in Chrome 4.0.249.89 (38071), TM refers to TraceMonkey
in Firefox 3.6, |E8 refers to Internet Explorer 8, which runs
JavaScript with an interpreter without jitting. |E9 refers to
an early version of Internet Explorer 9 (Platform Preview
v1.9.7745.6019), which interprets JavaScript bytecodes with
selective jitting. SPUR with tracing is the SPUR engine
as described in this paper, SPUR without tracing is using
SPUR’s JIT, but without tracing, and SPUR-CLR is using

13 2010/3/26

V8 | TM SPUR [SPUR [SPUR | IE8 | IE9

with | CLR w/o (Pre-

traces traces view)

3d-cube 13 25 14 42 63 | 112 37
3d-morph 19 36 10 26 47 | 103 42

3d-raytrace 15 43 16 50 72 | 165 24

acc-bin-tree 1 28 22 37 50 | 128 19
acc-fannkuch | 10 47 15 84 174 | 280 13
acc-nbody 11 13 6 36 56 | 148 28
acc-nsieve 2 8 4 13 33 90 8
bitops-3bit 2 1 0 5 7 77 1
bitops-bits 6 7 6 6 8 79 5
bitops-and 6 2 1 15 12 | 186 3
bitops-nsiev 12 17 4 32 57 | 135 15
control-rec 2 31 9 17 22 | 106 2
crypto-aes 75 15 14 40 75 | 113 12
crypto-md5 7 2 2 16 20 70 10
crypto-shal 7 3 2 15 21 70 11
date-tofte 20 56 49 67 92 | 165 42
date-xparb 26 69 66 65 67 | 161 41
math-cordic 13 21 6 48 66 | 143 2
math-partial 15 11 13 71 105 | 100 31

math-spectr 5 3 2 16 22| 99 16
regexp-dna 12 37 | 616 | 528 | 585 | 204 31
string-b64 14 7 10 32 38 | 560 19
string-fasta 21 42 64 75 112 | 163 39
string-tagcl 22 45 123 109 160 | 129 43
string-unpac 43 58 | 382 | 294 | 397 | 124 68
string-valid 22 19 50 | 114 82 | 113 31

acc-fannkuch ”

Figure 8. Steady-state execution times for SunSpider
benchmarks in milliseconds

SPUR’s JavaScript compiler, but using the production Mi-
crosoft CLR v3.5 JIT (and runtime) instead of SPUR’s JIT,
again without tracing.

Comparing SPUR without tracing to SPUR-CLR shows
that the code generated by SPUR’s JIT is on average 1.4
times slower than the CLR JIT. The same JIT is used when
running SPUR with tracing, and yet — with exception
of certain string-heavy benchmarks — it consistently per-
forms faster than SPUR-CLR, faster than TraceMonkey,
and quite often faster than V8. Excluding the string-related
benchmarks regexp-dna, string-b64, string-fasta, string-
tagcl, string-unpack, string-valid, then the code generated
by SPUR with tracing only takes 59% percent of the time to
execute compared to the code generated by TraceMonkey.
When further excluding the recursion-heavy benchmarks
acc-bin-tree, control-rec, then SPUR’s code completes exe-
cution in 87% of the time it takes V8.

In its current implementation, SPUR does not have an
optimized implementation of the string functions, and no
optimized regular expression library. This prevents SPUR
from performing better on the string-related benchmarks.

Figure 9 compares the execution time of TraceMonkey,
SPUR with tracing, SPUR-CLR, and SPUR without tracing
code against V8. Execution times are normalized against

Microsoft Research Technical Report MSR-TR-2010-27, March 2010

adcube . FTPTRReRry

3d-momph

3d-raytrace

acc-hin-tree Y i

B e

acc-nbody LA

acc-nsieve (P

hitops-3hit

hitops-bits

hitops-and . e

bitops-nsiev

control-rec G

crypto-aes :
crypto-md5 :
crypto-shal

date-tofte

date-xparb

math-cordic
math-partial | =

math-spectr

regexp-dna

string-h64

string-fasta

string-tagcl

string-unpac

string-valid i

0.1 1 10

= TraceMonkey mSPUR w/tracing = SPUR with CLRJIT m SPUR w/o tracing

Figure 9. Normalized execution time over V8 4.0.249.89.

V8’s time. Thus, bars extending to the right of 1, are factors
slower than V8. Bars extending to the left of 1 are fractions
of execution time of V8 code, thus faster.

The graph illustrates several points. First, code produced
by SPUR without tracing runs only slightly slower than
SPUR-CLR. This validates the code generated by our unop-
timized JIT as relatively competitive to a commercial imple-
mentation. In light of that, the graph shows that tracing does
dramatically improve the performance of code generated by
SPUR over SPUR without tracing, often by over a factor of
10. Thus our speedups really do come from tracing, and not
just a better back-end or other effect.

Observe that where TraceMonkey beats V8, SPUR does
so too and with similar magnitude. Vice-versa, where Trace-
Monkey is slower than V8, SPUR usually is as well. The
graph thus substantiates our hypothesis that trace optimiza-
tions that work well for a dynamic source language tracer
like TraceMonkey, also work well when tracing the code ob-
tained by translating the dynamic language and its runtime
to CIL.

Overall, V8 is still a formidable engine to beat. In 14/26
benchmarks V8 wins, often dramatically, whereas SPUR
wins in 11/26 benchmarks.

14 2010/3/26

Trees |Loops |Traces |Traces | Loop | Instrs.
[Tree [Traces | /Trace
/Loop

3d-cube 96 8 156 1.6 5.1 863
3d-morph 9 3 10 1.1 1.3 380
3d-raytrace 62 8 102 1.6 4.0 1360
acc-bin-tree 38 0 47 1.2 - 650
acc-fannkuch 20 7 47 24 2.1 161
acc-nbody 15 4 21 1.4 1.8 2542
acc-nsieve 6 3 12 2.0 1.0 128
bitops-3bit 3 1 3 1.0 1.0 218
bitops-bits 6 1 15 2.5 8.0 55
bitops-and 3 1 3 1.0 1.0 376
bitops-nsiev 7 3 17 2.4 23 112
control-rec 45 0 56 1.2 - 260
crypto-aes 81 26 143 1.8 2.7 455
crypto-md5 16 4 17 1.1 1.3 4254
crypto-shal 17 4 26 1.5 3.0 898
date-tofte 38 2 43 1.1 1.0 1345
date-xparb 41 3 63 1.5 3.0 1754
math-cordic 5 1 9 1.8 5.0 654
math-partial 8 1 9 1.1 2.0 1980
math-spectr 21 4 25 1.2 2.0 317
regexp-dna 3 2 3 1.0 1.0 2010
string-b64 7 3 8 1.1 1.3 2566
string-fasta 14 3 18 1.3 23 668
string-tagcl 19 2 30 1.6 3.0 460
string-unpac 42 6 78 1.9 6.3 1221
string-valid 16 3 34 2.1 3.0 416

Figure 10. Tracing statistics of SPUR on SunSpider bench-
marks

The current overhead of SPUR’s trace optimization and
compilation is significant. The numbers reported in Figure 8
effectively do not include jit or tracing overhead for any
JavaScript engine. We have not yet attempted to reduce the
overhead. For example, in the crypto-md5 benchmark, the
main loop results in a trace tree with only a single trace, con-
sisting of 60891 instructions; total processing of this trace,
including trace recording, optimization, and compilation is
around 1.5 seconds.

Figure 10 shows some statistics about the trace trees
SPUR builds for the SunSpider benchmarks. “Trees” shows
the number of trace trees created from distinct trace anchors,
“Loops” represents the number of trace trees which have
looping paths, “Traces” represents the number of recorded
traces, or in other words, the number of paths through
all trace trees. “Traces/Tree” shows the average number
of traces per tree, “Loop Traces/Loop” shows the average
number of looping paths per tree with any looping path.
“Instrs/Trace” shows the average number of instructions in
recorded traces, where we count the number of instructions
in our trace intermediate representation, before any opti-
mization such as constant folding is applied. Note that “acc-
bin-tree” and “control-rec” do not contain any loops. Com-
pared to the statistics reported for TraceMonkey (Figure 13,

Microsoft Research Technical Report MSR-TR-2010-27, March 2010

“Detailed trace recording statistics” in [16]), SPUR tends
to record more trees and loops. There are two main reason
for this tendency: SPUR’s JavaScript compiler specializes
methods according to types for arguments that can be in-
ferred statically at call sites. This causes the generation of
different type-specialized method bodies, which in turn get
separate trace trees. Also, SPUR does not only record traces
for proper loops, but SPUR also starts tracing from trace
anchors placed after all potential exit points from existing
traces, and at entry points of potentially recursive methods.
However, SPUR records fewer loops than TraceMonkey for
some benchmarks. The reason for this phenomenon is likely
to be found in the different approaches for nested loops,
which SPUR does not support directly. The number of loop-
ing traces per loop also varies widely between SPUR and
TraceMonkey, which is probably due to differences in the
tracing systems’ runtimes, whose internal branching over
different object types are responsible for a significant num-
ber of traces.

9. Related Work

Several state-of-the-art JavaScript implementations employ
just-in-time compilation, e.g. Apple’s SquirrelFish Extreme
and Google’s V8.

Compiling multiple specialized code versions was pio-
neered by [8] in the context of the SELF language. Dy-
namic trace compilation was attempted systematically by
Dynamo [2], which operates at the machine code level. It
interprets machine code, records traces, optimizes them, and
maintains a trace cache of optimized traces. Other binary
optimization systems include [7, 13].

YETI [29] is a simple TJIT for Java, focussing on an effi-
cient integration with an interpreter. HotPathVM [19] is an-
other TJIT for Java. It attaches secondary (child) traces to
primary traces, in order to form trace trees [18]. Traces are
represented in SSA form. Child traces may connect different
loops, effectively supporting loop nests. The goal of the Hot-
PathVM was to provide a small footprint JVM with better
performance than an interpreter. Compared to a state of the
art JVM, HotPathVM still trails far behind in performance.

Tamarin-Tracing [10], and TraceMonkey [16] are two
JavaScript TJITs based on the ideas in the HotPathVM. They
use an interpreter to gather traces of high-level JavaScript
operations and optimize these traces directly before com-
piling them to machine code. To save time recompiling
trace trees, these TJITs use trace stitching, where opti-
mized branch traces are stitched onto the main trunk (or side
branch) without recompiling the entire tree. This approach
saves compilation time, but does not permit aggressive opti-
mizations like global register allocation (described in [15]).

Suganuma et. al. [27] propose an inter-procedural region
selection scheme similar to our tracing approach. They use
profiling and instrumentation to drive region selection and
rely on on-stack replacement (OSR) to transfer out of com-

15 2010/3/26

piled regions. Unlike traces, regions are arbitrary subsets of
methods. They often contain join nodes, and thus require
correspondingly more complex profiling and optimization
algorithms.

Closely related to our translation of JavaScript into CIL
is earlier work by Chang et.al. [9], where they embed
JavaScript in Java, combined with a TJIT. Their system still
contains a Java interpreter, whereas SPUR is based on jitting
only. Our JavaScript translation can take advantage of value
types in the native runtime.

More general trace-optimizations of hierarchically lay-
ered virtual machines (VMs) have been described recently [5,
26, 28]. However, while our approach is based on compila-
tion at all levels (JavaScript to CIL, and CIL to machine
code), these approaches are based on interpreters at all lev-
els. As the interpreter loop of the guest VM would appear
to be the hot loop and optimized, instead of the loops of the
interpreted programs, they propose special hints to guide the
trace optimization of the host VM, essentially to unroll the
guest interpreter loop. While we do not have a general prob-
lem with an interpreter loop, we do employ similar hints to
unfold loops in the JavaScript runtime that perform dynamic
type lookups at runtime.

The Dynamic Language Runtime (DLR) [25] is a library
on top of .NET which simplifies the implementation of dy-
namic languages. Our JavaScript runtime can be seen as a
specialized implementation of the DLR. The DLR does not
provide any support for tracing.

Cuni et.al. [11] describe how to use the built-in dynamic
code generation features of the Microsoft CLR, namely the
Reflection.Emit library, to realize a TJIT. As a consequence,
their approach incurs a relatively high overhead for enter-
ing and leaving traces, as their optimized traces are regular
methods. SPUR has the concept of trace methods, which in-
herit the stack frame of the originating method, and SPUR
supports a transfer instruction that allows reconstructing in-
lined method calls.

Merrill et.al [24] present a system which compiles each
method into two equivalent binary representations: a low fi-
delity region with counters to profile hot loops and a high-
fidelity region that has instrumentation to sample every code
block reached by a trace. When a hot loop has been iden-
tified, the low-fidelity code transfers control to the high-
fidelity region for trace formation. Upon conclusion of a
trace, execution jumps back to the appropriate low-fidelity
region.

We have earlier reported on the static analysis based on
abstract interpretation which SPUR performs to infer types
of local variables and method arguments [22].

The SPUR system, written mainly in C#, having a static
compiler (Bartok) and a JIT at runtime, is similar in na-
ture to the Maxine system for Java [23], which was re-
cently extended for tracing [4]. In contrast to the tracing
Maxine system, SPUR’s optimized traces seamlessly inte-

Microsoft Research Technical Report MSR-TR-2010-27, March 2010

grate with other precompiled or jitted code, without the need
for adapter stack frames to mediate between different code
versions, and SPUR supports any .NET language, including
JavaScript.

10. Conclusion and Future Work

We presented a tracing just-in-time compiler (TJIT) for CIL,
which significantly improves the runtime performance of
JavaScript programs on the .NET platform. Our approach
is novel in that it does not employ an interpreter at any lan-
guage level. We confirmed our hypothesis that the perfor-
mance benefits of tracing for dynamic languages is not lost
when the tracing is performed on an intermediate level of the
compiled dynamic language source, rather than at the source
level. The key to make our approach work in practice is the
ability to trace not only the target code produced by the dy-
namic language compiler, but also the runtime code of the
dynamic language.

In future work, we want to reduce the overhead of trace
optimization and compilation by revisiting our algorithms
to avoid any non-linear computations (currently, our alias
analysis, invariant code motion, and guard strengthening are
potentially quadratic in the number of instructions). We also
want to defer that workload into a parallel thread, so that the
main program execution can continue undisturbed, similar
to [3, 20]. As an alternative, the code generation process
could be performed offline, leveraging previously recorded
traces. We also want to garbage collect the jitted code when
it is no longer needed.

SPUR can currently detect implied guards by checking
built-in patterns over equalities, disequalities, and inequali-
ties. We plan to use symbolic execution [21] along the traces
combined with an SMT solver such as Z3 [12] to detect all
implied guards, and to perform further optimizations. We
also plan to investigate if precise symbolic knowledge about
a loop body at runtime can be leveraged for automatic paral-
lelization [6].

Some virtual machines, including Google’s V8, use
tagged pointers to compactly represent 31-bit integers with-
out boxing. We want to investigate if such a value represen-
tation can further improve performance.

We plan to improve our static analysis on JavaScript code,
to track liveness of local variables, and to perform an inter-
procedural analysis when possible.

References

[1] Andrew Clinick. Introducing JScript .NET, 2000.
http://msdn.microsoft.com/en-us/library/-
ms974588 . aspx.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a trans-
parent dynamic optimization system. In PLDI ’00: Proceed-
ings of the ACM SIGPLAN 2000 conference on Programming

language design and implementation, pages 1-12, New York,
NY, USA, 2000. ACM.

16 2010/3/26

[3] M. Bebenita, M. Chang, A. Gal, and M. Franz. Stream-
based dynamic compilation for object-oriented languages. In
TOOLS (47), pages 77-95, 2009.

[4] M. Bebenita, M. Chang, K. Manivannan, G. Wagner, M. Cin-
tra, B. Mathiske, A. Gal, C. Wimmer, and M. Franz. Trace
based compilation in interpreter-less execution environments.
Technical Report ICS-TR-10-01, University of California,
Irvine, March 2010.

[5] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing
the meta-level: Pypy’s tracing jit compiler. In JCOOOLPS
'09: Proceedings of the 4th workshop on the Implemen-
tation, Compilation, Optimization of Object-Oriented Lan-
guages and Programming Systems, pages 18-25, New York,
NY, USA, 2009. ACM.

B. J. Bradel and T. S. Abdelrahman. Automatic trace-based
parallelization of java programs. In ICPP ’07: Proceedings
of the 2007 International Conference on Parallel Processing,
page 26, Washington, DC, USA, 2007. IEEE Computer Soci-
ety.

[6

—_

[7] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastruc-
ture for adaptive dynamic optimization. pages 265-275, 2003.

[8] C. Chambers and D. Ungar. Customization: Optimizing
compiler technology for SELF, a dynamically-typed object-
oriented programming language. In PLDI’89. ACM Press.

[9] M. Chang, M. Bebenita, A. Yermolovich, A. Gal, and
M. Franz. Efficient just-in-time execution of dynamically
typed languages via code specialization using precise runtime
type inference. Technical Report ICS-TR-07-10, University
of California, Irvine, 2007.

[10] M. Chang, E. Smith, R. Reitmaier, M. Bebenita, A. Gal,
C. Wimmer, B. Eich, and M. Franz. Tracing for web 3.0: trace
compilation for the next generation web applications. In VEE
'09: Proceedings of the 2009 ACM SIGPLAN/SIGOPS inter-
national conference on Virtual execution environments, pages
71-80, New York, NY, USA, 2009. ACM.

[11] A. Cuni, D. Ancona, and A. Rigo. Faster than C#: Effi-
cient implementation of dynamic languages on .NET. In
ICOOOLPS’09. ACM Press.

[12] L. M. de Moura and N. Bjgrner. Z3: An efficient smt solver.
In TACAS, pages 337-340, 2008.

[13] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson,
T. Kistler, E. Klaiber, and J. Mattson. The transmeta code mor-
phing software: Using speculation, recovery, and adaptive re-
translation to address real-life challenges. pages 15-24. IEEE
Computer Society, 2003.

[14] ECMA. International standard ECMA-355, Common Lan-
guage Infrastructure, June 2006.

[15] A. Gal. Efficient bytecode verification and compilation in a
virtual machine. PhD thesis, Long Beach, CA, USA, 2006.
Adpviser-Franz, Michael.

[16] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin,
M. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorft,
J. Ruderman, E. Smith, R. Reitmaier, M. Bebenita, M. Chang,
and M. Franz. Trace-based just-in-time type specialization for
dynamic languages. In PLDI’09.

Microsoft Research Technical Report MSR-TR-2010-27, March 2010

[17] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin,
M. R. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Oren-
dorff, J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita,
M. Chang, and M. Franz. Trace-based just-in-time type spe-
cialization for dynamic languages. In PLDI ’09: Proceedings
of the 2009 ACM SIGPLAN conference on Programming lan-
guage design and implementation, pages 465478, New York,
NY, USA, 2009. ACM.

[18] A. Gal and M. Franz. Incremental dynamic code generation
with trace trees. Technical Report ICS-TR-06-16, University
of California, Irvine, 2006.

[19] A. Gal, C. W. Probst, and M. Franz. HotpathVM: an effective
jit compiler for resource-constrained devices. In VEE ’06:
Proceedings of the 2nd international conference on Virtual
execution environments, pages 144-153, New York, NY, USA,
2006. ACM.

[20] J. Ha, M. Arnold, S. M. Blackburn, and K. S. McKinley. A
concurrent dynamic analysis framework for multicore hard-
ware. In OOPSLA, pages 155-174, 2009.

[21] J. C. King. Symbolic execution and program testing. Com-
mun. ACM, 19(7):385-394, 1976.

[22] F. Logozzo and H. Venter. RATA: Rapid atomic type analysis
by abstract interpretation application to JavaScript optimiza-
tion. In Compiler Construction, volume 6011 of LNCS, pages
66-83. Springer-Verlag, 2010.

[23] B. Mathiske. The maxine virtual machine and inspector. In
OOPSLA Companion *08: Companion to the 23rd ACM SIG-
PLAN conference on Object-oriented programming systems
languages and applications, pages 739-740, New York, NY,
USA, 2008. ACM.

[24] D. Merrill and K. Hazelwood. Trace fragment selection within
method-based jvms. In VEE ’08: Proceedings of the fourth
ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments, pages 41-50, New York, NY, USA,
2008. ACM.

[25] Microsoft. Dynamic Language Runtime, 2010.
http://www.codeplex.com/dlr/.

[26] A. Rigo and S. Pedroni. PyPy’s approach to virtual machine
construction. In OOPSLA Companion 2006. ACM Press.

[27] T. Suganuma, T. Yasue, and T. Nakatani. A region-based
compilation technique for dynamic compilers. ACM Trans-
actions on Programming Languages and Systems, 28(1):134—
174, 2006.

[28] A. Yermolovich, C. Wimmer, and M. Franz. Optimization
of dynamic languages using hierarchical layering of virtual
machines. In DLS °09: Proceedings of the 5th symposium
on Dynamic languages, pages 79-88, New York, NY, USA,
2009. ACM.

[29] M. Zaleski, A. D. Brown, and K. Stoodley. Yeti: a gradu-
ally extensible trace interpreter. In VEE '07: Proceedings of
the 3rd international conference on Virtual execution environ-
ments, pages 83-93, New York, NY, USA, 2007. ACM.

17 2010/3/26

