
1

Introduction to Data Management
*** The “Online” Edition ***

Lecture #24
(SQL NoSQL)

Instructor: Mike Carey

mjcarey@ics.uci.edu

1

SQL

2

Announcements

• Homework info:
• HW #8 (NoSQL) is the last one!

• Due next Wednesday (11 PM), Thursday (11PM) if late

• Warning: LOAD DATASET can be (path) finicky...

• Endterm exam info:

• Non-cumulative and during class time next Friday (as usual)

• NoSQL lecture plans:
• Today: NoSQL & Big Data (a la AsterixDB)

• Refer to the Using SQL++ Primer and other docs on the Apache AsterixDB site

• Read SQL++ For SQL Users from Couchbase, by Don Chamberlin (the Father of SQL!)
• Lots of useful info for moving from SQL to SQL++! (Setup script available here)

SQL

https://ci.apache.org/projects/asterixdb/sqlpp/primer-sqlpp.html
https://ci.apache.org/projects/asterixdb/index.html
https://asterixdb.apache.org/files/SQL_Book.pdf
https://uci.yuja.com/V/Video?v=1071697&node=4071232&a=217912667&autoplay=1
https://grape.ics.uci.edu/wiki/asterix/raw-attachment/wiki/cs122a-2020-spring/doncdata.sqlpp

3

Roadmap Check

4

NoSQL Technologies

What is a NoSQL DB – why “not SQL”?

• Not from the DB world

• Distributed systems folks

• Also various startup companies

• From caches à persistent K/V use cases

• Apps needed massive scale-out

• OLTP (vs. parallel query DB) apps

• Simple, low-latency API – get/put by key

• Need a key K, but want no schema for value V
• Record-level atomicity, replica consistency varies

• In the context of this talk, NoSQL will not not mean

• Hadoop (or SQL on Hadoop)

• Graph databases or graph analytics platforms

5

NoSQL Data (JSON-based)

{“id”: “123”,
“Customer”:

{ “custName”: “Fred”,
“custCity”: “LA” }

“total”: 25.97,
“Items”: [

{“product-sku”: 401,
“qty”: 2,
“price”: 9.99 },

{“product-sku”: 544,
“qty”: 1,
“price”: 3.99 }

]
}

{“sku”: 401,
“name”: “Garfield T-Shirt”,
“listPrice”: 9.99,
“size”: “XL” },

{“sku”: 544,
“name”: “USB Charger”,
“listPrice”: 5.99,
“power”: “115V” }

Collection(Orders) Collection(Products)

6

Current NoSQL (document DB) trends

• Popular examples: MongoDB, Couchbase

• Users now coveting the benefits of many DB goodies

• Secondary indexing and non-key access

• Declarative queries

• Aggregates and now (commonly small) joins

• World seems to be heading towards...

• BDMS (think scalable, OLTP-aimed, parallel/distributed DBMS)

• Declarative queries and query optimization, applied to schema-less data

• Return of (some, optional!) schema information

7

Towards a Big Data Management System (BDMS)

Semistructured
Data Management

Parallel
Database Systems

1st Generation
“Big Data” Systems

BDMS Desiderata:
• Able to manage data
• Flexible data model
• Full query capability
• Continuous data ingestion
• Efficient and robust parallel runtime
• Cost proportional to task at hand
• Support “Big Data data types”

•
•
•

8

Apache AsterixDB (from UCI+UCR)

SQL++

http://asterixdb.apache.org/

(JSON, XML,
CSV, …)

http://asterixdb.apache.org/

9

...

{

"orderno":1008,
"custid":"C13",
"order_date":"2017-10-13",
"items":[

{

"itemno":460,
"qty":20,
"price":99.99

}
]

}

Orders

{

"orderno":1004,
"custid":"C35",
"order_date":"2017-07-10",
"ship_date":"2017-07-15",
"items":[

{
"itemno":680,
"qty":6,
"price":9.99

},

{
"itemno":195,
"qty":4,
"price":35.00

}
]

}

Data Model: JSON (JavaScript Object Notation)

Customers

{

"custid":"C37",
"name":"T. Hanks",
"address":{

"street":"120 Harbor Blvd.",
"city":"Boston, MA",
"zipcode":"02115"

},

"rating":750
}

{
"custid":"C47",
"name":"S. Lauren",
"address":{

"street":"17 Rue d'Antibes",
"city":"Cannes, France"

},

"rating":625
}

Data from D. Chamberlin. SQL++ for SQL Users: A Tutorial

10

...

{

"orderno":1008,
"custid":"C13",
"order_date":"2017-10-13",
"items":[

{

"itemno":460,
"qty":20,
"price":99.99

}
]

}

Orders

{

"orderno":1004,
"custid":"C35",
"order_date":"2017-07-10",
"ship_date":"2017-07-15",
"items":[

{
"itemno":680,
"qty":6,
"price":9.99

},

{
"itemno":195,
"qty":4,
"price":35.00

}
]

}

Data

Customers

{

"custid":"C37",
"name":"T. Hanks",
"address":{

"street":"120 Harbor Blvd.",
"city":"Boston, MA",
"zipcode":"02115"

},

"rating":750
}

{
"custid":"C47",
"name":"S. Lauren",
"address":{

"street":"17 Rue d'Antibes",
"city":"Cannes, France"

},

"rating":625
}

Data from D. Chamberlin. SQL++ for SQL Users: A Tutorial

11

Lineitems

{

"orderno":1004,
"itemno":680,
"qty":6,
"price":9.99

}

{
"orderno":1004,
"itemno":195,
"qty":4,
"price":35.00

}
{

"orderno":1008,
"itemno":460,
"qty":20,
"price":99.99

}

Orders

{

"orderno":1004,
"custid":"C35",
"order_date":"2017-07-10",
"ship_date":"2017-07-15"

}

{
"orderno":1008,
"custid":"C13",
"order_date":"2017-10-13",
"ship_date":null

}

Data (Relational version)

Customers

{

"custid":"C37",
"name":"T. Hanks",
"address_street":"120 Harbor Blvd.",
"address_city":"Boston, MA",
"address_zipcode":"02115"
"rating":750

}

{
"custid":"C47",
"name":"S. Lauren",
"address_street":"17 Rue d'Antibes",
"address_city":"Cannes, France"
"address_zipcode":null
"rating":625

}

CREATE TABLE Lineitems (

orderno INTEGER,
itemno INTEGER,
quantity INTEGER NOT NULL,
price DECIMAL(8,2) NOT NULL,
PRIMARY KEY (orderno, itemno),
FOREIGN KEY (orderno) REFERENCES Orders(orderno)

)

12

Lineitems

{

"orderno":1004,
"itemno":680,
"qty":6,
"price":9.99,
"currency":"USD"

}
{

"orderno":1004,
"itemno":195,
"qty":4,
"price":35.00,
"currency":"USD"

}
{

"orderno":1008,
"itemno":460,
"qty":20,
"price":99.99,
"currency":"EUR"

}

Orders

{

"orderno":1004,
"custid":"C35",
"order_date":"2017-07-10",
"ship_date":"2017-07-15"

}

{
"orderno":1008,
"custid":"C13",
"order_date":"2017-10-13",
"ship_date":null

}

Data (Relational version)

Customers

{

"custid":"C37",
"name":"T. Hanks",
"address_street":"120 Harbor Blvd.",
"address_city":"Boston, MA",
"address_zipcode":"02115"
"rating":750

}

{
"custid":"C47",
"name":"S. Lauren",
"address_street":"17 Rue d'Antibes",
"address_city":"Cannes, France"
"address_zipcode":null
"rating":625

}

CREATE TABLE Lineitems (

orderno INTEGER,
itemno INTEGER,
quantity INTEGER NOT NULL,
price DECIMAL(8,2) NOT NULL,
PRIMARY KEY (orderno, itemno),
FOREIGN KEY (orderno) REFERENCES Orders(orderno)

)

13

...

{
"orderno":1008,
"custid":"C13",
"order_date":"2017-10-13",
"items":{

"itemno":460,
"qty":20,
"price":99.99

}
}

Orders

{
"orderno":1004,
"custid":"C35",
"order_date":"2017-07-10",
"ship_date":"2017-07-15",
"items":[

{
"itemno":680,
"qty":6,
"price":9.99

},
{

"itemno":195,
"qty":4,
"price":"if you have to ask ..."

}
]

}

Sloppy Data

Customers

{
"custid":"C37",
"name":"T. Hanks",
"address":{

"street":"120 Harbor Blvd.",
"city":"Boston, MA",
"zipcode":"02115"

},
"rating":750

}

{
"custid":"C47",
"name":"S. Lauren",
"address":{

"street":"17 Rue d'Antibes",
"city":"Cannes, France"

},
"rating":"625"

}

14

[
{
"name": "M. Streep"

},
{
"name": "T. Hanks"

},
{
"name": "T. Cruise"

}
]

SQL++: Just like SQL ...

SELECT name
FROM customers
WHERE rating > 650;

15

[
{
"name": "R. Duvall",
"order_date": "2017-09-02"

},
{
"name": "R. Duvall",
"order_date": "2017-04-29"

}
]

Just like SQL ...

SELECT name
FROM customers
WHERE rating > 650;

SELECT c.name, o.order_date
FROM customers AS c, orders AS o
WHERE c.custid = o.custid
AND c.custid = "C41";

16

SELECT c.name, o.order_date
FROM customers AS c LEFT OUTER JOIN orders AS o
ON c.custid = o.custid

WHERE c.custid = "C41";

Just like SQL ...

SELECT name
FROM customers
WHERE rating > 650;

SELECT c.name, o.order_date
FROM customers AS c, orders AS o
WHERE c.custid = o.custid
AND c.custid = "C41";

17

[

{

"cnt": 1,

"order_date": "2017-10-13"

},

{

"cnt": 1,

"order_date": "2017-09-13"

},

{

"cnt": 1,

"order_date": "2017-09-02"

}

]

Just like SQL ...

SELECT name

FROM customers

WHERE rating > 650;

SELECT c.name, o.order_date

FROM customers AS c, orders AS o

WHERE c.custid = o.custid

AND c.custid = "C41";

SELECT order_date, count(*) AS cnt

FROM orders

GROUP BY order_date

HAVING count(*) > 0

ORDER BY order_date DESC

LIMIT 3;

18

… almost !

SELECT name, order_date
FROM customers, orders
WHERE customers.custid = orders.custid
AND rating > 650;

Cannot resolve ambiguous alias reference for
identifier rating (in line 4, at column 7)

19

… almost !

SELECT name, order_date
FROM customers, orders
WHERE customers.custid = orders.custid
AND rating > 650;

SELECT c.name, o.order_date
FROM customers AS c, orders AS o
WHERE c.custid = o.custid
AND c.rating > 650;

[
{
"name": "T. Hanks",
"order_date": "2017-08-30"

},
{
"name": "T. Cruise",
"order_date": "2017-05-01"

},
{
"name": "T. Cruise",
"order_date": "2017-10-13"

},
{
"name": "T. Cruise",
"order_date": "2017-09-13"

}
]

20

… almost !

SELECT name, order_date
FROM customers, orders
WHERE customers.custid = orders.custid
AND rating > 650;

SELECT c.name, o.order_date
FROM customers AS c, orders AS o
WHERE c.custid = o.custid
AND c.rating > 650;

SELECT *
FROM customers AS c, orders AS o
WHERE c.custid = o.custid
AND c.rating > 650;

[
{
"c": {
"address": {
"city": "Boston, MA",
"street": "120 Harbor Blvd.",
"zipcode": "02115"

},
"custid": "C37",
"name": "T. Hanks",
"rating": 750

},
"o": {
"custid": "C37",
"items": [
{
"itemno": 460,
"price": 99.98,
"qty": 2

}
...

21

[
"M. Streep",
"T. Hanks",
"T. Cruise"

]

SELECT VALUE: Added "VALUE"

SELECT VALUE name
FROM customers
WHERE rating > 650;

22

[
{
"CustomerName": "T. Hanks",
"OrderDate": "2017-08-30"

},
{
"CustomerName": "T. Cruise",
"OrderDate": "2017-09-13"

},
{
"CustomerName": "T. Cruise",
"OrderDate": "2017-05-01"

},
{
"CustomerName": "T. Cruise",
"OrderDate": "2017-10-13"

}
]

Added "VALUE"

SELECT VALUE name
FROM customers
WHERE rating > 650;

SELECT VALUE {
"CustomerName":c.name,
"OrderDate":o.order_date

}
FROM customers AS c, orders AS o
WHERE c.custid = o.custid
AND c.rating > 650;

23

Added "VALUE"

SELECT VALUE name
FROM customers
WHERE rating > 650;

SELECT VALUE {
"CustomerName":c.name,
"OrderDate":o.order_date

}
FROM customers AS c, orders AS o
WHERE c.custid = o.custid
AND c.rating > 650;

SELECT c.name AS CustomerName,
o.order_date AS OrderDate

FROM customers AS c, orders AS o
WHERE c.custid = o.custid
AND c.rating > 650;

24

Added "VALUE"

SELECT VALUE name
FROM customers
WHERE rating > 650;

SELECT VALUE {
"CustomerName":c.name,
"OrderDate":o.order_date

}
FROM customers AS c, orders AS o
WHERE c.custid = o.custid
AND c.rating > 650;

SELECT VALUE {
"CustomerName":c.name,
"Orders":(SELECT VALUE o.orderno FROM orders AS o

WHERE o.custid = c.custid)
}
FROM customers AS c
WHERE c.custid = "C41";

[
{
"Orders": [
1006,
1001

],
"CustomerName": "R. Duvall"

}
]

25

Quiz (Preview)

Which query retrieves the names of
the customers that have the highest
rating?

SELECT name
FROM customers
WHERE rating =
(SELECT MAX(rating) FROM customers);

SELECT c1.name
FROM customers AS c1
WHERE c1.rating =

(SELECT VALUE MAX(c2.rating) FROM customers AS c2);

SELECT c1.name
FROM customers AS c1
WHERE c1.rating =

(SELECT MAX(c2.rating) FROM customers AS c2);

SELECT VALUE c1.name
FROM customers AS c1
WHERE c1.rating =

(SELECT VALUE MAX(c2.rating) FROM customers AS c2)[0];

A

B

C

D

26

SQL Pitfalls and the value of VALUE

SELECT name

FROM customers

WHERE rating =

(SELECT MAX(rating) FROM customers);

Type mismatch: expected value of type multiset or

array, but got the value of type object (in line 4, at

column 28)

27

SQL Pitfalls and the value of VALUE

SELECT name

FROM customers AS c

WHERE rating =

(SELECT MAX(rating) FROM c);

Type mismatch: expected value of type multiset or

array, but got the value of type object (in line 4, at

column 28)

28

SQL Pitfalls and the value of VALUE

SELECT name
FROM customers
WHERE rating =
(SELECT MAX(rating) FROM customers);

SELECT c1.name
FROM customers AS c1
WHERE c1.rating =

(SELECT MAX(c2.rating) FROM customers AS c2);

[]

29

SQL Pitfalls and the value of VALUE

SELECT name
FROM customers
WHERE rating =
(SELECT MAX(rating) FROM customers);

SELECT c1.name
FROM customers AS c1
WHERE c1.rating =

(SELECT MAX(c2.rating) FROM customers AS c2);

SELECT c1.name
FROM customers AS c1
WHERE c1.rating =

(SELECT VALUE MAX(c2.rating) FROM customers AS c2);

[]

30

SQL Pitfalls and the value of VALUE

SELECT name

FROM customers

WHERE rating =

(SELECT MAX(rating) FROM customers);

SELECT c1.name

FROM customers AS c1

WHERE c1.rating =

(SELECT MAX(c2.rating) FROM customers AS c2);

SELECT c1.name

FROM customers AS c1

WHERE c1.rating =

(SELECT VALUE MAX(c2.rating) FROM customers AS c2);

SELECT VALUE c1.name

FROM customers AS c1

WHERE c1.rating =

(SELECT VALUE MAX(c2.rating) FROM customers AS c2)[0];

[

"T. Cruise",

"T. Hanks"

]

31

Quiz

Which query retrieves the names of
the customers that have the highest
rating?

SELECT name
FROM customers
WHERE rating =
(SELECT MAX(rating) FROM customers);

SELECT c1.name
FROM customers AS c1
WHERE c1.rating =

(SELECT VALUE MAX(c2.rating) FROM customers AS c2);

SELECT c1.name
FROM customers AS c1
WHERE c1.rating =

(SELECT MAX(c2.rating) FROM customers AS c2);

SELECT VALUE c1.name
FROM customers AS c1
WHERE c1.rating =

(SELECT VALUE MAX(c2.rating) FROM customers AS c2)[0];

A

B

C

D

32

More information about JSON, SQL++, and AsterixDB

• Asterix project UCI/UCR research home
• http://asterix.ics.uci.edu/

• Apache AsterixDB home
• http://asterixdb.apache.org/

• SQL++ Primer
• https://ci.apache.org/projects/asterixdb/sqlpp/primer-sqlpp.html

• Navigate from CS122a wiki (HW) to get and install it...!
• Also, a few other resources and hints in the HW materials

http://asterix.ics.uci.edu/
http://asterixdb.apache.org/
https://ci.apache.org/projects/asterixdb/sqlpp/primer-sqlpp.html

33

To be continued....

