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Introduction to Data Management
*** The “Online” Edition ***

Lecture #24
( SQL NoSQL)

Instructor:  Mike Carey

mjcarey@ics.uci.edu
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Announcements

• Homework info:
• HW #8 (NoSQL) is the last one!

• Due next Wednesday (11 PM), Thursday (11PM) if late

• Warning: LOAD DATASET can be (path) finicky...

• Endterm exam info:

• Non-cumulative and during class time next Friday (as usual)

• NoSQL lecture plans:
• Today: NoSQL & Big Data (a la AsterixDB)

• Refer to the Using SQL++ Primer and other docs on the Apache AsterixDB site

• Read SQL++ For SQL Users from Couchbase, by Don Chamberlin (the Father of SQL!)
• Lots of useful info for moving from SQL to SQL++!  (Setup script available here)

SQL

https://ci.apache.org/projects/asterixdb/sqlpp/primer-sqlpp.html
https://ci.apache.org/projects/asterixdb/index.html
https://asterixdb.apache.org/files/SQL_Book.pdf
https://uci.yuja.com/V/Video?v=1071697&node=4071232&a=217912667&autoplay=1
https://grape.ics.uci.edu/wiki/asterix/raw-attachment/wiki/cs122a-2020-spring/doncdata.sqlpp
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Roadmap Check
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NoSQL Technologies

What is a NoSQL DB – why “not SQL”?

• Not from the DB world

• Distributed systems folks

• Also various startup companies

• From caches à persistent K/V use cases

• Apps needed massive scale-out

• OLTP (vs. parallel query DB) apps

• Simple, low-latency API – get/put by key

• Need a key K, but want no schema for value V
• Record-level atomicity, replica consistency varies

• In the context of this talk, NoSQL will not not mean

• Hadoop (or SQL on Hadoop)

• Graph databases or graph analytics platforms
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NoSQL Data (JSON-based)

{“id”: “123”,
“Customer”:

{ “custName”: “Fred”,
“custCity”: “LA” }

“total”: 25.97,
“Items”: [

{“product-sku”: 401,
“qty”: 2,
“price”: 9.99 },

{“product-sku”: 544,
“qty”: 1,
“price”: 3.99 }

]
}

{“sku”: 401,
“name”: “Garfield T-Shirt”,
“listPrice”: 9.99,
“size”: “XL” },

{“sku”: 544,
“name”: “USB Charger”,
“listPrice”: 5.99,
“power”: “115V” }

Collection(Orders) Collection(Products)
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Current NoSQL (document DB) trends

• Popular examples:  MongoDB, Couchbase

• Users now coveting the benefits of many DB goodies

• Secondary indexing and non-key access

• Declarative queries

• Aggregates and now (commonly small) joins

• World seems to be heading towards...

• BDMS (think scalable, OLTP-aimed, parallel/distributed DBMS)

• Declarative queries and query optimization, applied to schema-less data

• Return of (some, optional!) schema information
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Towards a Big Data Management System (BDMS)

Semistructured
Data Management

Parallel
Database Systems

1st Generation
“Big Data” Systems

BDMS Desiderata:
• Able to manage data
• Flexible data model
• Full query capability
• Continuous data ingestion
• Efficient and robust parallel runtime
• Cost proportional to task at hand
• Support “Big Data data types”

•
•
•
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Apache AsterixDB (from UCI+UCR)

SQL++

http://asterixdb.apache.org/

(JSON, XML, 
CSV, …)

http://asterixdb.apache.org/
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...

{

"orderno":1008,
"custid":"C13",
"order_date":"2017-10-13",
"items":[

{

"itemno":460,
"qty":20,
"price":99.99

}
]

}

Orders

{

"orderno":1004,
"custid":"C35",
"order_date":"2017-07-10",
"ship_date":"2017-07-15",
"items":[

{
"itemno":680,
"qty":6,
"price":9.99

},

{
"itemno":195,
"qty":4,
"price":35.00

}
]

}

Data Model:  JSON (JavaScript Object Notation)

Customers

{

"custid":"C37",
"name":"T. Hanks",
"address":{

"street":"120 Harbor Blvd.",
"city":"Boston, MA",
"zipcode":"02115"

},

"rating":750
}

{
"custid":"C47",
"name":"S. Lauren",
"address":{

"street":"17 Rue d'Antibes",
"city":"Cannes, France"

},

"rating":625
}

Data from D. Chamberlin. SQL++ for SQL Users: A Tutorial
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...

{

"orderno":1008,
"custid":"C13",
"order_date":"2017-10-13",
"items":[

{

"itemno":460,
"qty":20,
"price":99.99

}
]

}

Orders

{

"orderno":1004,
"custid":"C35",
"order_date":"2017-07-10",
"ship_date":"2017-07-15",
"items":[

{
"itemno":680,
"qty":6,
"price":9.99

},

{
"itemno":195,
"qty":4,
"price":35.00

}
]

}

Data

Customers

{

"custid":"C37",
"name":"T. Hanks",
"address":{

"street":"120 Harbor Blvd.",
"city":"Boston, MA",
"zipcode":"02115"

},

"rating":750
}

{
"custid":"C47",
"name":"S. Lauren",
"address":{

"street":"17 Rue d'Antibes",
"city":"Cannes, France"

},

"rating":625
}

Data from D. Chamberlin. SQL++ for SQL Users: A Tutorial
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Lineitems

{

"orderno":1004,
"itemno":680,
"qty":6,
"price":9.99

}

{
"orderno":1004,
"itemno":195,
"qty":4,
"price":35.00

}
{

"orderno":1008,
"itemno":460,
"qty":20,
"price":99.99

}

Orders

{

"orderno":1004,
"custid":"C35",
"order_date":"2017-07-10",
"ship_date":"2017-07-15"

}

{
"orderno":1008,
"custid":"C13",
"order_date":"2017-10-13",
"ship_date":null

}

Data (Relational version)

Customers

{

"custid":"C37",
"name":"T. Hanks",
"address_street":"120 Harbor Blvd.",
"address_city":"Boston, MA",
"address_zipcode":"02115"
"rating":750

}

{
"custid":"C47",
"name":"S. Lauren",
"address_street":"17 Rue d'Antibes",
"address_city":"Cannes, France"
"address_zipcode":null
"rating":625

}

CREATE TABLE Lineitems (

orderno INTEGER,
itemno INTEGER,
quantity INTEGER NOT NULL,
price DECIMAL(8,2) NOT NULL,
PRIMARY KEY (orderno, itemno),
FOREIGN KEY (orderno) REFERENCES Orders(orderno)

)
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Lineitems

{

"orderno":1004,
"itemno":680,
"qty":6,
"price":9.99,
"currency":"USD"

}
{

"orderno":1004,
"itemno":195,
"qty":4,
"price":35.00,
"currency":"USD"

}
{

"orderno":1008,
"itemno":460,
"qty":20,
"price":99.99,
"currency":"EUR"

}

Orders

{

"orderno":1004,
"custid":"C35",
"order_date":"2017-07-10",
"ship_date":"2017-07-15"

}

{
"orderno":1008,
"custid":"C13",
"order_date":"2017-10-13",
"ship_date":null

}

Data (Relational version)

Customers

{

"custid":"C37",
"name":"T. Hanks",
"address_street":"120 Harbor Blvd.",
"address_city":"Boston, MA",
"address_zipcode":"02115"
"rating":750

}

{
"custid":"C47",
"name":"S. Lauren",
"address_street":"17 Rue d'Antibes",
"address_city":"Cannes, France"
"address_zipcode":null
"rating":625

}

CREATE TABLE Lineitems (

orderno INTEGER,
itemno INTEGER,
quantity INTEGER NOT NULL,
price DECIMAL(8,2) NOT NULL,
PRIMARY KEY (orderno, itemno),
FOREIGN KEY (orderno) REFERENCES Orders(orderno)

)
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...

{
"orderno":1008,
"custid":"C13",
"order_date":"2017-10-13",
"items":{

"itemno":460,
"qty":20,
"price":99.99

}
}

Orders

{
"orderno":1004,
"custid":"C35",
"order_date":"2017-07-10",
"ship_date":"2017-07-15",
"items":[

{
"itemno":680,
"qty":6,
"price":9.99

},
{

"itemno":195,
"qty":4,
"price":"if you have to ask ..."

}
]

}

Sloppy Data

Customers

{
"custid":"C37",
"name":"T. Hanks",
"address":{

"street":"120 Harbor Blvd.",
"city":"Boston, MA",
"zipcode":"02115"

},
"rating":750

}

{
"custid":"C47",
"name":"S. Lauren",
"address":{

"street":"17 Rue d'Antibes",
"city":"Cannes, France"

},
"rating":"625"

}
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[
{
"name": "M. Streep"

},
{
"name": "T. Hanks"

},
{
"name": "T. Cruise"

}
]

SQL++:  Just like SQL ...

SELECT name
FROM customers
WHERE rating > 650;
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[
{
"name": "R. Duvall",
"order_date": "2017-09-02"

},
{
"name": "R. Duvall",
"order_date": "2017-04-29"

}
]

Just like SQL ...

SELECT name
FROM customers
WHERE rating > 650;

SELECT c.name, o.order_date
FROM customers AS c, orders AS o
WHERE c.custid = o.custid
AND c.custid = "C41";
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SELECT c.name, o.order_date
FROM customers AS c LEFT OUTER JOIN orders AS o
ON c.custid = o.custid

WHERE c.custid = "C41";

Just like SQL ...

SELECT name
FROM customers
WHERE rating > 650;

SELECT c.name, o.order_date
FROM customers AS c, orders AS o
WHERE c.custid = o.custid
AND c.custid = "C41";
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[

{

"cnt": 1,

"order_date": "2017-10-13"

},

{

"cnt": 1,

"order_date": "2017-09-13"

},

{

"cnt": 1,

"order_date": "2017-09-02"

}

]

Just like SQL ...

SELECT name

FROM customers

WHERE rating > 650;

SELECT c.name, o.order_date

FROM customers AS c, orders AS o

WHERE c.custid = o.custid

AND c.custid = "C41";

SELECT order_date, count(*) AS cnt

FROM orders

GROUP BY order_date

HAVING count(*) > 0

ORDER BY order_date DESC

LIMIT 3;



18

… almost !

SELECT name, order_date
FROM customers, orders
WHERE customers.custid = orders.custid
AND rating > 650;

Cannot resolve ambiguous alias reference for 
identifier rating (in line 4, at column 7)
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… almost !

SELECT name, order_date
FROM customers, orders
WHERE customers.custid = orders.custid
AND rating > 650;

SELECT c.name, o.order_date
FROM customers AS c, orders AS o
WHERE c.custid = o.custid
AND c.rating > 650;

[
{
"name": "T. Hanks",
"order_date": "2017-08-30"

},
{
"name": "T. Cruise",
"order_date": "2017-05-01"

},
{
"name": "T. Cruise",
"order_date": "2017-10-13"

},
{
"name": "T. Cruise",
"order_date": "2017-09-13"

}
]
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… almost !

SELECT name, order_date
FROM customers, orders
WHERE customers.custid = orders.custid
AND rating > 650;

SELECT c.name, o.order_date
FROM customers AS c, orders AS o
WHERE c.custid = o.custid
AND c.rating > 650;

SELECT *
FROM customers AS c, orders AS o
WHERE c.custid = o.custid
AND c.rating > 650;

[
{
"c": {
"address": {
"city": "Boston, MA",
"street": "120 Harbor Blvd.",
"zipcode": "02115"

},
"custid": "C37",
"name": "T. Hanks",
"rating": 750

},
"o": {
"custid": "C37",
"items": [
{
"itemno": 460,
"price": 99.98,
"qty": 2

}
...
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[
"M. Streep",
"T. Hanks",
"T. Cruise"

]

SELECT VALUE:  Added "VALUE"

SELECT VALUE name
FROM customers
WHERE rating > 650;
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[
{
"CustomerName": "T. Hanks",
"OrderDate": "2017-08-30"

},
{
"CustomerName": "T. Cruise",
"OrderDate": "2017-09-13"

},
{
"CustomerName": "T. Cruise",
"OrderDate": "2017-05-01"

},
{
"CustomerName": "T. Cruise",
"OrderDate": "2017-10-13"

}
]

Added "VALUE"

SELECT VALUE name
FROM customers
WHERE rating > 650;

SELECT VALUE {
"CustomerName":c.name,
"OrderDate":o.order_date

}
FROM customers AS c, orders AS o
WHERE c.custid = o.custid
AND c.rating > 650;
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Added "VALUE"

SELECT VALUE name
FROM customers
WHERE rating > 650;

SELECT VALUE {
"CustomerName":c.name,
"OrderDate":o.order_date

}
FROM customers AS c, orders AS o
WHERE c.custid = o.custid
AND c.rating > 650;

SELECT c.name AS CustomerName,
o.order_date AS OrderDate

FROM customers AS c, orders AS o
WHERE c.custid = o.custid
AND c.rating > 650;
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Added "VALUE"

SELECT VALUE name
FROM customers
WHERE rating > 650;

SELECT VALUE {
"CustomerName":c.name,
"OrderDate":o.order_date

}
FROM customers AS c, orders AS o
WHERE c.custid = o.custid
AND c.rating > 650;

SELECT VALUE {
"CustomerName":c.name,
"Orders":(SELECT VALUE o.orderno FROM orders AS o

WHERE o.custid = c.custid)
}
FROM customers AS c
WHERE c.custid = "C41";

[
{
"Orders": [
1006,
1001

],
"CustomerName": "R. Duvall"

}
]
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Quiz (Preview)

Which query retrieves the names of 
the customers that have the highest 
rating?

SELECT name
FROM customers
WHERE rating = 
(SELECT MAX(rating) FROM customers);

SELECT c1.name
FROM customers AS c1
WHERE c1.rating =

(SELECT VALUE MAX(c2.rating) FROM customers AS c2);

SELECT c1.name
FROM customers AS c1
WHERE c1.rating = 

(SELECT MAX(c2.rating) FROM customers AS c2);

SELECT VALUE c1.name
FROM customers AS c1
WHERE c1.rating = 

(SELECT VALUE MAX(c2.rating) FROM customers AS c2)[0];

A

B

C

D
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SQL Pitfalls and the value of VALUE

SELECT name

FROM customers

WHERE rating = 

(SELECT MAX(rating) FROM customers);

Type mismatch: expected value of type multiset or 

array, but got the value of type object (in line 4, at 

column 28)
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SQL Pitfalls and the value of VALUE

SELECT name

FROM customers AS c

WHERE rating = 

(SELECT MAX(rating) FROM c);

Type mismatch: expected value of type multiset or 

array, but got the value of type object (in line 4, at 

column 28)
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SQL Pitfalls and the value of VALUE

SELECT name
FROM customers
WHERE rating = 
(SELECT MAX(rating) FROM customers);

SELECT c1.name
FROM customers AS c1
WHERE c1.rating = 

(SELECT MAX(c2.rating) FROM customers AS c2);

[ ]
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SQL Pitfalls and the value of VALUE

SELECT name
FROM customers
WHERE rating = 
(SELECT MAX(rating) FROM customers);

SELECT c1.name
FROM customers AS c1
WHERE c1.rating = 

(SELECT MAX(c2.rating) FROM customers AS c2);

SELECT c1.name
FROM customers AS c1
WHERE c1.rating =

(SELECT VALUE MAX(c2.rating) FROM customers AS c2);

[ ]



30

SQL Pitfalls and the value of VALUE

SELECT name

FROM customers

WHERE rating = 

(SELECT MAX(rating) FROM customers);

SELECT c1.name

FROM customers AS c1

WHERE c1.rating = 

(SELECT MAX(c2.rating) FROM customers AS c2);

SELECT c1.name

FROM customers AS c1

WHERE c1.rating =

(SELECT VALUE MAX(c2.rating) FROM customers AS c2);

SELECT VALUE c1.name

FROM customers AS c1

WHERE c1.rating = 

(SELECT VALUE MAX(c2.rating) FROM customers AS c2)[0];

[

"T. Cruise",

"T. Hanks"

]
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Quiz

Which query retrieves the names of 
the customers that have the highest 
rating?

SELECT name
FROM customers
WHERE rating = 
(SELECT MAX(rating) FROM customers);

SELECT c1.name
FROM customers AS c1
WHERE c1.rating =

(SELECT VALUE MAX(c2.rating) FROM customers AS c2);

SELECT c1.name
FROM customers AS c1
WHERE c1.rating = 

(SELECT MAX(c2.rating) FROM customers AS c2);

SELECT VALUE c1.name
FROM customers AS c1
WHERE c1.rating = 

(SELECT VALUE MAX(c2.rating) FROM customers AS c2)[0];

A

B

C

D
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More information about JSON, SQL++, and AsterixDB

• Asterix project UCI/UCR research home
• http://asterix.ics.uci.edu/

• Apache AsterixDB home
• http://asterixdb.apache.org/

• SQL++ Primer
• https://ci.apache.org/projects/asterixdb/sqlpp/primer-sqlpp.html 

• Navigate from CS122a wiki (HW) to get and install it...!
• Also, a few other resources and hints in the HW materials

http://asterix.ics.uci.edu/
http://asterixdb.apache.org/
https://ci.apache.org/projects/asterixdb/sqlpp/primer-sqlpp.html
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To be continued....


