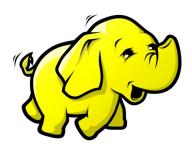
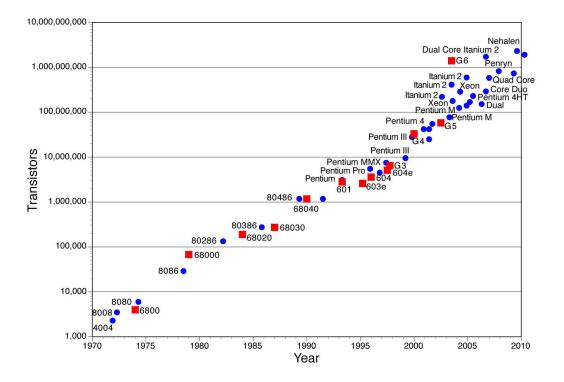


SQL-on-Hadoop



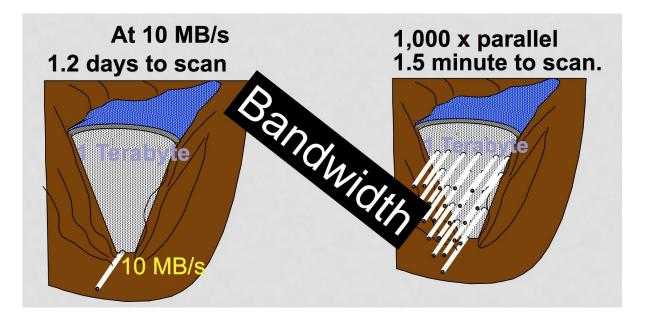
Aron Szanto and Jack Dent

Why do we need to parallelize data analysis?



Source(s): http://www.is.umk.pl/~duch/Wyklady/komput/w03/Moores_Law.jpg

Why do we need to parallelize data analysis?



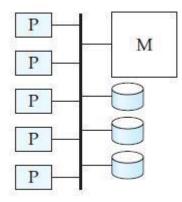
Why do we need to parallelize data analysis?

d = data size (GB)
b = bandwidth of single machine (GB/s)

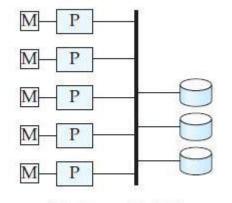
Time on single machine architecture = d/b

Time on *n*-machine architecture = *d/nb* (assumes perfect horizontal scalability)

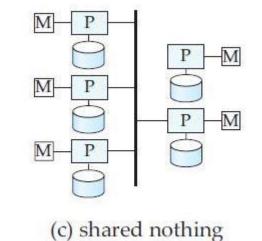
Parallel database architectures



(a) shared memory

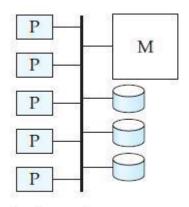


(b) shared disk



Source(s): http://backstopmedia.booktype.pro/big-data-dictionary/parallel-databases/

Shared-memory architectures

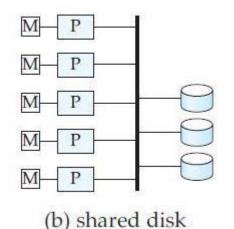


(a) shared memory

Definition: there is a single memory address-space for all processors, but each processor can have its own disk, local memory, and cache

Source(s): adapted from http://web.cs.wpi.edu/~cs561/s12/Lectures/4-5/ParallelDBs.pdf

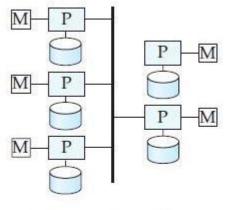
Shared-disk architectures



Definition: "every processor has its own memory (not accessible by others), and all machines can access all disks in the system"

Source(s): http://web.cs.wpi.edu/~cs561/s12/Lectures/4-5/ParallelDBs.pdf

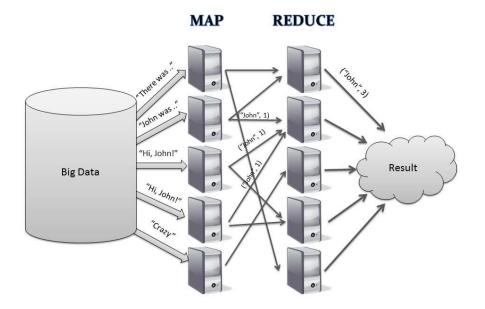
Shared-nothing architectures



(c) shared nothing

Definition: "a collection of independent, possibly virtual, machines, each with local disk and local main memory, connected together on a high-speed network"

MapReduce: shared-nothing data analysis



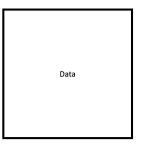
Key paper: "MapReduce: Simplified Data Processing on Large Clusters", Dean and Ghemawat, Google, 2004

Open source implementation in Apache Hadoop suite

Source(s): https://scr.sad.supinfo.com/articles/resources/207908/2807/1.png

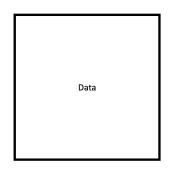
Scaling main memory

Single machine



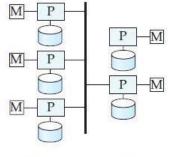
Memory (single machine)

Parallel machines



Memory (single machine)	Memory (single machine)	Memory (single machine)	Memory (single machine)
Memory (single machine)	Memory (single machine)	Memory (single machine)	Memory (single machine)
Memory (single machine)	Memory (single machine)	Memory (single machine)	Memory (single machine)

Challenge: SQL queries on shared-nothing architectures?



(c) shared nothing

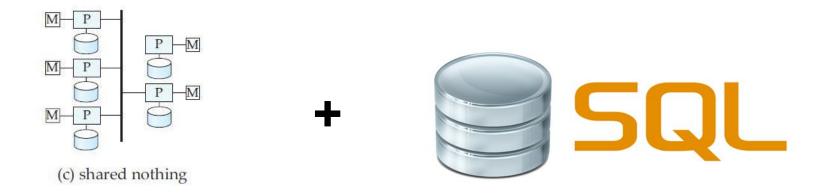
Scale out to 1000s of machines Fault tolerant Support heterogeneous environments

... but difficult to program, and not performant for structured data

Scale up (fast queries over structured data) Flexible query language

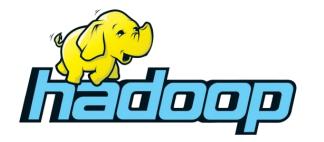
... but do not scale out well

Challenge: SQL queries on shared-nothing architectures?



Can we combine the positive features (*performance*, *flexible query interface*) of shared-architecture parallel databases with the positive features (*fault tolerance*, *horizontal scalability*) of shared-nothing architectures?

HadoopDB (background)

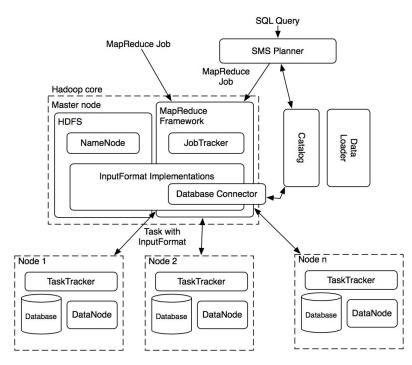


HDFS + MapReduce *inter-node*

SQL query execution *intra-node*

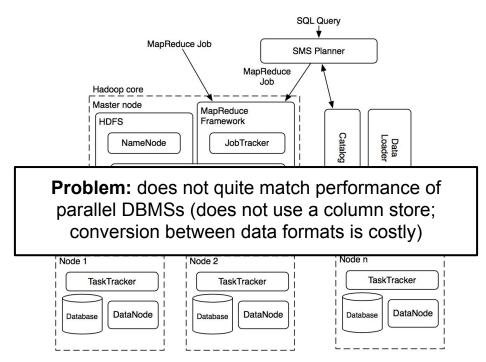
Source(s): http://sites.gsu.edu/skondeti1/files/2015/10/Untitled-1-122jwp8.png; https://www.carnaghan.com/wp-content/uploads/2016/08/postgresql-logo.png

HadoopDB (background)



Source(s): "HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads"

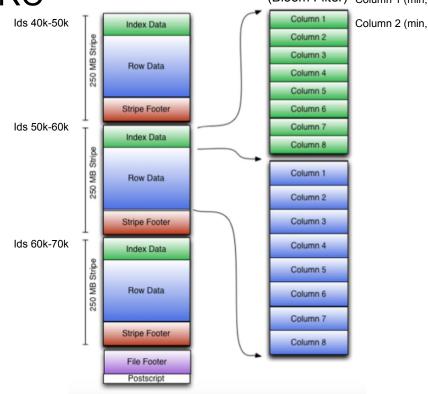
HadoopDB (background)



Source(s): "HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads"

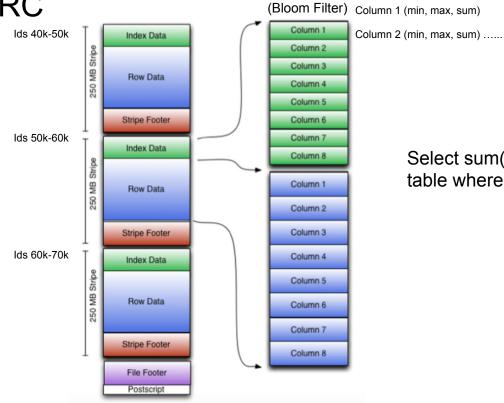
SQL with shared-nothing architectures

	File system	File format	Query language	Distributed runtime
Apache Hive	Apache HDFS	Optimized Row Columnar (ORC)	HiveQL	MapReduce or Tez
Cloudera Impala	Apache HDFS	Parquet	Impala SQL	impalad

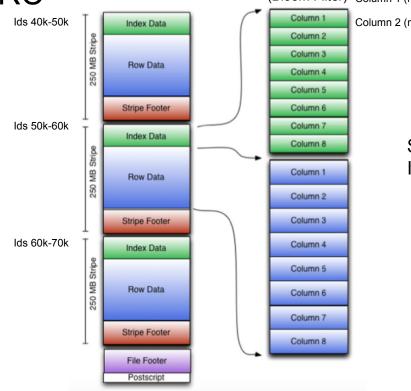


(Bloom Filter) Column 1 (min, max, sum)

Column 2 (min, max, sum)



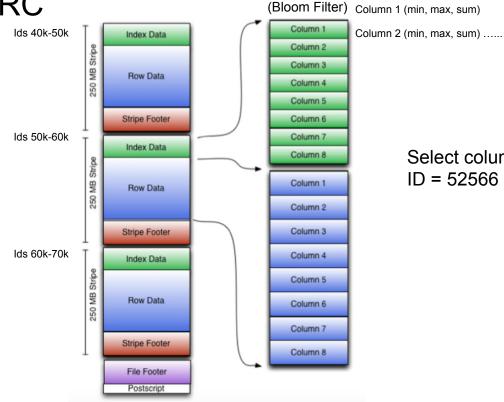
Select sum(column_2)/sum(column_1) from table where ID between 50k and 60k



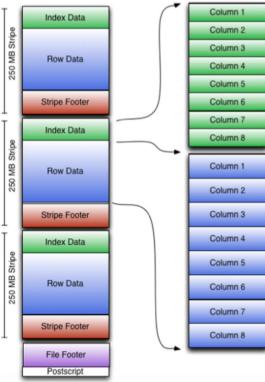
(Bloom Filter) Column 1 (min, max, sum)

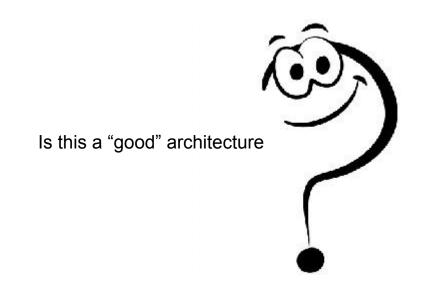
Column 2 (min, max, sum)

Select column_2, column_4 from table where ID between 52k and 57k



Select column_2, column_4 from table where ID = 52566 (which doesn't exist!)





Impala file format: Parquet

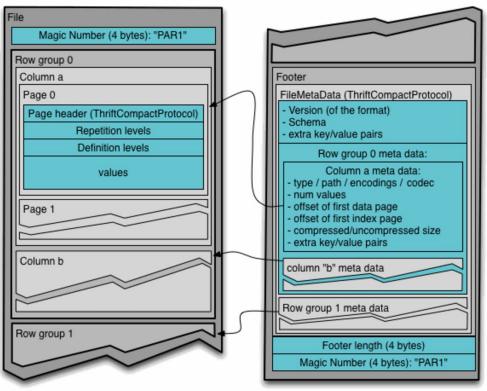


What's the big difference

Why does it matter

Source(s): Parque Documentation Pages, https://www.parquet.apache.org/documentation/latest/

Impala file format: Parquet

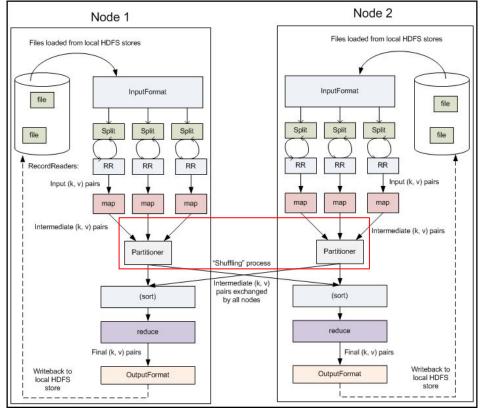


What's the big difference

Why does it matter

Source(s): Parque Documentation Pages, https://www.parquet.apache.org/documentation/latest/

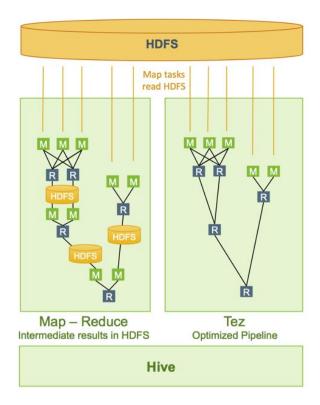
Hive runtime: MapReduce



Hive-MapReduce materializes intermediate results and writes to disk

Why is this bad? Why is this good?

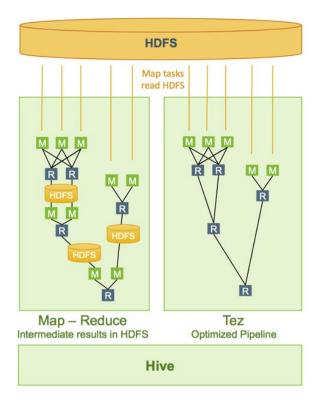
Hive runtime: From MR to Tez



What's the big difference?

Why does it matter?

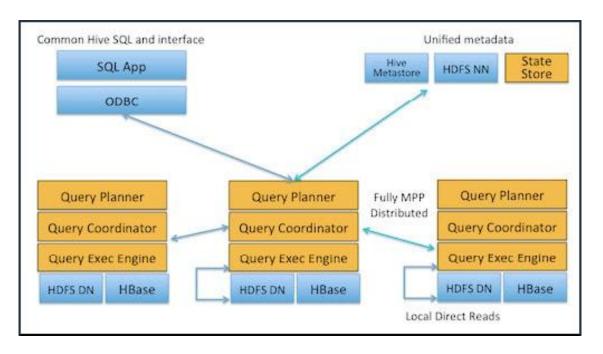
Hive runtime: From MR to Tez



What's the big difference?

Why does it matter?

Impala runtime



Fully shared-nothing architecture with no intermediate materialization

Source(s): Big Data Reviews, https://www.bigdatareviews.org/?p=121

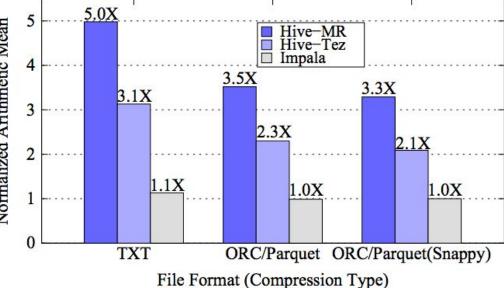
How Fast is Really Fast?

8

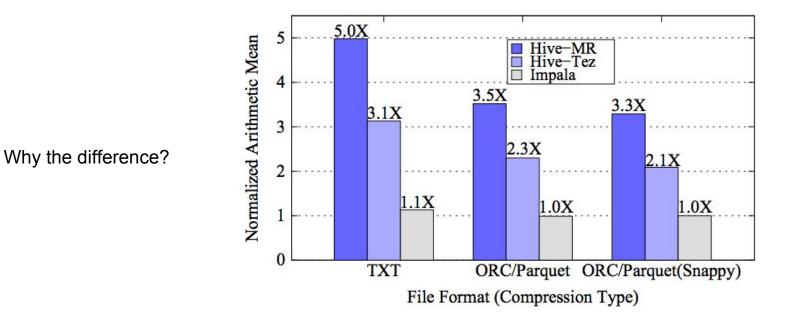
A PARTICIPATION

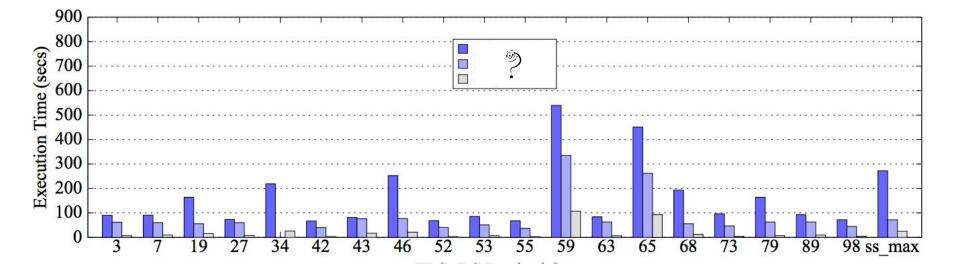
Benchmarks: Loading Time

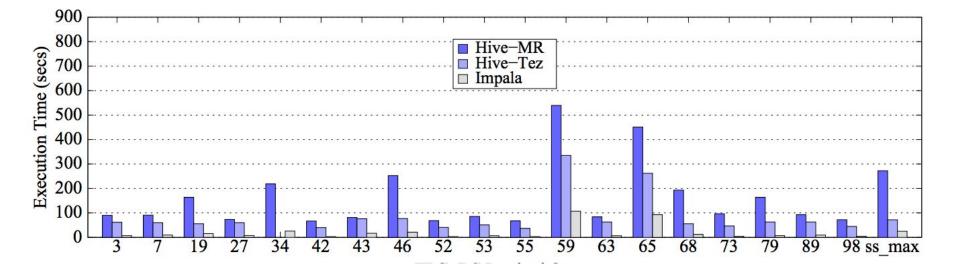
Normalized Arithmetic Mean Task: Load 1TB data 4 Vary: Compression 3.5X 3.1X and data system 3 Result: 2 1.1X

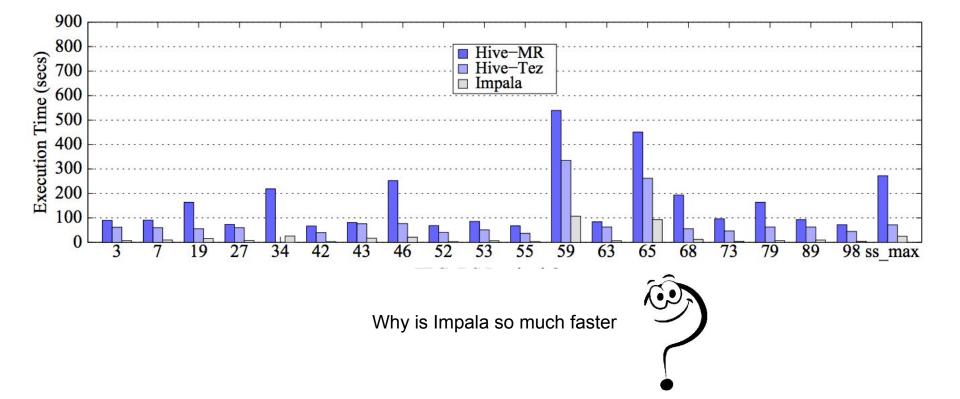


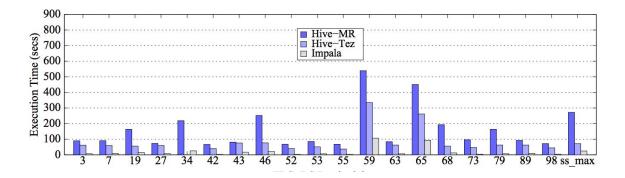
Benchmarks: Loading Time











Quiz: which of these is responsible?

(a) efficient I/O

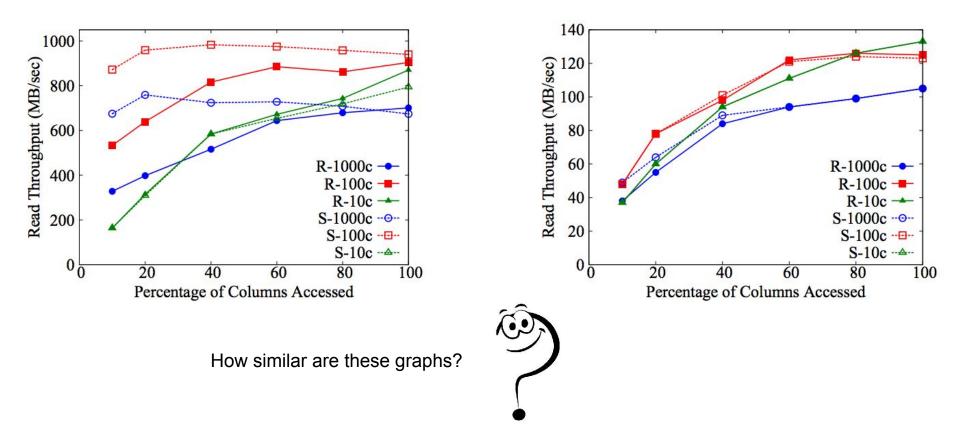
(b) no initialization overhead

(c) pipelined rather than materialized intermediaries

(d) magic??

Why is Impala so much faster

Benchmarks: Data Access



Future work

Failure recovery for Impala

Workloads that exceed the size of main memory (e.g. backpressure, or buffer intermediate results to disk)

Caching common sub-DAG query results