
SQL-on-Hadoop
Aron Szanto and Jack Dent



Why do we need to parallelize data analysis?

Source(s): http://www.is.umk.pl/~duch/Wyklady/komput/w03/Moores_Law.jpg 

http://www.is.umk.pl/~duch/Wyklady/komput/w03/Moores_Law.jpg


Source(s): http://web.cs.wpi.edu/~cs561/s12/Lectures/4-5/ParallelDBs.pdf 

Why do we need to parallelize data analysis?

http://web.cs.wpi.edu/~cs561/s12/Lectures/4-5/ParallelDBs.pdf


Why do we need to parallelize data analysis?

d = data size (GB)
b = bandwidth of single machine (GB/s)

Time on single machine architecture = d/b

Time on n-machine architecture = d/nb
(assumes perfect horizontal scalability)



Parallel database architectures

Source(s): http://backstopmedia.booktype.pro/big-data-dictionary/parallel-databases/ 

http://backstopmedia.booktype.pro/big-data-dictionary/parallel-databases/


Definition: there is a single memory 
address-space for all processors, but each 
processor can have its own disk, local memory, 
and cache

Shared-memory architectures

Source(s): adapted from http://web.cs.wpi.edu/~cs561/s12/Lectures/4-5/ParallelDBs.pdf



Shared-disk architectures

Source(s): http://web.cs.wpi.edu/~cs561/s12/Lectures/4-5/ParallelDBs.pdf

Definition: “every processor has its own 
memory (not accessible by others), and all 
machines can access all disks in the system”



Shared-nothing architectures

Source(s): “HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads”

Definition: “a collection of independent, 
possibly virtual, machines, each with local disk 
and local main memory, connected together on 
a high-speed network”



MapReduce: shared-nothing data analysis

Source(s): https://scr.sad.supinfo.com/articles/resources/207908/2807/1.png 

Key paper: “MapReduce: Simplified 
Data Processing on Large Clusters”, 
Dean and Ghemawat, Google, 2004

Open source implementation in Apache 
Hadoop suite

https://scr.sad.supinfo.com/articles/resources/207908/2807/1.png


Scaling main memory

Single machine

Parallel machines



Challenge: SQL queries on shared-nothing architectures?

+

Source(s): http://tinyurl.com/jd3a8ao 

Scale out to 1000s of machines 
Fault tolerant

Support heterogeneous environments

… but difficult to program, and not 
performant for structured data

Scale up (fast queries over structured 
data)

Flexible query language

… but do not scale out well

http://tinyurl.com/jd3a8ao


Challenge: SQL queries on shared-nothing architectures?

+

Source(s): http://tinyurl.com/jd3a8ao 

Can we combine the positive features (performance, flexible query interface) of 
shared-architecture parallel databases with the positive features (fault tolerance, 

horizontal scalability) of shared-nothing architectures?

http://tinyurl.com/jd3a8ao


Source(s): http://sites.gsu.edu/skondeti1/files/2015/10/Untitled-1-122jwp8.png;
https://www.carnaghan.com/wp-content/uploads/2016/08/postgresql-logo.png 

HadoopDB (background)

+
HDFS + MapReduce

inter-node
SQL query execution

intra-node

http://sites.gsu.edu/skondeti1/files/2015/10/Untitled-1-122jwp8.png
https://www.carnaghan.com/wp-content/uploads/2016/08/postgresql-logo.png
https://www.carnaghan.com/wp-content/uploads/2016/08/postgresql-logo.png


Source(s): “HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads”

HadoopDB (background)



Source(s): “HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads”

HadoopDB (background)

Problem: does not quite match performance of 
parallel DBMSs (does not use a column store; 

conversion between data formats is costly)



SQL with shared-nothing architectures

File system File format Query language Distributed 
runtime

Apache Hive Apache HDFS Optimized Row 
Columnar (ORC)

HiveQL MapReduce or Tez

Cloudera Impala Apache HDFS Parquet Impala SQL impalad

Source(s): “SQL-on-Hadoop: Full Circle Back to Shared-Nothing Database Architectures”



Hive file format: 
ORC

Source(s): ORC Documentation Pages, https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

Ids 40k-50k

Ids 50k-60k

Ids 60k-70k

(Bloom Filter) Column 1 (min, max, sum)

Column 2 (min, max, sum) …...

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC


Hive file format: 
ORC

Source(s): ORC Documentation Pages, https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

Ids 40k-50k

Ids 50k-60k

Ids 60k-70k

(Bloom Filter) Column 1 (min, max, sum)

Column 2 (min, max, sum) …...

Select sum(column_2)/sum(column_1) from 
table where ID between 50k and 60k

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC


Hive file format: 
ORC

Source(s): ORC Documentation Pages, https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

Ids 40k-50k

Ids 50k-60k

Ids 60k-70k

(Bloom Filter) Column 1 (min, max, sum)

Column 2 (min, max, sum) …...

Select column_2, column_4 from table where 
ID between 52k and 57k

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC


Hive file format: 
ORC

Source(s): ORC Documentation Pages, https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

Ids 40k-50k

Ids 50k-60k

Ids 60k-70k

(Bloom Filter) Column 1 (min, max, sum)

Column 2 (min, max, sum) …...

Select column_2, column_4 from table where 
ID = 52566 (which doesn’t exist!)

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC


Hive file format: 
ORC

Is this a “good” architecture

Source(s): ORC Documentation Pages, https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC


Impala file format: 
Parquet

What’s the big difference

Why does it matter

Source(s): Parque Documentation Pages, https://www.parquet.apache.org/documentation/latest/

https://www.parquet.apache.org/documentation/latest/
https://www.parquet.apache.org/documentation/latest/


Impala file format: 
Parquet

What’s the big difference

Why does it matter

Source(s): Parque Documentation Pages, https://www.parquet.apache.org/documentation/latest/

https://www.parquet.apache.org/documentation/latest/


Hive runtime: MapReduce

Hive-MapReduce materializes 
intermediate results and writes to disk

Why is this bad? Why is this good?

Source(s): https://www.hadooptpoint.com

https://www.hadooptpoint.com


Hive runtime: From MR to Tez

Source(s): HortonWorks, https://www.docs.hortonworks.com

What’s the big difference?

Why does it matter?

https://www.docs.hortonworks.com


Hive runtime: From MR to Tez

Source(s): HortonWorks, https://www.docs.hortonworks.com

What’s the big difference?

Why does it matter?

https://www.docs.hortonworks.com


Impala runtime

Fully shared-nothing architecture with 
no intermediate materialization

Source(s): Big Data Reviews, https://www.bigdatareviews.org/?p=121

https://www.bigdatareviews.org/?p=121


How Fast is Really Fast?



Benchmarks: Loading Time

Task: Load 1TB data

Vary: Compression 
and data system

Result: 



Benchmarks: Loading Time

Why the difference?



Benchmarks: Query Execution Time



Benchmarks: Query Execution Time



Benchmarks: Query Execution Time

Why is Impala so much faster



Benchmarks: Query Execution Time

Why is Impala so much faster

Quiz: which of these is responsible?

(a) efficient I/O

(b) no initialization overhead

(c) pipelined rather than materialized intermediaries

(d) magic??



Benchmarks: Data Access

How similar are these graphs?



Future work

Failure recovery for Impala

Caching common sub-DAG 
query results

Workloads that exceed the size of 
main memory (e.g. backpressure, or 
buffer intermediate results to disk)


