
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Microsoft® SQL Server ®
2012 T-SQL Fundamentals

Itzik Ben-Gan

www.allitebooks.com

http://www.allitebooks.org

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2012 by Itzik Ben-Gan
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-735-65814-1

1 2 3 4 5 6 7 8 9 M 7 6 5 4 3 2

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/

Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are ictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the author, O’Reilly Media, Inc., Microsoft Corporation, nor
its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly or
indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Kristen Borg

Editorial Production and Illustration: Online Training Solutions, Inc.

Technical Reviewer: Gianluca Hotz and Herbert Albert

Copyeditor: Kathy Krause

Indexer: Allegro Technical Indexing

Cover Design: Twist Creative • Seattle

Cover Composition: Karen Montgomery

www.allitebooks.com

http://www.allitebooks.org

To Dato

To live in hearts we leave behind,

 Is not to die.

 —Thomas Campbell

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

Foreword xix

Introduction xxi

ChapTer 1 Background to T-SQL Querying and programming 1

ChapTer 2 Single-Table Queries 27

ChapTer 3 Joins 99

ChapTer 4 Subqueries 129

ChapTer 5 Table expressions 157

ChapTer 6 Set Operators 191

ChapTer 7 Beyond the Fundamentals of Querying 211

ChapTer 8 Data Modiication 247
ChapTer 9 Transactions and Concurrency 297

ChapTer 10 programmable Objects 339

appendIx a Getting Started 375

Index 397

About the Author 413

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

 vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our

books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Contents

Foreword . xix

Introduction . xxi

Chapter 1 Background to T-SQL Querying and Programming 1

Theoretical Background . 1

SQL . 2

Set Theory . 3

Predicate Logic . 4

The Relational Model . 4

The Data Life Cycle . 9

SQL Server Architecture .12

The ABC Flavors of SQL Server .12

SQL Server Instances .14

Databases .15

Schemas and Objects .18

Creating Tables and Deining Data Integrity .19

Creating Tables .19

Deining Data Integrity .21

Conclusion .25

Chapter 2 Single-Table Queries 27

Elements of the SELECT Statement .27

The FROM Clause .29

The WHERE Clause .31

The GROUP BY Clause .32

www.allitebooks.com

http://www.allitebooks.org

viii Contents

The HAVING Clause .36

The SELECT Clause .36

The ORDER BY Clause .42

The TOP and OFFSET-FETCH Filters .44

A Quick Look at Window Functions .48

Predicates and Operators .50

CASE Expressions .53

NULL Marks .55

All-at-Once Operations .59

Working with Character Data .61

Data Types .61

Collation .62

Operators and Functions .64

The LIKE Predicate .71

Working with Date and Time Data .73

Date and Time Data Types .73

Literals . 74

Working with Date and Time Separately .78

Filtering Date Ranges .79

Date and Time Functions .80

Querying Metadata .88

Catalog Views .88

Information Schema Views .89

System Stored Procedures and Functions .89

Conclusion .91

Exercises .91

1 .91

2 .92

3 .92

4 .92

5 .93

6 .93

7 .94

8 .94

www.allitebooks.com

http://www.allitebooks.org

 Contents ix

Solutions .95

1 .95

2 .95

3 .96

4 .96

5 .97

6 .97

7 .98

8 .98

Chapter 3 Joins 99

Cross Joins .99

ANSI SQL-92 Syntax .100

ANSI SQL-89 Syntax .101

Self Cross Joins .101

Producing Tables of Numbers .102

Inner Joins .103

ANSI SQL-92 Syntax .103

ANSI SQL-89 Syntax .105

Inner Join Safety .105

More Join Examples .106

Composite Joins .106

Non-Equi Joins .107

Multi-Join Queries .109

Outer Joins .110

Fundamentals of Outer Joins .110

Beyond the Fundamentals of Outer Joins .113

Conclusion .120

Exercises .120

1-1 .120

1-2 (Optional, Advanced) .121

2 .122

3 .123

4 .123

x Contents

5 .123

6 (Optional, Advanced) .124

7 (Optional, Advanced) .125

Solutions .125

1-1 .125

1-2 .126

2 .126

3 .127

4 .127

5 .127

6 .128

7 .128

Chapter 4 Subqueries 129

Self-Contained Subqueries .129

Self-Contained Scalar Subquery Examples .130

Self-Contained Multivalued Subquery Examples132

Correlated Subqueries .136

The EXISTS Predicate .138

Beyond the Fundamentals of Subqueries .140

Returning Previous or Next Values .140

Using Running Aggregates .141

Dealing with Misbehaving Subqueries .142

Conclusion .147

Exercises .147

1 .147

2 (Optional, Advanced) .148

3 .149

4 .149

5 .150

6 .150

7 (Optional, Advanced) .151

8 (Optional, Advanced) .151

 Contents xi

Solutions .152

1 .152

2 .152

3 .153

4 .153

5 .153

6 .154

7 .154

8 .155

Chapter 5 Table Expressions 157

Derived Tables .157

Assigning Column Aliases .159

Using Arguments .161

Nesting .161

Multiple References .162

Common Table Expressions .163

Assigning Column Aliases in CTEs .164

Using Arguments in CTEs .165

Deining Multiple CTEs .165

Multiple References in CTEs .166

Recursive CTEs .166

Views .169

Views and the ORDER BY Clause .170

View Options .172

Inline Table-Valued Functions .176

The APPLY Operator .178

Conclusion .181

Exercises .182

1-1 .182

1-2 .182

2-1 .183

2-2 .183

3 (Optional, Advanced) .184

xii Contents

4-1 .184

4-2 (Optional, Advanced) .185

5-1 .186

5-2 .186

Solutions .187

1-1 .187

1-2 .187

2-1 .187

2-2 .188

3 .188

4-1 .189

4-2 .189

5-1 .190

5-2 .190

Chapter 6 Set Operators 191

The UNION Operator .192

The UNION ALL Multiset Operator .192

The UNION Distinct Set Operator .193

The INTERSECT Operator .194

The INTERSECT Distinct Set Operator .195

The INTERSECT ALL Multiset Operator .195

The EXCEPT Operator .198

The EXCEPT Distinct Set Operator .198

The EXCEPT ALL Multiset Operator .199

Precedence .200

Circumventing Unsupported Logical Phases .202

Conclusion .204

Exercises .204

1 .204

2 .204

3 .206

4 .206

5 (Optional, Advanced) .206

 Contents xiii

Solutions .208

1 .208

2 .209

3 .209

4 .209

5 .210

Chapter 7 Beyond the Fundamentals of Querying 211

Window Functions .211

Ranking Window Functions .214

Offset Window Functions .217

Aggregate Window Functions .220

Pivoting Data .222

Pivoting with Standard SQL .224

Pivoting with the Native T-SQL PIVOT Operator225

Unpivoting Data .228

Unpivoting with Standard SQL .229

Unpivoting with the Native T-SQL UNPIVOT Operator231

Grouping Sets .232

The GROUPING SETS Subclause .234

The CUBE Subclause .234

The ROLLUP Subclause .235

The GROUPING and GROUPING_ID Functions 236

Conclusion .239

Exercises .239

1 .239

2 .240

3 .240

4 .241

5 .242

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our

books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

xiv Contents

Solutions .243

1 .243

2 .243

3 .243

4 .245

5 .246

Chapter 8 Data Modiication 247
Inserting Data .247

The INSERT VALUES Statement .247

The INSERT SELECT Statement .249

The INSERT EXEC Statement .250

The SELECT INTO Statement .251

The BULK INSERT Statement .252

The Identity Property and the Sequence Object252

Deleting Data .261

The DELETE Statement .262

The TRUNCATE Statement .263

DELETE Based on a Join .263

Updating Data .264

The UPDATE Statement .265

UPDATE Based on a Join .267

Assignment UPDATE . 269

Merging Data .270

Modifying Data Through Table Expressions .274

Modiications with TOP and OFFSET-FETCH . 277

The OUTPUT Clause .280

INSERT with OUTPUT . 280

DELETE with OUTPUT . 282

UPDATE with OUTPUT . 283

MERGE with OUTPUT. 284

Composable DML .285

Conclusion .287

 Contents xv

Exercises .287

1 .287

1-1 .288

1-2 .288

1-3 .288

2 .288

3 .289

4 .289

5 .291

6 .291

Solutions .291

1-1 .291

1-2 .291

1-3 .292

2 .293

3 .293

4 .294

5 .294

Chapter 9 Transactions and Concurrency 297

Transactions .297

Locks and Blocking .300

Locks .300

Troubleshooting Blocking .303

Isolation Levels .309

The READ UNCOMMITTED Isolation Level .310

The READ COMMITTED Isolation Level .311

The REPEATABLE READ Isolation Level .313

The SERIALIZABLE Isolation Level .314

Isolation Levels Based on Row Versioning .316

Summary of Isolation Levels .323

Deadlocks .323

Conclusion .326

xvi Contents

Exercises .326

1-1 .326

1-2 .326

1-3 .327

1-4 .327

1-5 .328

1-6 .328

2-1 .328

2-2 .329

2-3 .330

2-4 .331

2-5 .332

2-6 .334

3-1 .336

3-2 .336

3-3 .336

3-4. .336

3-5 .336

3-6. .337

3-7 .337

Chapter 10 Programmable Objects 339

Variables .339

Batches .341

A Batch As a Unit of Parsing .342

Batches and Variables .343

Statements That Cannot Be Combined in the Same Batch343

A Batch As a Unit of Resolution .344

The GO n Option .344

Flow Elements .345

The IF . . . ELSE Flow Element .345

The WHILE Flow Element .346

An Example of Using IF and WHILE . 348

Cursors .348

 Contents xvii

Temporary Tables .353

Local Temporary Tables .353

Global Temporary Tables .355

Table Variables .356

Table Types .357

Dynamic SQL .359

The EXEC Command .359

The sp_executesql Stored Procedure .360

Using PIVOT with Dynamic SQL .361

Routines .362

User-Deined Functions .362

Stored Procedures .364

Triggers .366

Error Handling .370

Conclusion .374

Appendix A Getting Started 375

Getting Started with SQL Database .375

Installing an On-Premises Implementation of SQL Server 376

1. Obtain SQL Server .376

2. Create a User Account .376

3. Install Prerequisites .377

4. Install the Database Engine, Documentation, and Tools 377

Downloading Source Code and Installing the Sample Database385

Working with SQL Server Management Studio .387

Working with SQL Server Books Online .393

Index 397

About the Author 413

www.allitebooks.com

http://www.allitebooks.org

 xix

Foreword

I ’m very happy that Itzik has managed to ind the time and energy to produce a book
about T-SQL fundamentals. For many years, Itzik has been using his great Microsoft

SQL Server teaching, mentoring, and consulting experience to write books on advanced

programming subjects, leaving a signiicant gap not only for the novice and less ex-

perienced users but also for the many experts working with SQL Server in roles where

T-SQL programming is not a high priority.

When it comes to T-SQL, Itzik is one of the most knowledgeable people in the world.

In fact, we (members of the SQL Server development team), turn to Itzik for expert ad-

vice on most of the new language extensions we plan to implement. His feedback and

consultations have become an important part of our SQL Server development process.

It is never an easy task for a person who is a subject matter expert to write an intro-

ductory book; however, Itzik has the advantage of having taught both introductory and

advanced programming classes for many years. Such experience is a great asset when

differentiating the fundamental T-SQL information from the more advanced topics. But

in this book, Itzik is not simply avoiding anything considered advanced; he is not afraid

to take on inherently complex subjects such as set theory, predicate logic, and the rela-

tional model, introducing them in simple terms, and providing just enough information

for readers to understand their importance to the SQL language. The result is a book

that rewards readers with an understanding of not only what and how T-SQL works, but

also why.

In programming manuals and books, there is no better way to convey the subject

under discussion than with a good example. This book includes many examples—and

you can download them all from Itzik’s website, http://tsql.solidq.com. T-SQL is a dialect

of the oficial ISO and ANSI standards for the SQL language, but it has numerous exten-

sions that can improve the expressiveness and brevity of your T-SQL code. Many of

Itzik’s examples show the T-SQL dialect solution and the equivalent ANSI SQL solution

to the same exercise side by side. This is a great advantage for readers who are familiar

with the ANSI version of SQL but who are new to T-SQL, as well as for programmers

who need to write SQL code that can be deployed easily across several different data-

base platforms.

xx Foreword

Itzik’s deep connection to the SQL Server team shows in his explanation of the Ap-

pliance, Box, Cloud (ABC) lavors of SQL Server in Chapter 1, “Background to T-SQL
Querying and Programming.” So far, I have seen the term “ABC” used only internally
within the Microsoft SQL Server team, but I’m sure it is only a matter of time until the

term spreads around. Itzik developed and tested the examples in the book against both

the “B” (box) and “C” (cloud) lavors of SQL Server. And the Appendix points out where
you can get started with the cloud version of SQL Server, known as Windows Azure

SQL Database. Therefore, you can use this book as a starting point for your own cloud

experiences. The Azure website shows how to start your free subscription to the Azure

services, so you can then execute the examples in the book.

The cloud extension of SQL Server is an extremely important point that you should

not miss. I consider it to be so important that I’m doing something here that never should

be done in a Foreword—advertising another book (sorry, Itzik, I have to do this!). My

own interest and belief in cloud computing skyrocketed after reading Nicholas G. Carr’s

The Big Switch (W.W. Norton and Company, 2009), and I want to share that experience. It

is a great book that compares the advancement of cloud computing to electriication in
the early 1900s. My certainty in the future of cloud computing was further cemented by

watching James Hamilton’s “Cloud Computing Economies of Scale” presentation at the
MIX10 conference (the recording is available at http://channel9.msdn.com/events/MIX/

MIX10/EX01).

Itzik mentions one more cloud-related change that you should be aware of. We

were used to multi-year gaps between SQL Server releases, but that pattern is chang-

ing signiicantly with the cloud; you should instead be prepared for several smaller
cloud releases (called Service Updates) deployed in the Microsoft Data Centers around

the world every year. Therefore, Itzik wisely documents the discrepancies between SQL

Server and Windows Azure SQL Database T-SQL on his http://tsql.solidq.com website

rather than in the book, so he can easily keep the information up to date.

Enjoy the book—and even more—enjoy the new insights into T-SQL that this book

will bring to you.

Lubor Kollar, SQL Server development team, Microsoft

http://channel9.msdn.com/events/MIX/MIX10/EX01
http://channel9.msdn.com/events/MIX/MIX10/EX01

 xxi

Introduction

This book walks you through your irst steps in T-SQL (also known as Transact-SQL),
which is the Microsoft SQL Server dialect of the ISO and ANSI standards for SQL.

You’ll learn the theory behind T-SQL querying and programming and how to develop

T-SQL code to query and modify data, and you’ll get an overview of programmable

objects.

Although this book is intended for beginners, it is not merely a set of procedures

for readers to follow. It goes beyond the syntactical elements of T-SQL and explains the

logic behind the language and its elements.

Occasionally, the book covers subjects that may be considered advanced for readers

who are new to T-SQL; therefore, those sections are optional reading. If you already feel

comfortable with the material discussed in the book up to that point, you might want

to tackle the more advanced subjects; otherwise, feel free to skip those sections and re-

turn to them after you’ve gained more experience. The text will indicate when a section

may be considered more advanced and is provided as optional reading.

Many aspects of SQL are unique to the language and are very different from other

programming languages. This book helps you adopt the right state of mind and gain a

true understanding of the language elements. You learn how to think in terms of sets

and follow good SQL programming practices.

The book is not version-speciic; it does, however, cover language elements that
were introduced in recent versions of SQL Server, including SQL Server 2012. When I

discuss language elements that were introduced recently, I specify the version in which

they were added.

Besides being available in an on-premises lavor, SQL Server is also available as a
cloud-based service called Windows Azure SQL Database (formerly called SQL Azure).

The code samples in this book were tested against both on-premises SQL Server and

SQL Database. The book’s companion website (http://tsql.solidq.com) provides infor-

mation about compatibility issues between the lavors—for example, features that are
available in SQL Server 2012 but not yet in SQL Database.

To complement the learning experience, the book provides exercises that enable you

to practice what you’ve learned. The book occasionally provides optional exercises that

are more advanced. Those exercises are intended for readers who feel very comfortable

with the material and want to challenge themselves with more dificult problems. The
optional exercises for advanced readers are labeled as such.

xxii Introduction

Who Should Read This Book

This book is intended for T-SQL developers, DBAs, BI practitioners, report writers, ana-

lysts, architects, and SQL Server power users who just started working with SQL Server

and need to write queries and develop code using Transact-SQL.

assumptions
To get the most out of this book, you should have working experience with Windows

and with applications based on Windows. You should also be familiar with basic con-

cepts concerning relational database management systems.

Who Should Not Read This Book

Not every book is aimed at every possible audience. This book covers fundamentals.

It is mainly aimed at T-SQL practitioners with little or no experience. With that said,

several readers of the previous edition of this book have mentioned that—even though

they already had years of experience—they still found the book useful for illing gaps in
their knowledge.

Organization of This Book

This book starts with both a theoretical background to T-SQL querying and program-

ming in Chapter 1, laying the foundations for the rest of the book, and also coverage

of creating tables and deining data integrity. The book moves on to various aspects of
querying and modifying data in Chapters 2 through 8, then to a discussion of concur-

rency and transactions in Chapter 9, and inally provides an overview of programmable
objects in Chapter 10. The following section lists the chapter titles along with a short

description:

 ■ Chapter 1, “Background to T-SQL Querying and Programming,” provides a
theoretical background of SQL, set theory, and predicate logic; examines the

relational model and more; describes SQL Server’s architecture; and explains

how to create tables and deine data integrity.

 ■ Chapter 2, “Single-Table Queries,” covers various aspects of querying a single
table by using the SELECT statement.

 Introduction xxiii

 ■ Chapter 3, “Joins,” covers querying multiple tables by using joins, including cross
joins, inner joins, and outer joins.

 ■ Chapter 4, “Subqueries,” covers queries within queries, otherwise known as
subqueries.

 ■ Chapter 5, “Table Expressions,” covers derived tables, common table expressions
(CTEs), views, inline table-valued functions, and the APPLY operator.

 ■ Chapter 6, “Set Operators,” covers the set operators UNION, INTERSECT, and

EXCEPT.

 ■ Chapter 7, “Beyond the Fundamentals of Querying,” covers window functions,
pivoting, unpivoting, and working with grouping sets.

 ■ Chapter 8, “Data Modiication,” covers inserting, updating, deleting, and merg-

ing data.

 ■ Chapter 9, “Transactions and Concurrency,” covers concurrency of user connec-

tions that work with the same data simultaneously; it covers concepts including

transactions, locks, blocking, isolation levels, and deadlocks.

 ■ Chapter 10, “Programmable Objects,” provides an overview of the T-SQL pro-

gramming capabilities in SQL Server.

 ■ The book also provides an appendix, “Getting Started,” to help you set up your
environment, download the book’s source code, install the TSQL2012 sample

database, start writing code against SQL Server, and learn how to get help by

working with SQL Server Books Online.

System Requirements

The Appendix, “Getting Started,” explains which editions of SQL Server 2012 you can
use to work with the code samples included with this book. Each edition of SQL Server

might have different hardware and software requirements, and those requirements are

well documented in SQL Server Books Online under “Hardware and Software Require-

ments for Installing SQL Server 2012.” The Appendix also explains how to work with SQL

Server Books Online.

If you’re connecting to SQL Database, hardware and server software are handled by

Microsoft, so those requirements are irrelevant in this case.

xxiv Introduction

Code Samples

This book features a companion website that makes available to you all the code used

in the book, the errata, and additional resources.

http://tsql.solidq.com

Refer to the Appendix, “Getting Started,” for details about the source code.

Acknowledgments

Many people contributed to making this book a reality, whether directly or indirectly,

and deserve thanks and recognition.

To Lilach, for giving reason to everything I do, and for not complaining about the

endless hours I spend on SQL.

To my parents Mila and Gabi and to my siblings Mickey and Ina, thanks for the con-

stant support. Thanks for accepting the fact that I’m away, which is now harder than

ever. Mom, we’re all counting on you to be well and are encouraged by your strength

and determination. Dad, thanks for being so supportive.

To members of the Microsoft SQL Server development team; Lubor Kollar, Tobias

Ternstrom, Umachandar Jayachandran (UC), and I’m sure many others. Thanks for the

great effort, and thanks for all the time you spent meeting me and responding to my

email messages, addressing my questions and requests for clariication. I think that
SQL Server 2012 and SQL Database show great investment in T-SQL, and I hope this

will continue.

To the editorial team at O’Reilly Media and Microsoft Press; to Ken Jones, thanks

for all the Itzik hours you spent, and thanks for initiating the project. To Russell Jones,

thanks for your efforts in taking over the project and running it from the O’Reilly side.

Also thanks to Kristen Borg, Kathy Krause, and all others who worked on the book.

To Herbert Albert and Gianluca Hotz, thanks for your work as the technical editors of

the book. Your edits were excellent and I’m sure they improved the book’s quality and

accuracy.

To SolidQ, my company for the last decade: it’s gratifying to be part of such a great

company that evolved to what it is today. The members of this company are much more

than colleagues to me; they are partners, friends, and family. Thanks to Fernando G.

Guerrero, Douglas McDowell, Herbert Albert, Dejan Sarka, Gianluca Hotz, Jeanne Reeves,

 Introduction xxv

Glenn McCoin, Fritz Lechnitz, Eric Van Soldt, Joelle Budd, Jan Taylor, Marilyn Temple-

ton, Berry Walker, Alberto Martin, Lorena Jimenez, Ron Talmage, Andy Kelly, Rushabh

Mehta, Eladio Rincón, Erik Veerman, Jay Hackney, Richard Waymire, Carl Rabeler, Chris

Randall, Johan Åhlén, Raoul Illyés, Peter Larsson, Peter Myers, Paul Turley, and so many

others.

To members of the SQL Server Pro editorial team, Megan Keller, Lavon Peters, Mi-

chele Crockett, Mike Otey, and I’m sure many others; I’ve been writing for the magazine

for more than a decade and am grateful for the opportunity to share my knowledge

with the magazine’s readers.

To SQL Server MVPs Alejandro Mesa, Erland Sommarskog, Aaron Bertrand, Tibor

Karaszi, Paul White, and many others, and to the MVP lead, Simon Tien; this is a great

program that I’m grateful and proud to be part of. The level of expertise of this group is

amazing and I’m always excited when we all get to meet, both to share ideas and just to

catch up at a personal level over beer. I believe that, in great part, Microsoft’s inspira-

tion to add new T-SQL capabilities in SQL Server is thanks to the efforts of SQL Server

MVPs, and more generally the SQL Server community. It is great to see this synergy

yielding such a meaningful and important outcome.

To Q2, Q3, and Q4, thanQ.

Finally, to my students: teaching SQL is what drives me. It’s my passion. Thanks for

allowing me to fulill my calling, and for all the great questions that make me seek more
knowledge.

Errata & Book Support

We’ve made every effort to ensure the accuracy of this book and its companion con-

tent. Any errors that have been reported since this book was published are listed on our

Microsoft Press site at oreilly.com:

http://go.microsoft.com/FWLink/?Linkid=248718

If you ind an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at

mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the

addresses above.

mailto:mspinput@microsoft.com

xxvi Introduction

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most

valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in

advance for your input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 1

C H A P T E R 1

Background to T-SQL Querying
and programming

You’re about to embark on a journey to a land that is like no other—a land that has its own set of

laws. If reading this book is your irst step in learning Transact-SQL (T-SQL), you should feel like
Alice—just before she started her adventures in Wonderland. For me, the journey has not ended;

instead, it’s an ongoing path illed with new discoveries. I envy you; some of the most exciting dis-
coveries are still ahead of you!

I’ve been involved with T-SQL for many years: teaching, speaking, writing, and consulting about it.

For me, T-SQL is more than just a language—it’s a way of thinking. I’ve taught and written extensively

on advanced topics, but until now, I have postponed writing about fundamentals. This is not because

T-SQL fundamentals are simple or easy—in fact, just the opposite: The apparent simplicity of the

language is misleading. I could explain the language syntax elements in a supericial manner and have
you writing queries within minutes. But that approach would only hold you back in the long run and

make it harder for you to understand the essence of the language.

Acting as your guide while you take your irst steps in this realm is a big responsibility. I wanted
to make sure that I spent enough time and effort exploring and understanding the language before

writing about fundamentals. T-SQL is deep; learning the fundamentals the right way involves much

more than just understanding the syntax elements and coding a query that returns the right output.

You pretty much need to forget what you know about other programming languages and start think-

ing in terms of T-SQL.

Theoretical Background

SQL stands for Structured Query Language. SQL is a standard language that was designed to query

and manage data in relational database management systems (RDBMSs). An RDBMS is a database

management system based on the relational model (a semantic model for representing data), which

in turn is based on two mathematical branches: set theory and predicate logic. Many other program-

ming languages and various aspects of computing evolved pretty much as a result of intuition. In

contrast, to the degree that SQL is based on the relational model, it is based on a irm foundation—
applied mathematics. T-SQL thus sits on wide and solid shoulders. Microsoft provides T-SQL as a

dialect of, or extension to, SQL in Microsoft SQL Server data management software, its RDBMS.

2 Microsoft SQL Server 2012 T-SQL Fundamentals

This section provides a brief theoretical background about SQL, set theory and predicate logic,

the relational model, and the data life cycle. Because this book is neither a mathematics book nor a

design/data modeling book, the theoretical information provided here is informal and by no means

complete. The goals are to give you a context for the T-SQL language and to deliver the key points

that are integral to correctly understanding T-SQL later in the book.

Language Independence

The relational model is language-independent. That is, you can implement the relational model

with languages other than SQL—for example, with C# in a class model. Today it is common to

see RDBMSs that support languages other than a dialect of SQL, such as the CLR integration in

SQL Server.

Also, you should realize from the start that SQL deviates from the relational model in sev-

eral ways. Some even say that a new language—one that more closely follows the relational

model—should replace SQL. But to date, SQL is the industrial language used by all leading

RDBMSs in practice.

See Also For details about the deviations of SQL from the relational model, as well as how to use SQL in a

relational way, see this book on the topic: SQL and Relational Theory: How to Write Accurate SQL Code, Second

Edition by C. J. Date (O’Reilly Media, 2011).

SQL
SQL is both an ANSI and ISO standard language based on the relational model, designed for querying

and managing data in an RDBMS.

In the early 1970s, IBM developed a language called SEQUEL (short for Structured English QUEry

Language) for their RDBMS product called System R. The name of the language was later changed

from SEQUEL to SQL because of a trademark dispute. SQL irst became an ANSI standard in 1986,
and then an ISO standard in 1987. Since 1986, the American National Standards Institute (ANSI) and

the International Organization for Standardization (ISO) have been releasing revisions for the SQL

standard every few years. So far, the following standards have been released: SQL-86 (1986), SQL-89

(1989), SQL-92 (1992), SQL:1999 (1999), SQL:2003 (2003), SQL:2006 (2006), SQL:2008 (2008), and

SQL:2011 (2011).

Interestingly, SQL resembles English and is also very logical. Unlike many programming languages,

which use an imperative programming paradigm, SQL uses a declarative one. That is, SQL requires

you to specify what you want to get and not how to get it, letting the RDBMS igure out the physical
mechanics required to process your request.

SQL has several categories of statements, including Data Deinition Language (DDL), Data Manip-

ulation Language (DML), and Data Control Language (DCL). DDL deals with object deinitions and
includes statements such as CREATE, ALTER, and DROP. DML allows you to query and modify data

and includes statements such as SELECT, INSERT, UPDATE, DELETE, TRUNCATE, and MERGE. It’s a

www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 1 Background to T-SQL Querying and Programming 3

com mon misunderstanding that DML includes only data modiication statements, but as I mentioned,
it also includes SELECT. Another common misunderstanding is that TRUNCATE is a DDL statement,

but in fact it is a DML statement. DCL deals with permissions and includes statements such as GRANT

and REVOKE. This book focuses on DML.

T-SQL is based on standard SQL, but it also provides some nonstandard/proprietary extensions.

When describing a language element for the irst time, I’ll typically mention whether it is standard.

Set Theory
Set theory, which originated with the mathematician Georg Cantor, is one of the mathematical

branches on which the relational model is based. Cantor’s deinition of a set follows:

By a “set” we mean any collection M into a whole of deinite, distinct objects m
(which are called the “elements” of M) of our perception or of our thought.

—Joseph W. Dauben and Georg Cantor (Princeton University Press, 1990)

Every word in the deinition has a deep and crucial meaning. The deinitions of a set and set mem-

bership are axioms that are not supported by proofs. Each element belongs to a universe, and either

is or is not a member of the set.

Let’s start with the word whole in Cantor’s deinition. A set should be considered a single entity.
Your focus should be on the collection of objects as opposed to the individual objects that make up

the collection. Later on, when you write T-SQL queries against tables in a database (such as a table of

employees), you should think of the set of employees as a whole rather than the individual employ-

ees. This might sound trivial and simple enough, but apparently many programmers have dificulty
adopting this way of thinking.

The word distinct means that every element of a set must be unique. Jumping ahead to tables in

a database, you can enforce the uniqueness of rows in a table by deining key constraints. Without a

key, you won’t be able to uniquely identify rows, and therefore the table won’t qualify as a set. Rather,

the table would be a multiset or a bag.

The phrase of our perception or of our thought implies that the deinition of a set is subjective.
Consider a classroom: One person might perceive a set of people, whereas another might perceive a

set of students and a set of teachers. Therefore, you have a substantial amount of freedom in deining
sets. When you design a data model for your database, the design process should carefully consider

the subjective needs of the application to determine adequate deinitions for the entities involved.

As for the word object, the deinition of a set is not restricted to physical objects such as cars or
employees but rather is relevant to abstract objects as well, such as prime numbers or lines.

What Cantor’s deinition of a set leaves out is probably as important as what it includes. Notice
that the deinition doesn’t mention any order among the set elements. The order in which set ele-

ments are listed is not important. The formal notation for listing set elements uses curly brackets: {a,

b, c}. Because order has no relevance, you can express the same set as {b, a, c} or {b, c, a}. Jumping

4 Microsoft SQL Server 2012 T-SQL Fundamentals

ahead to the set of attributes (called columns in SQL) that make up the header of a relation (called a

table in SQL), an element is supposed to be identiied by name—not by ordinal position.

Similarly, consider the set of tuples (called rows by SQL) that make up the body of the relation; an

element is identiied by its key values—not by position. Many programmers have a hard time adap ting
to the idea that, with respect to querying tables, there is no order among the rows. In other words, a

query against a table can return table rows in any order unless you explicitly request that the data be

sorted in a speciic way, perhaps for presentation purposes.

predicate Logic
Predicate logic, whose roots reach back to ancient Greece, is another branch of mathematics on which

the relational model is based. Dr. Edgar F. Codd, in creating the relational model, had the insight to

connect predicate logic to both management and querying of data. Loosely speaking, a predicate is

a property or an expression that either holds or doesn’t hold—in other words, is either true or false.

The relational model relies on predicates to maintain the logical integrity of the data and deine its
structure. One example of a predicate used to enforce integrity is a constraint deined in a table called
Employees that allows only employees with a salary greater than zero to be stored in the table. The

predicate is “salary greater than zero” (T-SQL expression: salary > 0).

You can also use predicates when iltering data to deine subsets, and more. For example, if

you need to query the Employees table and return only rows for employees from the sales depart-

ment, you would use the predicate “department equals sales” in your query ilter (T-SQL expression:
department = ‘sales’).

In set theory, you can use predicates to deine sets. This is helpful because you can’t always deine
a set by listing all its elements (for example, ininite sets), and sometimes for brevity it’s more conve-

nient to deine a set based on a property. As an example of an ininite set deined with a predicate,
the set of all prime numbers can be deined with the following predicate: “x is a positive integer

greater than 1 that is divisible only by 1 and itself.” For any speciied value, the predicate is either true
or not true. The set of all prime numbers is the set of all elements for which the predicate is true. As

an example of a inite set deined with a predicate, the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} can be deined as
the set of all elements for which the following predicate holds true: “x is an integer greater than or

equal to 0 and smaller than or equal to 9.”

The relational Model
The relational model is a semantic model for data management and manipulation and is based on

set theory and predicate logic. As mentioned earlier, it was created by Dr. Edgar F. Codd, and later

explained and developed by Chris Date, Hugh Darwen, and others. The irst version of the relational
model was proposed by Codd in 1969 in an IBM research report called “Derivability, Redundancy,
and Consistency of Relations Stored in Large Data Banks.” A revised version was proposed by Codd

in 1970 in a paper called “A Relational Model of Data for Large Shared Data Banks,” published in the
journal Communications of the ACM.

 CHAPTER 1 Background to T-SQL Querying and Programming 5

The goal of the relational model is to enable consistent representation of data with minimal or no

redundancy and without sacriicing completeness, and to deine data integrity (enforcement of data
consistency) as part of the model. An RDBMS is supposed to implement the relational model and pro-

vide the means to store, manage, enforce the integrity of, and query data. The fact that the relational

model is based on a strong mathematical foundation means that given a certain data model instance

(from which a physical database will later be generated), you can tell with certainty when a design is

lawed, rather than relying solely on intuition.

The relational model involves concepts such as propositions, predicates, relations, tuples, attri-

butes, and more. For non-mathematicians, these concepts can be quite intimidating. The sections

that follow cover some of the key aspects of the model in an informal, nonmathematical manner and

explain how they relate to databases.

propositions, predicates, and relations

The common belief that the term relational stems from relationships between tables is incorrect. “Re-

lational” actually pertains to the mathematical term relation. In set theory, a relation is a representation

of a set. In the relational model, a relation is a set of related information, with the counterpart in SQL

being a table—albeit not an exact counterpart. A key point in the relational model is that a single rela-

tion should represent a single set (for example, Customers). It is interesting to note that operations on

relations (based on relational algebra) result in a relation (for example, a join between two relations).

note The relational model distinguishes between a relation and a relation variable, but

to keep things simple, I won’t get into this distinction; instead, I’ll use the term relation for

both cases. Also, a relation is made of a header and a body. The header consists of a set of

attributes (called columns in SQL), where each element is identiied by an attribute name
and a type name. The body consists of a set of tuples (called rows in SQL), where each ele-

ment is identiied by a key. To keep things simple, I’ll refer to a table as a set of rows.

When you design a data model for a database, you represent all data with relations (tables). You

start by identifying propositions that you will need to represent in your database. A proposition is an

assertion or a statement that must be true or false. For example, the statement, “Employee Itzik Ben-
Gan was born on February 12, 1971, and works in the IT department” is a proposition. If this proposi-

tion is true, it will manifest itself as a row in a table of Employees. A false proposition simply won’t

manifest itself. This presumption is known as the close world assumption (CWA).

The next step is to formalize the propositions. You do this by taking out the actual data (the body

of the relation) and deining the structure (the heading of the relation)—for example, by creating
predicates out of propositions. You can think of predicates as parameterized propositions. The head-

ing of a relation comprises a set of attributes. Note the use of the term “set”; in the relational model,
attributes are unordered and distinct. An attribute is identiied by an attribute name and a type name.
For example, the heading of an Employees relation might consist of the following attributes (ex-

pressed as pairs of attribute names and type names): employeeid integer, irstname character string,

lastname character string, birthdate date, departmentid integer.

6 Microsoft SQL Server 2012 T-SQL Fundamentals

A type is one of the most fundamental building blocks for relations. A type constrains an attribute

to a certain set of possible or valid values. For example, the type INT is the set of all integers in the

range –2,147,483,648 to 2,147,483,647. A type is one of the simplest forms of a predicate in a data-

base because it restricts the attribute values that are allowed. For example, the database would not

accept a proposition where an employee birth date is February 31, 1971 (not to mention a birth date

stated as something like “abc!”). Note that types are not restricted to base types such as integers or
character strings; a type could also be an enumeration of possible values, such as an enumeration of

possible job positions. A type can be complex. Probably the best way to think of a type is as a class—

encapsulated data and the behavior supporting it. An example of a complex type would be a geom-

etry type that supports polygons.

Missing Values

One aspect of the relational model is the source of many passionate debates—whether predicates

should be restricted to two-valued logic. That is, in two-valued predicate logic, a predicate is either

true or false. If a predicate is not true, it must be false. Use of two-valued predicate logic follows a

mathematical law called the law of excluded middle. However, some say that there’s room for three-

valued (or even four-valued) predicate logic, taking into account cases where values are missing. A

predicate involving a missing value yields neither true nor false—it yields unknown. Take, for example,

a mobile phone attribute of an Employees relation. Suppose that a certain employee’s mobile phone

number is missing. How do you represent this fact in the database? In a three-valued logic implemen-

tation, the mobile phone attribute should allow a special mark for a missing value. Then a predicate

comparing the mobile phone attribute with some speciic number will yield unknown for the case

with the missing value. Three-valued predicate logic refers to the three possible logical values that

can result from a predicate—true, false, and unknown.

Some people believe that three-valued predicate logic is non-relational, whereas others believe

that it is relational. Codd actually advocated four-valued predicate logic, saying that there were

two different cases of missing values: missing but applicable (A-Mark), and missing but inapplicable

(I-Mark). An example of “missing but applicable” is when an employee has a mobile phone, but you
don’t know what the mobile phone number is. An example of missing but inapplicable is when an

employee doesn’t have a mobile phone at all. According to Codd, two special markers should be used

to support these two cases of missing values. SQL implements three-valued predicate logic by sup-

porting the NULL mark to signify the generic concept of a missing value. Support for NULL marks and

three-valued predicate logic in SQL is the source of a great deal of confusion and complexity, though

one can argue that missing values are part of reality. In addition, the alternative—using only two-

valued predicate logic—is no less problematic.

Constraints

One of the greatest beneits of the relational model is the ability to deine data integrity as part of the
model. Data integrity is achieved through rules called constraints that are deined in the data model
and enforced by the RDBMS. The simplest methods of enforcing integrity are assigning an attribute

type with its attendant “nullability” (whether it supports or doesn’t support NULL marks). Constraints

are also enforced through the model itself; for example, the relation Orders(orderid, orderdate,

 CHAPTER 1 Background to T-SQL Querying and Programming 7

duedate, shipdate) allows three distinct dates per order, whereas the relations Employees(empid) and

EmployeeChildren(empid, childname) allow zero to countable ininity children per employee.

Other examples of constraints include candidate keys, which provide entity integrity, and foreign

keys, which provide referential integrity. A candidate key is a key deined on one or more attributes
that prevents more than one occurrence of the same tuple (row in SQL) in a relation. A predicate

based on a candidate key can uniquely identify a row (such as an employee). You can deine multiple
candidate keys in a relation. For example, in an Employees relation, you can deine candidate keys on
employeeid, on SSN (Social Security number), and others. Typically, you arbitrarily choose one of the

candidate keys as the primary key (for example, employeeid in the Employees relation), and use that as

the preferred way to identify a row. All other candidate keys are known as alternate keys.

Foreign keys are used to enforce referential integrity. A foreign key is deined on one or more at-
tributes of a relation (known as the referencing relation) and references a candidate key in another (or

possibly the same) relation. This constraint restricts the values in the referencing relation’s foreign key

attributes to the values that appear in the referenced relation’s candidate key attributes. For example,

suppose that the Employees relation has a foreign key deined on the attribute departmentid, which

references the primary key attribute departmentid in the Departments relation. This means that the val-

ues in Employees.departmentid are restricted to the values that appear in Departments.departmentid.

normalization

The relational model also deines normalization rules (also known as normal forms). Normalization is

a formal mathematical process to guarantee that each entity will be represented by a single relation.

In a normalized database, you avoid anomalies during data modiication and keep redundancy to a
minimum without sacriicing completeness. If you follow Entity Relationship Modeling (ERM), and rep-

resent each entity and its attributes, you probably won’t need normalization; instead, you will apply

normalization only to reinforce and ensure that the model is correct. The following sections briely
cover the irst three normal forms (1NF, 2NF, and 3NF) introduced by Codd.

1NF The irst normal form says that the tuples (rows) in the relation (table) must be unique, and
attributes should be atomic. This is a redundant deinition of a relation; in other words, if a table truly
represents a relation, it is already in irst normal form.

You achieve unique rows by deining a unique key for the table.

You can only operate on attributes with operations that are deined as part of the attribute’s type.
Atomicity of attributes is subjective in the same way that the deinition of a set is subjective. As an ex-

ample, should an employee name in an Employees relation be expressed with one attribute (fullname),

two (irstname and lastname), or three (irstname, middlename, and lastname)? The answer depends

on the application. If the application needs to manipulate the parts of the employee’s name separately

(such as for search purposes), it makes sense to break them apart; otherwise, it doesn’t.

In the same way that an attribute might not be atomic enough based on the needs of the ap-

plication, an attribute might also be subatomic. For example, if an address attribute is considered

atomic for a particular application, not including the city as part of the address would violate the

irst normal form.

8 Microsoft SQL Server 2012 T-SQL Fundamentals

This normal form is often misunderstood. Some people think that an attempt to mimic ar-

rays violates the irst normal form. An example would be deining a YearlySales relation with the

following attributes: salesperson, qty2010, qty2011, and qty2012. However, in this example, you

don’t really violate the irst normal form; you simply impose a constraint—restricting the data to
three speciic years: 2010, 2011, and 2012.

2NF The second normal form involves two rules. One rule is that the data must meet the irst nor-
mal form. The other rule addresses the relationship between non-key and candidate key attributes.

For every candidate key, every non-key attribute has to be fully functionally dependent on the entire

candidate key. In other words, a non-key attribute cannot be fully functionally dependent on part

of a candidate key. To put it more informally, if you need to obtain any non-key attribute value, you

need to provide the values of all attributes of a candidate key from the same tuple. You can ind any
value of any attribute of any tuple if you know all the attribute values of a candidate key.

As an example of violating the second normal form, suppose that you deine a relation called
Orders that represents information about orders and order lines (see Figure 1-1). The Orders relation

contains the following attributes: orderid, productid, orderdate, qty, customerid, and companyname.

The primary key is deined on orderid and productid.

Orders

orderid
productid

PK
PK

orderdate
qty
customerid
companyname

FIGuRE 1-1 Data model before applying 2NF.

The second normal form is violated in Figure 1-1 because there are non-key attributes that de-

pend on only part of a candidate key (the primary key, in this example). For example, you can ind
the order date of an order, as well as customerid and companyname, based on the orderid alone. To

conform to the second normal form, you would need to split your original relation into two relations:

Orders and OrderDetails (as shown in Figure 1-2). The Orders relation would include the attributes

orderid, orderdate, customerid, and companyname, with the primary key deined on orderid. The

OrderDetails relation would include the attributes orderid, productid, and qty, with the primary key

deined on orderid and productid.

Orders

orderidPK

orderdate
customerid
companyname

OrderDetails

orderid
productid

PK,FK1
PK

qty

FIGuRE 1-2 Data model after applying 2NF and before 3NF.

3NF The third normal form also has two rules. The data must meet the second normal form. Also, all

non-key attributes must be dependent on candidate keys non-transitively. Informally this rule means

 CHAPTER 1 Background to T-SQL Querying and Programming 9

that all non-key attributes must be mutually independent. In other words, one non-key attribute can-

not be dependent on another non-key attribute.

The Orders and OrderDetails relations described previously now conform to the second normal

form. Remember that the Orders relation at this point contains the attributes orderid, orderdate,

 customerid, and companyname, with the primary key deined on orderid. Both customerid and

 companyname depend on the whole primary key—orderid. For example, you need the entire pri-

mary key to ind the customerid representing the customer who placed the order. Similarly, you need

the whole primary key to ind the company name of the customer who placed the order. However,
customerid and companyname are also dependent on each other. To meet the third normal form, you

need to add a Customers relation (shown in Figure 1-3) with the attributes customerid (as the primary

key) and companyname. Then you can remove the companyname attribute from the Orders relation.

OrderDetails

orderid
productid

PK,FK1
PK

qty

Customers

customeridPK

companyname

PK

Orders

orderid

orderdate
customerid

FK1

FIGuRE 1-3 Data model after applying 3NF.

Informally, 2NF and 3NF are commonly summarized with the sentence, “Every non-key attribute is
dependent on the key, the whole key, and nothing but the key—so help me Codd.”

There are higher normal forms beyond Codd’s original irst three normal forms that involve com-

pound primary keys and temporal databases, but they are outside the scope of this book.

The data Life Cycle
Data is usually perceived as something static that is entered into a database and later queried. But

in many environments, data is actually more similar to a product in an assembly line, moving from

one environment to another and undergoing transformations along the way. This section describes

the different environments in which data can reside and the characteristics of both the data and the

environment at each stage of the data life cycle. Figure 1-4 illustrates the data life cycle.

OLTP DW BISM DMDSA

ETL

Integration Services

SQL Server
T-SQL

Analysis Services, PowerPivot
MDX DAX DMX

FIGuRE 1-4 The data life cycle.

10 Microsoft SQL Server 2012 T-SQL Fundamentals

Here’s a quick description of what each acronym represents:

 ■ OLTP: online transactional processing

 ■ DSA: data staging area

 ■ DW: data warehouse

 ■ BISM: Business Intelligence Semantic Model

 ■ DM: data mining

 ■ ETL: extract, transform, and load

 ■ MDX: Multidimensional Expressions

 ■ DAX: Data Analysis Expressions

 ■ DMX: Data Mining Extensions

Online Transactional processing

Data is entered initially into an online transactional processing (OLTP) system. The focus of an OLTP

system is data entry and not reporting—transactions mainly insert, update, and delete data. The re-

lational model is targeted primarily at OLTP systems, where a normalized model provides both good

performance for data entry and data consistency. In a normalized environment, each table represents

a single entity and keeps redundancy to a minimum. When you need to modify a fact, you need to

modify it in only one place. This results in optimized performance for data modiications and little
chance for error.

However, an OLTP environment is not suitable for reporting purposes because a normalized model

usually involves many tables (one for each entity) with complex relationships. Even simple reports

require joining many tables, resulting in complex and poorly performing queries.

You can implement an OLTP database in SQL Server and both manage it and query it with T-SQL.

data Warehouses

A data warehouse (DW) is an environment designed for data retrieval and reporting purposes. When

it serves an entire organization, such an environment is called a data warehouse; when it serves only

part of the organization (such as a speciic department) or a subject matter area in the organization,
it is called a data mart. The data model of a data warehouse is designed and optimized mainly to sup-

port data retrieval needs. The model has intentional redundancy, fewer tables, and simpler relation-

ships, ultimately resulting in simpler and more eficient queries as compared to an OLTP environment.

The simplest data warehouse design is called a star schema. The star schema includes several

dimension tables and a fact table. Each dimension table represents a subject by which you want to

analyze the data. For example, in a system that deals with orders and sales, you will probably want

to analyze data by customers, products, employees, time, and similar subjects. In a star schema, each

dimension is implemented as a single table with redundant data. For example, a product dimension

 CHAPTER 1 Background to T-SQL Querying and Programming 11

could be implemented as a single ProductDim table instead of three normalized tables: Products,

ProductSubCategories, and ProductCategories. If you normalize a dimension table, which results

in multiple tables representing that dimension, you get what’s known as a snowlake dimension. A

schema that contains snowlake dimensions is known as a snowlake schema (as opposed to a star

schema).

The fact table holds the facts and measures such as quantity and value for each relevant combina-

tion of dimension keys. For example, for each relevant combination of customer, product, employee,

and day, the fact table would have a row containing the quantity and value. Note that data in a data

warehouse is typically preaggregated to a certain level of granularity (such as a day), unlike data in an

OLTP environment, which is usually recorded at the transaction level.

Historically, early versions of SQL Server mainly targeted OLTP environments, but eventually SQL

Server also started targeting data warehouse systems and data analysis needs. You can implement a

data warehouse as a SQL Server database and manage and query it with T-SQL.

The process that pulls data from source systems (OLTP and others), manipulates it, and loads it into

the data warehouse is called extract, transform, and load, or ETL. SQL Server provides a tool called

Microsoft SQL Server Integration Services (SSIS) to handle ETL needs.

Often the ETL process will involve the use of a data staging area (DSA) between the OLTP and the

DW. The DSA usually resides in a relational database such as a SQL Server database and is used as the

data cleansing area. The DSA is not open to end users.

The Business Intelligence Semantic Model

The Business Intelligence Semantic Model (BISM) is Microsoft’s latest model for supporting the entire

BI stack of applications. The idea is to provide rich, lexible, eficient, and scalable analytical and re-

porting capabilities. Its architecture includes three layers: the data model, business logic and queries,

and data access.

The deployment of the model can be in an Analysis Services server or PowerPivot. Analysis Services

is targeted at BI professionals and IT, whereas PowerPivot is targeted at business users. With Analysis

Services, you can use either a multidimensional data model or a tabular (relational) one. With Power-

Pivot, you use a tabular data model.

The business logic and queries use two languages: Multidimensional Expressions (MDX), based on

multidimensional concepts, and Data Analysis Expressions (DAX), based on tabular concepts.

The data access layer can get its data from different sources: relational databases such as the DW,

iles, cloud services, line of business (LOB) applications, OData feeds, and others. The data access layer
can either cache the data locally or just serve as a passthrough layer directly from the data sources.

The cached mode can use one of two storage engines. One is a preaggregated form known as MOLAP

that was originally designed to support the multidimensional model. Another is a newer engine called

VertiPaq, which implements a columnstore concept, with very high levels of compression and a very

fast processing engine, removing the need for preaggregations, indexing, and so on.

12 Microsoft SQL Server 2012 T-SQL Fundamentals

See Also This section about BISM has a lot of concepts to digest—perhaps too many for a fundamentals

book about T-SQL. If you are curious about BISM and would like a more detailed overview, you can find it

in the following blog entry from the Analysis Services team: http://blogs.msdn.com/b/analysisservices

/archive/2011/05/16/analysis-services-vision-amp-roadmap-update.aspx.

data Mining

BISM provides the user with answers to all possible questions, but the user’s task is to ask the right

questions—to sift anomalies, trends, and other useful information from the sea of data. In the dy-

namic analysis process, the user navigates from one view of aggregates to another—again, slicing

and dicing the data—to ind useful information.

Data mining (DM) is the next step; instead of letting the user look for useful information in the

sea of data, data mining models can do this for the user. That is, data mining algorithms comb the

data and sift the useful information from it. Data mining has enormous business value for organiza-

tions, helping to identify trends, igure out which products are purchased together, predict customer
choices based on speciic parameters, and more.

Analysis Services supports data mining algorithms—including clustering, decision trees, and others—

to address such needs. The language used to manage and query data mining models is Data Mining

Extensions (DMX).

SQL Server Architecture

This section will introduce you to the SQL Server architecture, the lavors of the product, the entities
involved—SQL Server instances, databases, schemas, and database objects—and the purpose of each

entity.

The aBC Flavors of SQL Server
For many years, SQL Server was available only in one lavor—a box, or on-premises, lavor. More re-

cently, Microsoft decided to offer multiple lavors to allow customers to choose the one that best suits
their needs. At the date of this writing, Microsoft provides three main lavors of SQL Server that are
internally referred to as the ABC lavors: A for Appliance, B for Box, and C for Cloud.

appliance

The idea behind the appliance lavor is to provide a complete solution including hardware, software,
and services. The appliance is hosted locally at the customer site. There are several appliances avail-

able today, one of which is Parallel Data Warehouse (PDW). Microsoft partners with hardware vendors

such as Dell and HP to provide the appliance offering. Experts from Microsoft and the hardware

vendor handle the performance, security, and availability aspects for the customer.

www.allitebooks.com

http://blogs.msdn.com/b/analysisservices/archive/2011/05/16/analysis-services-vision-amp-roadmap-update.aspx
http://blogs.msdn.com/b/analysisservices/archive/2011/05/16/analysis-services-vision-amp-roadmap-update.aspx
http://www.allitebooks.org

 CHAPTER 1 Background to T-SQL Querying and Programming 13

This book’s focus is T-SQL, so you are probably wondering which language is used to interact with

the database engine. That depends on the appliance. For example, PDW doesn’t use the same engine

as the on-premises engine; it uses a specialized one. The specialized PDW engine uses its own lavor
of SQL called distributed SQL, or DSQL. Microsoft’s long-term goal is to align the language support in

the different lavors of the product, but that has not yet been realized. This book focuses on T-SQL,
which is supported by some of the appliances and the on-premises and cloud lavors.

Box

The box lavor of SQL Server, formally referred to as on-premises SQL Server, is the traditional one,

usually installed on the customer’s premises. The customer is responsible for everything—getting

the hardware; installing the software; and handling updates, high availability and disaster recovery

(HADR), security, and everything else.

The customer can install multiple instances of the product in the same server (more on this in the

next section) and can write queries that interact with multiple databases. It is also possible to switch

the connection between databases, unless one of them is a contained database.

The querying language used is T-SQL. You can run all of the code samples and exercises in this

book on an on-premises SQL Server implementation, if you want. See the Appendix for details about

obtaining and installing an evaluation edition of SQL Server, as well as creating the sample database.

Cloud

Microsoft supports two cloud lavors of SQL Server: private and public. The use of the term cloud

for the private case could be a bit confusing, because it is hosted locally, but the private lavor uses
virtualization technology. The engine is a box engine (hence the same T-SQL is used to query it), but

it is limited by the virtualization technology’s limitations, such as the number of supported CPUs and

memory.

The public cloud lavor is called Windows Azure SQL Database (formerly called SQL Azure). It is

hosted in Microsoft’s data centers. Hardware, maintenance, HADR, and updates are all responsibilities

of Microsoft. The customer is still responsible for index and query tuning, however.

note Subsequent references to “Windows Azure SQL Database” will use the shorter form
“SQL Database.”

Using SQL Database, the customer can have multiple databases in the cloud server (a conceptual

server, of course) but can connect to only one database at a time. The customer cannot switch be-

tween databases and cannot write multi-database queries.

The SQL Database engine is a specialized engine, although Microsoft uses the same code base as

in the on-premises version. So the T-SQL features exposed in SQL Database are basically the same as

those exposed locally. Most of the T-SQL that you will learn in this book is applicable to both on-

premises and cloud lavors of SQL Server, but there are some exceptions, such as on-premises SQL

14 Microsoft SQL Server 2012 T-SQL Fundamentals

Server T-SQL features that are not yet implemented or exposed in SQL Database. Books Online for SQL

Database details those features in the Transact-SQL Reference section at http://msdn.microsoft.com

/en-us/library/ windowsazure/ee336281.aspx. You should also note that the update and deployment

rate of new versions of SQL Database is faster than that of an on-premises SQL Server. Therefore, it’s

possible that some T-SQL features may be exposed in SQL Database before they show up in an on-

premises SQL Server version.

As mentioned, most of the T-SQL discussed in this book is either already available—or will be

available—in SQL Database. The section in the Appendix that covers the installation of the sample

database for this book also describes how to install the sample database in SQL Database, in case

you already have access to it.

SQL Server Instances
A SQL Server instance, as illustrated in Figure 1-5, is an installation of a SQL Server database engine or

service. You can install multiple instances of an on-premises SQL Server on the same computer. Each

instance is completely independent of the others in terms of security, the data that it manages, and in

all other respects. At the logical level, two different instances residing on the same computer have no

more in common than two instances residing on two separate computers. Of course, same-computer

instances do share the server’s physical resources, such as CPU, memory, and disk.

Server1

Server1 (default)

Server1\Inst1

Server1\Inst2

Server1\Inst3

Server1\Inst4

FIGuRE 1-5 Multiple instances of SQL Server on the same computer.

You can set up one of the multiple instances on a computer as the default instance, whereas all oth-

ers must be named instances. You determine whether an instance is the default or a named one upon

installation; you cannot change that decision later. To connect to a default instance, a client application

needs to specify the computer’s name or IP address. To connect to a named instance, the client needs

to specify the computer’s name or IP address, followed by a backslash (\), followed by the instance

name (as provided upon installation). For example, suppose you have two instances of SQL Server

installed on a computer called Server1. One of these instances was installed as the default instance, and

the other was installed as a named instance called Inst1. To connect to the default instance, you need

to specify only Server1 as the server name. However, to connect to the named instance, you need to

specify both the server and the instance name: Server1\Inst1.

http://msdn.microsoft.com/en-us/library/windowsazure/ee336281.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee336281.aspx

 CHAPTER 1 Background to T-SQL Querying and Programming 15

There are various reasons why you might want to install multiple instances of SQL Server on the

same computer, but I’ll mention only a couple here. One reason is to save on support costs. For ex-

ample, to be able to test the functionality of features in response to support calls or reproduce errors

that users encounter in the production environment, the support department needs local installations

of SQL Server that mimic the user’s production environment in terms of version, edition, and service

pack of SQL Server. If an organization has multiple user environments, the support department needs

multiple installations of SQL Server. Rather than having multiple computers, each hosting a differ-

ent installation of SQL Server that must be supported separately, the support department can have

one computer with multiple installed instances. Of course, you can achieve a similar result by using

multiple virtual machines.

As another example, consider people like me who teach and lecture about SQL Server. For us, it is

very convenient to be able to install multiple instances of SQL Server on the same laptop. This way, we

can perform demonstrations against different versions of the product, showing differences in behav-

ior between versions, and so on.

As a inal example, providers of database services sometimes need to guarantee their customers
complete security separation of their data from other customers’ data. At least in the past, the data-

base provider could have a very powerful data center hosting multiple instances of SQL Server, rather

than needing to maintain multiple less-powerful computers, each hosting a different instance. More

recently, cloud solutions and advanced virtualization technologies make it possible to achieve similar

goals.

databases
You can think of a database as a container of objects such as tables, views, stored procedures, and

other objects. Each instance of SQL Server can contain multiple databases, as illustrated in Figure 1-6.

When you install an on-premises lavor of SQL Server, the setup program creates several system data-
bases that hold system data and serve internal purposes. After installation, you can create your own

user databases that will hold application data.

Instance

User Databases

DB1

DB2

DB3

DB4

DB5

System Databases

master

model

tempdb

msdb

Resource

FIGuRE 1-6 An example of multiple databases on a SQL Server instance.

16 Microsoft SQL Server 2012 T-SQL Fundamentals

The system databases that the setup program creates include master, Resource, model, tempdb, and

msdb. A description of each follows.

 ■ master The master database holds instance-wide metadata information, server conigura-

tion, information about all databases in the instance, and initialization information.

 ■ Resource The Resource database is a hidden, read-only database that holds the deinitions
of all system objects. When you query system objects in a database, they appear to reside in

the sys schema of the local database, but in actuality their deinitions reside in the Resource

database.

 ■ model The model database is used as a template for new databases. Every new database

that you create is initially created as a copy of model. So if you want certain objects (such as

data types) to appear in all new databases that you create, or certain database properties to

be conigured in a certain way in all new databases, you need to create those objects and
conigure those properties in the model database. Note that changes you apply to the model

database will not affect existing databases—only new databases that you create in the future.

 ■ tempdb The tempdb database is where SQL Server stores temporary data such as work

tables, sort space, row versioning information, and so on. SQL Server allows you to create tem-

porary tables for your own use, and the physical location of those temporary tables is tempdb.

Note that this database is destroyed and recreated as a copy of the model database every time

you restart the instance of SQL Server.

 ■ msdb The msdb database is where a service called SQL Server Agent stores its data. SQL

Server Agent is in charge of automation, which includes entities such as jobs, schedules, and

alerts. The SQL Server Agent is also the service in charge of replication. The msdb database

also holds information related to other SQL Server features such as Database Mail, Service

Broker, backups, and more.

In an on-premises installation of SQL Server, you can connect directly to the system databases

master, model, tempdb, and msdb. In SQL Database, you can connect directly only to the system da-

tabase master. If you create temporary tables or declare table variables (more on this topic in Chapter

10, “Programmable Objects”), they are created in tempdb, but you cannot connect directly to tempdb

and explicitly create user objects there.

You can create as many user databases as you need within an instance. A user database holds

objects and data for an application.

You can deine a property called collation at the database level that will determine language

support, case sensitivity, and sort order for character data in that database. If you do not specify a

collation for the database when you create it, the new database will use the default collation of the

instance (chosen upon installation).

To run T-SQL code against a database, a client application needs to connect to a SQL Server in-

stance and be in the context of, or use, the relevant database.

 CHAPTER 1 Background to T-SQL Querying and Programming 17

In terms of security, to be able to connect to a SQL Server instance, the database administrator

(DBA) must create a logon for you. In an on-premises SQL Server instance, the logon can be tied to

your Windows credentials, in which case it is called a Windows authenticated logon. With a Windows

authenticated logon, you won’t need to provide logon and password information when connecting

to SQL Server because you already provided those when you logged on to Windows. With both on-

premises SQL Server and SQL Database, the logon can be independent of your Windows credentials,

in which case it is called a SQL Server authenticated logon. When connecting to SQL Server using a

SQL Server authenticated logon, you will need to provide both a logon name and a password.

The DBA needs to map your logon to a database user in each database that you are supposed to

have access to. The database user is the entity that is granted permissions to objects in the database.

SQL Server 2012 supports a feature called contained databases that breaks the connection

between a database user and a server-level logon. The user is fully contained within the speciic
database and is not tied to a logon at the server level. When creating the user, the DBA also provides

a password. When connecting to SQL Server, the user needs to specify the database he or she is con-

necting to, as well as the user name and password, and the user cannot subsequently switch to other

user databases.

So far, I’ve mainly mentioned the logical aspects of databases. If you’re using SQL Database, your

only concern is that logical layer. You do not deal with the physical layout of the database data and

log iles, tempdb, and so on. But if you’re using on-premises SQL Server, you are responsible for the

physical layer as well. Figure 1-7 shows a diagram of the physical database layout.

User
Database

Transaction
Log

.ldf

PRIMARY

Data

.mdf

Data

.mdf

Data

.mdf

FG1

Data

.mdf

Data

.mdf

FG2

Log File

Filegroup

Data File

FIGuRE 1-7 Database layout.

The database is made up of data iles and transaction log iles. When you create a database, you
can deine various properties for each ile, including the ile name, location, initial size, maximum size,
and an autogrowth increment. Each database must have at least one data ile and at least one log ile
(the default in SQL Server). The data iles hold object data, and the log iles hold information that SQL
Server needs to maintain transactions.

18 Microsoft SQL Server 2012 T-SQL Fundamentals

Although SQL Server can write to multiple data iles in parallel, it can write to only one log ile at a
time, in a sequential manner. Therefore, unlike with data iles, having multiple log iles does not result
in a performance beneit. You might need to add log iles if the disk drive where the log resides runs
out of space.

Data iles are organized in logical groups called ilegroups. A ilegroup is the target for creating an
object, such as a table or an index. The object data will be spread across the iles that belong to the
target ilegroup. Filegroups are your way of controlling the physical locations of your objects. A data-

base must have at least one ilegroup called PRIMARY, and can optionally have other user ilegroups
as well. The PRIMARY ilegroup contains the primary data ile (which has an .mdf extension) for the
database, and the database’s system catalog. You can optionally add secondary data iles (which have
an .ndf extension) to PRIMARY. User ilegroups contain only secondary data iles. You can decide
which ilegroup is marked as the default ilegroup. Objects are created in the default ilegroup when
the object creation statement does not explicitly specify a different target ilegroup.

File extensions .mdf, .ldf, and .ndf

The database ile extensions .mdf and .ldf are quite straightforward. The extension .mdf

stands for Master Data File (not to be confused with the master database), and .ldf stands

for Log Data File. According to one anecdote, when discussing the extension for the sec-

ondary data iles, one of the developers suggested, humorously, using .ndf to represent

“Not Master Data File,” and the idea was accepted.

Schemas and Objects
When I said earlier that a database is a container of objects, I simpliied things a bit. As illustrated in
Figure 1-8, a database contains schemas, and schemas contain objects. You can think of a schema as a

container of objects such as tables, views, stored procedures, and others.

dbo

Sales HR

User Database

Schema

Objects

FIGuRE 1-8 A database, schemas, and database objects.

 CHAPTER 1 Background to T-SQL Querying and Programming 19

You can control permissions at the schema level. For example, you can grant a user SELECT permis-

sions on a schema, allowing the user to query data from all objects in that schema. So security is one

of the considerations for determining how to arrange objects in schemas.

The schema is also a namespace—it is used as a preix to the object name. For example, suppose
you have a table named Orders in a schema named Sales. The schema-qualiied object name (also
known as the two-part object name) is Sales.Orders. If you omit the schema name when referring to

an object, SQL Server will apply a process to resolve the schema name, such as checking whether

the object exists in the user’s default schema, and if it doesn’t, checking whether it exists in the dbo

schema. Microsoft recommends that when you refer to objects in your code you always use the two-

part object names. There are some relatively insigniicant extra costs involved in resolving the object
name when you don’t specify it explicitly. But as insigniicant as this extra cost might be, why pay it?
Also, if multiple objects with the same name exist in different schemas, you might end up getting a

different object than the one you wanted.

Creating Tables and Deining Data Integrity

This section describes the fundamentals of creating tables and deining data integrity using T-SQL.
Feel free to run the included code samples in your environment.

More Info If you don’t know yet how to run code against SQL Server, the Appendix will

help you get started.

As mentioned earlier, DML rather than DDL is the focus of this book. Still, it is important that you

understand how to create tables and deine data integrity. I will not go into the explicit details here,
but I will provide a brief description of the essentials.

Before you look at the code for creating a table, remember that tables reside within schemas, and

schemas reside within databases. The examples use the book’s sample database, TSQL2012, and a

schema called dbo.

More Info See the Appendix for details on creating the sample database.

The examples here use a schema named dbo that is created automatically in every database and is

also used as the default schema for users who are not explicitly associated with a different schema.

20 Microsoft SQL Server 2012 T-SQL Fundamentals

Creating Tables
The following code creates a table named Employees in the dbo schema in the TSQL2012 database.

USE TSQL2012;

IF OBJECT_ID('dbo.Employees', 'U') IS NOT NULL

 DROP TABLE dbo.Employees;

CREATE TABLE dbo.Employees

(

 empid INT NOT NULL,

 firstname VARCHAR(30) NOT NULL,

 lastname VARCHAR(30) NOT NULL,

 hiredate DATE NOT NULL,

 mgrid INT NULL,

 ssn VARCHAR(20) NOT NULL,

 salary MONEY NOT NULL

);

The USE statement sets the current database context to that of TSQL2012. It is important to incor-

porate the USE statement in scripts that create objects to ensure that SQL Server creates the objects

in the speciied database. In an on-premises SQL Server implementation, the USE statement can actu-

ally change the database context from one to another. In SQL Database, you cannot switch between

different databases, but the USE statement will not fail as long as you are already connected to the

target database. So even in SQL Database, I recommend having the USE statement to ensure that you

are connected to the right database when creating your objects.

The IF statement invokes the OBJECT_ID function to check whether the Employees table already

exists in the current database. The OBJECT_ID function accepts an object name and type as inputs.

The type ‘U’ represents a user table. This function returns the internal object ID if an object with the

speciied input name and type exists, and NULL otherwise. If the function returns a NULL, you know

that the object doesn’t exist. In our case, the code drops the table if it already exists, and then creates

a new one. Of course, you could have chosen a different treatment, such as simply not creating the

object if it already exists.

The CREATE TABLE statement is in charge of deining what I referred to earlier as the header of the
relation. Here you specify the name of the table and, in parentheses, the deinition of its attributes
(columns).

Notice the use of the two-part name dbo.Employees for the table name, as recommended earlier.

If you omit the schema name, SQL Server will assume the default schema associated with the data-

base user running the code.

For each attribute, you specify the attribute name, data type, and whether the value can be NULL

(this is called nullability).

 CHAPTER 1 Background to T-SQL Querying and Programming 21

In the Employees table, the attributes empid (employee ID) and mgrid (manager ID) are each

deined with the INT (four-byte integer) data type; the irstname, lastname, and ssn (Social Security

number) are deined as VARCHAR (variable-length character string with the speciied maximum sup-

ported number of characters); and hiredate is deined as DATE and salary is deined as MONEY.

If you don’t explicitly specify whether a column allows or disallows NULL marks, SQL Server will

have to rely on defaults. Standard SQL dictates that when a column’s nullability is not speciied, the
assumption should be NULL (allowing NULL marks), but SQL Server has settings that can change

that behavior. I strongly recommend that you be explicit and not rely on defaults. Also, I strongly

recommend deining a column as NOT NULL unless you have a compelling reason to support NULL

marks. If a column is not supposed to allow NULL marks and you don’t enforce this with a NOT NULL

constraint, you can rest assured that NULL marks will occur. In the Employees table, all columns are

deined as NOT NULL except for the mgrid column. A NULL in the mgrid attribute would represent the

fact that the employee has no manager, as in the case of the CEO of the organization.

Coding Style

You should be aware of a few general notes regarding coding style, the use of white spaces

(space, tab, new line, and so on), and semicolons. I’m not aware of any formal coding styles. My

advice is that you use a style that you and your fellow developers feel comfortable with. What

ultimately matters most is the consistency, readability, and maintainability of your code. I have

tried to relect these aspects in my code throughout the book.

T-SQL lets you use white spaces quite freely in your code. You can take advantage of

whitespace to facilitate readability. For example, I could have written the code in the previous

section as a single line. However, the code wouldn’t have been as readable as when it is broken

into multiple lines that use indentation.

The practice of using a semicolon to terminate statements is standard and in fact is a re-

quirement in several other database platforms. SQL Server requires the semicolon only in par-

ticular cases—but in cases where a semicolon is not required, using one doesn’t cause problems.

I strongly recommend that you adopt the practice of terminating all statements with a semi-

colon. Not only will doing this improve the readability of your code, but in some cases it can

save you some grief. (When a semicolon is required and is not speciied, the error message SQL
Server produces is not always very clear.)

note The SQL Server documentation indicates that not terminating T-SQL statements with

a semicolon is a deprecated feature. This means that the long-term goal is to enforce use

of the semicolon in a future version of the product. That’s one more reason to get into the

habit of terminating all of your statements, even where it’s currently not required.

22 Microsoft SQL Server 2012 T-SQL Fundamentals

Deining Data Integrity
As mentioned earlier, one of the great beneits of the relational model is that data integrity is an
integral part of it. Data integrity enforced as part of the model—namely, as part of the table deini-
tions—is considered declarative data integrity. Data integrity enforced with code—such as with stored

procedures or triggers—is considered procedural data integrity.

Data type and nullability choices for attributes and even the data model itself are examples of

declarative data integrity constraints. In this section, I will describe other examples of declarative

constraints: primary key, unique, foreign key, check, and default constraints. You can deine such
constraints when creating a table as part of the CREATE TABLE statement, or you can deine them for
already-created tables by using an ALTER TABLE statement. All types of constraints except for default

constraints can be deined as composite constraints—that is, based on more than one attribute.

primary Key Constraints

A primary key constraint enforces uniqueness of rows and also disallows NULL marks in the constraint

attributes. Each unique set of values in the constraint attributes can appear only once in the table—in

other words, only in one row. An attempt to deine a primary key constraint on a column that allows
NULL marks will be rejected by the RDBMS. Each table can have only one primary key.

Here’s an example of deining a primary key constraint on the empid attribute in the Employees

table that you created earlier.

ALTER TABLE dbo.Employees

 ADD CONSTRAINT PK_Employees

 PRIMARY KEY(empid);

With this primary key in place, you can be assured that all empid values will be unique and known.

An attempt to insert or update a row such that the constraint would be violated will be rejected by

the RDBMS and result in an error.

To enforce the uniqueness of the logical primary key constraint, SQL Server will create a unique in-

dex behind the scenes. A unique index is a physical mechanism used by SQL Server to enforce unique-

ness. Indexes (not necessarily unique ones) are also used to speed up queries by avoiding unnecessary

full table scans (similar to indexes in books).

Unique Constraints

A unique constraint enforces the uniqueness of rows, allowing you to implement the concept of

alternate keys from the relational model in your database. Unlike with primary keys, you can deine
multiple unique constraints within the same table. Also, a unique constraint is not restricted to col-

umns deined as NOT NULL. According to standard SQL, a column with a unique constraint is sup-

posed to allow multiple NULL marks (as if two NULL marks were different from each other). However,

SQL Server’s implementation rejects duplicate NULL marks (as if two NULL marks were equal to each

other).

www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 1 Background to T-SQL Querying and Programming 23

The following code deines a unique constraint on the ssn column in the Employees table.

ALTER TABLE dbo.Employees

 ADD CONSTRAINT UNQ_Employees_ssn

 UNIQUE(ssn);

As with a primary key constraint, SQL Server will create a unique index behind the scenes as the

physical mechanism to enforce the logical unique constraint.

Foreign Key Constraints

A foreign key enforces referential integrity. This constraint is deined on one or more attributes in

what’s called the referencing table and points to candidate key (primary key or unique constraint)

attributes in what’s called the referenced table. Note that the referencing and referenced tables can

be one and the same. The foreign key’s purpose is to restrict the values allowed in the foreign key

columns to those that exist in the referenced columns.

The following code creates a table called Orders with a primary key deined on the orderid column.

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL

 DROP TABLE dbo.Orders;

CREATE TABLE dbo.Orders

(

 orderid INT NOT NULL,

 empid INT NOT NULL,

 custid VARCHAR(10) NOT NULL,

 orderts DATETIME2 NOT NULL,

 qty INT NOT NULL,

 CONSTRAINT PK_Orders

 PRIMARY KEY(orderid)

);

Suppose you want to enforce an integrity rule that restricts the values supported by the empid col-

umn in the Orders table to the values that exist in the empid column in the Employees table. You can

achieve this by deining a foreign key constraint on the empid column in the Orders table pointing to

the empid column in the Employees table, like the following.

ALTER TABLE dbo.Orders

 ADD CONSTRAINT FK_Orders_Employees

 FOREIGN KEY(empid)

 REFERENCES dbo.Employees(empid);

Similarly, if you want to restrict the values supported by the mgrid column in the Employees table

to the values that exist in the empid column of the same table, you can do so by adding the following

foreign key.

ALTER TABLE dbo.Employees

 ADD CONSTRAINT FK_Employees_Employees

 FOREIGN KEY(mgrid)

 REFERENCES dbo.Employees(empid);

24 Microsoft SQL Server 2012 T-SQL Fundamentals

Note that NULL marks are allowed in the foreign key columns (mgrid in the last example) even if

there are no NULL marks in the referenced candidate key columns.

The preceding two examples are basic deinitions of foreign keys that enforce a referential action
called no action. No action means that attempts to delete rows from the referenced table or update

the referenced candidate key attributes will be rejected if related rows exist in the referencing table.

For example, if you try to delete an employee row from the Employees table when there are related

orders in the Orders table, the RDBMS will reject such an attempt and produce an error.

You can deine the foreign key with actions that will compensate for such attempts (to delete rows
from the referenced table or update the referenced candidate key attributes when related rows exist

in the referencing table). You can deine the options ON DELETE and ON UPDATE with actions such

as CASCADE, SET DEFAULT, and SET NULL as part of the foreign key deinition. CASCADE means that

the operation (delete or update) will be cascaded to related rows. For example, ON DELETE CASCADE

means that when you delete a row from the referenced table, the RDBMS will delete the related rows

from the referencing table. SET DEFAULT and SET NULL mean that the compensating action will set

the foreign key attributes of the related rows to the column’s default value or NULL, respectively. Note

that regardless of which action you chose, the referencing table will only have orphaned rows in the

case of the exception with NULL marks that I mentioned earlier.

Check Constraints

A check constraint allows you to deine a predicate that a row must meet to be entered into the table
or to be modiied. For example, the following check constraint ensures that the salary column in the
Employees table will support only positive values.

ALTER TABLE dbo.Employees

 ADD CONSTRAINT CHK_Employees_salary

 CHECK(salary > 0.00);

An attempt to insert or update a row with a nonpositive salary value will be rejected by the RDBMS.

Note that a check constraint rejects an attempt to insert or update a row when the predicate evalu-

ates to FALSE. The modiication will be accepted when the predicate evaluates to either TRUE or

UNKNOWN. For example, salary –1000 will be rejected, whereas salaries 50000 and NULL will both

be accepted.

When adding check and foreign key constraints, you can specify an option called WITH NOCHECK

that tells the RDBMS that you want it to bypass constraint checking for existing data. This is consid-

ered a bad practice because you cannot be sure that your data is consistent. You can also disable or

enable existing check and foreign key constraints.

default Constraints

A default constraint is associated with a particular attribute. It is an expression that is used as the de-

fault value when an explicit value is not speciied for the attribute when you insert a row. For example,
the following code deines a default constraint for the orderts attribute (representing the order’s time

stamp):

 CHAPTER 1 Background to T-SQL Querying and Programming 25

ALTER TABLE dbo.Orders

 ADD CONSTRAINT DFT_Orders_orderts

 DEFAULT(SYSDATETIME()) FOR orderts;

The default expression invokes the SYSDATETIME function, which returns the current date and

time value. After this default expression is deined, whenever you insert a row in the Orders table

and do not explicitly specify a value in the orderts attribute, SQL Server will set the attribute value

to SYSDATETIME.

When you’re done, run the following code for cleanup.

DROP TABLE dbo.Orders, dbo.Employees;

Conclusion

This chapter provided a brief background to T-SQL querying and programming. It presented a theo-

retical background, explaining the strong foundations that T-SQL is based on. It gave an overview of

the SQL Server architecture and concluded with sections that demonstrated how to use T-SQL to cre-

ate tables and deine data integrity. I hope that by now you see that there’s something special about
SQL, and that it’s not just a language that can be learned as an afterthought. This chapter equipped

you with fundamental concepts—the actual journey is just about to begin.

 27

C H A P T E R 2

Single-Table Queries

This chapter introduces you to the fundamentals of the SELECT statement, focusing for now

on queries against a single table. The chapter starts by describing logical query processing—

namely, the series of logical phases involved in producing the correct result set of a particular

SELECT query. The chapter then covers other aspects of single-table queries, including predicates

and operators, CASE expressions, NULL marks, all-at-once operations, manipulating character data

and date and time data, and querying metadata. Many of the code samples and exercises in this

book use a sample database called TSQL2012. You can ind the instructions for downloading and
installing this sample database in the Appendix, “Getting Started.”

Elements of the SELECT Statement

The purpose of a SELECT statement is to query tables, apply some logical manipulation, and return a

result. In this section, I talk about the phases involved in logical query processing. I describe the logi-

cal order in which the different query clauses are processed, and what happens in each phase.

Note that by “logical query processing,” I’m referring to the conceptual way in which standard SQL

deines how a query should be processed and the inal result achieved. Don’t be alarmed if some logi-
cal processing phases that I describe here seem ineficient. The Microsoft SQL Server engine doesn’t
have to follow logical query processing to the letter; rather, it is free to physically process a query

differently by rearranging processing phases, as long as the inal result would be the same as that
dictated by logical query processing. SQL Server can—and in fact, often does—make many shortcuts

in the physical processing of a query.

To describe logical query processing and the various SELECT query clauses, I use the query in

Listing 2-1 as an example.

LISTING 2-1 Sample Query

SE TSQL2012;

SELECT empid, YEAR(orderdate) AS orderyear, COUNT(*) AS numorders

FROM Sales.Orders

WHERE custid = 71

GROUP BY empid, YEAR(orderdate)

HAVING COUNT(*) > 1

ORDER BY empid, orderyear;

28 Microsoft SQL Server 2012 T-SQL Fundamentals

This query ilters orders that were placed by customer 71; groups those orders by employee and
order year; and ilters only groups of employees and years that have more than one order. For the
remaining groups, the query presents the employee ID, order year, and count of orders, sorted by the

employee ID and order year. For now, don’t worry about understanding how this query does what it

does; I’ll explain the query clauses one at a time, and gradually build this query.

The code starts with a USE statement that ensures that the database context of your session is

the TSQL2012 sample database. If your session is already in the context of the database you need to

query, the USE statement is not required.

Before getting into the details of each phase of the SELECT statement, notice the order in which

the query clauses are logically processed. In most programming languages, the lines of code are

proc essed in the order that they are written. In SQL, things are different. Even though the SELECT

clause appears irst in the query, it is logically processed almost last. The clauses are logically pro-

cessed in the following order:

1. FROM

2. WHERE

3. GROUP BY

4. HAVING

5. SELECT

6. ORDER BY

So even though syntactically the sample query in Listing 2-1 starts with a SELECT clause, logically

its clauses are processed in the following order.

FROM Sales.Orders

WHERE custid = 71

GROUP BY empid, YEAR(orderdate)

HAVING COUNT(*) > 1

SELECT empid, YEAR(orderdate) AS orderyear, COUNT(*) AS numorders

ORDER BY empid, orderyear

Or, to present it in a more readable manner, here’s what the statement does:

1. Queries the rows from the Sales.Orders table

2. Filters only orders where the customer ID is equal to 71

3. Groups the orders by employee ID and order year

4. Filters only groups (employee ID and order year) having more than one order

5. Selects (returns) for each group the employee ID, order year, and number of orders

6. Orders (sorts) the rows in the output by employee ID and order year

You cannot write the query in correct logical order. You have to start with the SELECT clause as

shown in Listing 2-1. There’s reason behind this discrepancy between the keyed-in order and the

logical processing order of the clauses. The designers of SQL envisioned a declarative language with

 CHAPTER 2 Single-Table Queries 29

which you provide your request in an English-like manner. Consider an instruction made by one hu-

man to another in English, such as, “Bring me the car keys from the top-left drawer in the kitchen.”
Notice that you start the instruction with the object and then indicate the location where the object

resides. But if you were to express the same instruction to a robot, or a computer program, you would

have had to start with the location, before indicating what can be obtained from that location. Your

instruction would have probably been something like, “Go to the kitchen; open the top-left drawer;
grab the car keys; bring them to me.” The keyed-in order of the query clauses is similar to English—

it starts with the SELECT clause. Logical query processing order is similar to how you would provide

instructions to a robot—with the FROM clause processed irst.

Now that you understand the order in which the query clauses are logically processed, the next

sections explain the details of each phase.

When discussing logical query processing, I refer to query clauses and query phases, (the WHERE

clause and the WHERE phase, for example). A query clause is a syntactical component of a query, so

when discussing the syntax of a query element I usually use the term clause—for example, “In the
WHERE clause, you specify a predicate.” When discussing the logical manipulation taking place as part

of logical query processing, I usually use the term phase—for example, “The WHERE phase returns

rows for which the predicate evaluates to TRUE.”

Recall my recommendation from the previous chapter regarding the use of a semicolon to ter-

minate statements. At the moment, SQL Server doesn’t require you to terminate all statements with

a semicolon. This is a requirement only in particular cases where the meaning of the code might

otherwise be ambiguous. However, I recommend that you terminate all statements with a semicolon

because it is standard, it improves the code readability, and it is likely that SQL Server will require

this in more—if not all—cases in the future. Currently, when a semicolon is not required, adding one

doesn’t interfere. Therefore, I recommend that you make it a practice to terminate all statements with

a semicolon.

The FROM Clause
The FROM clause is the very irst query clause that is logically processed. In this clause, you specify
the names of the tables that you want to query and table operators that operate on those tables. This

chapter doesn’t get into table operators; I describe those in Chapters 3, 5, and 7. For now, you can just

consider the FROM clause to be simply where you specify the name of the table you want to query.

The sample query in Listing 2-1 queries the Orders table in the Sales schema, inding 830 rows.

FROM Sales.Orders

Recall the recommendation I gave in the previous chapter to always schema-qualify object names

in your code. When you don’t specify the schema name explicitly, SQL Server must resolve it implicitly

based on its implicit name resolution rules. This creates some minor cost and can result in SQL Server

choosing a different object than the one you intended. By being explicit, your code is safer in the sense

that you ensure that you get the object that you intended to get. Plus, you don’t pay any unnecessary

penalties.

30 Microsoft SQL Server 2012 T-SQL Fundamentals

To return all rows from a table with no special manipulation, all you need is a query with a FROM

clause in which you specify the table you want to query, and a SELECT clause in which you specify the

attributes you want to return. For example, the following statement queries all rows from the Orders

table in the Sales schema, selecting the attributes orderid, custid, empid, orderdate, and freight.

SELECT orderid, custid, empid, orderdate, freight

FROM Sales.Orders;

The output of this statement is shown here in abbreviated form.

orderid custid empid orderdate freight

----------- ----------- ----------- ------------------------------ --------------

10248 85 5 2006-07-04 00:00:00.000 32.38

10249 79 6 2006-07-05 00:00:00.000 11.61

10250 34 4 2006-07-08 00:00:00.000 65.83

10251 84 3 2006-07-08 00:00:00.000 41.34

10252 76 4 2006-07-09 00:00:00.000 51.30

10253 34 3 2006-07-10 00:00:00.000 58.17

10254 14 5 2006-07-11 00:00:00.000 22.98

10255 68 9 2006-07-12 00:00:00.000 148.33

10256 88 3 2006-07-15 00:00:00.000 13.97

10257 35 4 2006-07-16 00:00:00.000 81.91

...

(830 row(s) affected)

Although it might seem that the output of the query is returned in a particular order, this is not

guaranteed. I’ll elaborate on this point later in this chapter, in the sections “The SELECT Clause” and

“The ORDER BY Clause.”

Delimiting Identiier Names
As long as the identiiers in your query comply with rules for the format of regular identiiers,
you don’t need to delimit the identiier names used for schemas, tables, and columns. The rules
for the format of regular identiiers can be found in SQL Server Books Online at the follow-

ing URL: http://msdn.microsoft.com/en-us/library/ms175874. If an identiier is irregular—for
example, if it has embedded spaces or special characters, starts with a digit, or is a reserved

keyword—you have to delimit it. You can delimit identiiers in SQL Server in a couple of ways.
The standard SQL form is to use double quotes—for example, “Order Details”. The form speciic
to SQL Server is to use square brackets—for example, [Order Details], but SQL Server also sup-

ports the standard form.

With identiiers that do comply with the rules for the format of regular identiiers, delimit-
ing is optional. For example, a table called OrderDetails residing in the Sales schema can be

referred to as Sales.OrderDetails or “Sales”.”OrderDetails” or [Sales].[OrderDetails]. My personal

preference is not to use delimiters when they are not required, because they tend to clutter the

code. Also, when you’re in charge of assigning identiiers, I recommend always using regular
ones, for example, OrderDetails instead of Order Details.

 CHAPTER 2 Single-Table Queries 31

The WHERE Clause
In the WHERE clause, you specify a predicate or logical expression to ilter the rows returned by
the FROM phase. Only rows for which the logical expression evaluates to TRUE are returned by the

WHERE phase to the subsequent logical query processing phase. In the sample query in Listing 2-1,

the WHERE phase ilters only orders placed by customer 71.

FROM Sales.Orders

WHERE custid = 71

Out of the 830 rows returned by the FROM phase, the WHERE phase ilters only the 31 rows where
the customer ID is equal to 71. To see which rows you get back after applying the ilter custid = 71,

run the following query.

SELECT orderid, empid, orderdate, freight

FROM Sales.Orders

WHERE custid = 71;

This query generates the following output.

orderid empid orderdate freight

----------- ----------- ------------------------------ --------------

10324 9 2006-10-08 00:00:00.000 214.27

10393 1 2006-12-25 00:00:00.000 126.56

10398 2 2006-12-30 00:00:00.000 89.16

10440 4 2007-02-10 00:00:00.000 86.53

10452 8 2007-02-20 00:00:00.000 140.26

10510 6 2007-04-18 00:00:00.000 367.63

10555 6 2007-06-02 00:00:00.000 252.49

10603 8 2007-07-18 00:00:00.000 48.77

10607 5 2007-07-22 00:00:00.000 200.24

10612 1 2007-07-28 00:00:00.000 544.08

10627 8 2007-08-11 00:00:00.000 107.46

10657 2 2007-09-04 00:00:00.000 352.69

10678 7 2007-09-23 00:00:00.000 388.98

10700 3 2007-10-10 00:00:00.000 65.10

10711 5 2007-10-21 00:00:00.000 52.41

10713 1 2007-10-22 00:00:00.000 167.05

10714 5 2007-10-22 00:00:00.000 24.49

10722 8 2007-10-29 00:00:00.000 74.58

10748 3 2007-11-20 00:00:00.000 232.55

10757 6 2007-11-27 00:00:00.000 8.19

10815 2 2008-01-05 00:00:00.000 14.62

10847 4 2008-01-22 00:00:00.000 487.57

10882 4 2008-02-11 00:00:00.000 23.10

10894 1 2008-02-18 00:00:00.000 116.13

10941 7 2008-03-11 00:00:00.000 400.81

10983 2 2008-03-27 00:00:00.000 657.54

10984 1 2008-03-30 00:00:00.000 211.22

11002 4 2008-04-06 00:00:00.000 141.16

11030 7 2008-04-17 00:00:00.000 830.75

11031 6 2008-04-17 00:00:00.000 227.22

11064 1 2008-05-01 00:00:00.000 30.09

(31 row(s) affected)

32 Microsoft SQL Server 2012 T-SQL Fundamentals

The WHERE clause has signiicance when it comes to query performance. Based on what you have

in the ilter expression, SQL Server evaluates the use of indexes to access the required data. By using
indexes, SQL Server can sometimes get the required data with much less work compared to applying

full table scans. Query ilters also reduce the network trafic created by returning all possible rows to
the caller and iltering on the client side.

Earlier, I mentioned that only rows for which the logical expression evaluates to TRUE are returned

by the WHERE phase. Always keep in mind that T-SQL uses three-valued predicate logic, where logi-

cal expressions can evaluate to TRUE, FALSE, or UNKNOWN. With three-valued logic, saying “returns
TRUE” is not the same as saying “does not return FALSE.” The WHERE phase returns rows for which

the logical expression evaluates to TRUE, and doesn’t return rows for which the logical expression

evaluates to FALSE or UNKNOWN. I elaborate on this point later in this chapter in the section “NULL

Marks.”

The GROUP BY Clause
The GROUP BY phase allows you to arrange the rows returned by the previous logical query proc-

essing phase in groups. The groups are determined by the elements you specify in the GROUP BY

clause. For example, the GROUP BY clause in the query in Listing 2-1 has the elements empid and

YEAR(orderdate).

FROM Sales.Orders

WHERE custid = 71

GROUP BY empid, YEAR(orderdate)

This means that the GROUP BY phase produces a group for each unique combination of employee

ID and order year values that appears in the data returned by the WHERE phase. The expression

YEAR(orderdate) invokes the YEAR function to return only the year part from the orderdate column.

The WHERE phase returned 31 rows, within which there are 16 unique combinations of employee

ID and order year values, as shown here.

empid YEAR(orderdate)

----------- ---------------

1 2006

1 2007

1 2008

2 2006

2 2007

2 2008

3 2007

4 2007

4 2008

5 2007

6 2007

6 2008

7 2007

7 2008

8 2007

9 2006

www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 2 Single-Table Queries 33

Thus the GROUP BY phase creates 16 groups, and associates each of the 31 rows returned from the

WHERE phase with the relevant group.

If the query involves grouping, all phases subsequent to the GROUP BY phase—including HAVING,

SELECT, and ORDER BY—must operate on groups as opposed to operating on individual rows. Each

group is ultimately represented by a single row in the inal result of the query. This implies that all ex-

pressions that you specify in clauses that are processed in phases subsequent to the GROUP BY phase

are required to guarantee returning a scalar (single value) per group.

Expressions based on elements that participate in the GROUP BY list meet the requirement be-

cause by deinition each group has only one unique occurrence of each GROUP BY element. For

example, in the group for employee ID 8 and order year 2007, there’s only one unique employee

ID value and only one unique order year value. Therefore, you’re allowed to refer to the expres-

sions empid and YEAR(orderdate) in clauses that are processed in phases subsequent to the GROUP

BY phase, such as the SELECT clause. The following query, for example, returns 16 rows for the 16

groups of employee ID and order year values.

SELECT empid, YEAR(orderdate) AS orderyear

FROM Sales.Orders

WHERE custid = 71

GROUP BY empid, YEAR(orderdate);

This query returns the following output.

empid orderyear

----------- -----------

1 2006

1 2007

1 2008

2 2006

2 2007

2 2008

3 2007

4 2007

4 2008

5 2007

6 2007

6 2008

7 2007

7 2008

8 2007

9 2006

(16 row(s) affected)

34 Microsoft SQL Server 2012 T-SQL Fundamentals

Elements that do not participate in the GROUP BY list are allowed only as inputs to an aggregate

function such as COUNT, SUM, AVG, MIN, or MAX. For example, the following query returns the total

freight and number of orders per each employee and order year.

SELECT

 empid,

 YEAR(orderdate) AS orderyear,

 SUM(freight) AS totalfreight,

 COUNT(*) AS numorders

FROM Sales.Orders

WHERE custid = 71

GROUP BY empid, YEAR(orderdate);

This query generates the following output.

empid orderyear totalfreight numorders

----------- ----------- --------------------- -----------

1 2006 126.56 1

2 2006 89.16 1

9 2006 214.27 1

1 2007 711.13 2

2 2007 352.69 1

3 2007 297.65 2

4 2007 86.53 1

5 2007 277.14 3

6 2007 628.31 3

7 2007 388.98 1

8 2007 371.07 4

1 2008 357.44 3

2 2008 672.16 2

4 2008 651.83 3

6 2008 227.22 1

7 2008 1231.56 2

(16 row(s) affected)

The expression SUM(freight) returns the sum of all freight values in each group, and the function

COUNT(*) returns the count of rows in each group—which in this case means number of orders. If

you try to refer to an attribute that does not participate in the GROUP BY list (such as freight) and not

as an input to an aggregate function in any clause that is processed after the GROUP BY clause, you

get an error—in such a case, there’s no guarantee that the expression will return a single value per

group. For example, the following query will fail.

SELECT empid, YEAR(orderdate) AS orderyear, freight

FROM Sales.Orders

WHERE custid = 71

GROUP BY empid, YEAR(orderdate);

SQL Server produces the following error.

Msg 8120, Level 16, State 1, Line 1

Column 'Sales.Orders.freight' is invalid in the select list because it is not contained in

either an aggregate function or the GROUP BY clause.

 CHAPTER 2 Single-Table Queries 35

Note that all aggregate functions ignore NULL marks with one exception—COUNT(*). For ex-

ample, consider a group of ive rows with the values 30, 10, NULL, 10, 10 in a column called qty. The

expression COUNT(*) would return 5 because there are ive rows in the group, whereas COUNT(qty)

would return 4 because there are four known values. If you want to handle only distinct occurrences

of known values, specify the DISTINCT keyword in the parentheses of the aggregate function. For

example, the expression COUNT(DISTINCT qty) would return 2, because there are two distinct known

values. The DISTINCT keyword can be used with other functions as well. For example, although the

expression SUM(qty) would return 60, the expression SUM(DISTINCT qty) would return 40. The ex-

pression AVG(qty) would return 15, whereas the expression AVG(DISTINCT qty) would return 20. As an

example of using the DISTINCT option with an aggregate function in a complete query, the following

code returns the number of distinct (different) customers handled by each employee in each order

year.

SELECT

 empid,

 YEAR(orderdate) AS orderyear,

 COUNT(DISTINCT custid) AS numcusts

FROM Sales.Orders

GROUP BY empid, YEAR(orderdate);

This query generates the following output.

empid orderyear numcusts

----------- ----------- -----------

1 2006 22

2 2006 15

3 2006 16

4 2006 26

5 2006 10

6 2006 15

7 2006 11

8 2006 19

9 2006 5

1 2007 40

2 2007 35

3 2007 46

4 2007 57

5 2007 13

6 2007 24

7 2007 30

8 2007 36

9 2007 16

1 2008 32

2 2008 34

3 2008 30

4 2008 33

5 2008 11

6 2008 17

7 2008 21

8 2008 23

9 2008 16

(27 row(s) affected)

36 Microsoft SQL Server 2012 T-SQL Fundamentals

The HAVING Clause
With the HAVING clause, you can specify a predicate to ilter groups as opposed to iltering individual
rows, which happens in the WHERE phase. Only groups for which the logical expression in the HAVING

clause evaluates to TRUE are returned by the HAVING phase to the next logical query processing

phase. Groups for which the logical expression evaluates to FALSE or UNKNOWN are iltered out.

Because the HAVING clause is processed after the rows have been grouped, you can refer to ag-

gregate functions in the logical expression. For example, in the query from Listing 2-1, the HAVING

clause has the logical expression COUNT(*) > 1, meaning that the HAVING phase ilters only groups
(employee and order year) with more than one row. The following fragment of the Listing 2-1 query

shows the steps that have been processed so far.

FROM Sales.Orders

WHERE custid = 71

GROUP BY empid, YEAR(orderdate)

HAVING COUNT(*) > 1

Recall that the GROUP BY phase created 16 groups of employee ID and order year. Seven of those

groups have only one row, so after the HAVING clause is processed, nine groups remain. Run the fol-

lowing query to return those nine groups.

SELECT empid, YEAR(orderdate) AS orderyear

FROM Sales.Orders

WHERE custid = 71

GROUP BY empid, YEAR(orderdate)

HAVING COUNT(*) > 1;

This query returns the following output.

empid orderyear

----------- -----------

1 2007

3 2007

5 2007

6 2007

8 2007

1 2008

2 2008

4 2008

7 2008

(9 row(s) affected)

The SELECT Clause
The SELECT clause is where you specify the attributes (columns) that you want to return in the result

table of the query. You can base the expressions in the SELECT list on attributes from the queried

tables, with or without further manipulation. For example, the SELECT list in Listing 2-1 has the follow-

ing expressions: empid, YEAR(orderdate), and COUNT(*). If an expression refers to an attribute with no

manipulation, such as empid, the name of the target attribute is the same as the name of the source

 CHAPTER 2 Single-Table Queries 37

attribute. You can optionally assign your own name to the target attribute by using the AS clause—for

example, empid AS employee_id. Expressions that do apply manipulation, such as YEAR(orderdate), or

that are not based on a source attribute, such as a call for the function CURRENT_TIMESTAMP, don’t

have a name in the result of the query if you don’t alias them. T-SQL allows a query to return result

columns with no names in certain cases, but the relational model doesn’t. I strongly recommend that

you alias such expressions as YEAR(orderdate) AS orderyear so that all result attributes have names. In

this respect, the result table returned from the query would be considered relational.

In addition to the AS clause, T-SQL supports a couple of other forms with which you can alias

expressions, but to me, the AS clause seems the most readable and intuitive form, and therefore I

recommend using it. I will cover the other forms for the sake of completeness and also in order to

describe an elusive bug related to one of them. Besides the form <expression> AS <alias>, T-SQL also

supports the forms <alias> = <expression> (“alias equals expression”), and <expression> <alias> (“ex-

pression space alias”). An example of the former is orderyear = YEAR(orderdate), and an example of

the latter is YEAR(orderdate) orderyear. I ind the latter form, in which you specify the expression fol-
lowed by a space and the alias, particularly unclear, and I strongly recommend that you avoid using it.

It is interesting to note that if by mistake you don’t specify a comma between two column names

in the SELECT list, your code won’t fail. Instead, SQL Server will assume that the second name is an

alias for the irst column name. As an example, suppose that you wanted to write a query that selects
the orderid and orderdate columns from the Sales.Orders table, and by mistake you didn’t specify the

comma between the column names, as follows.

SELECT orderid orderdate

FROM Sales.Orders;

This query is considered syntactically valid, as if you intended to alias the orderid column as orderdate.

In the output, you will get only one column holding the order IDs, with the alias orderdate.

orderdate

10248

10249

10250

10251

10252

...

(830 row(s) affected)

It can be hard to detect such a bug, so the best you can do is to be alert when writing code.

With the addition of the SELECT phase, the following query clauses from the query in Listing 2-1

have been processed so far.

SELECT empid, YEAR(orderdate) AS orderyear, COUNT(*) AS numorders

FROM Sales.Orders

WHERE custid = 71

GROUP BY empid, YEAR(orderdate)

HAVING COUNT(*) > 1

38 Microsoft SQL Server 2012 T-SQL Fundamentals

The SELECT clause produces the result table of the query. In the case of the query in Listing 2-1,

the heading of the result table has the attributes empid, orderyear, and numorders, and the body has

nine rows (one for each group). Run the following query to return those nine rows.

SELECT empid, YEAR(orderdate) AS orderyear, COUNT(*) AS numorders

FROM Sales.Orders

WHERE custid = 71

GROUP BY empid, YEAR(orderdate)

HAVING COUNT(*) > 1;

This query generates the following output.

empid orderyear numorders

----------- ----------- -----------

1 2007 2

3 2007 2

5 2007 3

6 2007 3

8 2007 4

1 2008 3

2 2008 2

4 2008 3

7 2008 2

(9 row(s) affected)

Remember that the SELECT clause is processed after the FROM, WHERE, GROUP BY, and HAVING

clauses. This means that aliases assigned to expressions in the SELECT clause do not exist as far as

clauses that are processed before the SELECT clause are concerned. A very typical mistake made

by programmers who are not familiar with the correct logical processing order of query clauses

is to refer to expression aliases in clauses that are processed prior to the SELECT clause. Here’s an

example of such an invalid attempt in the WHERE clause.

SELECT orderid, YEAR(orderdate) AS orderyear

FROM Sales.Orders

WHERE orderyear > 2006;

On the surface, this query might seem valid, but if you consider the fact that the column aliases

are created in the SELECT phase—which is processed after the WHERE phase—you can see that the

reference to the orderyear alias in the WHERE clause is invalid. And in fact, SQL Server produces the

following error.

Msg 207, Level 16, State 1, Line 3

Invalid column name 'orderyear'.

 CHAPTER 2 Single-Table Queries 39

One way around this problem is to repeat the expression YEAR(orderdate) in both the WHERE and

the SELECT clauses.

SELECT orderid, YEAR(orderdate) AS orderyear

FROM Sales.Orders

WHERE YEAR(orderdate) > 2006;

It’s interesting to note that SQL Server is capable of identifying the repeated use of the same

expres sion—YEAR(orderdate)—in the query. The expression only needs to be evaluated or calcu-

lated once.

The following query is another example of an invalid reference to a column alias. The query at-

tempts to refer to a column alias in the HAVING clause, which is also processed before the SELECT

clause.

SELECT empid, YEAR(orderdate) AS orderyear, COUNT(*) AS numorders

FROM Sales.Orders

WHERE custid = 71

GROUP BY empid, YEAR(orderdate)

HAVING numorders > 1;

This query fails with an error saying that the column name numorders is invalid. You would also

need to repeat the expression COUNT(*) in both clauses.

SELECT empid, YEAR(orderdate) AS orderyear, COUNT(*) AS numorders

FROM Sales.Orders

WHERE custid = 71

GROUP BY empid, YEAR(orderdate)

HAVING COUNT(*) > 1;

In the relational model, operations on relations are based on relational algebra and result in a

relation (a set). In SQL, things are a bit different in the sense that a SELECT query is not guaranteed to

return a true set—namely, unique rows with no guaranteed order. To begin with, SQL doesn’t require

a table to qualify as a set. Without a key, uniqueness of rows is not guaranteed, in which case the

table isn’t a set; it’s a multiset or a bag. But even if the tables you query have keys and qualify as sets,

a SELECT query against the tables can still return a result with duplicate rows. The term “result set” is
often used to describe the output of a SELECT query, but a result set doesn’t necessarily qualify as a

set in the mathematical sense. For example, even though the Orders table is a set because uniqueness

is enforced with a key, a query against the Orders table returns duplicate rows, as shown in Listing 2-2.

LISTING 2-2 Query Returning Duplicate Rows

SELECT empid, YEAR(orderdate) AS orderyear

FROM Sales.Orders

WHERE custid = 71;

40 Microsoft SQL Server 2012 T-SQL Fundamentals

This query generates the following output.

empid orderyear

----------- -----------

9 2006

1 2006

2 2006

4 2007

8 2007

6 2007

6 2007

8 2007

5 2007

1 2007

8 2007

2 2007

7 2007

3 2007

5 2007

1 2007

5 2007

8 2007

3 2007

6 2007

2 2008

4 2008

4 2008

1 2008

7 2008

2 2008

1 2008

4 2008

7 2008

6 2008

1 2008

(31 row(s) affected)

SQL provides the means to guarantee uniqueness in the result of a SELECT statement in the form

of a DISTINCT clause that removes duplicate rows, as shown in Listing 2-3.

LISTING 2-3 Query with a DISTINCT Clause

SELECT DISTINCT empid, YEAR(orderdate) AS orderyear

FROM Sales.Orders

WHERE custid = 71;

 CHAPTER 2 Single-Table Queries 41

This query generates the following output.

empid orderyear

----------- -----------

1 2006

1 2007

1 2008

2 2006

2 2007

2 2008

3 2007

4 2007

4 2008

5 2007

6 2007

6 2008

7 2007

7 2008

8 2007

9 2006

(16 row(s) affected)

Of the 31 rows in the multiset returned by the query in Listing 2-2, 16 rows are in the set returned

by the query in Listing 2-3 after removal of duplicates.

SQL supports the use of an asterisk (*) in the SELECT list to request all attributes from the queried

tables instead of listing them explicitly, as in the following example.

SELECT *

FROM Sales.Shippers;

Such use of an asterisk is a bad programming practice in most cases, with very few exceptions. It

is recommended that you explicitly specify the list of attributes that you need even if you need all of

the attributes from the queried table. There are many reasons for this recommendation. Unlike the

relational model, SQL keeps ordinal positions for columns based on the order in which the columns

were speciied in the CREATE TABLE statement. By specifying SELECT *, you’re guaranteed to get the

columns back in order based on their ordinal positions. Client applications can refer to columns in

the result by their ordinal positions (a bad practice in its own right) instead of by name. Any schema

changes applied to the table—such as adding or removing columns, rearranging their order, and so

on—might result in failures in the client application, or even worse, in logical bugs that will go un-

noticed. By explicitly specifying the attributes that you need, you always get the right ones, as long as

the columns exist in the table. If a column referenced by the query was dropped from the table, you

get an error and can ix your code accordingly.

Some people wonder whether there’s any performance difference between specifying an asterisk

and explicitly listing column names. Some extra work may be required in resolving column names

when the asterisk is used, but it is usually so negligible compared to other costs involved in the query

that it is unlikely to be noticed. If there is any performance difference, as minor as it may be, it is most

probably in the favor of explicitly listing column names. Because that’s the recommended practice

anyway, it’s a win-win situation.

42 Microsoft SQL Server 2012 T-SQL Fundamentals

Within the SELECT clause, you are still not allowed to refer to a column alias that was created in the

same SELECT clause, regardless of whether the expression that assigns the alias appears to the left or

right of the expression that attempts to refer to it. For example, the following attempt is invalid.

SELECT orderid,

 YEAR(orderdate) AS orderyear,

 orderyear + 1 AS nextyear

FROM Sales.Orders;

I’ll explain the reason for this restriction later in this chapter, in the section, “All-at-Once Opera-

tions.” As explained earlier in this section, one of the ways around this problem is to repeat the

expression.

SELECT orderid,

 YEAR(orderdate) AS orderyear,

 YEAR(orderdate) + 1 AS nextyear

FROM Sales.Orders;

The ORDER BY Clause
The ORDER BY clause allows you to sort the rows in the output for presentation purposes. In terms of

logical query processing, ORDER BY is the very last clause to be processed. The sample query shown

in Listing 2-4 sorts the rows in the output by employee ID and order year.

LISTING 2-4 Query Demonstrating the ORDER BY Clause

SELECT empid, YEAR(orderdate) AS orderyear, COUNT(*) AS numorders

FROM Sales.Orders

WHERE custid = 71

GROUP BY empid, YEAR(orderdate)

HAVING COUNT(*) > 1

ORDER BY empid, orderyear;

This query generates the following output.

empid orderyear numorders

----------- ----------- -----------

1 2007 2

1 2008 3

2 2008 2

3 2007 2

4 2008 3

5 2007 3

6 2007 3

7 2008 2

8 2007 4

(9 row(s) affected)

www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 2 Single-Table Queries 43

This time, presentation ordering in the output is guaranteed—unlike with queries that don’t have a

presentation ORDER BY clause.

One of the most important points to understand about SQL is that a table has no guaranteed

order, because a table is supposed to represent a set (or multiset, if it has duplicates), and a set has no

order. This means that when you query a table without specifying an ORDER BY clause, the query re-

turns a table result, and SQL Server is free to return the rows in the output in any order. The only way

for you to guarantee that the rows in the result are sorted is to explicitly specify an ORDER BY clause.

However, if you do specify an ORDER BY clause, the result cannot qualify as a table, because the order

of the rows in the result is guaranteed. A query with an ORDER BY clause results in what standard SQL

calls a cursor—a nonrelational result with order guaranteed among rows. You’re probably wondering

why it matters whether a query returns a table result or a cursor. Some language elements and opera-

tions in SQL expect to work with table results of queries and not with cursors; examples include table

expressions and set operators, which I cover in detail in Chapter 5, “Table Expressions,” and in Chapter
6, “Set Operators.”

Notice that the ORDER BY clause refers to the column alias orderyear, which was created in the

SELECT phase. The ORDER BY phase is in fact the only phase in which you can refer to column aliases

created in the SELECT phase, because it is the only phase that is processed after the SELECT phase.

Note that if you deine a column alias that is the same as an underlying column name, as in 1 - col1

AS col1, and refer to that alias in the ORDER BY clause, the new column is the one that is considered

for ordering.

When you want to sort by an expression in ascending order, you either specify ASC right after the

expression, as in orderyear ASC, or don’t specify anything after the expression, because ASC is the

default. If you want to sort in descending order, you need to specify DESC after the expression, as in

orderyear DESC.

T-SQL allows you to specify ordinal positions of columns in the ORDER BY clause, based on the

order in which the columns appear in the SELECT list. For example, in the query in Listing 2-4, instead

of using:

ORDER BY empid, orderyear

you could use:

ORDER BY 1, 2

However, this is considered bad programming practice for a couple of reasons. First, in the rela-

tional model, attributes don’t have ordinal positions and need to be referred to by name. Second,

when you make revisions to the SELECT clause, you might forget to make the corresponding revisions

in the ORDER BY clause. When you use column names, your code is safe from this type of mistake.

44 Microsoft SQL Server 2012 T-SQL Fundamentals

T-SQL allows you to specify elements in the ORDER BY clause that do not appear in the SELECT

clause, meaning that you can sort by something that you don’t necessarily want to return in the out-

put. For example, the following query sorts the employee rows by hire date without returning the

hiredate attribute.

SELECT empid, firstname, lastname, country

FROM HR.Employees

ORDER BY hiredate;

However, when DISTINCT is speciied, you are restricted in the ORDER BY list only to elements that

appear in the SELECT list. The reasoning behind this restriction is that when DISTINCT is speciied, a
single result row might represent multiple source rows; therefore, it might not be clear which of the

multiple possible values in the ORDER BY expression should be used. Consider the following invalid

query.

SELECT DISTINCT country

FROM HR.Employees

ORDER BY empid;

There are nine employees in the Employees table—ive from the United States and four from the
United Kingdom. If you omit the invalid ORDER BY clause from this query, you get two rows back—

one for each distinct country. Because each country appears in multiple rows in the source table, and

each such row has a different employee ID, the meaning of ORDER BY empid is not really deined.

The TOP and OFFSET-FETCH Filters
Earlier in this chapter, I covered ilters that are based on the predicates WHERE and HAVING. In this

section, I cover ilters that are based on number of rows and ordering. I’ll start with a ilter called TOP

that has been supported in SQL Server for quite some time—since version 7.0. Then I’ll introduce a

new ilter called OFFSET-FETCH that was introduced in SQL Server 2012.

The TOP Filter

The TOP option is a proprietary T-SQL feature that allows you to limit the number or percentage of

rows that your query returns. It relies on two elements as part of its speciication; one is the number
or percent of rows to return, and the other is the ordering. For example, to return from the Orders

table the ive most recent orders, you would specify TOP (5) in the SELECT clause and orderdate DESC

in the ORDER BY clause, as shown in Listing 2-5.

LISTING 2-5 Query Demonstrating the TOP Option

SELECT TOP (5) orderid, orderdate, custid, empid

FROM Sales.Orders

ORDER BY orderdate DESC;

 CHAPTER 2 Single-Table Queries 45

This query returns the following output.

orderid orderdate custid empid

----------- ---------------------------- ----------- -----------

11077 2008-05-06 00:00:00.000 65 1

11076 2008-05-06 00:00:00.000 9 4

11075 2008-05-06 00:00:00.000 68 8

11074 2008-05-06 00:00:00.000 73 7

11073 2008-05-05 00:00:00.000 58 2

(5 row(s) affected)

Remember that the ORDER BY clause is evaluated after the SELECT clause, which includes the

DISTINCT option. The same is true with TOP, which relies on ORDER BY to give it its iltering-related
meaning. This means that if DISTINCT is speciied in the SELECT clause, the TOP ilter is evaluated
after duplicate rows have been removed.

It’s also important to note that when TOP is speciied, the ORDER BY clause serves a dual purpose

in the query. One purpose is to deine presentation ordering for the rows in the query result. Another
purpose is to deine which rows to ilter for TOP. For example, the query in Listing 2-5 returns the ive
rows with the highest orderdate values and presents the rows in the output in orderdate DESC ordering.

If you’re confused about whether a TOP query returns a table result or a cursor, you have every

reason to be. Normally, a query with an ORDER BY clause returns a cursor—not a relational result. But

what if you need to ilter rows with TOP based on some ordering, but still return a relational result?

Also, what if you need to ilter rows with TOP based on one order, but present the output rows in

another order? To achieve this, you have to use a table expression, but I’ll save the discussion of table

expressions for Chapter 5, “Table Expressions.” All I want to say for now is that if the design of the TOP

option seems confusing, there’s a good reason. In other words, it’s not you—it’s the feature’s design.

You can use the TOP option with the PERCENT keyword, in which case SQL Server calculates the

number of rows to return based on a percentage of the number of qualifying rows, rounded up. For

example, the following query requests the top 1 percent of the most recent orders.

SELECT TOP (1) PERCENT orderid, orderdate, custid, empid

FROM Sales.Orders

ORDER BY orderdate DESC;

This query generates the following output.

orderid orderdate custid empid

----------- ---------------------------- ----------- -----------

11074 2008-05-06 00:00:00.000 73 7

11075 2008-05-06 00:00:00.000 68 8

11076 2008-05-06 00:00:00.000 9 4

11077 2008-05-06 00:00:00.000 65 1

11070 2008-05-05 00:00:00.000 44 2

11071 2008-05-05 00:00:00.000 46 1

11072 2008-05-05 00:00:00.000 20 4

11073 2008-05-05 00:00:00.000 58 2

11067 2008-05-04 00:00:00.000 17 1

(9 row(s) affected)

46 Microsoft SQL Server 2012 T-SQL Fundamentals

The query returns nine rows because the Orders table has 830 rows, and 1 percent of 830, rounded

up, is 9.

In the query in Listing 2-5, you might have noticed that the ORDER BY list is not unique because

no primary key or unique constraint is deined on the orderdate column. Multiple rows can have the

same order date. In a case in which no tiebreaker is speciied, ordering among rows with the same
order date is undeined. This fact makes the query nondeterministic—more than one result can be
considered correct. In case of ties, SQL Server determines order of rows based on whichever row it

physically happens to access irst. Note that you are even allowed to use TOP in a query without an

ORDER BY clause, and then the ordering is completely undeined—SQL Server returns whichever n

rows it happens to physically access irst, where n is the number of requested rows.

Notice in the output for the query in Listing 2-5 that the minimum order date in the rows returned

is May 5, 2008, and one row in the output has that date. Other rows in the table might have the same

order date, and with the existing non-unique ORDER BY list, there is no guarantee which of those will

be returned.

If you want the query to be deterministic, you need to make the ORDER BY list unique; in other

words, add a tiebreaker. For example, you can add orderid DESC to the ORDER BY list as shown in

 Listing 2-6 so that, in case of ties, the row with the greater order ID will be preferred.

LISTING 2-6 Query Demonstrating TOP with Unique ORDER BY List

SELECT TOP (5) orderid, orderdate, custid, empid

FROM Sales.Orders

ORDER BY orderdate DESC, orderid DESC;

This query returns the following output.

orderid orderdate custid empid

----------- ----------------------------- ----------- -----------

11077 2008-05-06 00:00:00.000 65 1

11076 2008-05-06 00:00:00.000 9 4

11075 2008-05-06 00:00:00.000 68 8

11074 2008-05-06 00:00:00.000 73 7

11073 2008-05-05 00:00:00.000 58 2

(5 row(s) affected)

If you examine the results of the queries from Listing 2-5 and Listing 2-6, you’ll notice that they

seem to be the same. The important difference is that the result shown in the query output for Listing

2-5 is one of several possible valid results for this query, whereas the result shown in the query output

for Listing 2-6 is the only possible valid result.

 CHAPTER 2 Single-Table Queries 47

Instead of adding a tiebreaker to the ORDER BY list, you can request to return all ties. For example,

besides the ive rows that you get back from the query in Listing 2-5, you can ask to return all other
rows from the table that have the same sort value (order date, in this case) as the last one found (May

5, 2008, in this case). You achieve this by adding the WITH TIES option, as shown in the following query.

SELECT TOP (5) WITH TIES orderid, orderdate, custid, empid

FROM Sales.Orders

ORDER BY orderdate DESC;

This query returns the following output.

orderid orderdate custid empid

----------- ---------------------------- ----------- -----------

11077 2008-05-06 00:00:00.000 65 1

11076 2008-05-06 00:00:00.000 9 4

11075 2008-05-06 00:00:00.000 68 8

11074 2008-05-06 00:00:00.000 73 7

11073 2008-05-05 00:00:00.000 58 2

11072 2008-05-05 00:00:00.000 20 4

11071 2008-05-05 00:00:00.000 46 1

11070 2008-05-05 00:00:00.000 44 2

(8 row(s) affected)

Notice that the output has eight rows, even though you speciied TOP (5). SQL Server irst returned
the TOP (5) rows based on orderdate DESC ordering, and also all other rows from the table that had

the same orderdate value as in the last of the ive rows that was accessed.

The OFFSET-FETCH Filter

The TOP option is a very practical type of ilter, but it has two shortcomings—it’s not standard, and it
doesn’t support skipping capabilities. Standard SQL deines a TOP-like ilter called OFFSET-FETCH

that does support skipping capabilities, and this makes it very useful for ad-hoc paging purposes.

SQL Server 2012 introduces support for the OFFSET-FETCH ilter.

The OFFSET-FETCH ilter in SQL Server 2012 is considered part of the ORDER BY clause, which

normally serves a presentation ordering purpose. By using the OFFSET clause, you can indicate how

many rows to skip, and by using the FETCH clause, you can indicate how many rows to ilter after the
skipped rows. As an example, consider the following query.

SELECT orderid, orderdate, custid, empid

FROM Sales.Orders

ORDER BY orderdate, orderid

OFFSET 50 ROWS FETCH NEXT 25 ROWS ONLY;

The query orders the rows from the Orders table based on orderdate, orderid ordering (from least

to most recent, with orderid as the tiebreaker). Based on this ordering, the OFFSET clause skips the

irst 50 rows, and the FETCH clause ilters the next 25 rows only.

48 Microsoft SQL Server 2012 T-SQL Fundamentals

Note that a query that uses OFFSET-FETCH must have an ORDER BY clause. Also, the FETCH clause

isn’t supported without an OFFSET clause. If you do not want to skip any rows but do want to ilter
with FETCH, you must indicate that by using OFFSET 0 ROWS. However, OFFSET without FETCH is al-

lowed. In such a case, the query skips the indicated number of rows and returns all remaining rows in

the result.

There are interesting language aspects to note about the syntax for OFFSET-FETCH. The singular

and plural forms ROW and ROWS are interchangeable. The idea is to allow you to phrase the ilter
in an intuitive English-like manner. For example, suppose you wanted to fetch only one row; though

it would be syntactically valid, it would nevertheless look strange if you speciied FETCH 1 ROWS.

Therefore, you’re allowed to use the form FETCH 1 ROW. The same applies to the OFFSET clause. Also,

if you’re not skipping any rows (OFFSET 0 ROWS), you may ind the term “irst” more suitable than
“next.” Hence, the forms FIRST and NEXT are interchangeable.

As you can see, the OFFSET-FETCH clause is more lexible than TOP in the sense that it supports

skipping capabilities. However, OFFSET-FETCH doesn’t support the PERCENT and WITH TIES options

that TOP does. Because OFFSET-FETCH is standard and TOP isn’t, I recommend using OFFSET-FETCH

as your default choice, unless you need the capabilities that TOP supports and OFFSET-FETCH doesn’t.

a Quick Look at Window Functions
A window function is a function that, for each row in the underlying query, operates on a window

(set) of rows and computes a scalar (single) result value. The window of rows is deined by using an
OVER clause. Window functions are very profound and allow you to address a wide variety of needs.

There are several categories of window functions that SQL Server supports, and each category sup-

ports several different functions. However, at this point in the book, it could be premature to get into

too much detail. So for now, I’ll provide just a glimpse of the concept, and demonstrate it by using

the ROW_NUMBER window function. Later in the book, in Chapter 7, “Beyond the Fundamentals of
Querying,” I provide more details.

As mentioned, a window function operates on a set of rows exposed to it by a clause called OVER.

For each row in the underlying query, the OVER clause exposes to the function a subset of the rows

from the underlying query’s result set. The OVER clause can restrict the rows in the window by using

the PARTITION BY subclause, and it can deine ordering for the calculation (if relevant) by using the
ORDER BY subclause (not to be confused with the query’s presentation ORDER BY clause).

Consider the following query as an example.

SELECT orderid, custid, val,

 ROW_NUMBER() OVER(PARTITION BY custid

 ORDER BY val) AS rownum

FROM Sales.OrderValues

ORDER BY custid, val;

 CHAPTER 2 Single-Table Queries 49

This query generates the following output.

orderid custid val rownum

----------- ----------- ------------ -------

10702 1 330.00 1

10952 1 471.20 2

10643 1 814.50 3

10835 1 845.80 4

10692 1 878.00 5

11011 1 933.50 6

10308 2 88.80 1

10759 2 320.00 2

10625 2 479.75 3

10926 2 514.40 4

10682 3 375.50 1

...

(830 row(s) affected)

The ROW_NUMBER function assigns unique, sequential, incrementing integers to the rows in the

result within the respective partition, based on the indicated ordering. The OVER clause in the exam-

ple function partitions the window by the custid attribute, hence the row numbers are unique to each

customer. The OVER clause also deines ordering in the window by the val attribute, so the sequential

row numbers are incremented within the partition based on val.

Note that the ROW_NUMBER function must produce unique values within each partition. This

means that even when the ordering value doesn’t increase, the row number still must increase. There-

fore, if the ROW_NUMBER function’s ORDER BY list is non-unique, as in the preceding example, the

query is nondeterministic. That is, more than one correct result is possible. If you want to make a row

number calculation deterministic, you must add elements to the ORDER BY list to make it unique.

For example, you can add the orderid attribute as a tiebreaker to the ORDER BY list to make the row

number calculation deterministic.

As mentioned, the ORDER BY speciied in the OVER clause should not be confused with presen-

tation and does not change the nature of the result from being relational. If you do not specify a

presentation ORDER BY in the query, as explained earlier, you don’t have any guarantees in terms of

the order of the rows in the output. If you need to guarantee presentation ordering, you have to add

a presentation ORDER BY clause, as I did in the last query.

Note that expressions in the SELECT list are evaluated before the DISTINCT clause (if one exists).

This applies to expressions based on window functions that appear in the SELECT list. I explain the

signiicance of this in Chapter 7.

50 Microsoft SQL Server 2012 T-SQL Fundamentals

To put it all together, the following list presents the logical order in which all clauses discussed so

far are processed:

 ■ FROM

 ■ WHERE

 ■ GROUP BY

 ■ HAVING

 ■ SELECT

• Expressions

• DISTINCT

 ■ ORDER BY

• TOP / OFFSET-FETCH

Predicates and Operators

T-SQL has language elements in which predicates can be speciied—for example, query ilters such as
WHERE and HAVING, CHECK constraints, and others. Remember that predicates are logical expres-

sions that evaluate to TRUE, FALSE, or UNKNOWN. You can combine predicates by using logical opera-

tors such as AND and OR. You can also involve other types of operators, such as comparison operators,

in your expressions.

Examples of predicates supported by T-SQL include IN, BETWEEN, and LIKE. The IN predicate al-

lows you to check whether a value, or scalar expression, is equal to at least one of the elements in a

set. For example, the following query returns orders in which the order ID is equal to 10248, 10249, or

10250.

SELECT orderid, empid, orderdate

FROM Sales.Orders

WHERE orderid IN(10248, 10249, 10250);

The BETWEEN predicate allows you to check whether a value is in a speciied range, inclusive of
the two speciied boundary values. For example, the following query returns all orders in the inclusive
range 10300 through 10310.

SELECT orderid, empid, orderdate

FROM Sales.Orders

WHERE orderid BETWEEN 10300 AND 10310;

The LIKE predicate allows you to check whether a character string value meets a speciied pattern.
For example, the following query returns employees whose last names start with D.

 CHAPTER 2 Single-Table Queries 51

SELECT empid, firstname, lastname

FROM HR.Employees

WHERE lastname LIKE N'D%';

Later in this chapter, I’ll elaborate on pattern matching and the LIKE predicate.

Notice the use of the letter N to preix the string ‘D%’; it stands for National and is used to de-

note that a character string is of a Unicode data type (NCHAR or NVARCHAR), as opposed to a

reg ular character data type (CHAR or VARCHAR). Because the data type of the lastname attribute is

NVARCHAR(40), the letter N is used to preix the string. Later in this chapter, in the section “Working
with Character Data,” I elaborate on the treatment of character strings.

T-SQL supports the following comparison operators: =, >, <, >=, <=, <>, !=, !>, !<, of which the last

three are not standard. Because the nonstandard operators have standard alternatives (such as <>

instead of !=), I recommend that you avoid the use of the nonstandard operators. For example, the

following query returns all orders placed on or after January 1, 2008.

SELECT orderid, empid, orderdate

FROM Sales.Orders

WHERE orderdate >= '20080101';

If you need to combine logical expressions, you can use the logical operators OR and AND. If

you want to negate an expression, you can use the NOT operator. For example, the following query

returns orders that were placed on or after January 1, 2008, and that were handled by one of the

employees whose ID is 1, 3, or 5.

SELECT orderid, empid, orderdate

FROM Sales.Orders

WHERE orderdate >= '20080101'

 AND empid IN(1, 3, 5);

T-SQL supports the four obvious arithmetic operators: +, –, *, and /, and also the % operator

(modulo), which returns the remainder of integer division. For example, the following query calculates

the net value as a result of arithmetic manipulation of the quantity, unitprice, and discount attributes.

SELECT orderid, productid, qty, unitprice, discount,

 qty * unitprice * (1 - discount) AS val

FROM Sales.OrderDetails;

Note that the data type of a scalar expression involving two operands is determined in T-SQL

by the higher of the two in terms of data type precedence. If both operands are of the same data

type, the result of the expression is of the same data type as well. For example, a division between

two integers (INT) yields an integer. The expression 5/2 returns the integer 2 and not the numeric

2.5. This is not a problem when you are dealing with constants, because you can always specify

the values as numeric ones with a decimal point. But when you are dealing with, say, two integer

columns, as in col1/col2, you need to cast the operands to the appropriate type if you want the

calculation to be a numeric one: CAST(col1 AS NUMERIC(12, 2))/CAST(col2 AS NUMERIC(12, 2)). The

data type NUMERIC(12, 2) has a precision of 12 and a scale of 2, meaning that it has 12 digits in

total, 2 of which are after the decimal point.

52 Microsoft SQL Server 2012 T-SQL Fundamentals

If the two operands are of different types, the one with the lower precedence is promoted to the

one that is higher. For example, in the expression 5/2.0, the irst operand is INT and the second is

NUMERIC. Because NUMERIC is considered higher than INT, the INT operand 5 is implicitly converted

to the NUMERIC 5.0 before the arithmetic operation, and you get the result 2.5.

You can ind the precedence order among types in SQL Server Books Online under “Data Type
Precedence.”

When multiple operators appear in the same expression, SQL Server evaluates them based on op-

erator precedence rules. The following list describes the precedence among operators, from highest

to lowest:

1. () (Parentheses)

2. * (Multiplication), / (Division), % (Modulo)

3. + (Positive), – (Negative), + (Addition), + (Concatenation), – (Subtraction)

4. =, >, <, >=, <=, <>, !=, !>, !< (Comparison operators)

5. NOT

6. AND

7. BETWEEN, IN, LIKE, OR

8. = (Assignment)

For example, in the following query, AND has precedence over OR.

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE

 custid = 1

 AND empid IN(1, 3, 5)

 OR custid = 85

 AND empid IN(2, 4, 6);

The query returns orders that were either “placed by customer 1 and handled by employees 1, 3,
or 5” or “placed by customer 85 and handled by employees 2, 4, or 6.”

Parentheses have the highest precedence, so they give you full control. For the sake of other people

who need to review or maintain your code and for readability purposes, it’s a good practice to use

parentheses even when they are not required. The same is true for indentation. For example, the fol-

lowing query is the logical equivalent of the previous query, only its logic is much clearer.

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE

 (custid = 1

 AND empid IN(1, 3, 5))

 OR

 (custid = 85

 AND empid IN(2, 4, 6));

 CHAPTER 2 Single-Table Queries 53

Using parentheses to force precedence with logical operators is similar to using parentheses with

arithmetic operators. For example, without parentheses in the following expression, multiplication

precedes addition.

SELECT 10 + 2 * 3;

Therefore, this expression returns 16. You can use parentheses to force the addition to be calcu-

lated irst.

SELECT (10 + 2) * 3;

This time, the expression returns 36.

CASE Expressions

A CASE expression is a scalar expression that returns a value based on conditional logic. Note that

CASE is an expression and not a statement; that is, it doesn’t let you control low of activity or do
something based on conditional logic. Instead, the value it returns is based on conditional logic. Be-

cause CASE is a scalar expression, it is allowed wherever scalar expressions are allowed, such as in the

SELECT, WHERE, HAVING, and ORDER BY clauses and in CHECK constraints.

The two forms of CASE expression are simple and searched. The simple form allows you to compare

one value or scalar expression with a list of possible values and return a value for the irst match. If no
value in the list is equal to the tested value, the CASE expression returns the value that appears in the

ELSE clause (if one exists). If a CASE expression doesn’t have an ELSE clause, it defaults to ELSE NULL.

For example, the following query against the Production.Products table uses a CASE expression in

the SELECT clause to produce the description of the categoryid column value.

SELECT productid, productname, categoryid,

 CASE categoryid

 WHEN 1 THEN 'Beverages'

 WHEN 2 THEN 'Condiments'

 WHEN 3 THEN 'Confections'

 WHEN 4 THEN 'Dairy Products'

 WHEN 5 THEN 'Grains/Cereals'

 WHEN 6 THEN 'Meat/Poultry'

 WHEN 7 THEN 'Produce'

 WHEN 8 THEN 'Seafood'

 ELSE 'Unknown Category'

 END AS categoryname

FROM Production.Products;

54 Microsoft SQL Server 2012 T-SQL Fundamentals

This query produces the following output, shown in abbreviated form.

productid productname categoryid categoryname

----------- ------------------- ----------- ----------------

1 Product HHYDP 1 Beverages

2 Product RECZE 1 Beverages

3 Product IMEHJ 2 Condiments

4 Product KSBRM 2 Condiments

5 Product EPEIM 2 Condiments

6 Product VAIIV 2 Condiments

7 Product HMLNI 7 Produce

8 Product WVJFP 2 Condiments

9 Product AOZBW 6 Meat/Poultry

10 Product YHXGE 8 Seafood

...

(77 row(s) affected)

The preceding query is a simple example of using the CASE expression. Unless the set of catego-

ries is very small and static, your best design choice is probably to maintain (for example) the product

categories in a table, and join that table with the Products table when you need to get the category

descriptions. In fact, the TSQL2012 database has just such a Categories table.

The simple CASE form has a single test value or expression right after the CASE keyword that is

compared with a list of possible values in the WHEN clauses. The searched CASE form is more lexible
because it allows you to specify predicates, or logical expressions, in the WHEN clauses rather than

restricting you to equality comparisons. The searched CASE expression returns the value in the THEN

clause that is associated with the irst WHEN logical expression that evaluates to TRUE. If none of

the WHEN expressions evaluates to TRUE, the CASE expression returns the value that appears in the

ELSE clause (or NULL if an ELSE clause is not speciied). For example, the following query produces a
value category description based on whether the value is less than 1,000.00, between 1,000.00 and

3,000.00, or greater than 3,000.00.

SELECT orderid, custid, val,

 CASE

 WHEN val < 1000.00 THEN 'Less than 1000'

 WHEN val BETWEEN 1000.00 AND 3000.00 THEN 'Between 1000 and 3000'

 WHEN val > 3000.00 THEN 'More than 3000'

 ELSE 'Unknown'

 END AS valuecategory

FROM Sales.OrderValues;

This query generates the following output.

orderid custid val valuecategory

----------- ----------- -------- ----------------------

10248 85 440.00 Less than 1000

10249 79 1863.40 Between 1000 and 3000

10250 34 1552.60 Between 1000 and 3000

10251 84 654.06 Less than 1000

10252 76 3597.90 More than 3000

10253 34 1444.80 Between 1000 and 3000

10254 14 556.62 Less than 1000

 CHAPTER 2 Single-Table Queries 55

10255 68 2490.50 Between 1000 and 3000

10256 88 517.80 Less than 1000

10257 35 1119.90 Between 1000 and 3000

...

(830 row(s) affected)

You can see that every simple CASE expression can be converted to the searched CASE form, but

the reverse is not necessarily true.

T-SQL supports some functions that you can consider as abbreviations of the CASE expression:

ISNULL, COALESCE, IIF, and CHOOSE. Note that of the four, only COALESCE is standard. Also, IIF and

CHOOSE are available only in SQL Server 2012.

The ISNULL function accepts two arguments as input and returns the irst that is not NULL, or NULL

if both are NULL. For example ISNULL(col1, ‘’) returns the col1 value if it isn’t NULL, and an empty string

if it is NULL. The COALESCE function is similar, only it supports two or more arguments and returns

the irst that isn’t NULL, or NULL if all are NULL. As mentioned earlier, when there’s a choice, it is

generally recommended that you use standard features, hence it is recommended that you use the

COALESCE function and not ISNULL.

The nonstandard IIF and CHOOSE functions were added in SQL Server 2012 to support easier

migrations from Microsoft Access. The function IIF(<logical_expression>, <expr1>, <expr2>) returns

expr1 if logical_expression is TRUE and expr2 otherwise. For example, the expression IIF(col2 <> 0,

col2/col1, NULL) returns the result of col2/col1 if col1 is not zero, otherwise it returns a NULL. The

function CHOOSE(<index>, <expr1>, <expr2>, …, <exprn>) returns the expression from the list in the

speciied index. For example, the expression CHOOSE(3, col1, col2, col3) returns the value of col3. Of

course, actual expressions that use the CHOOSE function tend to be more dynamic—for example,

relying on user input.

So far, I’ve just used a few examples to familiarize you with the CASE expression and functions that

can be considered abbreviations of the CASE expression. Even though it might not be apparent at this

point from these examples, the CASE expression is an extremely powerful and useful language element.

NULL Marks

As explained in Chapter 1, “Background to T-SQL Querying and Programming,“ SQL supports the
NULL mark to represent missing values and uses three-valued logic, meaning that predicates can

evaluate to TRUE, FALSE, or UNKNOWN. T-SQL follows the standard in this respect. Treatment of

NULL marks and UNKNOWN in SQL can be very confusing because intuitively people are more

accustomed to thinking in terms of two-valued logic (TRUE and FALSE). To add to the confusion, dif-

ferent language elements in SQL treat NULL marks and UNKNOWN differently.

Let’s start with three-valued predicate logic. A logical expression involving only existing or present

values evaluates to either TRUE or FALSE, but when the logical expression involves a missing value,

it evaluates to UNKNOWN. For example, consider the predicate salary > 0. When salary is equal to

1,000, the expression evaluates to TRUE. When salary is equal to –1,000, the expression evaluates to

FALSE. When salary is NULL, the expression evaluates to UNKNOWN.

56 Microsoft SQL Server 2012 T-SQL Fundamentals

SQL treats TRUE and FALSE in an intuitive and probably expected manner. For example, if the

predicate salary > 0 appears in a query ilter (such as in a WHERE or HAVING clause), rows or groups

for which the expression evaluates to TRUE are returned, whereas those for which the expression

evaluates to FALSE are iltered out. Similarly, if the predicate salary > 0 appears in a CHECK constraint

in a table, INSERT or UPDATE statements for which the expression evaluates to TRUE for all rows are

accepted, whereas those for which the expression evaluates to FALSE for any row are rejected.

SQL has different treatments for UNKNOWN in different language elements (and for some peo-

ple, not necessarily the expected treatments). The correct deinition of the treatment SQL has for
query ilters is “accept TRUE,” meaning that both FALSE and UNKNOWN are iltered out. Conversely,
the deinition of the treatment SQL has for CHECK constraints is “reject FALSE,” meaning that both
TRUE and UNKNOWN are accepted. If SQL used two-valued predicate logic, there wouldn’t be a

difference between the deinitions “accept TRUE” and “reject FALSE.” But with three-valued predi-

cate logic, “accept TRUE” rejects UNKNOWN (it accepts only TRUE, hence it rejects both FALSE and

UNKNOWN), whereas “reject FALSE” accepts it (it rejects only FALSE, hence it accepts both TRUE

and UNKNOWN). With the predicate salary > 0 from the previous example, a NULL salary would

cause the expression to evaluate to UNKNOWN. If this predicate appears in a query’s WHERE clause,

a row with a NULL salary will be iltered out. If this predicate appears in a CHECK constraint in a

table, a row with a NULL salary will be accepted.

One of the tricky aspects of UNKNOWN is that when you negate it, you still get UNKNOWN. For

example, given the predicate NOT (salary > 0), when salary is NULL, salary > 0 evaluates to UNKNOWN,

and NOT UNKNOWN remains UNKNOWN.

What some people ind surprising is that an expression comparing two NULL marks (NULL = NULL)

evaluates to UNKNOWN. The reasoning for this from SQL’s perspective is that a NULL represents a

missing or unknown value, and you can’t really tell whether one unknown value is equal to another.

Therefore, SQL provides you with the predicates IS NULL and IS NOT NULL, which you should use

instead of = NULL and <> NULL.

To make things a bit more tangible, I’ll demonstrate the aforementioned aspects of the three-

valued predicate logic. The Sales.Customers table has three attributes called country, region, and city,

where the customer’s location information is stored. All locations have existing countries and cities.

Some have existing regions (such as country: USA, region: WA, city: Seattle), yet for some the region

element is missing and inapplicable (such as country: UK, region: NULL, city: London). Consider the

following query, which attempts to return all customers where the region is equal to WA.

SELECT custid, country, region, city

FROM Sales.Customers

WHERE region = N'WA';

This query generates the following output.

custid country region city

----------- --------------- --------------- ---------------

43 USA WA Walla Walla

82 USA WA Kirkland

89 USA WA Seattle

 CHAPTER 2 Single-Table Queries 57

Out of the 91 rows in the Customers table, the query returns the three rows where the region

attribute is equal to WA. The query returns neither rows in which the value in the region attribute is

present and different than WA (the predicate evaluates to FALSE) nor those where the region attribute

is NULL (the predicate evaluates to UNKNOWN).

The following query attempts to return all customers for whom the region is different than WA.

SELECT custid, country, region, city

FROM Sales.Customers

WHERE region <> N'WA';

This query generates the following output:

custid country region city

----------- --------------- --------------- ---------------

10 Canada BC Tsawassen

15 Brazil SP Sao Paulo

21 Brazil SP Sao Paulo

31 Brazil SP Campinas

32 USA OR Eugene

33 Venezuela DF Caracas

34 Brazil RJ Rio de Janeiro

35 Venezuela Táchira San Cristóbal

36 USA OR Elgin

37 Ireland Co. Cork Cork

38 UK Isle of Wight Cowes

42 Canada BC Vancouver

45 USA CA San Francisco

46 Venezuela Lara Barquisimeto

47 Venezuela Nueva Esparta I. de Margarita

48 USA OR Portland

51 Canada Québec Montréal

55 USA AK Anchorage

61 Brazil RJ Rio de Janeiro

62 Brazil SP Sao Paulo

65 USA NM Albuquerque

67 Brazil RJ Rio de Janeiro

71 USA ID Boise

75 USA WY Lander

77 USA OR Portland

78 USA MT Butte

81 Brazil SP Sao Paulo

88 Brazil SP Resende

(28 row(s) affected)

If you expected to get 88 rows back (91 rows in the table minus 3 returned by the previous query),

you might ind the fact that this query returned only 28 rows surprising. But remember, a query ilter
“accepts TRUE,” meaning that it rejects both rows for which the logical expression evaluates to FALSE

and those for which it evaluates to UNKNOWN. So this query returned rows in which a value was pres-

ent in the region attribute and that value was different than WA. It returned neither rows in which the

region attribute was equal to WA nor rows in which region was NULL. You will get the same output if

you use the predicate NOT (region = N’WA’) because in the rows where region is NULL and the expres-

sion region = N’WA’ evaluates to UNKNOWN, NOT (region = N’WA’) evaluates to UNKNOWN also.

58 Microsoft SQL Server 2012 T-SQL Fundamentals

If you want to return all rows for which region is NULL, do not use the predicate region = NULL,

because the expression evaluates to UNKNOWN in all rows—both those in which the value is present

and those in which the value is missing (is NULL). The following query returns an empty set.

SELECT custid, country, region, city

FROM Sales.Customers

WHERE region = NULL;

custid country region city

----------- --------------- --------------- ---------------

(0 row(s) affected)

Instead, you should use the IS NULL predicate.

SELECT custid, country, region, city

FROM Sales.Customers

WHERE region IS NULL;

This query generates the following output, shown in abbreviated form.

custid country region city

----------- --------------- --------------- ---------------

1 Germany NULL Berlin

2 Mexico NULL México D.F.

3 Mexico NULL México D.F.

4 UK NULL London

5 Sweden NULL Luleå

6 Germany NULL Mannheim

7 France NULL Strasbourg

8 Spain NULL Madrid

9 France NULL Marseille

11 UK NULL London

...

(60 row(s) affected)

If you want to return all rows for which the region attribute is not WA, including those in which the

value is present and different than WA, along with those in which the value is missing, you need to

include an explicit test for NULL marks, like this.

SELECT custid, country, region, city

FROM Sales.Customers

WHERE region <> N'WA'

 OR region IS NULL;

This query generates the following output, shown in abbreviated form.

custid country region city

----------- --------------- --------------- ---------------

1 Germany NULL Berlin

2 Mexico NULL México D.F.

3 Mexico NULL México D.F.

4 UK NULL London

 CHAPTER 2 Single-Table Queries 59

5 Sweden NULL Luleå

6 Germany NULL Mannheim

7 France NULL Strasbourg

8 Spain NULL Madrid

9 France NULL Marseille

10 Canada BC Tsawassen

...

(88 row(s) affected)

SQL also treats NULL marks inconsistently in different language elements for comparison and sort-

ing purposes. Some elements treat two NULL marks as equal to each other and others treat them as

different.

For example, for grouping and sorting purposes, two NULL marks are considered equal. That is,

the GROUP BY clause arranges all NULL marks in one group just like present values, and the ORDER

BY clause sorts all NULL marks together. Standard SQL leaves it to the product implementation as

to whether NULL marks sort before present values or after. T-SQL sorts NULL marks before present

values.

As mentioned earlier, query ilters “accept TRUE.” An expression comparing two NULL marks yields

UNKNOWN; therefore, such a row is iltered out.

For the purposes of enforcing a UNIQUE constraint, standard SQL treats NULL marks as different

from each other (allowing multiple NULL marks). Conversely, in T-SQL, a UNIQUE constraint considers

two NULL marks as equal (allowing only one NULL if the constraint is deined on a single column).

Keeping in mind the inconsistent treatment SQL has for UNKNOWN and NULL marks and the

potential for logical errors, you should explicitly think of NULL marks and three-valued logic in every

query that you write. If the default treatment is not what you want, you must intervene explicitly;

otherwise, just ensure that the default behavior is in fact what you want.

All-at-Once Operations

SQL supports a concept called all-at-once operations, which means that all expressions that appear in

the same logical query processing phase are evaluated logically at the same point in time.

This concept explains why, for example, you cannot refer to column aliases assigned in the SELECT

clause within the same SELECT clause, even if it seems intuitively that you should be able to. Consider

the following query.

SELECT

 orderid,

 YEAR(orderdate) AS orderyear,

 orderyear + 1 AS nextyear

FROM Sales.Orders;

60 Microsoft SQL Server 2012 T-SQL Fundamentals

The reference to the column alias orderyear in the third expression in the SELECT list is invalid, even

though the referencing expression appears “after” the one in which the alias is assigned. The reason
is that logically there is no order of evaluation of the expressions in the SELECT list—the list is a set of

expressions. At the logical level, all expressions in the SELECT list are evaluated at the same point in

time. Therefore, this query generates the following error.

Msg 207, Level 16, State 1, Line 4

Invalid column name 'orderyear'.

Here’s another example of the relevance of all-at-once operations: Suppose you have a table called

T1 with two integer columns called col1 and col2, and you want to return all rows for which col2/col1

is greater than 2. Because there may be rows in the table for which col1 is equal to zero, you need

to ensure that the division doesn’t take place in those cases—otherwise, the query fails because of a

divide-by-zero error. So you write a query using the following format.

SELECT col1, col2

FROM dbo.T1

WHERE col1 <> 0 AND col2/col1 > 2;

You might very well assume that SQL Server evaluates the expressions from left to right, and that

if the expression col1 <> 0 evaluates to FALSE, SQL Server will short-circuit; that is, it doesn’t bother

to evaluate the expression 10/col1 > 2 because at this point it is known that the whole expression is

FALSE. So you might think that this query never produces a divide-by-zero error.

SQL Server does support short circuits, but because of the all-at-once operations concept in stan-

dard SQL, SQL Server is free to process the expressions in the WHERE clause in any order. SQL Server

usually makes decisions like this based on cost estimations, meaning that typically the expression that

is cheaper to evaluate is evaluated irst. You can see that if SQL Server decides to process the expres-
sion 10/col1 > 2 irst, this query might fail because of a divide-by-zero error.

You have several ways to avoid a failure here. For example, the order in which the WHEN clauses of

a CASE expression are evaluated is guaranteed. So you could revise the query as follows.

SELECT col1, col2

FROM dbo.T1

WHERE

 CASE

 WHEN col1 = 0 THEN 'no' -- or 'yes' if row should be returned

 WHEN col2/col1 > 2 THEN 'yes'

 ELSE 'no'

 END = 'yes';

In rows where col1 is equal to zero, the irst WHEN clause evaluates to TRUE and the CASE expres-

sion returns the string ‘no’ (replace ‘no’ with ‘yes’ if you want to return the row when col1 is equal to

zero). Only if the irst CASE expression does not evaluate to TRUE—meaning that col1 is not 0—does

the second WHEN clause check whether the expression col2/col1 > 2 evaluates to TRUE. If it does, the

CASE expression returns the string ‘yes.’ In all other cases, the CASE expression returns the string ‘no.’

The predicate in the WHERE clause returns TRUE only when the result of the CASE expression is equal

to the string ‘yes’. This means that there will never be an attempt here to divide by zero.

 CHAPTER 2 Single-Table Queries 61

This workaround turned out to be quite convoluted. In this particular case, you can use a math-

ematical workaround that avoids division altogether.

SELECT col1, col2

FROM dbo.T1

WHERE (col1 > 0 AND col2 > 2*col1) OR (col1 < 0 AND col2 < 2*col1);

I included this example to explain the unique and important concept of all-at-once operations and

to elaborate on the fact that SQL Server guarantees the processing order of the WHEN clauses in a

CASE expression.

Working with Character Data

In this section, I cover query manipulation of character data, including data types, collation, operators

and functions, and pattern matching.

data Types
SQL Server supports two kinds of character data types—regular and Unicode. Regular data types

include CHAR and VARCHAR, and Unicode data types include NCHAR and NVARCHAR. Regular

characters use one byte of storage for each character, whereas Unicode data requires two bytes per

character, and in cases in which a surrogate pair is needed, four bytes are required. If you choose a

regular character type for a column, you are restricted to only one language in addition to English.

The language support for the column is determined by the column’s effective collation, which I’ll de-

scribe shortly. With Unicode data types, multiple languages are supported. So if you store character

data in multiple languages, make sure that you use Unicode character types and not regular ones.

The two kinds of character data types also differ in the way in which literals are expressed. When

expressing a regular character literal, you simply use single quotes: ‘This is a regular character string

literal’. When expressing a Unicode character literal, you need to specify the character N (for National)

as a preix: N’This is a Unicode character string literal’.

Any data type without the VAR element (CHAR, NCHAR) in its name has a ixed length, which
means that SQL Server preserves space in the row based on the column’s deined size and not on
the actual number of characters in the character string. For example, when a column is deined as
CHAR(25), SQL Server preserves space for 25 characters in the row regardless of the length of the

stored character string. Because no expansion of the row is required when the strings are expanded,

ixed-length data types are more suited for write-focused systems. But because storage consumption
is not optimal with ixed-length strings, you pay more when reading data.

A data type with the VAR element (VARCHAR, NVARCHAR) in its name has a variable length, which

means that SQL Server uses as much storage space in the row as required to store the characters that

appear in the character string, plus two extra bytes for offset data. For example, when a column is de-

ined as VARCHAR(25), the maximum number of characters supported is 25, but in practice, the actual

number of characters in the string determines the amount of storage. Because storage consumption

62 Microsoft SQL Server 2012 T-SQL Fundamentals

for these data types is less than that for ixed-length types, read operations are faster. However, up-

dates might result in row expansion, which might result in data movement outside the current page.

Therefore, updates of data having variable-length data types are less eficient than updates of data
having ixed-length data types.

note If compression is used, the storage requirements change. For details about compres-

sion, see “Data Compression” in SQL Server Books Online at http://msdn.microsoft.com

/en-us/library/cc280449.aspx.

You can also deine the variable-length data types with the MAX speciier instead of a maximum
number of characters. When the column is deined with the MAX speciier, any value with a size up to
a certain threshold (8,000 bytes by default) can be stored inline in the row (as long as it can it in the
row). Any value with a size above the threshold is stored external to the row as a large object (LOB).

Later in this chapter, in the “Querying Metadata” section, I explain how you can obtain metadata
information about objects in the database, including the data types of columns.

Collation
Collation is a property of character data that encapsulates several aspects, including language sup-

port, sort order, case sensitivity, accent sensitivity, and more. To get the set of supported collations

and their descriptions, you can query the table function fn_helpcollations as follows.

SELECT name, description

FROM sys.fn_helpcollations();

For example, the following list explains the collation Latin1_General_CI_AS:

 ■ Latin1_General Code page 1252 is used. (This supports English and German characters, as

well as characters used by most Western European countries.)

 ■ Dictionary sorting Sorting and comparison of character data are based on dictionary order

(A and a < B and b).

You can tell that dictionary order is used because that’s the default when no other ordering is

deined explicitly. More speciically, the element BIN doesn’t explicitly appear in the collation

name. If the element BIN appeared, it would mean that sorting and comparison of character

data was based on the binary representation of characters (A < B < a < b).

 ■ CI The data is case insensitive (a = A).

 ■ AS The data is accent sensitive (à <> ä).

http://msdn.microsoft.com/en-us/library/cc280449.aspx
http://msdn.microsoft.com/en-us/library/cc280449.aspx

 CHAPTER 2 Single-Table Queries 63

In an on-premises SQL Server implementation, collation can be deined at four different levels:
instance, database, column, and expression. The lowest effective level is the one that should be used.

In Windows Azure SQL Database, collation can be indicated at the database, column, and expression

levels.

The collation of the instance is chosen as part of the setup program. It determines the collations of

all system databases and is used as the default for user databases.

When you create a user database, you can specify a collation for the database by using the COLLATE

clause. If you don’t, the instance’s collation is assumed by default.

The database collation determines the collation of the metadata of objects in the database and is

used as the default for user table columns. I want to emphasize the importance of the fact that the

database collation determines the collation of the metadata, including object and column names.

For example, if the database collation is case insensitive, you can’t create two tables called T1 and t1

within the same schema, but if the database collation is case sensitive, you can.

You can explicitly specify a collation for a column as part of its deinition by using the COLLATE

clause. If you don’t, the database collation is assumed by default.

You can convert the collation of an expression by using the COLLATE clause. For example, in a

case-insensitive environment, the following query uses a case-insensitive comparison.

SELECT empid, firstname, lastname

FROM HR.Employees

WHERE lastname = N'davis';

The following query returns the row for Sara Davis, even though the casing doesn’t match, because

the effective casing is insensitive.

empid firstname lastname

----------- ---------- --------------------

1 Sara Davis

If you want to make the ilter case sensitive even though the column’s collation is case insensitive,
you can convert the collation of the expression.

SELECT empid, firstname, lastname

FROM HR.Employees

WHERE lastname COLLATE Latin1_General_CS_AS = N'davis';

This time the query returns an empty set because no match is found when a case-sensitive com-

parison is used.

64 Microsoft SQL Server 2012 T-SQL Fundamentals

Quoted Identiiers
In standard SQL, single quotes are used to delimit literal character strings (for example, ‘literal’)

and double quotes are used to delimit irregular identiiers such as table or column names that
include a space or start with a digit (for example, “Irregular Identiier”). In SQL Server, there’s

a setting called QUOTED_IDENTIFIER that controls the meaning of double quotes. You can

apply this setting either at the database level by using the ALTER DATABASE command or at

the session level by using the SET command. When the setting is turned on, the behavior is ac-

cording to standard SQL, meaning that double quotes are used to delimit identiiers. When the
setting is turned off, the behavior is nonstandard, and double quotes are used to delimit literal

character strings. It is strongly recommended that you follow best practices and use standard

behavior (with the setting on). Most database interfaces, including OLEDB and ODBC, turn this

setting on by default.

Tip As an alternative to using double quotes to delimit identiiers, SQL Server
also supports square brackets (for example, [Irregular Identiier]).

Regarding single quotes that are used to delimit literal character strings, if you want to in-

corporate a single quote character as part of the string, you need to specify two single quotes.

For example, to express the literal abc’de, specify ‘ abc’ ‘de ‘.

Operators and Functions
This section covers string concatenation and functions that operate on character strings. For

string concatenation, T-SQL provides the + operator and the CONCAT function. For other opera-

tions on character strings, T-SQL provides several functions, including SUBSTRING, LEFT, RIGHT,

LEN, DATALENGTH, CHARINDEX, PATINDEX, REPLACE, REPLICATE, STUFF, UPPER, LOWER, RTRIM,

LTRIM, and FORMAT. In the following sections, I describe these commonly used operators and

functions.

String Concatenation (plus Sign [+] Operator and CONCAT Function)

T-SQL provides the plus sign (+) operator and the CONCAT function (in SQL Server 2012) to concat-

enate strings. For example, the following query against the Employees table produces the fullname

result column by concatenating irstname, a space, and lastname.

SELECT empid, firstname + N' ' + lastname AS fullname

FROM HR.Employees;

 CHAPTER 2 Single-Table Queries 65

This query produces the following output.

empid fullname

----------- -------------------------------

1 Sara Davis

2 Don Funk

3 Judy Lew

4 Yael Peled

5 Sven Buck

6 Paul Suurs

7 Russell King

8 Maria Cameron

9 Zoya Dolgopyatova

Standard SQL dictates that a concatenation with a NULL should yield a NULL. This is the default be-

havior of SQL Server. For example, consider the query against the Customers table shown in Listing 2-7.

LISTING 2-7 Query Demonstrating String Concatenation

SELECT custid, country, region, city,

 country + N',' + region + N',' + city AS location

FROM Sales.Customers;

Some of the rows in the Customers table have a NULL in the region column. For those, SQL Server

returns by default a NULL in the location result column.

custid country region city location

----------- --------------- ------ --------------- -------------------

1 Germany NULL Berlin NULL

2 Mexico NULL México D.F. NULL

3 Mexico NULL México D.F. NULL

4 UK NULL London NULL

5 Sweden NULL Luleå NULL

6 Germany NULL Mannheim NULL

7 France NULL Strasbourg NULL

8 Spain NULL Madrid NULL

9 France NULL Marseille NULL

10 Canada BC Tsawassen Canada,BC,Tsawassen

11 UK NULL London NULL

12 Argentina NULL Buenos Aires NULL

13 Mexico NULL México D.F. NULL

14 Switzerland NULL Bern NULL

15 Brazil SP Sao Paulo Brazil,SP,Sao Paulo

16 UK NULL London NULL

17 Germany NULL Aachen NULL

18 France NULL Nantes NULL

19 UK NULL London NULL

20 Austria NULL Graz NULL

...

(91 row(s) affected)

66 Microsoft SQL Server 2012 T-SQL Fundamentals

To treat a NULL as an empty string—or more accurately, to substitute a NULL with an empty

string—you can use the COALESCE function. This function accepts a list of input values and returns

the irst that is not NULL. Here’s how you can revise the query from Listing 2-7 to programmatically

substitute NULL marks with empty strings.

SELECT custid, country, region, city,

 country + COALESCE(N',' + region, N'') + N',' + city AS location

FROM Sales.Customers;

SQL Server 2012 introduces a new function called CONCAT that accepts a list of inputs for concat-

enation and automatically substitutes NULL marks with empty strings. For example, the expression

CONCAT(‘a’, NULL, ‘b’) returns the string ‘ab’.

Here’s how to use the CONCAT function to concatenate the customer’s location elements, replac-

ing NULL marks with empty strings.

SELECT custid, country, region, city,

 CONCAT(country, N',' + region, N',' + city) AS location

FROM Sales.Customers;

The SUBSTRING Function

The SUBSTRING function extracts a substring from a string.

Syntax

SUBSTRING(string, start, length)

This function operates on the input string and extracts a substring starting at position start that is

length characters long. For example, the following code returns the output ‘abc’.

SELECT SUBSTRING('abcde', 1, 3);

If the value of the third argument exceeds the end of the input string, the function returns every-

thing until the end without raising an error. This can be convenient when you want to return every-

thing from a certain point until the end of the string—you can simply specify the maximum length of

the data type or a value representing the full length of the input string.

The LEFT and RIGHT Functions

The LEFT and RIGHT functions are abbreviations of the SUBSTRING function, returning a requested

number of characters from the left or right end of the input string.

 CHAPTER 2 Single-Table Queries 67

Syntax

LEFT(string, n), RIGHT(string, n)

The irst argument, string, is the string the function operates on. The second argument, n, is the

number of characters to extract from the left or right end of the string. For example, the following

code returns the output ‘cde’.

SELECT RIGHT('abcde', 3);

The LEN and DATALENGTH Functions

The LEN function returns the number of characters in the input string.

Syntax

LEN(string)

Note that this function returns the number of characters in the input string and not necessarily

the number of bytes. With regular characters, both numbers are the same because each character re-

quires one byte of storage. With Unicode characters, each character requires two bytes of storage (in

most cases, at least); therefore, the number of characters is half the number of bytes. To get the num-

ber of bytes, use the DATALENGTH function instead of LEN. For example, the following code returns 5.

SELECT LEN(N'abcde');

The following code returns 10.

SELECT DATALENGTH(N'abcde');

Another difference between LEN and DATALENGTH is that the former excludes trailing blanks but

the latter doesn’t.

The CHARINDEX Function

The CHARINDEX function returns the position of the irst occurrence of a substring within a string.

Syntax

CHARINDEX(substring, string[, start_pos])

This function returns the position of the irst argument, substring, within the second argument,

string. You can optionally specify a third argument, start_pos, to tell the function the position from

which to start looking. If you don’t specify the third argument, the function starts looking from the

irst character. If the substring is not found, the function returns 0. For example, the following code
returns the irst position of a space in ‘Itzik Ben-Gan’, so it returns the output 6.

SELECT CHARINDEX(' ','Itzik Ben-Gan');

68 Microsoft SQL Server 2012 T-SQL Fundamentals

The PATINDEX Function

The PATINDEX function returns the position of the irst occurrence of a pattern within a string.

Syntax

PATINDEX(pattern, string)

The argument pattern uses similar patterns to those used by the LIKE predicate in T-SQL. I’ll explain

patterns and the LIKE predicate later in this chapter, in “The LIKE Predicate.” Even though I haven’t

explained yet how patterns are expressed in T-SQL, I include the following example here to show how

to ind the position of the irst occurrence of a digit within a string.

SELECT PATINDEX('%[0-9]%', 'abcd123efgh');

This code returns the output 5.

The REPLACE Function

The REPLACE function replaces all occurrences of a substring with another.

Syntax

REPLACE(string, substring1, substring2)

The function replaces all occurrences of substring1 in string with substring2. For example, the fol-

lowing code substitutes all occurrences of a dash in the input string with a colon.

SELECT REPLACE('1-a 2-b', '-', ':');

This code returns the output: ‘1:a 2:b’.

You can use the REPLACE function to count the number of occurrences of a character within a

string. To do this, you replace all occurrences of the character with an empty string (zero characters)

and calculate the original length of the string minus the new length. For example, the following query

returns, for each employee, the number of times the character e appears in the lastname attribute.

SELECT empid, lastname,

 LEN(lastname) - LEN(REPLACE(lastname, 'e', '')) AS numoccur

FROM HR.Employees;

This query generates the following output.

empid lastname numoccur

----------- -------------------- -----------

5 Buck 0

8 Cameron 1

1 Davis 0

9 Dolgopyatova 0

2 Funk 0

7 King 0

3 Lew 1

4 Peled 2

6 Suurs 0

 CHAPTER 2 Single-Table Queries 69

The REPLICATE Function

The REPLICATE function replicates a string a requested number of times.

Syntax

REPLICATE(string, n)

For example, the following code replicates the string ‘abc’ three times, returning the string

‘abcabcabc’.

SELECT REPLICATE('abc', 3);

The next example demonstrates the use of the REPLICATE function, along with the RIGHT func-

tion and string concatenation. The following query against the Production.Suppliers table generates a

10-digit string representation of the supplier ID integer with leading zeros.

SELECT supplierid,

 RIGHT(REPLICATE('0', 9) + CAST(supplierid AS VARCHAR(10)), 10) AS strsupplierid

FROM Production.Suppliers;

The expression producing the result column strsupplierid replicates the character 0 nine times

(producing the string ‘ 000000000’) and concatenates the string representation of the supplier ID to

form the result. The string representation of the supplier ID integer is produced by the CAST func-

tion, which is used to convert the data type of the input value. Finally, the expression extracts the 10

rightmost characters of the result string, returning the 10-digit string representation of the supplier ID

with leading zeros. Here’s the output of this query, shown in abbreviated form.

supplierid strsupplierid

----------- -------------

29 0000000029

28 0000000028

4 0000000004

21 0000000021

2 0000000002

22 0000000022

14 0000000014

11 0000000011

25 0000000025

7 0000000007

...

(29 row(s) affected)

Note that SQL Server 2012 introduces a new function called FORMAT that allows you to achieve

such formatting needs much more easily. I’ll describe it later in this section.

70 Microsoft SQL Server 2012 T-SQL Fundamentals

The STUFF Function

The STUFF function allows you to remove a substring from a string and insert a new substring instead.

Syntax

STUFF(string, pos, delete_length, insertstring)

This function operates on the input parameter string. It deletes as many characters as the number

speciied in the delete_length parameter, starting at the character position speciied in the pos input

parameter. The function inserts the string speciied in the insertstring parameter in position pos. For

example, the following code operates on the string ‘ xyz’, removes one character from the second

character, and inserts the substring ‘abc’ instead.

SELECT STUFF('xyz', 2, 1, 'abc');

The output of this code is ‘xabcz’.

If you just want to insert a string and not delete anything, you can specify a length of 0 as the third

argument.

The UPPER and LOWER Functions

The UPPER and LOWER functions return the input string with all uppercase or lowercase characters,

respectively.

Syntax

UPPER(string), LOWER(string)

For example, the following code returns ‘ITZIK BEN-GAN’.

SELECT UPPER('Itzik Ben-Gan');

The following code returns ‘itzik ben-gan’.

SELECT LOWER('Itzik Ben-Gan');

The RTRIM and LTRIM Functions

The RTRIM and LTRIM functions return the input string with leading or trailing spaces removed.

Syntax

RTRIM(string), LTRIM(string)

If you want to remove both leading and trailing spaces, use the result of one function as the input

to the other. For example, the following code removes both leading and trailing spaces from the input

string, returning ‘abc’.

SELECT RTRIM(LTRIM(' abc '));

 CHAPTER 2 Single-Table Queries 71

The FORMAT Function

The FORMAT function allows you to format an input value as a character string based on a Microsoft

.NET format string and an optional culture.

Syntax

FORMAT(input , format_string, culture)

There are numerous possibilities for formatting inputs using both standard and custom format

strings. The MSDN article at http://go.microsoft.com/fwlink/?LinkId=211776 provides more informa-

tion. But just as a simple example, recall the convoluted expression used earlier to format a number

as a 10-digit string with leading zeros. By using FORMAT, you can achieve the same task with either

the custom form string ‘0000000000’ or the standard one, ‘d10’. As an example, the following code

returns ‘0000001759’.

SELECT FORMAT(1759, '000000000');

The LIKE predicate
T-SQL provides a predicate called LIKE that allows you to check whether a character string matches a

speciied pattern. Similar patterns are used by the PATINDEX function described earlier. The following

section describes the wildcards supported in the patterns and demonstrates their use.

The % (percent) Wildcard

The percent sign represents a string of any size, including an empty string. For example, the following

query returns employees where the last name starts with D.

SELECT empid, lastname

FROM HR.Employees

WHERE lastname LIKE N'D%';

This query returns the following output.

empid lastname

----------- --------------------

1 Davis

9 Dolgopyatova

Note that often you can use functions such as SUBSTRING and LEFT instead of the LIKE predicate

to represent the same meaning. But the LIKE predicate tends to get optimized better—especially

when the pattern starts with a known preix.

72 Microsoft SQL Server 2012 T-SQL Fundamentals

The _ (Underscore) Wildcard

An underscore represents a single character. For example, the following query returns employees

where the second character in the last name is e.

SELECT empid, lastname

FROM HR.Employees

WHERE lastname LIKE N'_e%';

This query returns the following output.

empid lastname

----------- --------------------

3 Lew

4 Peled

The [<List of Characters>] Wildcard

Square brackets with a list of characters (such as [ABC]) represent a single character that must be one

of the characters speciied in the list. For example, the following query returns employees where the
irst character in the last name is A, B, or C.

SELECT empid, lastname

FROM HR.Employees

WHERE lastname LIKE N'[ABC]%';

This query returns the following output.

empid lastname

----------- --------------------

5 Buck

8 Cameron

The [<Character>-<Character>] Wildcard

Square brackets with a character range (such as [A-E]) represent a single character that must be within

the speciied range. For example, the following query returns employees where the irst character in
the last name is a letter in the range A through E.

SELECT empid, lastname

FROM HR.Employees

WHERE lastname LIKE N'[A-E]%';

This query returns the following output.

empid lastname

----------- --------------------

5 Buck

8 Cameron

1 Davis

9 Dolgopyatova

 CHAPTER 2 Single-Table Queries 73

The [̂ <Character List or Range>] Wildcard

Square brackets with a caret sign (̂) followed by a character list or range (such as [^A-E]) represent

a single character that is not in the speciied character list or range. For example, the following query
returns employees where the irst character in the last name is not a letter in the range A through E.

SELECT empid, lastname

FROM HR.Employees

WHERE lastname LIKE N'[^A-E]%';

This query returns the following output.

empid lastname

----------- --------------------

2 Funk

7 King

3 Lew

4 Peled

6 Suurs

The ESCAPE Character

If you want to search for a character that is also used as a wildcard, (such as %, _, [, or]), you can use

an escape character. Specify a character that you know for sure doesn’t appear in the data as the es-

cape character in front of the character you are looking for, and specify the keyword ESCAPE followed

by the escape character right after the pattern. For example, to check whether a column called col1

contains an underscore, use col1 LIKE ‘%!_%’ ESCAPE ‘!’.

For the wildcards %, _, and [you can use square brackets instead of an escape character. For ex-

ample, instead of col1 LIKE ‘%!_%’ ESCAPE ‘!’ you can use col1 LIKE ‘%[_]%’.

Working with Date and Time Data

Working with date and time data in SQL Server is not trivial. You will face several challenges in this

area, such as expressing literals in a language-neutral manner and working with date and time sepa-

rately.

In this section, I irst introduce the date and time data types supported by SQL Server; then I
explain the recommended way to work with those types; and inally I cover date-related and time-
related functions.

date and Time data Types
Prior to SQL Server 2008, SQL Server supported two date and time data types called DATETIME and

SMALLDATETIME. Both types include date and time components that are inseparable. The two data

types differ in their storage requirements, their supported date range, and their accuracy. SQL Server

2008 introduced separate DATE and TIME data types, as well as DATETIME2, which has a bigger date

74 Microsoft SQL Server 2012 T-SQL Fundamentals

range and better accuracy than DATETIME; and DATETIMEOFFSET, which also has a time zone offset

component. Table 2-1 lists details about date and time data types, including storage requirements,

supported date range, accuracy, and recommended entry format.

TABLE 2-1 Date and Time Data Types

Data Type
Storage
(bytes) Date Range Accuracy

Recommended Entry Format and
Example

DATETIME 8 January 1, 1753, through
December 31, 9999

3 1/3
milliseconds

‘YYYYMMDD hh:mm:ss.nnn’
‘20090212 12:30:15.123’

SMALLDATETIME 4 January 1, 1900, through
June 6, 2079

1 minute ‘‘YYYYMMDD hh:mm’
‘20090212 12:30’

DATE 3 January 1, 0001, through
December 31, 9999

1 day ‘YYYY-MM-DD’

‘2009-02-12’

TIME 3 to 5 N/A 100
nanoseconds

‘hh:mm:ss.nnnnnnn’
‘12:30:15.1234567’

DATETIME2 6 to 8 January 1, 0001, through
December 31, 9999

100
nanoseconds

‘YYYY-MM-DD hh:mm:ss.nnnnnnn’
‘2009-02-12 12:30:15.1234567’

DATETIMEOFFSET 8 to 10 January 1, 0001, through
December 31, 9999

100
nanoseconds

‘YYYY-MM-DD hh:mm:ss.nnnnnnn [+|-]
hh:mm’
‘2009-02-12 12:30:15.1234567 +02:00’

The storage requirements for the last three data types in Table 2-1 (TIME, DATETIME2, and

DATETIMEOFFSET) depend on the precision you choose. You specify the precision as an integer

in the range 0 to 7 representing the fractional-second precision. For example, TIME(0) means 0

fractional-second precision—in other words, one-second precision. TIME(3) means one-millisecond

precision, and TIME(7) means 100-nanosecond accuracy. If you don’t specify a fractional-second

precision, SQL Server assumes 7 by default with all three aforementioned types.

Literals
When you need to specify a literal (constant) of a date and time data type, you should consider

several things. First, though it might sound a bit strange, SQL Server doesn’t provide the means to

express a date and time literal; instead, it allows you to specify a literal of a different type that can be

converted—explicitly or implicitly—to a date and time data type. It is a best practice to use character

strings to express date and time values, as shown in the following example.

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate = '20070212';

SQL Server recognizes the literal ‘20070212’ as a character string literal and not as a date and time

literal, but because the expression involves operands of two different types, one operand needs to be

implicitly converted to the other’s type. Normally, implicit conversion between types is based on what’s

called data type precedence. SQL Server deines precedence among data types and will usually implic-

itly convert the operand that has a lower data type precedence to the one that has higher precedence.

 CHAPTER 2 Single-Table Queries 75

In this example, the character string literal is converted to the column’s data type (DATETIME) because

character strings are considered lower in terms of data type precedence with respect to date and time

data types. Implicit conversion rules are not always that simple, and in fact different rules are applied

with ilters and in other expressions, but for the purposes of this discussion, I’ll keep things simple. For
the complete description of data type precedence, see “Data Type Precedence” in SQL Server Books
Online.

The point I’m trying to make is that in the preceding example, implicit conversion takes place be-

hind the scenes. This query is logically equivalent to the following one, which explicitly converts the

character string to a DATETIME data type.

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate = CAST('20070212' AS DATETIME);

It is important to note that some character string formats of date and time literals are language

dependent, meaning that when you convert them to a date and time data type, SQL Server might

interpret the value differently based on the language setting in effect in the session. Each logon de-

ined by the database administrator has a default language associated with it, and unless it is changed
explicitly, that language becomes the effective language in the session. You can overwrite the default

language in your session by using the SET LANGUAGE command, but this is generally not recom-

mended because some aspects of the code might rely on the user’s default language.

The effective language in the session sets several language-related settings behind the scenes,

among them one called DATEFORMAT, which determines how SQL Server interprets the liter-

als you enter when they are converted from a character string type to a date and time type. The

DATEFORMAT setting is expressed as a combination of the characters d, m, and y. For example, the

us_english language setting sets the DATEFORMAT to mdy, whereas the British language setting

sets the DATEFORMAT to dmy. You can override the DATEFORMAT setting in your session by using

the SET DATEFORMAT command, but as mentioned earlier, changing language-related settings is

generally not recommended.

Consider, for example, the literal ‘02/12/2007’. SQL Server can interpret the date as either Feb-

ruary 12, 2007 or December 2, 2007 when you convert this literal to one of the following types:

DATETIME, DATE, DATETIME2, or DATETIMEOFFSET. The effective LANGUAGE/DATEFORMAT setting

is the determining factor. To demonstrate different interpretations of the same character string literal,

run the following code.

SET LANGUAGE British;

SELECT CAST('02/12/2007' AS DATETIME);

SET LANGUAGE us_english;

SELECT CAST('02/12/2007' AS DATETIME);

76 Microsoft SQL Server 2012 T-SQL Fundamentals

Notice in the output that the literal was interpreted differently in the two different language

environments.

Changed language setting to British.

2007-12-02 00:00:00.000

Changed language setting to us_english.

2007-02-12 00:00:00.000

Note that the LANGUAGE/DATEFORMAT setting only affects the way the values you enter are in-

terpreted; these settings have no impact on the format used in the output for presentation purposes,

which is determined by the database interface used by the client tool (such as ODBC) and not by the

LANGUAGE/DATEFORMAT setting. For example, OLEDB and ODBC present DATETIME values in the

format ‘ YYYY-MM-DD hh:mm:ss.nnn’.

Because the code you write might end up being used by international users with different lan-

guage settings for their logons, understanding that some formats of literals are language dependent

is crucial. It is strongly recommended that you phrase your literals in a language-neutral manner.

Language-neutral formats are always interpreted by SQL Server the same way and are not affected

by language-related settings. Table 2-2 provides literal formats that are considered neutral for each of

the date and time types.

TABLE 2-2 Language-Neutral Date and Time Data Type Formats

Data Type Accuracy Recommended Entry Format and Example

DATETIME ‘YYYYMMDD hh:mm:ss.nnn’

‘YYYY-MM-DDThh:mm:ss.nnn’

‘YYYYMMDD’

‘20090212 12:30:15.123’

‘2009-02-12T12:30:15.123’

‘20090212’

SMALLDATETIME ‘YYYYMMDD hh:mm’

‘YYYY-MM-DDThh:mm’

‘YYYYMMDD’

‘20090212 12:30’

‘2009-02-12T12:30’

‘20090212’

DATE ‘YYYYMMDD’

‘YYYY-MM-DD’

‘20090212’

‘2009-02-12’

DATETIME2 ‘YYYYMMDD hh:mm:ss.nnnnnnn’

‘YYYY-MM-DD hh:mm:ss.nnnnnnn’

‘YYYY-MM-DDThh:mm:ss.nnnnnnn’
‘YYYYMMDD’

‘YYYY-MM-DD’

‘20090212 12:30:15.1234567’

‘2009-02-12 12:30:15.1234567’

‘2009-02-12T12:30:15.1234567’

‘20090212’

‘2009-02-12’

DATETIMEOFFSET ‘YYYYMMDD hh:mm:ss.nnnnnnn [+|-]hh:mm’

‘YYYY-MM-DD hh:mm:ss.nnnnnnn [+|-]hh:mm’
‘YYYYMMDD’

‘YYYY-MM-DD’

‘20090212 12:30:15.1234567 +02:00’

‘2009-02-12 12:30:15.1234567 +02:00’

‘20090212’

‘2009-02-12’

TIME ‘hh:mm:ss.nnnnnnn’ ‘12:30:15.1234567’

 CHAPTER 2 Single-Table Queries 77

Note a couple of things about Table 2-2. With all types that include both date and time compo-

nents, if you don’t specify a time part in your literal, SQL Server assumes midnight. If you don’t specify

a time-zone offset, SQL Server assumes 00:00. It is also important to note that the formats ‘YYYY-

MM-DD’ and ‘YYYY-MM-DD hh:mm…’ are language dependent when converted to DATETIME or

SMALLDATETIME, and language neutral when converted to DATE, DATETIME2 and DATETIMEOFFSET.

For example, notice in the following code that the language setting has no impact on how a literal

expressed with the format ‘YYYYMMDD’ is interpreted when it is converted to DATETIME.

SET LANGUAGE British;

SELECT CAST('20070212' AS DATETIME);

SET LANGUAGE us_english;

SELECT CAST('20070212' AS DATETIME);

The output shows that the literal was interpreted in both cases as February 12, 2007.

Changed language setting to British.

2007-02-12 00:00:00.000

Changed language setting to us_english.

2007-02-12 00:00:00.000

I probably can’t emphasize enough that using language-neutral formats such as ‘YYYYMMDD’ is

a best practice, because such formats are interpreted the same way regardless of the LANGUAGE/

DATEFORMAT settings.

If you insist on using a language-dependent format to express literals, there are two options avail-

able to you. One is by using the CONVERT function to explicitly convert the character string literal to

the requested data type, in the third argument specifying a number representing the style you used.

SQL Server Books Online has a table with all of the style numbers and the formats they represent, in

“The CAST and CONVERT Functions.” For example, if you want to specify the literal ‘02/12/2007’ with

the format mm/dd/yyyy, use style number 101, as shown here.

SELECT CONVERT(DATETIME, '02/12/2007', 101);

The literal is interpreted as February 12, 2007 regardless of the language setting that is in effect.

If you want to use the format dd/mm/yyyy, use style number 103.

SELECT CONVERT(DATETIME, '02/12/2007', 103);

This time, the literal is interpreted as December 2, 2007.

78 Microsoft SQL Server 2012 T-SQL Fundamentals

Another option is to use the PARSE function, which is available in SQL Server 2012. This function

allows you to parse a value as a requested type and indicate the culture. For example, the following is

the equivalent of using CONVERT with style 101 (US English).

SELECT PARSE('02/12/2007' AS DATETIME USING 'en-US');

The following is the equivalent to using CONVERT with style 103 (British English):

SELECT PARSE('02/12/2007' AS DATETIME USING 'en-GB');

Working with date and Time Separately
SQL Server 2008 introduced separate DATE and TIME data types, but in previous versions there is no

separation between the two components. If you want to work only with dates or only with times in

versions of SQL Server prior to SQL Server 2008, you can use either DATETIME or SMALLDATETIME,

which contain both components. You can also use types such as integers or character strings on which

you implement the date and time logic, but I won’t discuss this option here. If you want to use the

DATETIME or SMALLDATETIME type, when you want to work only with dates, you store the date with

a value of midnight (all zeros in the time parts). When you want to work only with times, you store the

time with the base date January 1, 1900.

For example, the orderdate column in the Sales.Orders table is of a DATETIME data type, but

because only the date component is actually relevant, all values were stored at midnight. When you

need to ilter only orders from a certain date, you don’t have to use a range ilter. Instead, you can use
the equality operator like this.

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate = '20070212';

When the character string literal is converted to DATETIME, SQL Server assumes midnight as the

time component if time is not speciied. Because all values in the orderdate column were stored with

midnight in the time component, all orders placed on the requested date will be returned. Note that

you can use a CHECK constraint to ensure that only midnight is used as the time part.

If the time component is stored with non-midnight values, you can use a range ilter like this.

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate >= '20070212'

 AND orderdate < '20070213';

If you want to work only with times in versions prior to SQL Server 2008, you can store all values

with the base date of January 1, 1900. When SQL Server converts a character string literal that con-

tains only a time component to DATETIME or SMALLDATETIME, SQL Server assumes that the date is

the base date. For example, run the following code.

SELECT CAST('12:30:15.123' AS DATETIME);

 CHAPTER 2 Single-Table Queries 79

You get the following output.

1900-01-01 12:30:15.123

Suppose you have a table with a column called tm of a DATETIME data type and you store all val-

ues by using the base date. Again, this could be enforced with a CHECK constraint. To return all rows

for which the time value is 12:30:15.123, you use the ilter WHERE tm = ‘12:30:15.123’. Because you

did not specify a date component, SQL Server assumes that the date is the base date when it implic-

itly converts the character string to a DATETIME data type.

If you want to work only with dates or only with times, but the input values you get include both

date and time components, you need to apply some manipulation on the input values to “zero” the
irrelevant part. That is, set the time component to midnight if you want to work only with dates, and

set the date component to the base date if you want to work only with times. I’ll explain how you can

achieve this shortly, in the “Date and Time Functions” section.

Filtering date ranges
When you need to ilter a range of dates, such as a whole year or a whole month, it seems natural to
use functions such as YEAR and MONTH. For example, the following query returns all orders placed in

the year 2007.

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE YEAR(orderdate) = 2007;

However, you should be aware that in most cases, when you apply manipulation on the iltered
column, SQL Server cannot use an index in an eficient manner. This is probably hard to understand
without some background about indexes and performance, which are outside the scope of this book,

but for now, just keep this general point in mind: To have the potential to use an index eficiently, you
need to revise the predicate so that there is no manipulation on the iltered column, like this.

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate >= '20070101' AND orderdate < '20080101';

Similarly, instead of using functions to ilter orders placed in a particular month, like this:

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE YEAR(orderdate) = 2007 AND MONTH(orderdate) = 2;

use a range ilter, like the following.

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate >= '20070201' AND orderdate < '20070301';

80 Microsoft SQL Server 2012 T-SQL Fundamentals

date and Time Functions
In this section, I describe functions that operate on date and time data types, including GETDATE,

CURRENT_TIMESTAMP, GETUTCDATE, SYSDATETIME, SYSUTCDATETIME, SYSDATETIMEOFFSET, CAST,

CONVERT, SWITCHOFFSET, TODATETIMEOFFSET, DATEADD, DATEDIFF, DATEPART, YEAR, MONTH,

DAY, DATENAME, various FROMPARTS functions, and EOMONTH.

The functions SYSDATETIME, SYSUTCDATETIME, SYSDATETIMEOFFSET, SWITCHOFFSET, and

TODATETIMEOFFSET were introduced in SQL Server 2008. Existing functions were enhanced

to sup port the newer types and parts. The various FROMPARTS functions and the EOMONTH

function were introduced in SQL Server 2012.

Current date and Time

The following niladic (parameterless) functions return the current date and time values in the system

where the SQL Server instance resides: GETDATE, CURRENT_TIMESTAMP, GETUTCDATE, SYSDATETIME,

SYSUTCDATETIME, and SYSDATETIMEOFFSET. Table 2-3 provides the description of these functions.

TABLE 2-3 Functions Returning Current Date and Time

Function Return Type Description

GETDATE DATETIME Current date and time

CURRENT_TIMESTAMP DATETIME Same as GETDATE but ANSI SQL–compliant

GETUTCDATE DATETIME Current date and time in UTC

SYSDATETIME DATETIME2 Current date and time

SYSUTCDATETIME DATETIME2 Current date and time in UTC

SYSDATETIMEOFFSET DATETIMEOFFSET Current date time including time zone

Note that you need to specify empty parentheses with all functions that should be speciied with out
parentheses, except the ANSI function CURRENT_TIMESTAMP. Also, because CURRENT_TIMESTAMP

and GETDATE return the same thing but only the former is standard, it is recommended that you use

the former. This is a practice that I try to follow in general—when I have several options that do the

same thing with no functional or performance difference, and one is standard but others aren’t, my

preference is to use the standard option.

The following code demonstrates using the current date and time functions.

SELECT

 GETDATE() AS [GETDATE],

 CURRENT_TIMESTAMP AS [CURRENT_TIMESTAMP],

 GETUTCDATE() AS [GETUTCDATE],

 SYSDATETIME() AS [SYSDATETIME],

 SYSUTCDATETIME() AS [SYSUTCDATETIME],

 SYSDATETIMEOFFSET() AS [SYSDATETIMEOFFSET];

 CHAPTER 2 Single-Table Queries 81

As you probably noticed, none of the functions return only the current system date or only the

current system time. However, you can get those easily by converting CURRENT_TIMESTAMP or

SYSDATETIME to DATE or TIME like this.

SELECT

 CAST(SYSDATETIME() AS DATE) AS [current_date],

 CAST(SYSDATETIME() AS TIME) AS [current_time];

The CAST, CONVERT, and PARSE Functions and Their TRY_ Counterparts

The CAST, CONVERT and PARSE functions are used to convert an input value to some target type. If

the conversion succeeds, the functions return the converted value; otherwise, they cause the query to

fail. The three functions have counterparts called TRY_CAST, TRY_CONVERT, and TRY_PARSE, respec-

tively. Each version with the preix TRY_ accepts the same input as its counterpart, and does the same
thing; the difference is that if the input isn’t convertible to the target type, the function returns a

NULL instead of failing the query.

The functions TRY_CAST, TRY_CONVERT, PARSE, and TRY_PARSE were added in SQL Server 2012.

Syntax

CAST(value AS datatype)

TRY_CAST(value AS datatype)

CONVERT (datatype, value [, style_number])

TRY_CONVERT (datatype, value [, style_number])

PARSE (value AS datatype [USING culture])

TRY_PARSE (value AS datatype [USING culture])

All three base functions convert the input value to the speciied target datatype. In some cases,

CONVERT has a third argument with which you can specify the style of the conversion. For example,

when you are converting from a character string to one of the date and time data types (or the other

way around), the style number indicates the format of the string. For example, style 101 indicates

‘MM/DD/YYYY’, and style 103 indicates ‘DD/MM/YYYY’. You can ind the full list of style numbers and
their meanings in SQL Server Books Online under “CAST and CONVERT.” Similarly, where applicable,

the PARSE function supports indication of a culture—for example, ‘en-US’ for U.S. English and ‘en-GB’

for British English.

As mentioned earlier, when you are converting from a character string to one of the date and time

data types, some of the string formats are language dependent. I recommend either using one of the

language-neutral formats or using the CONVERT/PARSE functions and explicitly specifying the style

number or culture. This way, your code is interpreted the same way regardless of the language of the

logon running it.

82 Microsoft SQL Server 2012 T-SQL Fundamentals

Note that CAST is ANSI and CONVERT and PARSE aren’t, so unless you need to use the style num-

ber or culture, it is recommended that you use the CAST function; this way, your code is as standard

as possible.

Following are a few examples of using the CAST, CONVERT, and PARSE functions with date and time

data types. The following code converts the character string literal ‘20090212’ to a DATE data type.

SELECT CAST('20090212' AS DATE);

The following code converts the current system date and time value to a DATE data type, practi-

cally extracting only the current system date.

SELECT CAST(SYSDATETIME() AS DATE);

The following code converts the current system date and time value to a TIME data type, practi-

cally extracting only the current system time.

SELECT CAST(SYSDATETIME() AS TIME);

As suggested earlier, if you need to work with the DATETIME or SMALLEDATETIME types (for exam-

ple, to be compatible with systems using versions earlier than SQL Server 2008) and want to represent

only a date or only a time, you can “zero” the irrelevant part. In other words, to work only with dates,
you set the time to midnight. To work only with time, you set the date to the base date January 1, 1900.

The following code converts the current date and time value to CHAR(8) by using style 112

(‘YYYYMMDD’).

SELECT CONVERT(CHAR(8), CURRENT_TIMESTAMP, 112);

For example, if the current date is February 12, 2009, this code returns ‘20090212’. Remember that

this style is language neutral, so when the code is converted back to DATETIME, you get the current

date at midnight.

SELECT CAST(CONVERT(CHAR(8), CURRENT_TIMESTAMP, 112) AS DATETIME);

Similarly, to zero the date portion to the base date, you can irst convert the current date and time
value to CHAR(12) by using style 114 (‘hh:mm:ss.nnn’).

SELECT CONVERT(CHAR(12), CURRENT_TIMESTAMP, 114);

When the code is converted back to DATETIME, you get the current time on the base date.

SELECT CAST(CONVERT(CHAR(12), CURRENT_TIMESTAMP, 114) AS DATETIME);

As for using the PARSE function, here are a couple of examples that I also demonstrated previously

in this chapter.

SELECT PARSE('02/12/2007' AS DATETIME USING 'en-US');

SELECT PARSE('02/12/2007' AS DATETIME USING 'en-GB');

 CHAPTER 2 Single-Table Queries 83

The irst parses the input string by using a U.S. English culture, and the second by using a British
English culture.

The SWITCHOFFSET Function

The SWITCHOFFSET function adjusts an input DATETIMEOFFSET value to a speciied time zone.

Syntax

SWITCHOFFSET(datetimeoffset_value, time_zone)

For example, the following code adjusts the current system datetimeoffset value to time zone

-05:00.

SELECT SWITCHOFFSET(SYSDATETIMEOFFSET(), '-05:00');

So if the current system datetimeoffset value is February 12, 2009 10:00:00.0000000 -08:00, this

code returns the value February 12, 2009 13:00:00.0000000 -05:00.

The following code adjusts the current datetimeoffset value to UTC.

SELECT SWITCHOFFSET(SYSDATETIMEOFFSET(), '+00:00');

Assuming the aforementioned current datetimeoffset value, this code returns the value February

12, 2009 18:00:00.0000000 +00:00.

The TODATETIMEOFFSET Function

The TODATETIMEOFFSET function sets the time zone offset of an input date and time value.

Syntax

TODATETIMEOFFSET(date_and_time_value, time_zone)

This function is different from SWITCHOFFSET in that its irst input will usually be a date and time
type that is not offset aware. This function simply merges the input date and time value with the

speciied time zone offset to create a new datetimeoffset value.

You will typically use this function when migrating non-offset-aware data to offset-aware data.

Imagine that you have a table holding local date and time values in an attribute called dt of a

DATETIME data type and the offset in an attribute called theoffset. You then decide to merge the

two to one offset-aware attribute called dto. You alter the table and add the new attribute. Then

you update it to the result of the expression TODATETIMEOFFSET(dt, theoffset). Then you can

drop the two existing attributes dt and theoffset.

The DATEADD Function

The DATEADD function allows you to add a speciied number of units of a speciied date part to an
input date and time value.

84 Microsoft SQL Server 2012 T-SQL Fundamentals

Syntax

DATEADD(part, n, dt_val)

Valid values for the part input include year, quarter, month, dayofyear, day, week, weekday, hour,

minute, second, millisecond, microsecond, and nanosecond. You can also specify the part in abbrevi-

ated form, such as yy instead of year. Refer to SQL Server Books Online for details.

The return type for a date and time input is the same type as the input’s type. If this function is

given a string literal as input, the output is DATETIME.

For example, the following code adds one year to February 12, 2009.

SELECT DATEADD(year, 1, '20090212');

This code returns the following output.

2010-02-12 00:00:00.000

The DATEDIFF Function

The DATEDIFF function returns the difference between two date and time values in terms of a speci-

ied date part.

Syntax

DATEDIFF(part, dt_val1, dt_val2)

For example, the following code returns the difference in terms of days between two values.

SELECT DATEDIFF(day, '20080212', '20090212');

This code returns the output 366.

Ready for a bit more sophisticated use of the DATEADD and DATEDIFF functions? You can use the

following code in versions prior to SQL Server 2008 to set the time component of the current system

date and time value to midnight.

SELECT

 DATEADD(

 day,

 DATEDIFF(day, '20010101', CURRENT_TIMESTAMP), '20010101');

This is achieved by irst using the DATEDIFF function to calculate the difference in terms of whole

days between an anchor date at midnight (‘20010101’ in this case) and the current date and time (call

that difference diff). Then, the DATEADD function is used to add diff days to the anchor. You get the

current system date at midnight.

Interestingly, if you use this expression with a month part instead of a day, and make sure to use an

anchor that is the irst day of a month (as in this example), you get the irst day of the current month.

 CHAPTER 2 Single-Table Queries 85

SELECT

 DATEADD(

 month,

 DATEDIFF(month, '20010101', CURRENT_TIMESTAMP), '20010101');

Similarly, by using a year part and an anchor that is the irst day of a year, you get back the irst
day of the current year.

If you want the last day of the month or year, simply use an anchor that is the last day of a month

or year. For example, the following expression returns the last day of the current month.

SELECT

 DATEADD(

 month,

 DATEDIFF(month, '19991231', CURRENT_TIMESTAMP), '19991231');

Note that in SQL Server 2012 there’s a simpler way to get the last day of the month: by using a new

function called EOMONTH. I’ll describe it shortly.

The DATEPART Function

The DATEPART function returns an integer representing a requested part of a date and time value.

Syntax

DATEPART(part, dt_val)

Valid values for the part argument include year, quarter, month, dayofyear, day, week, weekday,

hour, minute, second, millisecond, microsecond, nanosecond, TZoffset, and ISO_WEEK. The last four

parts are available in SQL Server 2008 and SQL Server 2012. As I mentioned earlier, you can use ab-

breviations for the date and time parts, such as yy instead of year, mm instead of month, dd instead

of day, and so on.

For example, the following code returns the month part of the input value.

SELECT DATEPART(month, '20090212');

This code returns the integer 2.

The YEAR, MONTH, and DAY Functions

The YEAR, MONTH, and DAY functions are abbreviations for the DATEPART function returning the

integer representation of the year, month, and day parts of an input date and time value.

Syntax

YEAR(dt_val)

MONTH(dt_val)

DAY(dt_val)

86 Microsoft SQL Server 2012 T-SQL Fundamentals

For example, the following code extracts the day, month, and year parts of an input value.

SELECT

 DAY('20090212') AS theday,

 MONTH('20090212') AS themonth,

 YEAR('20090212') AS theyear;

This code returns the following output.

theday themonth theyear

----------- ----------- -----------

12 2 2009

The DATENAME Function

The DATENAME function returns a character string representing a part of a date and time value.

Syntax

DATENAME(dt_val, part)

This function is similar to DATEPART and in fact has the same options for the part input. However,

when relevant, it returns the name of the requested part rather than the number. For example, the

following code returns the month name of the given input value.

SELECT DATENAME(month, '20090212');

Recall that DATEPART returned the integer 2 for this input. DATENAME returns the name of the

month, which is language dependent. If your session’s language is one of the English languages

(such as U.S. English or British English), you get back the value ‘February’. If your session’s language is

Italian, you get back the value ‘febbraio’. If a part is requested that has no name, but only a numeric

value (such as year), the DATENAME function returns its numeric value as a character string. For ex-

ample, the following code returns ‘2009’.

SELECT DATENAME(year, '20090212');

The ISDATE Function

The ISDATE function accepts a character string as input and returns 1 if it is convertible to a date and

time data type and 0 if it isn’t.

Syntax

ISDATE(string)

For example, the following code returns 1.

SELECT ISDATE('20090212');

And the following code returns 0.

SELECT ISDATE('20090230');

 CHAPTER 2 Single-Table Queries 87

The FROMPARTS Functions

The FROMPARTS functions were introduced in SQL Server 2012. They accept integer inputs represent-

ing parts of a date and time value and construct a value of the requested type from those parts.

Syntax

DATEFROMPARTS (year, month, day)

DATETIME2FROMPARTS (year, month, day, hour, minute, seconds, fractions, precision)

DATETIMEFROMPARTS (year, month, day, hour, minute, seconds, milliseconds)

DATETIMEOFFSETFROMPARTS (year, month, day, hour, minute, seconds, fractions, hour_offset, min-

ute_offset, precision)

SMALLDATETIMEFROMPARTS (year, month, day, hour, minute)

TIMEFROMPARTS (hour, minute, seconds, fractions, precision)

These functions make it easier for applications to construct date and time values from the differ-

ent components, and they also simply migrate from other environments that already support similar

functions. The following code demonstrates the use of these functions.

SELECT

 DATEFROMPARTS(2012, 02, 12),

 DATETIME2FROMPARTS(2012, 02, 12, 13, 30, 5, 1, 7),

 DATETIMEFROMPARTS(2012, 02, 12, 13, 30, 5, 997),

 DATETIMEOFFSETFROMPARTS(2012, 02, 12, 13, 30, 5, 1, -8, 0, 7),

 SMALLDATETIMEFROMPARTS(2012, 02, 12, 13, 30),

 TIMEFROMPARTS(13, 30, 5, 1, 7);

The EOMONTH Function

The EOMONTH function was introduced in SQL Server 2012. It accepts an input date and time value

and returns the respective end-of-month date, at midnight, as a DATE data type. The function also

supports an optional second argument indicating how many months to add.

Syntax

EOMONTH(input [, months_to_add])

For example, the following code returns the end of the current month.

SELECT EOMONTH(SYSDATETIME());

The following query returns orders placed on the last day of the month.

SELECT orderid, orderdate, custid, empid

FROM Sales.Orders

WHERE orderdate = EOMONTH(orderdate);

88 Microsoft SQL Server 2012 T-SQL Fundamentals

Querying Metadata

SQL Server provides tools for getting information about the metadata of objects, such as informa-

tion about tables in a database and columns in a table. Those tools include catalog views, informa-

tion schema views, and system stored procedures and functions. This area is documented well in

SQL Server Books Online in the “Querying the SQL Server System Catalog” section, so I won’t cover
it in great detail here. I’ll just give a couple of examples of each metadata tool to give you a sense of

what’s available and get you started.

Catalog Views
Catalog views provide very detailed information about objects in the database, including information

that is speciic to SQL Server. For example, if you want to list the tables in a database along with their
schema names, you can query the sys.tables view as follows.

USE TSQL2012;

SELECT SCHEMA_NAME(schema_id) AS table_schema_name, name AS table_name

FROM sys.tables;

The SCHEMA_NAME function is used to convert the schema ID integer to its name. This query

returns the following output.

table_schema_name table_name

------------------ --------------

HR Employees

Production Suppliers

Production Categories

Production Products

Sales Customers

Sales Shippers

Sales Orders

Sales OrderDetails

Stats Tests

Stats Scores

dbo Nums

To get information about columns in a table, you can query the sys.columns table. For example, the

following code returns information about columns in the Sales.Orders table including column names,

data types (with the system type ID translated to a name by using the TYPE_NAME function), maxi-

mum length, collation name, and nullability.

SELECT

 name AS column_name,

 TYPE_NAME(system_type_id) AS column_type,

 max_length,

 collation_name,

 is_nullable

FROM sys.columns

WHERE object_id = OBJECT_ID(N'Sales.Orders');

 CHAPTER 2 Single-Table Queries 89

This query returns the following output.

column_name column_type max_length collation_name is_nullable

--------------- --------------- ---------- ------------------------- -----------

orderid int 4 NULL 0

custid int 4 NULL 1

empid int 4 NULL 0

orderdate datetime 8 NULL 0

requireddate datetime 8 NULL 0

shippeddate datetime 8 NULL 1

shipperid int 4 NULL 0

freight money 8 NULL 0

shipname nvarchar 80 Latin1_General_CI_AI 0

shipaddress nvarchar 120 Latin1_General_CI_AI 0

shipcity nvarchar 30 Latin1_General_CI_AI 0

shipregion nvarchar 30 Latin1_General_CI_AI 1

shippostalcode nvarchar 20 Latin1_General_CI_AI 1

shipcountry nvarchar 30 Latin1_General_CI_AI 0

Information Schema Views
An information schema view is a set of views that resides in a schema called INFORMATION_SCHEMA

and provides metadata information in a standard manner. That is, the views are deined in the SQL
standard, so naturally they don’t cover aspects speciic to SQL Server.

For example, the following query against the INFORMATION_SCHEMA.TABLES view lists the user

tables in the current database along with their schema names.

SELECT TABLE_SCHEMA, TABLE_NAME

FROM INFORMATION_SCHEMA.TABLES

WHERE TABLE_TYPE = N'BASE TABLE';

The following query against the INFORMATION_SCHEMA.COLUMNS view provides most of the

available information about columns in the Sales.Orders table.

SELECT

 COLUMN_NAME, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH,

 COLLATION_NAME, IS_NULLABLE

FROM INFORMATION_SCHEMA.COLUMNS

WHERE TABLE_SCHEMA = N'Sales'

 AND TABLE_NAME = N'Orders';

System Stored procedures and Functions
System stored procedures and functions internally query the system catalog and give you back more

“digested” metadata information. Again, you can ind the full list of objects and their detailed descrip-

tions in SQL Server Books Online, but here are a few examples. The sp_tables stored procedure returns

a list of objects (such as tables and views) that can be queried in the current database.

EXEC sys.sp_tables;

90 Microsoft SQL Server 2012 T-SQL Fundamentals

The sp_help procedure accepts an object name as input and returns multiple result sets with

general information about the object, and also information about columns, indexes, constraints, and

more. For example, the following code returns detailed information about the Orders table.

EXEC sys.sp_help

 @objname = N'Sales.Orders';

The sp_columns procedure returns information about columns in an object. For example, the fol-

lowing code returns information about columns in the Orders table.

EXEC sys.sp_columns

 @table_name = N'Orders',

 @table_owner = N'Sales';

The sp_helpconstraint procedure returns information about constraints in an object. For example,

the following code returns information about constraints in the Orders table.

EXEC sys.sp_helpconstraint

 @objname = N'Sales.Orders';

One set of functions returns information about properties of entities such as the SQL Server

instance, database, object, column, and so on. The SERVERPROPERTY function returns the requested

property of the current instance. For example, the following code returns the product level (such as

RTM, SP1, SP2, and so on) of the current instance.

SELECT

 SERVERPROPERTY('ProductLevel');

The DATABASEPROPERTYEX function returns the requested property of the speciied database
name. For example, the following code returns the collation of the TSQL2012 database.

SELECT

 DATABASEPROPERTYEX(N'TSQL2012', 'Collation');

The OBJECTPROPERTY function returns the requested property of the speciied object name. For
example, the output of the following code indicates whether the Orders table has a primary key.

SELECT

 OBJECTPROPERTY(OBJECT_ID(N'Sales.Orders'), 'TableHasPrimaryKey');

Notice the nesting of the function OBJECT_ID within OBJECTPROPERTY. The OBJECTPROPERTY

function expects an object ID and not a name, so the OBJECT_ID function is used to return the ID of

the Orders table.

The COLUMNPROPERTY function returns the requested property of a speciied column. For ex-

ample, the output of the following code indicates whether the shipcountry column in the Orders table

is nullable.

SELECT

 COLUMNPROPERTY(OBJECT_ID(N'Sales.Orders'), N'shipcountry', 'AllowsNull');

 CHAPTER 2 Single-Table Queries 91

Conclusion

This chapter introduced you to the SELECT statement, logical query processing, and various other

aspects of single-table queries. I covered quite a few subjects here, including many new and unique

concepts. If you’re new to T-SQL, you might feel overwhelmed at this point. But remember, this

chapter introduces some of the most important points about SQL that might be hard to digest at the

beginning. If some of the concepts weren’t completely clear, you might want to revisit sections from

this chapter later on, after you’ve had a chance to sleep on it.

For an opportunity to practice what you’ve learned and absorb the material better, I recommend

going over the chapter exercises.

Exercises

This section provides exercises to help you familiarize yourself with the subjects discussed in Chapter 2.

Solutions to the exercises appear in the section that follows.

You can ind instructions for downloading and installing the TSQL2012 sample database in the

Appendix.

1
Write a query against the Sales.Orders table that returns orders placed in June 2007.

 ■ Tables involved: TSQL2012 database and the Sales.Orders table

 ■ Desired output (abbreviated):

orderid orderdate custid empid

----------- ----------------------- ----------- -----------

10555 2007-06-02 00:00:00.000 71 6

10556 2007-06-03 00:00:00.000 73 2

10557 2007-06-03 00:00:00.000 44 9

10558 2007-06-04 00:00:00.000 4 1

10559 2007-06-05 00:00:00.000 7 6

10560 2007-06-06 00:00:00.000 25 8

10561 2007-06-06 00:00:00.000 24 2

10562 2007-06-09 00:00:00.000 66 1

10563 2007-06-10 00:00:00.000 67 2

10564 2007-06-10 00:00:00.000 65 4

...

(30 row(s) affected)

92 Microsoft SQL Server 2012 T-SQL Fundamentals

2
Write a query against the Sales.Orders table that returns orders placed on the last day of the month.

 ■ Tables involved: TSQL2012 database and the Sales.Orders table

 ■ Desired output (abbreviated):

orderid orderdate custid empid

----------- ----------------------- ----------- -----------

10269 2006-07-31 00:00:00.000 89 5

10317 2006-09-30 00:00:00.000 48 6

10343 2006-10-31 00:00:00.000 44 4

10399 2006-12-31 00:00:00.000 83 8

10432 2007-01-31 00:00:00.000 75 3

10460 2007-02-28 00:00:00.000 24 8

10461 2007-02-28 00:00:00.000 46 1

10490 2007-03-31 00:00:00.000 35 7

10491 2007-03-31 00:00:00.000 28 8

10522 2007-04-30 00:00:00.000 44 4

...

(26 row(s) affected)

3
Write a query against the HR.Employees table that returns employees with last name containing the

letter a twice or more.

 ■ Tables involved: TSQL2012 database and the HR.Employees table

 ■ Desired output:

empid firstname lastname

----------- ---------- --------------------

9 Zoya Dolgopyatova

(1 row(s) affected)

4
Write a query against the Sales.OrderDetails table that returns orders with total value (quantity * unit-

price) greater than 10,000, sorted by total value.

 ■ Tables involved: TSQL2012 database and the Sales.OrderDetails table

 ■ Desired output:

orderid totalvalue

----------- ---------------------

10865 17250.00

11030 16321.90

10981 15810.00

10372 12281.20

 CHAPTER 2 Single-Table Queries 93

10424 11493.20

10817 11490.70

10889 11380.00

10417 11283.20

10897 10835.24

10353 10741.60

10515 10588.50

10479 10495.60

10540 10191.70

10691 10164.80

(14 row(s) affected)

5
Write a query against the Sales.Orders table that returns the three shipped-to countries with the high-

est average freight in 2007.

 ■ Tables involved: TSQL2012 database and the Sales.Orders table

 ■ Desired output:

shipcountry avgfreight

--------------- ---------------------

Austria 178.3642

Switzerland 117.1775

Sweden 105.16

(3 row(s) affected)

6
Write a query against the Sales.Orders table that calculates row numbers for orders based on order

date ordering (using the order ID as the tiebreaker) for each customer separately.

 ■ Tables involved: TSQL2012 database and the Sales.Orders table

 ■ Desired output (abbreviated):

custid orderdate orderid rownum

----------- ----------------------- ----------- --------------------

1 2007-08-25 00:00:00.000 10643 1

1 2007-10-03 00:00:00.000 10692 2

1 2007-10-13 00:00:00.000 10702 3

1 2008-01-15 00:00:00.000 10835 4

1 2008-03-16 00:00:00.000 10952 5

1 2008-04-09 00:00:00.000 11011 6

2 2006-09-18 00:00:00.000 10308 1

2 2007-08-08 00:00:00.000 10625 2

2 2007-11-28 00:00:00.000 10759 3

2 2008-03-04 00:00:00.000 10926 4

...

(830 row(s) affected)

94 Microsoft SQL Server 2012 T-SQL Fundamentals

7
Using the HR.Employees table, igure out the SELECT statement that returns for each employee the

gender based on the title of courtesy. For ‘Ms. ‘ and ‘Mrs.’ return ‘Female’; for ‘Mr. ‘ return ‘Male’; and

in all other cases (for example, ‘Dr. ‘) return ‘Unknown’.

 ■ Tables involved: TSQL2012 database and the HR.Employees table

 ■ Desired output:

empid firstname lastname titleofcourtesy gender

----------- ---------- -------------------- ------------------------- -------

1 Sara Davis Ms. Female

2 Don Funk Dr. Unknown

3 Judy Lew Ms. Female

4 Yael Peled Mrs. Female

5 Sven Buck Mr. Male

6 Paul Suurs Mr. Male

7 Russell King Mr. Male

8 Maria Cameron Ms. Female

9 Zoya Dolgopyatova Ms. Female

(9 row(s) affected)

8
Write a query against the Sales.Customers table that returns for each customer the customer ID and

region. Sort the rows in the output by region, having NULL marks sort last (after non-NULL values).

Note that the default sort behavior for NULL marks in T-SQL is to sort irst (before non-NULL values).

 ■ Tables involved: TSQL2012 database and the Sales.Customers table

 ■ Desired output (abbreviated):

custid region

----------- ---------------

55 AK

10 BC

42 BC

45 CA

37 Co. Cork

33 DF

71 ID

38 Isle of Wight

46 Lara

78 MT

...

1 NULL

2 NULL

3 NULL

4 NULL

5 NULL

6 NULL

7 NULL

 CHAPTER 2 Single-Table Queries 95

8 NULL

9 NULL

11 NULL

...

(91 row(s) affected)

Solutions

This section provides the solutions to the exercises for this chapter, accompanied by explanations

where needed.

1
You might have considered using the YEAR and MONTH functions in the WHERE clause of your solu-

tion query, like this.

USE TSQL2012;

SELECT orderid, orderdate, custid, empid

FROM Sales.Orders

WHERE YEAR(orderdate) = 2007 AND MONTH(orderdate) = 6;

This solution is valid and returns the correct result. However, I explained that if you apply manipu-

lation on the iltered column, in most cases SQL Server can’t use an index eficiently if such manipula-

tion exists on that column. Therefore, I advise using a range ilter instead.

SELECT orderid, orderdate, custid, empid

FROM Sales.Orders

WHERE orderdate >= '20070601'

 AND orderdate < '20070701';

2
In SQL Server 2012 you can use the EOMONTH function to address this task, like this.

SELECT orderid, orderdate, custid, empid

FROM Sales.Orders

WHERE orderdate = EOMONTH(orderdate);

Prior to SQL Server 2012 the solution is more complex. As part of the discussion about date and

time functions, I provided the following expression format to calculate the last day of the month cor-

responding to a speciied date.

DATEADD(month, DATEDIFF(month, '19991231', date_val), '19991231')

96 Microsoft SQL Server 2012 T-SQL Fundamentals

This expression irst calculates the difference in terms of whole months between an anchor last
day of some month (December 31, 1999 in this case) and the speciied date. Call this difference diff.

By adding diff months to the anchor date, you get the last day of the speciied date’s month. Here’s
the full solution query, returning only orders for which the order date is equal to the last day of the

month.

SELECT orderid, orderdate, custid, empid

FROM Sales.Orders

WHERE orderdate = DATEADD(month, DATEDIFF(month, '19991231', orderdate), '19991231');

3
This exercise involves using pattern matching with the LIKE predicate. Remember that the percent

sign (%) represents a character string of any size, including an empty string. Therefore, you can use

the pattern ‘%a%a%’ to express at least two occurrences of the character a anywhere in the string.

Here’s the full solution query.

SELECT empid, firstname, lastname

FROM HR.Employees

WHERE lastname LIKE '%a%a%';

4
This exercise is quite tricky, and if you managed to solve it correctly, you should be proud of yourself.

A subtle requirement in the request might be overlooked or interpreted incorrectly. Observe that the

request said “return orders with total value greater than 10,000” and not “return orders with value

greater than 10,000.” In other words, the individual order detail row shouldn’t meet the requirement.

Instead, the group of all order details within the order should meet the requirement. This means that

the query shouldn’t have a ilter in the WHERE clause like this.

WHERE quantity * unitprice > 10000

Rather, the query should group the data by order ID and have a ilter in the HAVING clause like

this.

HAVING SUM(quantity*unitprice) > 10000

Here’s the complete solution query.

SELECT orderid, SUM(qty*unitprice) AS totalvalue

FROM Sales.OrderDetails

GROUP BY orderid

HAVING SUM(qty*unitprice) > 10000

ORDER BY totalvalue DESC;

 CHAPTER 2 Single-Table Queries 97

5
Because the request involves activity in the year 2007, the query should have a WHERE clause with

the appropriate date range ilter (orderdate >= ‘20070101’ AND orderdate < ‘20080101’). Because the

request involves average freight values per shipping country and the table can have multiple rows per

country, the query should group the rows by country, and calculate the average freight. To get the

three countries with the highest average freights, the query should specify TOP (3), based on logical

order of average freight descending. Here’s the complete solution query.

SELECT TOP (3) shipcountry, AVG(freight) AS avgfreight

FROM Sales.Orders

WHERE orderdate >= '20070101' AND orderdate < '20080101'

GROUP BY shipcountry

ORDER BY avgfreight DESC;

Remember that in SQL Server 2012 you can use the standard OFFSET-FETCH option instead of the

proprietary TOP option. Here’s the revised solution using OFFSET-FETCH.

SELECT shipcountry, AVG(freight) AS avgfreight

FROM Sales.Orders

WHERE orderdate >= '20070101' AND orderdate < '20080101'

GROUP BY shipcountry

ORDER BY avgfreight DESC

OFFSET 0 ROWS FETCH FIRST 3 ROWS ONLY;

6
Because the exercise requests that the row number calculation be done for each customer separately,

the expression should have PARTITION BY custid. In addition, the request was to use logical ordering

by orderdate, with orderid as a tiebreaker. Therefore, the OVER clause should have ORDER BY order-

date, orderid. Here’s the complete solution query.

SELECT custid, orderdate, orderid,

 ROW_NUMBER() OVER(PARTITION BY custid ORDER BY orderdate, orderid) AS rownum

FROM Sales.Orders

ORDER BY custid, rownum;

98 Microsoft SQL Server 2012 T-SQL Fundamentals

7
You can handle the conditional logic required by this exercise by using a CASE expression. Using the

simple CASE expression form, you specify the titleofcourtesy attribute right after the CASE keyword;

list each possible title of courtesy in a separate WHEN clause followed by the THEN clause and the

gender; and in the ELSE clause, specify ‘Unknown’.

SELECT empid, firstname, lastname, titleofcourtesy,

 CASE titleofcourtesy

 WHEN 'Ms.' THEN 'Female'

 WHEN 'Mrs.' THEN 'Female'

 WHEN 'Mr.' THEN 'Male'

 ELSE 'Unknown'

 END AS gender

FROM HR.Employees;

You can also use the searched CASE form with two predicates—one to handle all cases where the

gender is female and one for all cases where the gender is male—and an ELSE clause with ‘Unknown’.

SELECT empid, firstname, lastname, titleofcourtesy,

 CASE

 WHEN titleofcourtesy IN('Ms.', 'Mrs.') THEN 'Female'

 WHEN titleofcourtesy = 'Mr.' THEN 'Male'

 ELSE 'Unknown'

 END AS gender

FROM HR.Employees;

8
By default, SQL Server sorts NULL marks before non-NULL values. To get NULL marks to sort last, you

can use a CASE expression that returns 1 when the region column is NULL and 0 when it is not NULL.

Non-NULL marks get 0 back from the expression; therefore, they sort before NULL marks (which get

1). This CASE expression is used as the irst sort column. The region column should be speciied as the
second sort column. This way, non-NULL marks sort correctly among themselves. Here’s the complete

solution query.

SELECT custid, region

FROM Sales.Customers

ORDER BY

 CASE WHEN region IS NULL THEN 1 ELSE 0 END, region;

 99

C H A P T E R 3

Joins

The FROM clause of a query is the irst clause to be logically processed, and within the FROM

clause, table operators operate on input tables. Microsoft SQL Server supports four table opera-

tors—JOIN, APPLY, PIVOT, and UNPIVOT. The JOIN table operator is standard, whereas APPLY, PIVOT,

and UNPIVOT are T-SQL extensions to the standard. Each table operator acts on tables provided to

it as input, applies a set of logical query processing phases, and returns a table result. This chapter

focuses on the JOIN table operator. The APPLY operator will be covered in Chapter 5, “Table Expres-
sions,” and the PIVOT and UNPIVOT operators will be covered in Chapter 7, “Beyond the Fundamen-

tals of Querying.”

A JOIN table operator operates on two input tables. The three fundamental types of joins are

cross joins, inner joins, and outer joins. These three types of joins differ in how they apply their logical

query processing phases; each type applies a different set of phases. A cross join applies only one

phase—Cartesian Product. An inner join applies two phases—Cartesian Product and Filter. An outer

join applies three phases—Cartesian Product, Filter, and Add Outer Rows. This chapter explains each

of the join types and the phases involved in detail.

Logical query processing describes a generic series of logical steps that for any speciied query pro-

duces the correct result, whereas physical query processing is the way the query is processed by the

RDBMS engine in practice. Some phases of logical query processing of joins might sound ineficient,
but the ineficient phases will be optimized by the physical implementation. It’s important to stress
the term logical in logical query processing. The steps in the process apply operations to the input

tables based on relational algebra. The database engine does not have to follow logical query pro-

cessing phases literally, as long as it can guarantee that the result that it produces is the same as that

dictated by logical query processing. The SQL Server relational engine often applies many shortcuts

for optimization purposes when it knows that it can still produce the correct result. Even though this

book’s focus is on understanding the logical aspects of querying, I want to stress this point to avoid

any misunderstanding and confusion.

Cross Joins

Logically, a cross join is the simplest type of join. A cross join implements only one logical query proc-

essing phase—a Cartesian Product. This phase operates on the two tables provided as inputs to the

join and produces a Cartesian product of the two. That is, each row from one input is matched with all

rows from the other. So if you have m rows in one table and n rows in the other, you get m×n rows in

the result.

100 Microsoft SQL Server 2012 T-SQL Fundamentals

SQL Server supports two standard syntaxes for cross joins—the ANSI SQL-92 and ANSI SQL-89 syn-

taxes. I recommend that you use the ANSI-SQL 92 syntax for reasons that I’ll describe shortly. There-

fore, ANSI-SQL 92 syntax is the main syntax that I use throughout the book. For the sake of complete-

ness, I describe both syntaxes in this section.

anSI SQL-92 Syntax
The following query applies a cross join between the Customers and Employees tables (using the ANSI

SQL-92 syntax) in the TSQL2012 database, and returns the custid and empid attributes in the result set.

USE TSQL2012;

SELECT C.custid, E.empid

FROM Sales.Customers AS C

 CROSS JOIN HR.Employees AS E;

Because there are 91 rows in the Customers table and 9 rows in the Employees table, this query

produces a result set with 819 rows, as shown here in abbreviated form.

custid empid

----------- -----------

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

...

(819 row(s) affected)

When you use the ANSI SQL-92 syntax, you specify the CROSS JOIN keywords between the two

tables involved in the join.

Notice that in the FROM clause of the preceding query, I assigned the aliases C and E to the Cus-

tomers and Employees tables, respectively. The result set produced by the cross join is a virtual table

with attributes that originate from both sides of the join. Because I assigned aliases to the source

tables, the names of the columns in the virtual table are preixed by the table aliases (for example,
C.custid, E.empid). If you do not assign aliases to the tables in the FROM clause, the names of the

columns in the virtual table are preixed by the full source table names (for example, Customers.custid,

 CHAPTER 3 Joins 101

Employees.empid). The purpose of the preixes is to facilitate the identiication of columns in an un-

ambiguous manner when the same column name appears in both tables. The aliases of the tables are

assigned for brevity. Note that you are required to use column preixes only when referring to am-

biguous column names (column names that appear in more than one table); in unambiguous cases,

column preixes are optional. However, some people ind it a good practice to always use column
preixes for the sake of clarity. Also note that if you assign an alias to a table, it is invalid to use the full
table name as a column preix; in ambiguous cases you have to use the table alias as a preix.

anSI SQL-89 Syntax
SQL Server also supports an older syntax for cross joins that was introduced in ANSI SQL-89. In this

syntax you simply specify a comma between the table names, like this.

SELECT C.custid, E.empid

FROM Sales.Customers AS C, HR.Employees AS E;

There is no logical or performance difference between the two syntaxes. Both syntaxes are integral

parts of the latest SQL standard (ANSI SQL:2011 at the time of this writing), and both are fully sup-

ported by the latest version of SQL Server (Microsoft SQL Server 2012 at the time of this writing). I am

not aware of any plans to deprecate the older syntax, and I don’t see any reason to do so while it’s an

integral part of the standard. However, I recommend using the ANSI SQL-92 syntax for reasons that

will become clear after inner joins are explained.

Self Cross Joins
You can join multiple instances of the same table. This capability is known as a self join and is sup-

ported with all fundamental join types (cross joins, inner joins, and outer joins). For example, the fol-

lowing query performs a self cross join between two instances of the Employees table.

SELECT

 E1.empid, E1.firstname, E1.lastname,

 E2.empid, E2.firstname, E2.lastname

FROM HR.Employees AS E1

 CROSS JOIN HR.Employees AS E2;

This query produces all possible combinations of pairs of employees. Because the Employees table

has 9 rows, this query returns 81 rows, shown here in abbreviated form.

empid firstname lastname empid firstname lastname

------ ---------- --------------- ------ ---------- ---------

1 Sara Davis 1 Sara Davis

2 Don Funk 1 Sara Davis

3 Judy Lew 1 Sara Davis

4 Yael Peled 1 Sara Davis

5 Sven Buck 1 Sara Davis

6 Paul Suurs 1 Sara Davis

7 Russell King 1 Sara Davis

8 Maria Cameron 1 Sara Davis

9 Zoya Dolgopyatova 1 Sara Davis

102 Microsoft SQL Server 2012 T-SQL Fundamentals

1 Sara Davis 2 Don Funk

2 Don Funk 2 Don Funk

3 Judy Lew 2 Don Funk

4 Yael Peled 2 Don Funk

5 Sven Buck 2 Don Funk

6 Paul Suurs 2 Don Funk

7 Russell King 2 Don Funk

8 Maria Cameron 2 Don Funk

9 Zoya Dolgopyatova 2 Don Funk

...

(81 row(s) affected)

In a self join, aliasing tables is not optional. Without table aliases, all column names in the result of

the join would be ambiguous.

producing Tables of numbers
One situation in which cross joins can be very handy is when they are used to produce a result set

with a sequence of integers (1, 2, 3, and so on). Such a sequence of numbers is an extremely powerful

tool that I use for many purposes. By using cross joins, you can produce the sequence of integers in a

very eficient manner.

You can start by creating a table called Digits with a column called digit, and populate the table

with 10 rows with the digits 0 through 9. Run the following code to create the Digits table in the

TSQL2012 database (for test purposes) and populate it with the 10 digits.

USE TSQL2012;

IF OBJECT_ID('dbo.Digits', 'U') IS NOT NULL DROP TABLE dbo.Digits;

CREATE TABLE dbo.Digits(digit INT NOT NULL PRIMARY KEY);

INSERT INTO dbo.Digits(digit)

 VALUES (0),(1),(2),(3),(4),(5),(6),(7),(8),(9);

SELECT digit FROM dbo.Digits;

This code also uses an INSERT statement to populate the Digits table. If you’re not familiar with the

syntax of the INSERT statement, see Chapter 8, “Data Modiication,” for details.

The contents of the Digits table are shown here.

digit

0

1

2

3

4

5

6

7

8

9

 CHAPTER 3 Joins 103

Suppose you need to write a query that produces a sequence of integers in the range 1 through

1,000. You can cross three instances of the Digits table, each representing a different power of 10 (1,

10, 100). By crossing three instances of the same table, each instance with 10 rows, you get a result set

with 1,000 rows. To produce the actual number, multiply the digit from each instance by the power of

10 it represents, sum the results, and add 1. Here’s the complete query.

SELECT D3.digit * 100 + D2.digit * 10 + D1.digit + 1 AS n

FROM dbo.Digits AS D1

 CROSS JOIN dbo.Digits AS D2

 CROSS JOIN dbo.Digits AS D3

ORDER BY n;

This query returns the following output, shown here in abbreviated form.

n

1

2

3

4

5

6

7

8

9

10

...

998

999

1000

(1000 row(s) affected)

This was just an example producing a sequence of 1,000 integers. If you need more numbers,

you can add more instances of the Digits table to the query. For example, if you need to produce a

sequence of 1,000,000 rows, you would need to join six instances.

Inner Joins

An inner join applies two logical query processing phases—it applies a Cartesian product between

the two input tables as in a cross join, and then it ilters rows based on a predicate that you specify.
Like cross joins, inner joins have two standard syntaxes: ANSI SQL-92 and ANSI SQL-89.

anSI SQL-92 Syntax
Using the ANSI SQL-92 syntax, you specify the INNER JOIN keywords between the table names. The

INNER keyword is optional, because an inner join is the default, so you can specify the JOIN keyword

alone. You specify the predicate that is used to ilter rows in a designated clause called ON. This

predicate is also known as the join condition.

104 Microsoft SQL Server 2012 T-SQL Fundamentals

For example, the following query performs an inner join between the Employees and Orders

tables in the TSQL2012 database, matching employees and orders based on the predicate E.empid =

O.empid.

USE TSQL2012;

SELECT E.empid, E.firstname, E.lastname, O.orderid

FROM HR.Employees AS E

 JOIN Sales.Orders AS O

 ON E.empid = O.empid;

This query produces the following result set, shown here in abbreviated form.

empid firstname lastname orderid

----------- ---------- -------------------- -----------

1 Sara Davis 10258

1 Sara Davis 10270

1 Sara Davis 10275

1 Sara Davis 10285

1 Sara Davis 10292

...

2 Don Funk 10265

2 Don Funk 10277

2 Don Funk 10280

2 Don Funk 10295

2 Don Funk 10300

...

(830 row(s) affected)

For most people, the easiest way to think of such an inner join is to think of it as matching each

employee row to all order rows that have the same employee ID as the employee’s employee ID. This

is a simpliied way to think of the join. The more formal way to think of the join based on relational
algebra is that irst the join performs a Cartesian product of the two tables (9 employee rows × 830
order rows = 7,470 rows), and then ilters rows based on the predicate E.empid = O.empid, eventu-

ally returning 830 rows. As mentioned earlier, that’s just the logical way that the join is processed; in

practice, physical processing of the query by the database engine can be different.

Recall the discussion from previous chapters about the three-valued predicate logic used by SQL.

As with the WHERE and HAVING clauses, the ON clause also returns only rows for which the predicate

returns TRUE, and does not return rows for which the predicate evaluates to FALSE or UNKNOWN.

In the TSQL2012 database, all employees have related orders, so all employees show up in the

output. However, had there been employees with no related orders, they would have been iltered
out by the ilter phase.

 CHAPTER 3 Joins 105

anSI SQL-89 Syntax
Similar to cross joins, inner joins can be expressed by using the ANSI SQL-89 syntax. You specify a

comma between the table names just as in a cross join, and specify the join condition in the query’s

WHERE clause, like this.

SELECT E.empid, E.firstname, E.lastname, O.orderid

FROM HR.Employees AS E, Sales.Orders AS O

WHERE E.empid = O.empid;

Note that the ANSI SQL-89 syntax has no ON clause.

Again, both syntaxes are standard, fully supported by SQL Server, and interpreted in the same way

by the engine, so you shouldn’t expect any performance difference between the two. But one syntax

is safer, as explained in the next section.

Inner Join Safety
I strongly recommend that you stick to the ANSI SQL-92 join syntax because it is safer in several ways.

Suppose you intend to write an inner join query, and by mistake you forget to specify the join condi-

tion. With the ANSI SQL-92 syntax, the query becomes invalid, and the parser generates an error. For

example, try to run the following code.

SELECT E.empid, E.firstname, E.lastname, O.orderid

FROM HR.Employees AS E

 JOIN Sales.Orders AS O;

You get the following error:

Msg 102, Level 15, State 1, Line 3

Incorrect syntax near ';'.

Even though it might not be immediately obvious that the error involves a missing join condition,

you will igure it out eventually and ix the query. However, if you forget to specify the join condition
when you are using the ANSI SQL-89 syntax, you get a valid query that performs a cross join.

SELECT E.empid, E.firstname, E.lastname, O.orderid

FROM HR.Employees AS E, Sales.Orders AS O;

Because the query doesn’t fail, the logical error might go unnoticed for a while, and users of your

application might end up relying on incorrect results. It is unlikely that a programmer would forget to

specify the join condition with such short and simple queries; however, most production queries are

much more complicated and have multiple tables, ilters, and other query elements. In those cases,
the likelihood of forgetting to specify a join condition increases.

106 Microsoft SQL Server 2012 T-SQL Fundamentals

If I’ve convinced you that it is important to use the ANSI SQL-92 syntax for inner joins, you might

wonder whether the recommendation holds for cross joins. Because no join condition is involved, you

might think that both syntaxes are just as good for cross joins. However, I recommend staying with

the ANSI SQL-92 syntax with cross joins for a couple of reasons—one being consistency. Also, suppose

you do use the ANSI SQL-89 syntax. Even if you intended to write a cross join, when other developers

need to review or maintain your code, how will they know whether you intended to write a cross join

or intended to write an inner join and forgot to specify the join condition?

More Join Examples

This section covers a few join examples that are known by speciic names: composite joins, non-equi
joins, and multi-join queries.

Composite Joins
A composite join is simply a join based on a predicate that involves more than one attribute from

each side. A composite join is commonly required when you need to join two tables based on a

primary key–foreign key relationship and the relationship is composite; that is, based on more than

one attribute. For example, suppose you have a foreign key deined on dbo.Table2, columns col1, col2,

referencing dbo.Table1, columns col1, col2, and you need to write a query that joins the two based on

a primary key–foreign key relationship. The FROM clause of the query would look like this.

FROM dbo.Table1 AS T1

 JOIN dbo.Table2 AS T2

 ON T1.col1 = T2.col1

 AND T1.col2 = T2.col2

For a more tangible example, suppose that you need to audit updates to column values

against the OrderDetails table in the TSQL2012 database. You create a custom auditing table

called OrderDetailsAudit.

USE TSQL2012;

IF OBJECT_ID('Sales.OrderDetailsAudit', 'U') IS NOT NULL

 DROP TABLE Sales.OrderDetailsAudit;

CREATE TABLE Sales.OrderDetailsAudit

(

 lsn INT NOT NULL IDENTITY,

 orderid INT NOT NULL,

 productid INT NOT NULL,

 dt DATETIME NOT NULL,

 loginname sysname NOT NULL,

 columnname sysname NOT NULL,

 oldval SQL_VARIANT,

 newval SQL_VARIANT,

 CONSTRAINT PK_OrderDetailsAudit PRIMARY KEY(lsn),

 CONSTRAINT FK_OrderDetailsAudit_OrderDetails

 FOREIGN KEY(orderid, productid)

 REFERENCES Sales.OrderDetails(orderid, productid)

);

 CHAPTER 3 Joins 107

Each audit row stores a log serial number (lsn), the key of the modiied row (orderid, productid), the

name of the modiied column (columnname), the old value (oldval), the new value (newval), when the

change took place (dt), and who made the change (loginname). The table has a foreign key deined on
the attributes orderid, productid, referencing the primary key of the OrderDetails table, which is deined
on the attributes orderid, productid. Assume that you already have in place in the OrderDetailsAudit

table a process that logs, or audits, all changes taking place in column values in the OrderDetails table.

You need to write a query against the OrderDetails and OrderDetailsAudit tables that returns

information about all value changes that took place in the column qty. In each result row, you need

to return the current value from the OrderDetails table and the values before and after the change

from the OrderDetailsAudit table. You need to join the two tables based on a primary key–foreign key

relationship, like this.

SELECT OD.orderid, OD.productid, OD.qty,

 ODA.dt, ODA.loginname, ODA.oldval, ODA.newval

FROM Sales.OrderDetails AS OD

 JOIN Sales.OrderDetailsAudit AS ODA

 ON OD.orderid = ODA.orderid

 AND OD.productid = ODA.productid

WHERE ODA.columnname = N'qty';

Because the relationship is based on multiple attributes, the join condition is composite.

non-equi Joins
When a join condition involves only an equality operator, the join is said to be an equi join. When a

join condition involves any operator besides equality, the join is said to be a non-equi join.

note Standard SQL supports a concept called natural join, which represents an inner

join based on a match between columns with the same name in both sides. For example,

T1 NATURAL JOIN T2 joins the rows between T1 and T2 based on a match between the

columns with the same names in both sides. T-SQL doesn’t have an implementation of a

natural join, as of SQL Server 2012. A join that has an explicit join predicate that is based

on a binary operator (equality or inequality) is known as a theta join. So both equi-joins

and non-equi joins are types of theta joins.

As an example of a non-equi join, the following query joins two instances of the Employees table

to produce unique pairs of employees.

SELECT

 E1.empid, E1.firstname, E1.lastname,

 E2.empid, E2.firstname, E2.lastname

FROM HR.Employees AS E1

 JOIN HR.Employees AS E2

 ON E1.empid < E2.empid;

108 Microsoft SQL Server 2012 T-SQL Fundamentals

Notice the predicate speciied in the ON clause. The purpose of the query is to produce unique

pairs of employees. Had a cross join been used, the result would have included self pairs (for example,

1 with 1) and also mirrored pairs (for example, 1 with 2 and also 2 with 1). Using an inner join with

a join condition that says that the key in the left side must be smaller than the key in the right side

eliminates the two inapplicable cases. Self pairs are eliminated because both sides are equal. With

mirrored pairs, only one of the two cases qualiies because, of the two cases, only one will have a left
key that is smaller than the right key. In this example, of the 81 possible pairs of employees that a

cross join would have returned, this query returns the 36 unique pairs shown here.

empid firstname lastname empid firstname lastname

----- ---------- ---------------- ------ ---------- -----------------

1 Sara Davis 2 Don Funk

1 Sara Davis 3 Judy Lew

2 Don Funk 3 Judy Lew

1 Sara Davis 4 Yael Peled

2 Don Funk 4 Yael Peled

3 Judy Lew 4 Yael Peled

1 Sara Davis 5 Sven Buck

2 Don Funk 5 Sven Buck

3 Judy Lew 5 Sven Buck

4 Yael Peled 5 Sven Buck

1 Sara Davis 6 Paul Suurs

2 Don Funk 6 Paul Suurs

3 Judy Lew 6 Paul Suurs

4 Yael Peled 6 Paul Suurs

5 Sven Buck 6 Paul Suurs

1 Sara Davis 7 Russell King

2 Don Funk 7 Russell King

3 Judy Lew 7 Russell King

4 Yael Peled 7 Russell King

5 Sven Buck 7 Russell King

6 Paul Suurs 7 Russell King

1 Sara Davis 8 Maria Cameron

2 Don Funk 8 Maria Cameron

3 Judy Lew 8 Maria Cameron

4 Yael Peled 8 Maria Cameron

5 Sven Buck 8 Maria Cameron

6 Paul Suurs 8 Maria Cameron

7 Russell King 8 Maria Cameron

1 Sara Davis 9 Zoya Dolgopyatova

2 Don Funk 9 Zoya Dolgopyatova

3 Judy Lew 9 Zoya Dolgopyatova

4 Yael Peled 9 Zoya Dolgopyatova

5 Sven Buck 9 Zoya Dolgopyatova

6 Paul Suurs 9 Zoya Dolgopyatova

7 Russell King 9 Zoya Dolgopyatova

8 Maria Cameron 9 Zoya Dolgopyatova

(36 row(s) affected)

 CHAPTER 3 Joins 109

If it is still not clear to you what this query does, try to process it one step at a time with a smaller

set of employees. For example, suppose that the Employees table contained only employees 1, 2, and 3.

First, produce the Cartesian product of two instances of the table.

E1.empid E2.empid

------------- -------------

1 1

1 2

1 3

2 1

2 2

2 3

3 1

3 2

3 3

Next, ilter the rows based on the predicate E1.empid < E2.empid, and you are left with only

three rows.

E1.empid E2.empid

------------- -------------

1 2

1 3

2 3

Multi-Join Queries
A join table operator operates only on two tables, but a single query can have multiple joins. In gen-

eral, when more than one table operator appears in the FROM clause, the table operators are logically

processed from left to right. That is, the result table of the irst table operator is treated as the left
input to the second table operator; the result of the second table operator is treated as the left input

to the third table operator; and so on. So if there are multiple joins in the FROM clause, the irst join
operates on two base tables, but all other joins get the result of the preceding join as their left input.

With cross joins and inner joins, the database engine can (and often does) internally rearrange join

ordering for optimization purposes because it won’t have an impact on the correctness of the result of

the query.

As an example, the following query joins the Customers and Orders tables to match customers with

their orders, and then it joins the result of the irst join with the OrderDetails table to match orders

with their order lines.

SELECT

 C.custid, C.companyname, O.orderid,

 OD.productid, OD.qty

FROM Sales.Customers AS C

 JOIN Sales.Orders AS O

 ON C.custid = O.custid

 JOIN Sales.OrderDetails AS OD

 ON O.orderid = OD.orderid;

110 Microsoft SQL Server 2012 T-SQL Fundamentals

This query returns the following output, shown here in abbreviated form.

custid companyname orderid productid qty

----------- ----------------- ----------- ----------- ------

85 Customer ENQZT 10248 11 12

85 Customer ENQZT 10248 42 10

85 Customer ENQZT 10248 72 5

79 Customer FAPSM 10249 14 9

79 Customer FAPSM 10249 51 40

34 Customer IBVRG 10250 41 10

34 Customer IBVRG 10250 51 35

34 Customer IBVRG 10250 65 15

84 Customer NRCSK 10251 22 6

84 Customer NRCSK 10251 57 15

...

(2155 row(s) affected)

Outer Joins

Compared to the other types of joins, outer joins are usually harder for people to grasp. First I will

describe the fundamentals of outer joins. If by the end of the “Fundamentals of Outer Joins” section,
you feel very comfortable with the material and are ready for more advanced content, you can read

an optional section describing aspects of outer joins that are beyond the fundamentals. Otherwise,

feel free to skip that part and return to it when you feel comfortable with the material.

Fundamentals of Outer Joins
Outer joins were introduced in ANSI SQL-92 and, unlike inner joins and cross joins, have only one

standard syntax—the one in which the JOIN keyword is speciied between the table names, and the
join condition is speciied in the ON clause. Outer joins apply the two logical processing phases that

inner joins apply (Cartesian product and the ON ilter), plus a third phase called Adding Outer Rows
that is unique to this type of join.

In an outer join, you mark a table as a “preserved” table by using the keywords LEFT OUTER JOIN,
RIGHT OUTER JOIN, or FULL OUTER JOIN between the table names. The OUTER keyword is optional.

The LEFT keyword means that the rows of the left table are preserved; the RIGHT keyword means that

the rows in the right table are preserved; and the FULL keyword means that the rows in both the left

and right tables are preserved. The third logical query processing phase of an outer join identiies the
rows from the preserved table that did not ind matches in the other table based on the ON predi-

cate. This phase adds those rows to the result table produced by the irst two phases of the join, and
uses NULL marks as placeholders for the attributes from the nonpreserved side of the join in those

outer rows.

 CHAPTER 3 Joins 111

A good way to understand outer joins is through an example. The following query joins the

Customers and Orders tables based on a match between the customer’s customer ID and the order’s

customer ID, to return customers and their orders. The join type is a left outer join; therefore, the query

also returns customers who did not place any orders.

SELECT C.custid, C.companyname, O.orderid

FROM Sales.Customers AS C

 LEFT OUTER JOIN Sales.Orders AS O

 ON C.custid = O.custid;

This query returns the following output, shown here in abbreviated form.

custid companyname orderid

----------- --------------- -----------

1 Customer NRZBB 10643

1 Customer NRZBB 10692

1 Customer NRZBB 10702

1 Customer NRZBB 10835

1 Customer NRZBB 10952

...

21 Customer KIDPX 10414

21 Customer KIDPX 10512

21 Customer KIDPX 10581

21 Customer KIDPX 10650

21 Customer KIDPX 10725

22 Customer DTDMN NULL

23 Customer WVFAF 10408

23 Customer WVFAF 10480

23 Customer WVFAF 10634

23 Customer WVFAF 10763

23 Customer WVFAF 10789

...

56 Customer QNIVZ 10684

56 Customer QNIVZ 10766

56 Customer QNIVZ 10833

56 Customer QNIVZ 10999

56 Customer QNIVZ 11020

57 Customer WVAXS NULL

58 Customer AHXHT 10322

58 Customer AHXHT 10354

58 Customer AHXHT 10474

58 Customer AHXHT 10502

58 Customer AHXHT 10995

...

91 Customer CCFIZ 10792

91 Customer CCFIZ 10870

91 Customer CCFIZ 10906

91 Customer CCFIZ 10998

91 Customer CCFIZ 11044

(832 row(s) affected)

112 Microsoft SQL Server 2012 T-SQL Fundamentals

Two customers in the Customers table did not place any orders. Their IDs are 22 and 57. Observe

that in the output of the query, both customers are returned with NULL marks in the attributes from

the Orders table. Logically, the rows for these two customers were iltered out by the second phase
of the join (the ilter based on the ON predicate), but the third phase added those as outer rows. Had

the join been an inner join, these two rows would not have been returned. These two rows are added

to preserve all the rows of the left table.

It might help to think of the result of an outer join as having two kinds of rows with respect to the

preserved side—inner rows and outer rows. Inner rows are rows that have matches in the other side

based on the ON predicate, and outer rows are rows that don’t. An inner join returns only inner rows,

whereas an outer join returns both inner and outer rows.

A common question about outer joins that is the source of a lot of confusion is whether to specify

a predicate in the ON or WHERE clause of a query. You can see that with respect to rows from the

preserved side of an outer join, the ilter based on the ON predicate is not inal. In other words, the
ON predicate does not determine whether a row will show up in the output, only whether it will be

matched with rows from the other side. So when you need to express a predicate that is not inal—
meaning a predicate that determines which rows to match from the nonpreserved side—specify

the predicate in the ON clause. When you need a ilter to be applied after outer rows are produced,
and you want the ilter to be inal, specify the predicate in the WHERE clause. The WHERE clause is

processed after the FROM clause—speciically, after all table operators have been processed and (in
the case of outer joins) after all outer rows have been produced. Also, the WHERE clause is inal with
respect to rows that it ilters out, unlike the ON clause.

Suppose that you need to return only customers who did not place any orders or, more technically

speaking, you need to return only outer rows. You can use the previous query as your basis, adding

a WHERE clause that ilters only outer rows. Remember that outer rows are identiied by the NULL

marks in the attributes from the nonpreserved side of the join. So you can ilter only the rows in which
one of the attributes in the nonpreserved side of the join is NULL, like this.

SELECT C.custid, C.companyname

FROM Sales.Customers AS C

 LEFT OUTER JOIN Sales.Orders AS O

 ON C.custid = O.custid

WHERE O.orderid IS NULL;

This query returns only two rows, with the customers 22 and 57.

custid companyname

----------- ---------------

22 Customer DTDMN

57 Customer WVAXS

(2 row(s) affected)

Notice a couple of important things about this query. Recall the discussions about NULL marks

earlier in the book: When looking for a NULL, you should use the operator IS NULL and not an equal-

ity operator, because when an equality operator compares something with a NULL, it always returns

UNKNOWN—even when it is comparing two NULL marks. Also, the choice of which attribute from

 CHAPTER 3 Joins 113

the nonpreserved side of the join to ilter is important. You should choose an attribute that can only
have a NULL when the row is an outer row and not otherwise (for example, not a NULL originating

from the base table). For this purpose, three cases are safe to consider—a primary key column, a

join column, and a column deined as NOT NULL. A primary key column cannot be NULL; therefore,

a NULL in such a column can only mean that the row is an outer row. If a row has a NULL in the join

column, that row is iltered out by the second phase of the join, so a NULL in such a column can only

mean that it’s an outer row. And obviously, a NULL in a column that is deined as NOT NULL can only

mean that the row is an outer row.

To practice what you’ve learned and get a better grasp of outer joins, make sure that you perform

the exercises for this chapter.

Beyond the Fundamentals of Outer Joins
This section covers more advanced aspects of outer joins and is provided as optional reading for

when you feel very comfortable with the fundamentals of outer joins.

Including Missing Values

You can use outer joins to identify and include missing values when querying data. For example, sup-

pose that you need to query all orders from the Orders table in the TSQL2012 database. You need to

ensure that you get at least one row in the output for each date in the range January 1, 2006 through

December 31, 2008. You don’t want to do anything special with dates within the range that have or-

ders, but you do want the output to include the dates with no orders, with NULL marks as placehold-

ers in the attributes of the order.

To solve the problem, you can irst write a query that returns a sequence of all dates in the re-

quested date range. You can then perform a left outer join between that set and the Orders table.

This way, the result also includes the missing order dates.

To produce a sequence of dates in a given range, I usually use an auxiliary table of numbers. I cre-

ate a table called dbo.Nums with a column called n, and populate it with a sequence of integers (1,

2, 3, and so on). I ind that an auxiliary table of numbers is an extremely powerful general-purpose
tool that I end up using to solve many problems. You need to create it only once in the database and

populate it with as many numbers as you might need. The TSQL2012 sample database already has

such an auxiliary table.

As the irst step in the solution, you need to produce a sequence of all dates in the requested
range. You can achieve this by querying the Nums table and iltering as many numbers as the number
of days in the requested date range. You can use the DATEDIFF function to calculate that number. By

adding n – 1 days to the starting point of the date range (January 1, 2006) you get the actual date in

the sequence. Here’s the solution query.

SELECT DATEADD(day, n-1, '20060101') AS orderdate

FROM dbo.Nums

WHERE n <= DATEDIFF(day, '20060101', '20081231') + 1

ORDER BY orderdate;

114 Microsoft SQL Server 2012 T-SQL Fundamentals

This query returns a sequence of all dates in the range January 1, 2006 through December 31, 2008,

as shown here in abbreviated form.

orderdate

2006-01-01 00:00:00.000

2006-01-02 00:00:00.000

2006-01-03 00:00:00.000

2006-01-04 00:00:00.000

2006-01-05 00:00:00.000

...

2008-12-27 00:00:00.000

2008-12-28 00:00:00.000

2008-12-29 00:00:00.000

2008-12-30 00:00:00.000

2008-12-31 00:00:00.000

(1096 row(s) affected)

The next step is to extend the previous query, adding a left outer join between Nums and the

Orders tables. The join condition compares the order date produced from the Nums table and the

orderdate from the Orders table by using the expression DATEADD(day, Nums.n – 1, ‘20060101’) like

this.

SELECT DATEADD(day, Nums.n - 1, '20060101') AS orderdate,

 O.orderid, O.custid, O.empid

FROM dbo.Nums

 LEFT OUTER JOIN Sales.Orders AS O

 ON DATEADD(day, Nums.n - 1, '20060101') = O.orderdate

WHERE Nums.n <= DATEDIFF(day, '20060101', '20081231') + 1

ORDER BY orderdate;

This query produces the following output, shown here in abbreviated form.

orderdate orderid custid empid

-------------------------- ----------- ----------- -----------

2006-01-01 00:00:00.000 NULL NULL NULL

2006-01-02 00:00:00.000 NULL NULL NULL

2006-01-03 00:00:00.000 NULL NULL NULL

2006-01-04 00:00:00.000 NULL NULL NULL

2006-01-05 00:00:00.000 NULL NULL NULL

...

2006-06-29 00:00:00.000 NULL NULL NULL

2006-06-30 00:00:00.000 NULL NULL NULL

2006-07-01 00:00:00.000 NULL NULL NULL

2006-07-02 00:00:00.000 NULL NULL NULL

2006-07-03 00:00:00.000 NULL NULL NULL

2006-07-04 00:00:00.000 10248 85 5

2006-07-05 00:00:00.000 10249 79 6

2006-07-06 00:00:00.000 NULL NULL NULL

2006-07-07 00:00:00.000 NULL NULL NULL

2006-07-08 00:00:00.000 10250 34 4

2006-07-08 00:00:00.000 10251 84 3

2006-07-09 00:00:00.000 10252 76 4

2006-07-10 00:00:00.000 10253 34 3

 CHAPTER 3 Joins 115

2006-07-11 00:00:00.000 10254 14 5

2006-07-12 00:00:00.000 10255 68 9

2006-07-13 00:00:00.000 NULL NULL NULL

2006-07-14 00:00:00.000 NULL NULL NULL

2006-07-15 00:00:00.000 10256 88 3

2006-07-16 00:00:00.000 10257 35 4

...

2008-12-27 00:00:00.000 NULL NULL NULL

2008-12-28 00:00:00.000 NULL NULL NULL

2008-12-29 00:00:00.000 NULL NULL NULL

2008-12-30 00:00:00.000 NULL NULL NULL

2008-12-31 00:00:00.000 NULL NULL NULL

(1446 row(s) affected)

Order dates that do not appear in the Orders table appear in the output of the query with NULL

marks in the order attributes.

Filtering attributes from the nonpreserved Side of an Outer Join

When you need to review code involving outer joins to look for logical bugs, one of the things you

should examine is the WHERE clause. If the predicate in the WHERE clause refers to an attribute from

the nonpreserved side of the join using an expression in the form <attribute> <operator> <value>, it’s

usually an indication of a bug. This is because attributes from the nonpreserved side of the join are

NULL marks in outer rows, and an expression in the form NULL <operator> <value> yields UNKNOWN

(unless it’s the IS NULL operator explicitly looking for NULL marks). Recall that a WHERE clause ilters
UNKNOWN out. Such a predicate in the WHERE clause causes all outer rows to be iltered out, effec-

tively nullifying the outer join. In other words, it’s as if the join type logically becomes an inner join. So

the programmer either made a mistake in the choice of the join type or made a mistake in the predi-

cate. If this is not clear yet, the following example might help. Consider the following query.

SELECT C.custid, C.companyname, O.orderid, O.orderdate

FROM Sales.Customers AS C

 LEFT OUTER JOIN Sales.Orders AS O

 ON C.custid = O.custid

WHERE O.orderdate >= '20070101';

The query performs a left outer join between the Customers and Orders tables. Prior to applying

the WHERE ilter, the join operator returns inner rows for customers who placed orders and outer
rows for customers who didn’t place orders, with NULL marks in the order attributes. The predicate

O.orderdate >= ‘20070101’ in the WHERE clause evaluates to UNKNOWN for all outer rows because

those have a NULL in the O.orderdate attribute. All outer rows are eliminated by the WHERE ilter, as
you can see in the output of the query, shown here in abbreviated form.

custid companyname orderid orderdate

----------- ----------------- ----------- -----------------------

19 Customer RFNQC 10400 2007-01-01 00:00:00.000

65 Customer NYUHS 10401 2007-01-01 00:00:00.000

20 Customer THHDP 10402 2007-01-02 00:00:00.000

20 Customer THHDP 10403 2007-01-03 00:00:00.000

49 Customer CQRAA 10404 2007-01-03 00:00:00.000

...

116 Microsoft SQL Server 2012 T-SQL Fundamentals

58 Customer AHXHT 11073 2008-05-05 00:00:00.000

73 Customer JMIKW 11074 2008-05-06 00:00:00.000

68 Customer CCKOT 11075 2008-05-06 00:00:00.000

9 Customer RTXGC 11076 2008-05-06 00:00:00.000

65 Customer NYUHS 11077 2008-05-06 00:00:00.000

(678 row(s) affected)

This means that the use of an outer join here was futile. The programmer either made a mistake in

using an outer join or made a mistake in the WHERE predicate.

Using Outer Joins in a Multi-Join Query

Recall the discussion about all-at-once operations in Chapter 2, “Single-Table Queries.” The concept
describes the fact that all expressions that appear in the same logical query processing phase are

logically evaluated at the same point in time. However, this concept is not applicable to the process-

ing of table operators in the FROM phase. Table operators are logically evaluated from left to right.

Re arranging the order in which outer joins are processed might result in different output, so you

cannot rearrange them at will.

Some interesting logical bugs have to do with the logical order in which outer joins are processed.

For example, a common logical bug involving outer joins could be considered a variation of the bug

in the previous section. Suppose that you write a multi-join query with an outer join between two

tables, followed by an inner join with a third table. If the predicate in the inner join’s ON clause com-

pares an attribute from the nonpreserved side of the outer join and an attribute from the third table,

all outer rows are iltered out. Remember that outer rows have NULL marks in the attributes from the

nonpreserved side of the join, and comparing a NULL with anything yields UNKNOWN. UNKNOWN is

iltered out by the ON ilter. In other words, such a predicate would nullify the outer join, and logically
it would be as if you speciied an inner join. For example, consider the following query.

SELECT C.custid, O.orderid, OD.productid, OD.qty

FROM Sales.Customers AS C

 LEFT OUTER JOIN Sales.Orders AS O

 ON C.custid = O.custid

 JOIN Sales.OrderDetails AS OD

 ON O.orderid = OD.orderid;

The irst join is an outer join returning customers and their orders and also customers who did
not place any orders. The outer rows representing customers with no orders have NULL marks in the

order attributes. The second join matches order lines from the OrderDetails table with rows from the

result of the irst join, based on the predicate O.orderid = OD.orderid; however, in the rows represent-

ing customers with no orders, the O.orderid attribute is NULL. Therefore, the predicate evaluates to

UNKNOWN, and those rows are iltered out. The output shown here in abbreviated form doesn’t
contain the customers 22 and 57, the two customers who did not place orders.

 CHAPTER 3 Joins 117

custid orderid productid qty

----------- ----------- ----------- ------

85 10248 11 12

85 10248 42 10

85 10248 72 5

79 10249 14 9

79 10249 51 40

...

65 11077 64 2

65 11077 66 1

65 11077 73 2

65 11077 75 4

65 11077 77 2

(2155 row(s) affected)

Generally speaking, outer rows are dropped whenever any kind of outer join (left, right, or full) is

followed by a subsequent inner join or right outer join. That’s assuming, of course, that the join condi-

tion compares the NULL marks from the left side with something from the right side.

There are several ways to get around the problem if you want to return customers with no orders

in the output. One option is to use a left outer join in the second join as well.

SELECT C.custid, O.orderid, OD.productid, OD.qty

FROM Sales.Customers AS C

 LEFT OUTER JOIN Sales.Orders AS O

 ON C.custid = O.custid

 LEFT OUTER JOIN Sales.OrderDetails AS OD

 ON O.orderid = OD.orderid;

This way, the outer rows produced by the irst join aren’t iltered out, as you can see in the output
shown here in abbreviated form.

custid orderid productid qty

----------- ----------- ----------- ------

85 10248 11 12

85 10248 42 10

85 10248 72 5

79 10249 14 9

79 10249 51 40

...

65 11077 64 2

65 11077 66 1

65 11077 73 2

65 11077 75 4

65 11077 77 2

22 NULL NULL NULL

57 NULL NULL NULL

(2157 row(s) affected)

118 Microsoft SQL Server 2012 T-SQL Fundamentals

A second option is to irst join Orders and OrderDetails by using an inner join, and then join to the

Customers table by using a right outer join.

SELECT C.custid, O.orderid, OD.productid, OD.qty

FROM Sales.Orders AS O

 JOIN Sales.OrderDetails AS OD

 ON O.orderid = OD.orderid

 RIGHT OUTER JOIN Sales.Customers AS C

 ON O.custid = C.custid;

This way, the outer rows are produced by the last join and are not iltered out.

A third option is to use parentheses to turn the inner join between Orders and OrderDetails into an

independent logical phase. This way, you can apply a left outer join between the Customers table and

the result of the inner join between Orders and OrderDetails. The query would look like this.

SELECT C.custid, O.orderid, OD.productid, OD.qty

FROM Sales.Customers AS C

 LEFT OUTER JOIN

 (Sales.Orders AS O

 JOIN Sales.OrderDetails AS OD

 ON O.orderid = OD.orderid)

 ON C.custid = O.custid;

Using the COUNT aggregate with Outer Joins

Another common logical bug involves using COUNT with outer joins. When you group the result of

an outer join and use the COUNT(*) aggregate, the aggregate takes into consideration both inner

rows and outer rows, because it counts rows regardless of their contents. Usually, you’re not supposed

to take outer rows into consideration for the purposes of counting. For example, the following query

is supposed to return the count of orders for each customer.

SELECT C.custid, COUNT(*) AS numorders

FROM Sales.Customers AS C

 LEFT OUTER JOIN Sales.Orders AS O

 ON C.custid = O.custid

GROUP BY C.custid;

However, the COUNT(*) aggregate counts rows regardless of their meaning or contents, and cus-

tomers who did not place orders—such as customers 22 and 57—each have an outer row in the result

of the join. As you can see in the output of the query, shown here in abbreviated form, both 22 and

57 show up with a count of 1, whereas the number of orders they placed is actually 0.

 CHAPTER 3 Joins 119

custid numorders

----------- -----------

1 6

2 4

3 7

4 13

5 18

...

22 1

...

57 1

...

87 15

88 9

89 14

90 7

91 7

(91 row(s) affected)

The COUNT(*) aggregate function cannot detect whether a row really represents an order. To ix
the problem, you should use COUNT(<column>) instead of COUNT(*), and provide a column from

the nonpreserved side of the join. This way, the COUNT() aggregate ignores outer rows because they

have a NULL in that column. Remember to use a column that can only be NULL, in case the row is an

outer row—for example, the primary key column orderid.

SELECT C.custid, COUNT(O.orderid) AS numorders

FROM Sales.Customers AS C

 LEFT OUTER JOIN Sales.Orders AS O

 ON C.custid = O.custid

GROUP BY C.custid;

Notice in the output shown here in abbreviated form that the customers 22 and 57 now show up

with a count of 0.

custid numorders

----------- -----------

1 6

2 4

3 7

4 13

5 18

...

22 0

...

57 0

...

87 15

88 9

89 14

90 7

91 7

(91 row(s) affected)

120 Microsoft SQL Server 2012 T-SQL Fundamentals

Conclusion

This chapter covered the JOIN table operator. It described the logical query processing phases in-

volved in the three fundamental types of joins—cross joins, inner joins, and outer joins. The chapter

also covered further join examples, including composite joins, non-equi joins, and multi-join queries.

The chapter concluded with an optional reading section covering more advanced aspects of outer

joins. To practice what you’ve learned, go over the exercises for this chapter.

Exercises

This section provides exercises to help you familiarize yourself with the subjects discussed in this

chapter. All exercises involve querying objects in the TSQL2012 database.

1-1
Write a query that generates ive copies of each employee row.

 ■ Tables involved: HR.Employees and dbo.Nums

 ■ Desired output:

empid firstname lastname n

----------- ---------- -------------------- -----------

1 Sara Davis 1

2 Don Funk 1

3 Judy Lew 1

4 Yael Peled 1

5 Sven Buck 1

6 Paul Suurs 1

7 Russell King 1

8 Maria Cameron 1

9 Zoya Dolgopyatova 1

1 Sara Davis 2

2 Don Funk 2

3 Judy Lew 2

4 Yael Peled 2

5 Sven Buck 2

6 Paul Suurs 2

7 Russell King 2

8 Maria Cameron 2

9 Zoya Dolgopyatova 2

1 Sara Davis 3

2 Don Funk 3

3 Judy Lew 3

4 Yael Peled 3

5 Sven Buck 3

6 Paul Suurs 3

7 Russell King 3

8 Maria Cameron 3

9 Zoya Dolgopyatova 3

 CHAPTER 3 Joins 121

1 Sara Davis 4

2 Don Funk 4

3 Judy Lew 4

4 Yael Peled 4

5 Sven Buck 4

6 Paul Suurs 4

7 Russell King 4

8 Maria Cameron 4

9 Zoya Dolgopyatova 4

1 Sara Davis 5

2 Don Funk 5

3 Judy Lew 5

4 Yael Peled 5

5 Sven Buck 5

6 Paul Suurs 5

7 Russell King 5

8 Maria Cameron 5

9 Zoya Dolgopyatova 5

(45 row(s) affected)

1-2 (Optional, advanced)
Write a query that returns a row for each employee and day in the range June 12, 2009 through

June 16, 2009.

 ■ Tables involved: HR.Employees and dbo.Nums

 ■ Desired output:

empid dt

----------- -----------------------

1 2009-06-12 00:00:00.000

1 2009-06-13 00:00:00.000

1 2009-06-14 00:00:00.000

1 2009-06-15 00:00:00.000

1 2009-06-16 00:00:00.000

2 2009-06-12 00:00:00.000

2 2009-06-13 00:00:00.000

2 2009-06-14 00:00:00.000

2 2009-06-15 00:00:00.000

2 2009-06-16 00:00:00.000

3 2009-06-12 00:00:00.000

3 2009-06-13 00:00:00.000

3 2009-06-14 00:00:00.000

3 2009-06-15 00:00:00.000

3 2009-06-16 00:00:00.000

4 2009-06-12 00:00:00.000

4 2009-06-13 00:00:00.000

4 2009-06-14 00:00:00.000

4 2009-06-15 00:00:00.000

4 2009-06-16 00:00:00.000

5 2009-06-12 00:00:00.000

5 2009-06-13 00:00:00.000

5 2009-06-14 00:00:00.000

122 Microsoft SQL Server 2012 T-SQL Fundamentals

5 2009-06-15 00:00:00.000

5 2009-06-16 00:00:00.000

6 2009-06-12 00:00:00.000

6 2009-06-13 00:00:00.000

6 2009-06-14 00:00:00.000

6 2009-06-15 00:00:00.000

6 2009-06-16 00:00:00.000

7 2009-06-12 00:00:00.000

7 2009-06-13 00:00:00.000

7 2009-06-14 00:00:00.000

7 2009-06-15 00:00:00.000

7 2009-06-16 00:00:00.000

8 2009-06-12 00:00:00.000

8 2009-06-13 00:00:00.000

8 2009-06-14 00:00:00.000

8 2009-06-15 00:00:00.000

8 2009-06-16 00:00:00.000

9 2009-06-12 00:00:00.000

9 2009-06-13 00:00:00.000

9 2009-06-14 00:00:00.000

9 2009-06-15 00:00:00.000

9 2009-06-16 00:00:00.000

(45 row(s) affected)

2
Return United States customers, and for each customer return the total number of orders and total

quantities.

 ■ Tables involved: Sales.Customers, Sales.Orders, and Sales.OrderDetails

 ■ Desired output:

custid numorders totalqty

----------- ----------- -----------

32 11 345

36 5 122

43 2 20

45 4 181

48 8 134

55 10 603

65 18 1383

71 31 4958

75 9 327

77 4 46

78 3 59

82 3 89

89 14 1063

(13 row(s) affected)

 CHAPTER 3 Joins 123

3
Return customers and their orders, including customers who placed no orders.

 ■ Tables involved: Sales.Customers and Sales.Orders

 ■ Desired output (abbreviated):

custid companyname orderid orderdate

----------- --------------- ----------- ------------------------

85 Customer ENQZT 10248 2006-07-04 00:00:00.000

79 Customer FAPSM 10249 2006-07-05 00:00:00.000

34 Customer IBVRG 10250 2006-07-08 00:00:00.000

84 Customer NRCSK 10251 2006-07-08 00:00:00.000

...

73 Customer JMIKW 11074 2008-05-06 00:00:00.000

68 Customer CCKOT 11075 2008-05-06 00:00:00.000

9 Customer RTXGC 11076 2008-05-06 00:00:00.000

65 Customer NYUHS 11077 2008-05-06 00:00:00.000

22 Customer DTDMN NULL NULL

57 Customer WVAXS NULL NULL

(832 row(s) affected)

4
Return customers who placed no orders.

 ■ Tables involved: Sales.Customers and Sales.Orders

 ■ Desired output:

custid companyname

----------- ---------------

22 Customer DTDMN

57 Customer WVAXS

(2 row(s) affected)

5
Return customers with orders placed on February 12, 2007, along with their orders.

 ■ Tables involved: Sales.Customers and Sales.Orders

 ■ Desired output:

custid companyname orderid orderdate

----------- --------------- ----------- -----------------------

66 Customer LHANT 10443 2007-02-12 00:00:00.000

5 Customer HGVLZ 10444 2007-02-12 00:00:00.000

(2 row(s) affected)

124 Microsoft SQL Server 2012 T-SQL Fundamentals

6 (Optional, advanced)
Return customers with orders placed on February 12, 2007, along with their orders. Also return cus-

tomers who didn’t place orders on February 12, 2007.

 ■ Tables involved: Sales.Customers and Sales.Orders

 ■ Desired output (abbreviated):

custid companyname orderid orderdate

----------- ----------------- ----------- -----------------------

72 Customer AHPOP NULL NULL

58 Customer AHXHT NULL NULL

25 Customer AZJED NULL NULL

18 Customer BSVAR NULL NULL

91 Customer CCFIZ NULL NULL

...

33 Customer FVXPQ NULL NULL

53 Customer GCJSG NULL NULL

39 Customer GLLAG NULL NULL

16 Customer GYBBY NULL NULL

4 Customer HFBZG NULL NULL

5 Customer HGVLZ 10444 2007-02-12 00:00:00.000

42 Customer IAIJK NULL NULL

34 Customer IBVRG NULL NULL

63 Customer IRRVL NULL NULL

73 Customer JMIKW NULL NULL

15 Customer JUWXK NULL NULL

...

21 Customer KIDPX NULL NULL

30 Customer KSLQF NULL NULL

55 Customer KZQZT NULL NULL

71 Customer LCOUJ NULL NULL

77 Customer LCYBZ NULL NULL

66 Customer LHANT 10443 2007-02-12 00:00:00.000

38 Customer LJUCA NULL NULL

59 Customer LOLJO NULL NULL

36 Customer LVJSO NULL NULL

64 Customer LWGMD NULL NULL

29 Customer MDLWA NULL NULL

...

(91 row(s) affected)

 CHAPTER 3 Joins 125

7 (Optional, advanced)
Return all customers, and for each return a Yes/No value depending on whether the customer placed

an order on February 12, 2007.

 ■ Tables involved: Sales.Customers and Sales.Orders

 ■ Desired output (abbreviated):

custid companyname HasOrderOn20070212

----------- ----------------- ------------------

1 Customer NRZBB No

2 Customer MLTDN No

3 Customer KBUDE No

4 Customer HFBZG No

5 Customer HGVLZ Yes

6 Customer XHXJV No

7 Customer QXVLA No

8 Customer QUHWH No

9 Customer RTXGC No

10 Customer EEALV No

...

(91 row(s) affected)

Solutions

This section provides solutions to the exercises for this chapter.

1-1
Producing multiple copies of rows can be achieved with a fundamental technique that utilizes a cross

join. If you need to produce ive copies of each employee row, you need to perform a cross join be-
tween the Employees table and a table that has ive rows; alternatively, you can perform a cross join
between Employees and a table that has more than ive rows, but ilter only ive from that table in the
WHERE clause. The Nums table is very convenient for this purpose. Simply cross Employees and Nums,

and ilter from Nums as many rows as the number of requested copies (ive, in this case). Here’s the
solution query.

SELECT E.empid, E.firstname, E.lastname, N.n

FROM HR.Employees AS E

 CROSS JOIN dbo.Nums AS N

WHERE N.n <= 5

ORDER BY n, empid;

126 Microsoft SQL Server 2012 T-SQL Fundamentals

1-2
This exercise is an extension of the previous exercise. Instead of being asked to produce a predeter-

mined constant number of copies of each employee row, you are asked to produce a copy for each

day in a certain date range. So here you need to calculate the number of days in the requested date

range by using the DATEDIFF function, and refer to the result of that expression in the query’s WHERE

clause instead of referring to a constant. To produce the dates, simply add n – 1 days to the date that

starts the requested range. Here’s the solution query.

SELECT E.empid,

 DATEADD(day, D.n - 1, '20090612') AS dt

FROM HR.Employees AS E

 CROSS JOIN dbo.Nums AS D

WHERE D.n <= DATEDIFF(day, '20090612', '20090616') + 1

ORDER BY empid, dt;

The DATEDIFF function returns 4 because there is a four-day difference between June 12, 2009

and June 16, 2009. Add 1 to the result, and you get 5 for the ive days in the range. So the WHERE

clause ilters ive rows from Nums where n is less than or equal to 5. By adding n – 1 days to June 12,

2009, you get all dates in the range June 12, 2009 and June 16, 2009.

2
This exercise requires you to write a query that joins three tables: Customers, Orders, and OrderDetails.

The query should use the WHERE clause to ilter only rows where the customer’s country is the United
States. Because you are asked to return aggregates per customer, the query should group the rows

by customer ID. You need to resolve a tricky issue here to return the right number of orders for each

customer. Because of the join between Orders and OrderDetails, you don’t get only one row per

order—you get one row per order line. So if you use the COUNT(*) function in the SELECT list, you get

back the number of order lines for each customer and not the number of orders. To resolve this issue,

you need to take each order into consideration only once. You can do this by using COUNT(DISTINCT

O.orderid) instead of COUNT(*). The total quantities don’t create any special issues because the quan-

tity is associated with the order line and not the order. Here’s the solution query.

SELECT C.custid, COUNT(DISTINCT O.orderid) AS numorders, SUM(OD.qty) AS totalqty

FROM Sales.Customers AS C

 JOIN Sales.Orders AS O

 ON O.custid = C.custid

 JOIN Sales.OrderDetails AS OD

 ON OD.orderid = O.orderid

WHERE C.country = N'USA'

GROUP BY C.custid;

 CHAPTER 3 Joins 127

3
To get both customers who placed orders and customers who didn’t place orders in the result, you

need to use an outer join, like this.

SELECT C.custid, C.companyname, O.orderid, O.orderdate

FROM Sales.Customers AS C

 LEFT OUTER JOIN Sales.Orders AS O

 ON O.custid = C.custid;

This query returns 832 rows (including the customers 22 and 57, who didn’t place orders). An inner

join between the tables would return only 830 rows, without those customers.

4
This exercise is an extension of the previous one. To return only customers who didn’t place orders,

you need to add a WHERE clause to the query that ilters only outer rows; namely, rows that represent
customers with no orders. Outer rows have NULL marks in the attributes from the nonpreserved side

of the join (Orders). But to make sure that the NULL is a placeholder for an outer row and not a NULL

that originated from the table, it is recommended that you refer to an attribute that is the primary

key, or the join column, or one deined as not allowing NULL marks. Here’s the solution query, which

refers to the primary key of the Orders table in the WHERE clause.

SELECT C.custid, C.companyname

FROM Sales.Customers AS C

 LEFT OUTER JOIN Sales.Orders AS O

 ON O.custid = C.custid

WHERE O.orderid IS NULL;

This query returns only two rows, for customers 22 and 57, who didn’t place orders.

5
This exercise involves writing a query that performs an inner join between Customers and Orders and

ilters only rows in which the order date is February 12, 2007.

SELECT C.custid, C.companyname, O.orderid, O.orderdate

FROM Sales.Customers AS C

 JOIN Sales.Orders AS O

 ON O.custid = C.custid

WHERE O.orderdate = '20070212';

The WHERE clause iltered out customers who didn’t place orders on February 12, 2007, but that
was the request.

128 Microsoft SQL Server 2012 T-SQL Fundamentals

6
This exercise builds on the previous one. The trick here is to realize two things. First, you need an

outer join because you are supposed to return customers who do not meet a certain criteria. Second,

the ilter on the order date must appear in the ON clause and not the WHERE clause. Remember that

the WHERE ilter is applied after outer rows are added and is inal. Your goal is to match orders to
customers only if the order was placed by the customer on February 12, 2007. You still want to get

customers who didn’t place orders on that date in the output; in other words, the ilter on the order
date should only determine matches and not be considered inal in regard to the customer rows.
Hence, the ON clause should match customers and orders based on both an equality between the

customer’s customer ID and the order’s customer ID, and on the order date being February 12, 2007.

Here’s the solution query.

SELECT C.custid, C.companyname, O.orderid, O.orderdate

FROM Sales.Customers AS C

 LEFT OUTER JOIN Sales.Orders AS O

 ON O.custid = C.custid

 AND O.orderdate = '20070212';

7
This exercise is an extension of the previous exercise. Here, instead of returning matching orders,

you just need to return a Yes/No value indicating whether there is a matching order. Remember that

in an outer join, a nonmatch is identiied as an outer row with NULL marks in the attributes of the

non preserved side. So you can use a simple CASE expression that checks whether the current row is

an outer one, in which case it returns Yes; otherwise, it returns No. Because technically you can have

more than one match per customer, you should add a DISTINCT clause to the SELECT list. This way,

you get only one row back for each customer. Here’s the solution query.

SELECT DISTINCT C.custid, C.companyname,

 CASE WHEN O.orderid IS NOT NULL THEN 'Yes' ELSE 'No' END AS [HasOrderOn20070212]

FROM Sales.Customers AS C

 LEFT OUTER JOIN Sales.Orders AS O

 ON O.custid = C.custid

 AND O.orderdate = '20070212';

 129

C H A P T E R 4

Subqueries

SQL supports writing queries within queries, or nesting queries. The outermost query is a query

whose result set is returned to the caller and is known as the outer query. The inner query is a

query whose result is used by the outer query and is known as a subquery. The inner query acts in

place of an expression that is based on constants or variables and is evaluated at run time. Unlike the

results of expressions that use constants, the result of a subquery can change, because of changes in

the queried tables. When you use subqueries, you avoid the need for separate steps in your solutions

that store intermediate query results in variables.

A subquery can be either self-contained or correlated. A self-contained subquery has no depen-

dency on the outer query that it belongs to, whereas a correlated subquery does. A subquery can

be single-valued, multivalued, or table-valued. That is, a subquery can return a single value (a scalar

value), multiple values, or a whole table result.

This chapter focuses on subqueries that return a single value (scalar subqueries) and subqueries

that return multiple values (multivalued subqueries). I’ll cover subqueries that return whole tables

(table subqueries) later in the book in Chapter 5, “Table Expressions.”

Both self-contained and correlated subqueries can return a scalar or multiple values. I’ll irst
describe self-contained subqueries and demonstrate both scalar and multivalued examples, and ex-

plicitly identify those as scalar or multivalued subqueries. Then I’ll describe correlated subqueries, but

I won’t explicitly identify them as scalar or multivalued, assuming that you will already understand the

difference.

Again, exercises at the end of the chapter can help you practice what you’ve learned.

Self-Contained Subqueries

Every subquery has an outer query that it belongs to. Self-contained subqueries are subqueries that

are independent of the outer query that they belong to. Self-contained subqueries are very conve-

nient to debug, because you can always highlight the subquery code, run it, and ensure that it does

what it’s supposed to do. Logically, it’s as if the subquery code is evaluated only once before the outer

query is evaluated, and then the outer query uses the result of the subquery. The following sections

take a look at some concrete examples of self-contained subqueries.

130 Microsoft SQL Server 2012 T-SQL Fundamentals

Self-Contained Scalar Subquery examples
A scalar subquery is a subquery that returns a single value—regardless of whether it is self-contained.

Such a subquery can appear anywhere in the outer query where a single-valued expression can ap-

pear (such as WHERE or SELECT).

For example, suppose that you need to query the Orders table in the TSQL2012 database and

return information about the order that has the maximum order ID in the table. You could accomplish

the task by using a variable. The code could retrieve the maximum order ID from the Orders table

and store the result in a variable. Then the code could query the Orders table and ilter the order
where the order ID is equal to the value stored in the variable. The following code demonstrates this

technique.

USE TSQL2012;

DECLARE @maxid AS INT = (SELECT MAX(orderid)

 FROM Sales.Orders);

SELECT orderid, orderdate, empid, custid

FROM Sales.Orders

WHERE orderid = @maxid;

This query returns the following output.

orderid orderdate empid custid

------------ --------------------------- ------------ -----------

11077 2008-05-06 00:00:00.000 1 65

You can substitute the technique that uses a variable with an embedded subquery. You achieve

this by substituting the reference to the variable with a scalar self-contained subquery that returns the

maximum order ID. This way, your solution has a single query instead of the two-step process.

SELECT orderid, orderdate, empid, custid

FROM Sales.Orders

WHERE orderid = (SELECT MAX(O.orderid)

 FROM Sales.Orders AS O);

For a scalar subquery to be valid, it must return no more than one value. If a scalar subquery can

return more than one value, it might fail at run time. The following query happens to run without

failure.

SELECT orderid

FROM Sales.Orders

WHERE empid =

 (SELECT E.empid

 FROM HR.Employees AS E

 WHERE E.lastname LIKE N'B%');

The purpose of this query is to return the order IDs of orders placed by any employee whose last

name starts with the letter B. The subquery returns employee IDs of all employees whose last names

start with the letter B, and the outer query returns order IDs of orders where the employee ID is

equal to the result of the subquery. Because an equality operator expects single-valued expressions

 CHAPTER 4 Subqueries 131

from both sides, the subquery is considered scalar. Because the subquery can potentially return

more than one value, the choices of using an equality operator and a scalar subquery here are

wrong. If the subquery returns more than one value, the query fails.

This query happens to run without failure because currently the Employees table contains only one

employee whose last name starts with B (Sven Buck with employee ID 5). This query returns the fol-

lowing output, shown here in abbreviated form.

orderid

10248

10254

10269

10297

10320

...

10874

10899

10922

10954

11043

(42 row(s) affected)

Of course, if the subquery returns more than one value, the query fails. For example, try running

the query with employees whose last names start with D.

SELECT orderid

FROM Sales.Orders

WHERE empid =

 (SELECT E.empid

 FROM HR.Employees AS E

 WHERE E.lastname LIKE N'D%');

Apparently, two employees have a last name starting with D (Sara Davis and Zoya Dolgopyatova).

Therefore, the query fails at run time with the following error.

Msg 512, Level 16, State 1, Line 1

Subquery returned more than 1 value. This is not permitted when the subquery follows =, !=, <,

<= , >, >= or when the subquery is used as an expression.

If a scalar subquery returns no value, it returns a NULL. Recall that a comparison with a NULL

yields UNKNOWN and that query ilters do not return a row for which the ilter expression evaluates
to UNKNOWN. For example, the Employees table currently has no employees whose last names start

with A; therefore, the following query returns an empty set.

SELECT orderid

FROM Sales.Orders

WHERE empid =

 (SELECT E.empid

 FROM HR.Employees AS E

 WHERE E.lastname LIKE N'A%');

132 Microsoft SQL Server 2012 T-SQL Fundamentals

Self-Contained Multivalued Subquery examples
A multivalued subquery is a subquery that returns multiple values as a single column, regardless of

whether the subquery is self-contained. Some predicates, such as the IN predicate, operate on a mul-

tivalued subquery.

note There are other predicates that operate on a multivalued subquery; those are SOME,

ANY, and ALL. They are very rarely used and therefore not covered in this book.

The form of the IN predicate is:

<scalar_expression> IN (<multivalued subquery>)

The predicate evaluates to TRUE if scalar_expression is equal to any of the values returned by the

subquery. Recall the last request discussed in the previous section—returning order IDs of orders that

were handled by employees with a last name starting with a certain letter. Because more than one

employee can have a last name starting with the same letter, this request should be handled with the

IN predicate and a multivalued subquery, and not with an equality operator and a scalar subquery.

For example, the following query returns order IDs of orders placed by employees with a last name

starting with D.

SELECT orderid

FROM Sales.Orders

WHERE empid IN

 (SELECT E.empid

 FROM HR.Employees AS E

 WHERE E.lastname LIKE N'D%');

Because it uses the IN predicate, this query is valid with any number of values returned—none,

one, or more. This query returns the following output, shown here in abbreviated form.

orderid

10258

10270

10275

10285

10292

...

10978

11016

11017

11022

11058

(166 row(s) affected)

 CHAPTER 4 Subqueries 133

You might wonder why you wouldn’t implement this task by using a join instead of subqueries,

like this.

SELECT O.orderid

FROM HR.Employees AS E

 JOIN Sales.Orders AS O

 ON E.empid = O.empid

WHERE E.lastname LIKE N'D%';

Similarly, you are likely to stumble into many other querying problems that you can solve with

either subqueries or joins. In my experience, there’s no reliable rule of thumb that says that a sub-

query is better than a join. In some cases, the database engine interprets both types of queries the

same way. Sometimes joins perform better than subqueries, and sometimes the opposite is true. My

approach is to irst write the solution query for the speciied task in an intuitive form, and if perfor-
mance is not satisfactory, one of my tuning approaches is to try query revisions. Such query revisions

might include using joins instead of subqueries or using subqueries instead of joins.

As another example of using multivalued subqueries, suppose that you need to write a query that

returns orders placed by customers from the United States. You can write a query against the Orders

table that returns orders where the customer ID is in the set of customer IDs of customers from the

United States. You can implement the last part in a self-contained, multivalued subquery. Here’s the

complete solution query.

SELECT custid, orderid, orderdate, empid

FROM Sales.Orders

WHERE custid IN

 (SELECT C.custid

 FROM Sales.Customers AS C

 WHERE C.country = N'USA');

This query returns the following output, shown here in abbreviated form.

custid orderid orderdate empid

----------- ----------- --------------------------- -----------

65 10262 2006-07-22 00:00:00.000 8

89 10269 2006-07-31 00:00:00.000 5

75 10271 2006-08-01 00:00:00.000 6

65 10272 2006-08-02 00:00:00.000 6

65 10294 2006-08-30 00:00:00.000 4

...

32 11040 2008-04-22 00:00:00.000 4

32 11061 2008-04-30 00:00:00.000 4

71 11064 2008-05-01 00:00:00.000 1

89 11066 2008-05-01 00:00:00.000 7

65 11077 2008-05-06 00:00:00.000 1

(122 row(s) affected)

134 Microsoft SQL Server 2012 T-SQL Fundamentals

As with any other predicate, you can negate the IN predicate with the NOT logical operator. For

example, the following query returns customers who did not place any orders.

SELECT custid, companyname

FROM Sales.Customers

WHERE custid NOT IN

 (SELECT O.custid

 FROM Sales.Orders AS O);

Note that best practice is to qualify the subquery to exclude NULL marks. Here, to keep the ex-

ample simple, I didn’t exclude NULL marks, but later in the chapter, in the “NULL Trouble” section, I

explain this recommendation.

The self-contained, multivalued subquery returns all customer IDs that appear in the Orders table.

Naturally, only IDs of customers who did place orders appear in the Orders table. The outer query

returns customers from the Customers table where the customer ID is not in the set of values returned

by the subquery—in other words, customers who did not place orders. This query returns the follow-

ing output.

custid companyname

----------- ----------------

22 Customer DTDMN

57 Customer WVAXS

You might wonder whether specifying a DISTINCT clause in the subquery can help performance,

because the same customer ID can occur more than once in the Orders table. The database engine

is smart enough to consider removing duplicates without you asking it to do so explicitly, so this isn’t

something you need to worry about.

The last example in this section demonstrates the use of multiple self-contained subqueries in the

same query—both single-valued and multivalued. Before I describe the task at hand, run the follow-

ing code to create a table called dbo.Orders in the TSQL2012 database (for test purposes), and popu-

late it with order IDs from the Sales.Orders table that have even-numbered order IDs.

USE TSQL2012;

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

CREATE TABLE dbo.Orders(orderid INT NOT NULL CONSTRAINT PK_Orders PRIMARY KEY);

INSERT INTO dbo.Orders(orderid)

 SELECT orderid

 FROM Sales.Orders

 WHERE orderid % 2 = 0;

 CHAPTER 4 Subqueries 135

I describe the INSERT statement in more detail in Chapter 8, “Data Modiication,” so don’t worry if
you’re not familiar with it yet.

The task at hand is to return all individual order IDs that are missing between the minimum and

maximum in the table. It can be quite complicated to solve this problem with a query without any

helper tables. You might ind the Nums table introduced in Chapter 3, “Joins,” very useful here. Re-

member that the Nums table contains a sequence of integers, starting with 1, with no gaps. To return

all missing order IDs from the Orders table, query the Nums table and ilter only numbers that are
between the minimum and maximum in the dbo.Orders table and that do not appear in the set of

order IDs in the Orders table. You can use scalar self-contained subqueries to return the minimum and

maximum order IDs and a multivalued self-contained subquery to return the set of all existing order

IDs. Here’s the complete solution query.

SELECT n

FROM dbo.Nums

WHERE n BETWEEN (SELECT MIN(O.orderid) FROM dbo.Orders AS O)

 AND (SELECT MAX(O.orderid) FROM dbo.Orders AS O)

 AND n NOT IN (SELECT O.orderid FROM dbo.Orders AS O);

Because the code that populated the dbo.Orders table iltered only even-numbered order IDs, this
query returns all odd-numbered values between the minimum and maximum order IDs in the Orders

table. The output of this query is shown here in abbreviated form.

n

10249

10251

10253

10255

10257

...

11067

11069

11071

11073

11075

(414 row(s) affected)

When you’re done, run the following code for cleanup.

DROP TABLE dbo.Orders;

136 Microsoft SQL Server 2012 T-SQL Fundamentals

Correlated Subqueries

Correlated subqueries are subqueries that refer to attributes from the table that appears in the outer

query. This means that the subquery is dependent on the outer query and cannot be invoked inde-

pendently. Logically, it’s as if the subquery is evaluated separately for each outer row. For example,

the query in Listing 4-1 returns orders with the maximum order ID for each customer.

LISTING 4-1 Correlated Subquery

USE TSQL2012;

SELECT custid, orderid, orderdate, empid

FROM Sales.Orders AS O1

WHERE orderid =

 (SELECT MAX(O2.orderid)

 FROM Sales.Orders AS O2

 WHERE O2.custid = O1.custid);

The outer query is against an instance of the Orders table called O1; it ilters orders where the
order ID is equal to the value returned by the subquery. The subquery ilters orders from a second
instance of the Orders table called O2, where the inner customer ID is equal to the outer customer

ID, and returns the maximum order ID from the iltered orders. In simpler terms, for each row in O1,

the subquery is in charge of returning the maximum order ID for the current customer. If the order ID

in O1 and the order ID returned by the subquery match, the order ID in O1 is the maximum for the

current customer, in which case the row from O1 is returned by the query. This query returns the fol-

lowing output, shown here in abbreviated form.

custid orderid orderdate empid

----------- ----------- --------------------------- -----------

91 11044 2008-04-23 00:00:00.000 4

90 11005 2008-04-07 00:00:00.000 2

89 11066 2008-05-01 00:00:00.000 7

88 10935 2008-03-09 00:00:00.000 4

87 11025 2008-04-15 00:00:00.000 6

...

5 10924 2008-03-04 00:00:00.000 3

4 11016 2008-04-10 00:00:00.000 9

3 10856 2008-01-28 00:00:00.000 3

2 10926 2008-03-04 00:00:00.000 4

1 11011 2008-04-09 00:00:00.000 3

(89 row(s) affected)

Correlated subqueries are usually much harder to igure out than self-contained subqueries. To
better understand the concept of correlated subqueries, I ind it useful to focus attention on a single
row in the outer table and understand the logical processing that takes place for that row. For ex-

ample, focus your attention on the order in the Orders table with order ID 10248.

 CHAPTER 4 Subqueries 137

custid orderid orderdate empid

----------- ----------- --------------------------- -----------

85 10248 2006-07-04 00:00:00.000 5

With respect to this outer row, when the subquery is evaluated, the correlation or reference to

O1.custid means 85. After substituting the correlation with 85, you get the following.

SELECT MAX(O2.orderid)

FROM Sales.Orders AS O2

WHERE O2.custid = 85;

This query returns the order ID 10739. The outer row’s order ID—10248—is compared with the

inner one—10739—and because there’s no match in this case, the outer row is iltered out. The sub-
query returns the same value for all rows in O1 with the same customer ID, and only in one case is

there a match—when the outer row’s order ID is the maximum for the current customer. Thinking in

such terms will make it easier for you to grasp the concept of correlated subqueries.

The fact that correlated subqueries are dependent on the outer query makes them harder to de-

bug than self-contained subqueries. You can’t just highlight the subquery portion and run it. For ex-

ample, if you try to highlight and run the subquery portion in Listing 4-1, you get the following error.

Msg 4104, Level 16, State 1, Line 1

The multi-part identifier “O1.custid” could not be bound.

This error indicates that the identiier O1.custid cannot be bound to an object in the query, be-

cause O1 is not deined in the query. It is only deined in the context of the outer query. To debug
correlated subqueries you need to substitute the correlation with a constant, and after ensuring that

the code is correct, substitute the constant with the correlation.

As another example of a correlated subquery, suppose that you need to query the Sales.OrderValues

view and return for each order the percentage that the current order value is of the total values of all

of the customer’s orders. In Chapter 7, “Beyond the Fundamentals of Querying,” I provide a solution
to this problem that uses window functions; here I’ll explain how to solve the problem by using sub-

queries. It’s always a good idea to try to come up with several solutions to each problem, because the

different solutions will usually vary in complexity and performance.

You can write an outer query against an instance of the OrderValues view called O1; in the SELECT

list, divide the current value by the result of a correlated subquery that returns the total value from

a second instance of OrderValues called O2 for the current customer. Here’s the complete solution

query.

SELECT orderid, custid, val,

 CAST(100. * val / (SELECT SUM(O2.val)

 FROM Sales.OrderValues AS O2

 WHERE O2.custid = O1.custid)

 AS NUMERIC(5,2)) AS pct

FROM Sales.OrderValues AS O1

ORDER BY custid, orderid;

138 Microsoft SQL Server 2012 T-SQL Fundamentals

The CAST function is used to convert the datatype of the expression to NUMERIC with a precision

of 5 (the total number of digits) and a scale of 2 (the number of digits after the decimal point).

This query returns the following output.

orderid custid val pct

----------- ----------- ---------- ------

10643 1 814.50 19.06

10692 1 878.00 20.55

10702 1 330.00 7.72

10835 1 845.80 19.79

10952 1 471.20 11.03

11011 1 933.50 21.85

10308 2 88.80 6.33

10625 2 479.75 34.20

10759 2 320.00 22.81

10926 2 514.40 36.67

...

(830 row(s) affected)

The EXISTS predicate
T-SQL supports a predicate called EXISTS that accepts a subquery as input and returns TRUE if the

subquery returns any rows and FALSE otherwise. For example, the following query returns customers

from Spain who placed orders.

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE country = N'Spain'

 AND EXISTS

 (SELECT * FROM Sales.Orders AS O

 WHERE O.custid = C.custid);

The outer query against the Customers table ilters only customers from Spain for whom the EXISTS

predicate returns TRUE. The EXISTS predicate returns TRUE if the current customer has related orders

in the Orders table.

One of the beneits of using the EXISTS predicate is that it allows you to intuitively phrase English-

like queries. For example, this query can be read just as you would say it in ordinary English: select the

customer ID and company name attributes from the Customers table, where the country is equal to

Spain, and at least one order exists in the Orders table with the same customer ID as the customer’s

customer ID.

 CHAPTER 4 Subqueries 139

This query returns the following output.

custid companyname

----------- ----------------

8 Customer QUHWH

29 Customer MDLWA

30 Customer KSLQF

69 Customer SIUIH

As with other predicates, you can negate the EXISTS predicate with the NOT logical operator. For

example, the following query returns customers from Spain who did not place orders.

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE country = N'Spain'

 AND NOT EXISTS

 (SELECT * FROM Sales.Orders AS O

 WHERE O.custid = C.custid);

This query returns the following output.

custid companyname

----------- ----------------

22 Customer DTDMN

Even though this book’s focus is on logical query processing and not performance, I thought you

might be interested to know that the EXISTS predicate lends itself to good optimization. That is, the

Microsoft SQL Server engine knows that it is enough to determine whether the subquery returns at

least one row or none, and it doesn’t need to process all qualifying rows. You can think of this capa-

bility as a kind of short-circuit evaluation.

Unlike most other cases, in this case it’s logically not a bad practice to use an asterisk (*) in the

 SELECT list of the subquery in the context of the EXISTS predicate. The EXISTS predicate only cares

about the existence of matching rows regardless of the attributes speciied in the SELECT list, as if the

whole SELECT clause were superluous. The SQL Server database engine knows this, and in terms of
optimization, ignores the subquery’s SELECT list. So in terms of optimization, specifying the column

wildcard * in this case has no negative impact when compared to alternatives such as specifying a con-

stant. However, some minor extra cost might be involved in the resolution process of expanding the

wildcard against metadata info. But this extra resolution cost is so minor that you will probably barely

notice it. My opinion on this matter is that queries should be natural and intuitive, unless there’s a very

compelling reason to sacriice this aspect of the code. I ind the form EXISTS(SELECT * FROM . . .) much

more intuitive than EXISTS(SELECT 1 FROM . . .). Saving the minor extra cost associated with the resolu-

tion of * is something that is not worth the cost of sacriicing the readability of the code.

Finally, another aspect of the EXISTS predicate that is interesting to note is that unlike most predi-

cates in T-SQL, EXISTS uses two-valued logic and not three-valued logic. If you think about it, there’s

no situation where it is unknown whether a query returns rows.

140 Microsoft SQL Server 2012 T-SQL Fundamentals

Beyond the Fundamentals of Subqueries

This section covers aspects of subqueries that you might consider to be beyond the fundamentals.

I provide it as optional reading in case you feel very comfortable with the material covered so far in

this chapter.

returning previous or next Values
Suppose that you need to query the Orders table in the TSQL2012 database and return, for each

order, information about the current order and also the previous order ID. The concept of “previ-
ous” implies logical ordering, but because you know that the rows in a table have no order, you need

to come up with a logical equivalent to the concept of “previous” that can be phrased with a T-SQL
expression. One example of such a logical equivalent is “the maximum value that is smaller than the
current value.” This phrase can be expressed in T-SQL with a correlated subquery like this.

SELECT orderid, orderdate, empid, custid,

 (SELECT MAX(O2.orderid)

 FROM Sales.Orders AS O2

 WHERE O2.orderid < O1.orderid) AS prevorderid

FROM Sales.Orders AS O1;

This query produces the following output, shown here in abbreviated form.

orderid orderdate empid custid prevorderid

----------- --------------------------- ----------- ----------- -----------

10248 2006-07-04 00:00:00.000 5 85 NULL

10249 2006-07-05 00:00:00.000 6 79 10248

10250 2006-07-08 00:00:00.000 4 34 10249

10251 2006-07-08 00:00:00.000 3 84 10250

10252 2006-07-09 00:00:00.000 4 76 10251

...

11073 2008-05-05 00:00:00.000 2 58 11072

11074 2008-05-06 00:00:00.000 7 73 11073

11075 2008-05-06 00:00:00.000 8 68 11074

11076 2008-05-06 00:00:00.000 4 9 11075

11077 2008-05-06 00:00:00.000 1 65 11076

(830 row(s) affected)

Notice that because there’s no order before the irst, the subquery returned a NULL for the irst
order.

Similarly, you can phrase the concept of “next” as “the minimum value that is greater than the cur-
rent value.” Here’s the T-SQL query that returns for each order the next order ID.

SELECT orderid, orderdate, empid, custid,

 (SELECT MIN(O2.orderid)

 FROM Sales.Orders AS O2

 WHERE O2.orderid > O1.orderid) AS nextorderid

FROM Sales.Orders AS O1;

 CHAPTER 4 Subqueries 141

This query produces the following output, shown here in abbreviated form.

orderid orderdate empid custid nextorderid

----------- --------------------------- ----------- ----------- -----------

10248 2006-07-04 00:00:00.000 5 85 10249

10249 2006-07-05 00:00:00.000 6 79 10250

10250 2006-07-08 00:00:00.000 4 34 10251

10251 2006-07-08 00:00:00.000 3 84 10252

10252 2006-07-09 00:00:00.000 4 76 10253

...

11073 2008-05-05 00:00:00.000 2 58 11074

11074 2008-05-06 00:00:00.000 7 73 11075

11075 2008-05-06 00:00:00.000 8 68 11076

11076 2008-05-06 00:00:00.000 4 9 11077

11077 2008-05-06 00:00:00.000 1 65 NULL

(830 row(s) affected)

Notice that because there’s no order after the last, the subquery returned a NULL for the last

order.

Note that SQL Server 2012 introduces new window functions called LAG and LEAD that allow the

return of an element from a “previous” or “next” row based on speciied ordering. I will cover these
and other window functions in Chapter 7.

Using running aggregates
Running aggregates are aggregates that accumulate values over time. In this section, I use the

Sales.OrderTotalsByYear view to demonstrate the technique for calculating running aggregates.

The view shows total order quantities by year. Query the view to examine its contents.

SELECT orderyear, qty

FROM Sales.OrderTotalsByYear;

You get the following output.

orderyear qty

----------- -----------

2007 25489

2008 16247

2006 9581

Suppose you need to return for each year the order year, quantity, and running total quantity over

the years. That is, for each year, return the sum of the quantity up to that year. So for the earliest year

recorded in the view (2006), the running total is equal to that year’s quantity. For the second year

(2007), the running total is the sum of the irst year plus the second year, and so on.

You can complete this task by querying one instance of the view (call it O1) to return for each year

the order year and quantity, and then by using a correlated subquery against a second instance of

the view (call it O2) to calculate the running-total quantity. The subquery should ilter all years in O2

142 Microsoft SQL Server 2012 T-SQL Fundamentals

that are smaller than or equal to the current year in O1, and sum the quantities from O2. Here’s the

solution query.

SELECT orderyear, qty,

 (SELECT SUM(O2.qty)

 FROM Sales.OrderTotalsByYear AS O2

 WHERE O2.orderyear <= O1.orderyear) AS runqty

FROM Sales.OrderTotalsByYear AS O1

ORDER BY orderyear;

This query returns the following output.

orderyear qty runqty

----------- ----------- -----------

2006 9581 9581

2007 25489 35070

2008 16247 51317

Note that SQL Server 2012 enhances the capabilities of window aggregate functions, allowing new,

highly eficient solutions for running totals needs. As mentioned, I will discuss window functions in
Chapter 7.

dealing with Misbehaving Subqueries
This section introduces cases in which subqueries might behave counter to your expectations, and

provides best practices that you can follow to avoid logical bugs in your code that are associated with

those cases.

NULL Trouble

Remember that T-SQL uses three-valued logic. In this section, I will demonstrate problems that can

evolve with subqueries when NULL marks are involved and you do not take into consideration the

three-valued logic.

Consider the following apparently intuitive query that is supposed to return customers who did

not place orders.

SELECT custid, companyname

FROM Sales.Customers

WHERE custid NOT IN(SELECT O.custid

 FROM Sales.Orders AS O);

With the current sample data in the Orders table in the TSQL2012 database, the query seems to

work the way you expect it to; and indeed, it returns two rows for the two customers who did not

place orders.

custid companyname

----------- ----------------

22 Customer DTDMN

57 Customer WVAXS

 CHAPTER 4 Subqueries 143

Next, run the following code to insert a new order to the Orders table with a NULL customer ID.

INSERT INTO Sales.Orders

 (custid, empid, orderdate, requireddate, shippeddate, shipperid,

 freight, shipname, shipaddress, shipcity, shipregion,

 shippostalcode, shipcountry)

 VALUES(NULL, 1, '20090212', '20090212',

 '20090212', 1, 123.00, N'abc', N'abc', N'abc',

 N'abc', N'abc', N'abc');

Run the query that is supposed to return customers who did not place orders again.

SELECT custid, companyname

FROM Sales.Customers

WHERE custid NOT IN(SELECT O.custid

 FROM Sales.Orders AS O);

This time, the query returns an empty set. Keeping in mind what you’ve read in the section about

NULL marks in Chapter 2, “Single-Table Queries,” try to explain why the query returns an empty set.
Also try to think of ways to get customers 22 and 57 in the output, and in general, to igure out best
practices you can follow to avoid such problems, assuming that there is a problem here.

Obviously, the culprit in this story is the NULL customer ID that was added to the Orders table and

is now returned among the known customer IDs by the subquery.

Let’s start with the part that behaves the way you expect it to. The IN predicate returns TRUE for

a customer who placed orders (for example, customer 85), because such a customer is returned by

the subquery. The NOT operator is used to negate the IN predicate; hence, the NOT TRUE becomes

FALSE, and the customer is not returned by the outer query. This means that when a customer ID

appears in the Orders table, you can tell for sure that the customer placed orders, and therefore you

don’t want to see it in the output. However, when you have a NULL customer ID in the Orders table,

you can’t tell for sure whether a certain customer ID does not appear in Orders, as explained shortly.

The IN predicate returns UNKNOWN (the truth value UNKNOWN like the truth values TRUE and

FALSE) for a customer such as 22 that does not appear in the set of known customer IDs in Orders.

The IN predicate returns UNKNOWN for such a customer, because comparing it with all known

customer IDs yields FALSE, and comparing it with the NULL in the set yields UNKNOWN. FALSE OR

UNKNOWN yields UNKNOWN. As a more tangible example, consider the expression 22 NOT IN (1, 2,

NULL). This expression can be rephrased as NOT 22 IN (1, 2, NULL). You can expand the last expres-

sion to NOT (22 = 1 OR 22 = 2 OR 22 = NULL). Evaluate each individual expression in the parenthe-

ses to its truth value and you get NOT (FALSE OR FALSE OR UNKNOWN), which translates to NOT

UNKNOWN, which evaluates to UNKNOWN.

The logical meaning of UNKNOWN here before you apply the NOT operator is that it can’t be

determined whether the customer ID appears in the set, because the NULL could represent that

customer ID as well as anything else. The tricky part is that negating the UNKNOWN with the NOT

operator still yields UNKNOWN, and UNKNOWN in a query ilter is iltered out. This means that in
a case where it is unknown whether a customer ID appears in a set, it is also unknown whether it

doesn’t appear in the set.

144 Microsoft SQL Server 2012 T-SQL Fundamentals

In short, when you use the NOT IN predicate against a subquery that returns at least one NULL, the

outer query always returns an empty set. Values from the outer table that are known to appear in

the set are not returned because the outer query is supposed to return values that do not appear in the

set. Values that do not appear in the set of known values are not returned because you can never tell

for sure that the value is not in the set that includes the NULL.

So, what practices can you follow to avoid such trouble?

First, when a column is not supposed to allow NULL marks, it is important to deine it as NOT

NULL. Enforcing data integrity is much more important than many people realize.

Second, in all queries that you write, you should consider all three possible truth values of three-

valued logic (TRUE, FALSE, and UNKNOWN). Think explicitly about whether the query might proc-

ess NULL marks, and if so, whether the default treatment of NULL marks is suitable for your needs.

When it isn’t, you need to intervene. For example, in the example we’ve been working with, the outer

query returns an empty set because of the comparison with NULL. If you want to check whether a

customer ID appears in the set of known values and ignore the NULL marks, you should exclude the

NULL marks—either explicitly or implicitly. One way to explicitly exclude the NULL marks is to add the

predicate O.custid IS NOT NULL to the subquery, like this.

SELECT custid, companyname

FROM Sales.Customers

WHERE custid NOT IN(SELECT O.custid

 FROM Sales.Orders AS O

 WHERE O.custid IS NOT NULL);

You can also exclude the NULL marks implicitly by using the NOT EXISTS predicate instead of NOT

IN, like this.

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE NOT EXISTS

 (SELECT *

 FROM Sales.Orders AS O

 WHERE O.custid = C.custid);

Recall that unlike IN, EXISTS uses two-valued predicate logic. EXISTS always returns TRUE or FALSE

and never UNKNOWN. When the subquery stumbles into a NULL in O.custid, the expression evalu-

ates to UNKNOWN and the row is iltered out. As far as the EXISTS predicate is concerned, the NULL

cases are eliminated naturally, as though they weren’t there. So EXISTS ends up handling only known

customer IDs. Therefore, it’s safer to use NOT EXISTS than NOT IN.

When you’re done experimenting, run the following code for cleanup.

DELETE FROM Sales.Orders WHERE custid IS NULL;

 CHAPTER 4 Subqueries 145

Substitution errors in Subquery Column names

Logical bugs in your code can sometimes be very elusive. In this section, I describe an elusive bug that

has to do with an innocent substitution error in a subquery column name. After explaining the bug, I

provide best practices that can help you avoid such bugs in the future.

The examples in this section query a table called MyShippers in the Sales schema. Run the follow-

ing code to create and populate this table.

IF OBJECT_ID('Sales.MyShippers', 'U') IS NOT NULL

 DROP TABLE Sales.MyShippers;

CREATE TABLE Sales.MyShippers

(

 shipper_id INT NOT NULL,

 companyname NVARCHAR(40) NOT NULL,

 phone NVARCHAR(24) NOT NULL,

 CONSTRAINT PK_MyShippers PRIMARY KEY(shipper_id)

);

INSERT INTO Sales.MyShippers(shipper_id, companyname, phone)

 VALUES(1, N'Shipper GVSUA', N'(503) 555-0137'),

 (2, N'Shipper ETYNR', N'(425) 555-0136'),

 (3, N'Shipper ZHISN', N'(415) 555-0138');

Consider the following query, which is supposed to return shippers who shipped orders to cus-

tomer 43.

SELECT shipper_id, companyname

FROM Sales.MyShippers

WHERE shipper_id IN

 (SELECT shipper_id

 FROM Sales.Orders

 WHERE custid = 43);

This query produces the following output.

shipper_id companyname

----------- ---------------

1 Shipper GVSUA

2 Shipper ETYNR

3 Shipper ZHISN

Apparently, only shippers 2 and 3 shipped orders to customer 43, but for some reason, this query

returned all shippers from the MyShippers table. Examine the query carefully and also the schemas of

the tables involved, and see if you can explain why.

It turns out that the column name in the Orders table holding the shipper ID is not called shipper_id;

it is called shipperid (no underscore). The column in the MyShippers table is called shipper_id with an

underscore. The resolution of nonpreixed column names works in the context of a subquery from
the current/inner scope outward. In our example, SQL Server irst looks for the column shipper_id in

the Orders table. Such a column is not found there, so SQL Server looks for it in the outer table in the

query, MyShippers. Because one is found, it is the one used.

146 Microsoft SQL Server 2012 T-SQL Fundamentals

You can see that what was supposed to be a self-contained subquery unintentionally became a

correlated subquery. As long as the Orders table has at least one row, all rows from the MyShippers

table ind a match when comparing the outer shipper ID with a query that returns the very same
outer shipper ID for each row from the Orders table.

Some might argue that this behavior is a design law in standard SQL. However, it’s not that the
designers of this behavior in the ANSI SQL committee thought that it would be dificult to detect the
“error;” rather, it’s an intentional behavior designed to allow you to refer to column names from the
outer table without needing to preix them with the table name, as long as those column names are
unambiguous (that is, as long as they appear only in one of the tables).

This problem is more common in environments that do not use consistent attribute names across

tables. Sometimes the names are only slightly different, as in this case—shipperid in one table and

shipper_id in another. That’s enough for the bug to manifest itself.

You can follow a couple of best practices to avoid such problems—one to implement in the long

run, and one that you can implement in the short run.

In the long run, your organization should as a policy not underestimate the importance of using

consistent attribute names across tables. In the short run, of course, you don’t want to start changing

existing column names, which could break application code.

In the short run, you can adopt a very simple practice—preix column names in subqueries with the
source table alias. This way, the resolution process only looks for the column in the speciied table, and
if no such column is there, you get a resolution error. For example, try running the following code.

SELECT shipper_id, companyname

FROM Sales.MyShippers

WHERE shipper_id IN

 (SELECT O.shipper_id

 FROM Sales.Orders AS O

 WHERE O.custid = 43);

You get the following resolution error.

Msg 207, Level 16, State 1, Line 4

Invalid column name 'shipper_id'.

After getting this error, you of course can identify the problem and correct the query.

SELECT shipper_id, companyname

FROM Sales.MyShippers

WHERE shipper_id IN

 (SELECT O.shipperid

 FROM Sales.Orders AS O

 WHERE O.custid = 43);

 CHAPTER 4 Subqueries 147

This time, the query returns the expected result.

shipper_id companyname

----------- ---------------

2 Shipper ETYNR

3 Shipper ZHISN

When you’re done, run the following code for cleanup.

IF OBJECT_ID('Sales.MyShippers', 'U') IS NOT NULL

 DROP TABLE Sales.MyShippers;

Conclusion

This chapter covered subqueries. It discussed self-contained subqueries, which are independent of

their outer queries, and correlated subqueries, which are dependent on their outer queries. Regard-

ing the results of subqueries, I discussed scalar and multivalued subqueries. I also provided a more

advanced section as optional reading, in which I covered returning previous and next values, using

running aggregates, and dealing with misbehaving subqueries. Remember to always think about the

three-valued logic and the importance of preixing column names in subqueries with the source table
alias.

The next chapter focuses on table subqueries, also known as table expressions.

Exercises

This section provides exercises to help you familiarize yourself with the subjects discussed in this

chapter. The sample database TSQL2012 is used in all exercises in this chapter.

1
Write a query that returns all orders placed on the last day of activity that can be found in the

Orders table.

 ■ Tables involved: Sales.Orders

 ■ Desired output:

orderid orderdate custid empid

----------- --------------------------- ----------- -----------

11077 2008-05-06 00:00:00.000 65 1

11076 2008-05-06 00:00:00.000 9 4

11075 2008-05-06 00:00:00.000 68 8

11074 2008-05-06 00:00:00.000 73 7

148 Microsoft SQL Server 2012 T-SQL Fundamentals

2 (Optional, advanced)
Write a query that returns all orders placed by the customer(s) who placed the highest number of

orders. Note that more than one customer might have the same number of orders.

 ■ Tables involved: Sales.Orders

 ■ Desired output (abbreviated):

custid orderid orderdate empid

----------- ----------- --------------------------- -----------

71 10324 2006-10-08 00:00:00.000 9

71 10393 2006-12-25 00:00:00.000 1

71 10398 2006-12-30 00:00:00.000 2

71 10440 2007-02-10 00:00:00.000 4

71 10452 2007-02-20 00:00:00.000 8

71 10510 2007-04-18 00:00:00.000 6

71 10555 2007-06-02 00:00:00.000 6

71 10603 2007-07-18 00:00:00.000 8

71 10607 2007-07-22 00:00:00.000 5

71 10612 2007-07-28 00:00:00.000 1

71 10627 2007-08-11 00:00:00.000 8

71 10657 2007-09-04 00:00:00.000 2

71 10678 2007-09-23 00:00:00.000 7

71 10700 2007-10-10 00:00:00.000 3

71 10711 2007-10-21 00:00:00.000 5

71 10713 2007-10-22 00:00:00.000 1

71 10714 2007-10-22 00:00:00.000 5

71 10722 2007-10-29 00:00:00.000 8

71 10748 2007-11-20 00:00:00.000 3

71 10757 2007-11-27 00:00:00.000 6

71 10815 2008-01-05 00:00:00.000 2

71 10847 2008-01-22 00:00:00.000 4

71 10882 2008-02-11 00:00:00.000 4

71 10894 2008-02-18 00:00:00.000 1

71 10941 2008-03-11 00:00:00.000 7

71 10983 2008-03-27 00:00:00.000 2

71 10984 2008-03-30 00:00:00.000 1

71 11002 2008-04-06 00:00:00.000 4

71 11030 2008-04-17 00:00:00.000 7

71 11031 2008-04-17 00:00:00.000 6

71 11064 2008-05-01 00:00:00.000 1

(31 row(s) affected)

 CHAPTER 4 Subqueries 149

3
Write a query that returns employees who did not place orders on or after May 1, 2008.

 ■ Tables involved: HR.Employees and Sales.Orders

 ■ Desired output:

empid FirstName lastname

----------- ------------- --------------------

3 Judy Lew

5 Sven Buck

6 Paul Suurs

9 Zoya Dolgopyatova

4
Write a query that returns countries where there are customers but not employees.

 ■ Tables involved: Sales.Customers and HR.Employees

 ■ Desired output:

country

Argentina

Austria

Belgium

Brazil

Canada

Denmark

Finland

France

Germany

Ireland

Italy

Mexico

Norway

Poland

Portugal

Spain

Sweden

Switzerland

Venezuela

(19 row(s) affected)

150 Microsoft SQL Server 2012 T-SQL Fundamentals

5
Write a query that returns for each customer all orders placed on the customer’s last day of activity.

 ■ Tables involved: Sales.Orders

 ■ Desired output:

custid orderid orderdate empid

----------- ----------- ----------------------- -----------

1 11011 2008-04-09 00:00:00.000 3

2 10926 2008-03-04 00:00:00.000 4

3 10856 2008-01-28 00:00:00.000 3

4 11016 2008-04-10 00:00:00.000 9

5 10924 2008-03-04 00:00:00.000 3

...

87 11025 2008-04-15 00:00:00.000 6

88 10935 2008-03-09 00:00:00.000 4

89 11066 2008-05-01 00:00:00.000 7

90 11005 2008-04-07 00:00:00.000 2

91 11044 2008-04-23 00:00:00.000 4

(90 row(s) affected)

6
Write a query that returns customers who placed orders in 2007 but not in 2008.

 ■ Tables involved: Sales.Customers and Sales.Orders

 ■ Desired output:

custid companyname

----------- ----------------

21 Customer KIDPX

23 Customer WVFAF

33 Customer FVXPQ

36 Customer LVJSO

43 Customer UISOJ

51 Customer PVDZC

85 Customer ENQZT

(7 row(s) affected)

 CHAPTER 4 Subqueries 151

7 (Optional, advanced)
Write a query that returns customers who ordered product 12.

 ■ Tables involved: Sales.Customers, Sales.Orders, and Sales.OrderDetails

 ■ Desired output:

custid companyname

----------- ----------------

48 Customer DVFMB

39 Customer GLLAG

71 Customer LCOUJ

65 Customer NYUHS

44 Customer OXFRU

51 Customer PVDZC

86 Customer SNXOJ

20 Customer THHDP

90 Customer XBBVR

46 Customer XPNIK

31 Customer YJCBX

87 Customer ZHYOS

(12 row(s) affected)

8 (Optional, advanced)
Write a query that calculates a running-total quantity for each customer and month.

 ■ Tables involved: Sales.CustOrders

 ■ Desired output:

custid ordermonth qty runqty

----------- --------------------------- ----------- -----------

1 2007-08-01 00:00:00.000 38 38

1 2007-10-01 00:00:00.000 41 79

1 2008-01-01 00:00:00.000 17 96

1 2008-03-01 00:00:00.000 18 114

1 2008-04-01 00:00:00.000 60 174

2 2006-09-01 00:00:00.000 6 6

2 2007-08-01 00:00:00.000 18 24

2 2007-11-01 00:00:00.000 10 34

2 2008-03-01 00:00:00.000 29 63

3 2006-11-01 00:00:00.000 24 24

3 2007-04-01 00:00:00.000 30 54

3 2007-05-01 00:00:00.000 80 134

3 2007-06-01 00:00:00.000 83 217

3 2007-09-01 00:00:00.000 102 319

3 2008-01-01 00:00:00.000 40 359

...

(636 row(s) affected)

152 Microsoft SQL Server 2012 T-SQL Fundamentals

Solutions

This section provides solutions to the exercises in the preceding section.

1
You can write a self-contained subquery that returns the maximum order date from the Orders table.

You can refer to the subquery in the WHERE clause of the outer query to return all orders that were

placed on the last day of activity. Here’s the solution query.

USE TSQL2012;

SELECT orderid, orderdate, custid, empid

FROM Sales.Orders

WHERE orderdate =

 (SELECT MAX(O.orderdate) FROM Sales.Orders AS O);

2
This problem is best solved in multiple steps. First, you can write a query that returns the customer or

customers who placed the highest number of orders. You can achieve this by grouping the orders by

customer, ordering the customers by COUNT(*) descending, and using the TOP(1) WITH TIES option

to return the IDs of the customers who placed the highest number of orders. If you don’t remember

how to use the TOP option, refer to Chapter 2. Here’s the query that solves the irst step.

SELECT TOP (1) WITH TIES O.custid

FROM Sales.Orders AS O

GROUP BY O.custid

ORDER BY COUNT(*) DESC;

This query returns the value 71, which is the customer ID of the customer who placed the highest

number of orders, 31. With the sample data stored in the Orders table, only one customer placed the

maximum number of orders. But the query uses the WITH TIES option to return all IDs of customers

who placed the maximum number of orders, in case there are more than one.

The next step is to write a query against the Orders table returning all orders where the customer

ID is in the set of customer IDs returned by the solution query for the irst step.

SELECT custid, orderid, orderdate, empid

FROM Sales.Orders

WHERE custid IN

 (SELECT TOP (1) WITH TIES O.custid

 FROM Sales.Orders AS O

 GROUP BY O.custid

 ORDER BY COUNT(*) DESC);

 CHAPTER 4 Subqueries 153

3
You can write a self-contained subquery against the Orders table that ilters orders placed on or after
May 1, 2008 and returns only the employee IDs from those orders. Write an outer query against the

Employees table returning employees whose IDs do not appear in the set of employee IDs returned by

the subquery. Here’s the complete solution query.

SELECT empid, FirstName, lastname

FROM HR.Employees

WHERE empid NOT IN

 (SELECT O.empid

 FROM Sales.Orders AS O

 WHERE O.orderdate >= '20080501');

4
You can write a self-contained subquery against the Employees table returning the country attribute

from each employee row. Write an outer query against the Customers table that ilters only customer
rows where the country does not appear in the set of countries returned by the subquery. In the SELECT

list of the outer query, specify DISTINCT country to return only distinct occurrences of countries, be-

cause the same country can have more than one customer. Here’s the complete solution query.

SELECT DISTINCT country

FROM Sales.Customers

WHERE country NOT IN

 (SELECT E.country FROM HR.Employees AS E);

5
This exercise is similar to Exercise 1, except that in that exercise, you were asked to return orders placed

on the last day of activity in general; in this exercise, you were asked to return orders placed on the

last day of activity for the customer. The solutions for both exercises are similar, but here you need to

correlate the subquery to match the inner customer ID with the outer customer ID, like this.

SELECT custid, orderid, orderdate, empid

FROM Sales.Orders AS O1

WHERE orderdate =

 (SELECT MAX(O2.orderdate)

 FROM Sales.Orders AS O2

 WHERE O2.custid = O1.custid)

ORDER BY custid;

You’re not comparing the outer row’s order date with the general maximum order date, but

instead with the maximum order date for the current customer.

154 Microsoft SQL Server 2012 T-SQL Fundamentals

6
You can solve this problem by querying the Customers table and using EXISTS and NOT EXISTS predi-

cates with correlated subqueries to ensure that the customer placed orders in 2007 but not in 2008.

The EXISTS predicate returns TRUE only if at least one row exists in the Orders table with the same

customer ID as in the outer row, within the date range representing the year 2007. The NOT EXISTS

predicate returns TRUE only if no row exists in the Orders table with the same customer ID as in the

outer row, within the date range representing the year 2008. Here’s the complete solution query.

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE EXISTS

 (SELECT *

 FROM Sales.Orders AS O

 WHERE O.custid = C.custid

 AND O.orderdate >= '20070101'

 AND O.orderdate < '20080101')

 AND NOT EXISTS

 (SELECT *

 FROM Sales.Orders AS O

 WHERE O.custid = C.custid

 AND O.orderdate >= '20080101'

 AND O.orderdate < '20090101');

7
You can solve this exercise by nesting EXISTS predicates with correlated subqueries. You write the

outermost query against the Customers table. In the WHERE clause of the outer query, you can use

the EXISTS predicate with a correlated subquery against the Orders table to ilter only the current
customer’s orders. In the ilter of the subquery against the Orders table, you can use a nested EXISTS

predicate with a subquery against the OrderDetails table that ilters only order details with product
ID 12. This way, only customers who placed orders that contain product 12 in their order details are

returned. Here’s the complete solution query.

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE EXISTS

 (SELECT *

 FROM Sales.Orders AS O

 WHERE O.custid = C.custid

 AND EXISTS

 (SELECT *

 FROM Sales.OrderDetails AS OD

 WHERE OD.orderid = O.orderid

 AND OD.ProductID = 12));

 CHAPTER 4 Subqueries 155

8
When I need to solve querying problems, I often ind it useful to rephrase the original request in a
more technical way so that it will be more convenient to translate the request to a T-SQL query. To

solve the current exercise, you can irst try to express the request “return a running total quantity for
each customer and month” differently—in a more technical manner. For each customer, return the

customer ID, month, the sum of the quantity for that month, and the sum of all months less than or

equal to the current month. The rephrased request can be translated to the following T-SQL query

quite literally.

SELECT custid, ordermonth, qty,

 (SELECT SUM(O2.qty)

 FROM Sales.CustOrders AS O2

 WHERE O2.custid = O1.custid

 AND O2.ordermonth <= O1.ordermonth) AS runqty

FROM Sales.CustOrders AS O1

ORDER BY custid, ordermonth;

 157

C H A P T E R 5

Table expressions

A table expression is a named query expression that represents a valid relational table. You

can use table expressions in data manipulation statements much like you use other tables.

Microsoft SQL Server supports four types of table expressions: derived tables, common table ex-

pressions (CTEs), views, and inline table-valued functions (inline TVFs), each of which I describe in

detail in this chapter. The focus of this chapter is using SELECT queries against table expressions;

Chapter 8, “Data Modiication,” covers modiications against table expressions.

Table expressions are not physically materialized anywhere—they are virtual. When you query a

table expression, the inner query gets unnested. In other words, the outer query and the inner query

are merged into one query directly against the underlying objects. The beneits of using table expres-
sions are typically related to logical aspects of your code and not to performance. For example, table

expressions help you simplify your solutions by using a modular approach. Table expressions also help

you circumvent certain restrictions in the language, such as the inability to refer to column aliases as-

signed in the SELECT clause in query clauses that are logically processed before the SELECT clause.

This chapter also introduces the APPLY table operator as it is used in conjunction with a table ex-

pression. I explain how to use this operator to apply a table expression to each row of another table.

Derived Tables

Derived tables (also known as table subqueries) are deined in the FROM clause of an outer query. Their

scope of existence is the outer query. As soon as the outer query is inished, the derived table is gone.

You specify the query that deines the derived table within parentheses, followed by the AS clause

and the derived table name. For example, the following code deines a derived table called USACusts

based on a query that returns all customers from the United States, and the outer query selects all

rows from the derived table.

USE TSQL2012;

SELECT *

FROM (SELECT custid, companyname

 FROM Sales.Customers

 WHERE country = N'USA') AS USACusts;

158 Microsoft SQL Server 2012 T-SQL Fundamentals

In this particular case, which is a simple example of the basic syntax, a derived table is not needed

because the outer query doesn’t apply any manipulation.

The code in this basic example returns the following output.

custid companyname

----------- ---------------

32 Customer YSIQX

36 Customer LVJSO

43 Customer UISOJ

45 Customer QXPPT

48 Customer DVFMB

55 Customer KZQZT

65 Customer NYUHS

71 Customer LCOUJ

75 Customer XOJYP

77 Customer LCYBZ

78 Customer NLTYP

82 Customer EYHKM

89 Customer YBQTI

A query must meet three requirements to be valid to deine a table expression of any kind:

1. Order is not guaranteed. A table expression is supposed to represent a relational table,

and the rows in a relational table have no guaranteed order. Recall that this aspect of a

relation stems from set theory. For this reason, standard SQL disallows an ORDER BY clause

in queries that are used to deine table expressions, unless the ORDER BY serves another

purpose besides presentation. An example for such an exception is when the query uses the

OFFSET-FETCH ilter. T-SQL enforces similar restrictions, with similar exceptions—when TOP or

OFFSET-FETCH is also speciied. In the context of a query with the TOP or OFFSET-FETCH ilter,
the ORDER BY clause serves as part of the speciication of the ilter. If you use a query with
TOP or OFFSET-FETCH and ORDER BY to deine a table expression, ORDER BY is only guar-

anteed to serve the iltering-related purpose and not the usual presentation purpose. If the
outer query against the table expression does not have a presentation ORDER BY, the output

is not guaranteed to be returned in any particular order. See the “Views and the ORDER BY

Clause” section later in this chapter for more detail on this item.

2. All columns must have names. All columns in a table must have names; therefore, you

must assign column aliases to all expressions in the SELECT list of the query that is used to

deine a table expression.

3. All column names must be unique. All column names in a table must be unique; therefore,

a table expression that has multiple columns with the same name is invalid. This might happen

when the query deining the table expression joins two tables, if both tables have a column
with the same name. If you need to incorporate both columns in your table expression, they

must have different column names. You can resolve this by assigning different column aliases

to the two columns.

 CHAPTER 5 Table Expressions 159

All three requirements have to do with the fact that the table expression is supposed to represent

a relation. All relation attributes must have names; all attribute names must be unique; and the rela-

tion’s body being a set of tuples, there’s no order.

assigning Column aliases
One of the beneits of using table expressions is that, in any clause of the outer query, you can refer
to column aliases that were assigned in the SELECT clause of the inner query. This helps you get

around the fact that you can’t refer to column aliases assigned in the SELECT clause in query clauses

that are logically processed prior to the SELECT clause (for example, WHERE or GROUP BY).

For example, suppose that you need to write a query against the Sales.Orders table and return the

number of distinct customers handled in each order year. The following attempt is invalid because the

GROUP BY clause refers to a column alias that was assigned in the SELECT clause, and the GROUP BY

clause is logically processed prior to the SELECT clause.

SELECT

 YEAR(orderdate) AS orderyear,

 COUNT(DISTINCT custid) AS numcusts

FROM Sales.Orders

GROUP BY orderyear;

If you try running this query, you get the following error.

Msg 207, Level 16, State 1, Line 5

Invalid column name 'orderyear'.

You could solve the problem by referring to the expression YEAR(orderdate) in both the GROUP BY

and the SELECT clauses, but this is an example with a short expression. What if the expression were

much longer? Maintaining two copies of the same expression might hurt code readability and main-

tainability and is more prone to errors. To solve the problem in a way that requires only one copy of

the expression, you can use a table expression like the one shown in Listing 5-1.

LISTING 5-1 Query with a Derived Table Using Inline Aliasing Form

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM (SELECT YEAR(orderdate) AS orderyear, custid

 FROM Sales.Orders) AS D

GROUP BY orderyear;

This query returns the following output.

orderyear numcusts

----------- -----------

2006 67

2007 86

2008 81

160 Microsoft SQL Server 2012 T-SQL Fundamentals

This code deines a derived table called D based on a query against the Orders table that returns

the order year and customer ID from all rows. The SELECT list of the inner query uses the inline alias-

ing form to assign the alias orderyear to the expression YEAR(orderdate). The outer query can refer

to the orderyear column alias in both the GROUP BY and SELECT clauses, because as far as the outer

query is concerned, it queries a table called D with columns called orderyear and custid.

As I mentioned earlier, SQL Server expands the deinition of the table expression and accesses the
underlying objects directly. After expansion, the query in Listing 5-1 looks like the following.

SELECT YEAR(orderdate) AS orderyear, COUNT(DISTINCT custid) AS numcusts

FROM Sales.Orders

GROUP BY YEAR(orderdate);

This is just to emphasize that you use table expressions for logical (not performance-related) rea-

sons. Generally speaking, table expressions have neither positive nor negative performance impact.

The code in Listing 5-1 uses the inline aliasing form to assign column aliases to expressions. The

syntax for inline aliasing is <expression> [AS] <alias>. Note that the word AS is optional in the syntax

for inline aliasing; however, I ind that it helps the readability of the code and recommend using it.

In some cases, you might prefer to use a second supported form for assigning column aliases,

which you can think of as an external form. With this form, you do not assign column aliases following

the expressions in the SELECT list—you specify all target column names in parentheses following the

table expression’s name, like the following.

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM (SELECT YEAR(orderdate), custid

 FROM Sales.Orders) AS D(orderyear, custid)

GROUP BY orderyear;

It is generally recommended that you use the inline form for a couple of reasons. If you need to

debug the code when using the inline form, when you highlight the query deining the table expres-
sion and run it, the columns in the result appear with the aliases you assigned. With the external form,

you cannot include the target column names when you highlight the table expression query, so the

result appears with no column names in the case of the unnamed expressions. Also, when the table

expression query is lengthy, using the external form can make it quite dificult to igure out which
column alias belongs to which expression.

Even though it’s a best practice to use the inline aliasing form, in some cases you may ind the ex-

ternal form more convenient to work with. For example, when the query deining the table expression
isn’t going to undergo any further revisions and you want to treat it like a “black box”—that is, you
want to focus your attention on the table expression name followed by the target column list when

you look at the outer query. To use terminology from traditional programming languages, it allows

you to specify a contract interface between the outer query and the table expression.

 CHAPTER 5 Table Expressions 161

Using arguments
In the query that deines a derived table, you can refer to arguments. The arguments can be local
variables and input parameters to a routine such as a stored procedure or function. For example, the

following code declares and initializes a local variable called @empid, and the query in the code that

is used to deine the derived table D refers to the local variable in the WHERE clause.

DECLARE @empid AS INT = 3;

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM (SELECT YEAR(orderdate) AS orderyear, custid

 FROM Sales.Orders

 WHERE empid = @empid) AS D

GROUP BY orderyear;

This query returns the number of distinct customers per year whose orders were handled by the

input employee (the employee whose ID is stored in the variable @empid). Here’s the output of this

query.

orderyear numcusts

----------- -----------

2006 16

2007 46

2008 30

nesting
If you need to deine a derived table by using a query that itself refers to a derived table, you end up
nesting derived tables. Nesting of derived tables is a result of the fact that a derived table is deined
in the FROM clause of the outer query and not separately. Nesting is a problematic aspect of pro-

gramming in general, because it tends to complicate the code and reduce its readability.

For example, the code in Listing 5-2 returns order years and the number of customers handled in

each year only for years in which more than 70 customers were handled.

LISTING 5-2 Query with Nested Derived Tables

SELECT orderyear, numcusts

FROM (SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

 FROM (SELECT YEAR(orderdate) AS orderyear, custid

 FROM Sales.Orders) AS D1

 GROUP BY orderyear) AS D2

WHERE numcusts > 70;

This code returns the following output.

orderyear numcusts

----------- -----------

2007 86

2008 81

162 Microsoft SQL Server 2012 T-SQL Fundamentals

The purpose of the innermost derived table, D1, is to assign the column alias orderyear to the ex-

pression YEAR(orderdate). The query against D1 refers to orderyear in both the GROUP BY and SELECT

clauses and assigns the column alias numcusts to the expression COUNT(DISTINCT custid). The query

against D1 is used to deine the derived table D2. The query against D2 refers to numcusts in the

WHERE clause to ilter order years in which more than 70 customers were handled.

The whole purpose of using table expressions in this example was to simplify the solution by reus-

ing column aliases instead of repeating expressions. However, with the complexity added by the nest-

ing aspect of derived tables, I’m not sure that the solution is simpler than the alternative, which does

not make any use of derived tables but instead repeats expressions.

SELECT YEAR(orderdate) AS orderyear, COUNT(DISTINCT custid) AS numcusts

FROM Sales.Orders

GROUP BY YEAR(orderdate)

HAVING COUNT(DISTINCT custid) > 70;

In short, nesting is a problematic aspect of derived tables.

Multiple references
Another problematic aspect of derived tables stems from the fact that derived tables are deined in
the FROM clause of the outer query and not prior to the outer query. As far as the FROM clause of

the outer query is concerned, the derived table doesn’t exist yet; therefore, if you need to refer to

multiple instances of the derived table, you can’t. Instead, you have to deine multiple derived tables
based on the same query. The query in Listing 5-3 provides an example.

LISTING 5-3 Multiple Derived Tables Based on the Same Query

SELECT Cur.orderyear,

 Cur.numcusts AS curnumcusts, Prv.numcusts AS prvnumcusts,

 Cur.numcusts - Prv.numcusts AS growth

FROM (SELECT YEAR(orderdate) AS orderyear,

 COUNT(DISTINCT custid) AS numcusts

 FROM Sales.Orders

 GROUP BY YEAR(orderdate)) AS Cur

 LEFT OUTER JOIN

 (SELECT YEAR(orderdate) AS orderyear,

 COUNT(DISTINCT custid) AS numcusts

 FROM Sales.Orders

 GROUP BY YEAR(orderdate)) AS Prv

 ON Cur.orderyear = Prv.orderyear + 1;

 CHAPTER 5 Table Expressions 163

This query joins two instances of a table expression to create two derived tables: The irst derived
table, Cur, represents current years, and the second derived table, Prv, represents previous years. The

join condition Cur.orderyear = Prv.orderyear + 1 ensures that each row from the irst derived table
matches with the previous year of the second. Because the code makes the join a LEFT outer join,

the irst year that has no previous year is also returned from the Cur table. The SELECT clause of the

outer query calculates the difference between the number of customers handled in the current and

previous years.

The code in Listing 5-3 produces the following output.

orderyear curnumcusts prvnumcusts growth

----------- ----------- ----------- -----------

2006 67 NULL NULL

2007 86 67 19

2008 81 86 –5

The fact that you cannot refer to multiple instances of the same derived table forces you to main-

tain multiple copies of the same query deinition. This leads to lengthy code that is hard to maintain
and is prone to errors.

Common Table Expressions

Common table expressions (CTEs) are another standard form of table expression very similar to de-

rived tables, yet with a couple of important advantages.

CTEs are deined by using a WITH statement and have the following general form.

WITH <CTE_Name>[(<target_column_list>)]

AS

(

 <inner_query_defining_CTE>

)

<outer_query_against_CTE>;

The inner query deining the CTE must follow all requirements mentioned earlier to be valid to
deine a table expression. As a simple example, the following code deines a CTE called USACusts

based on a query that returns all customers from the United States, and the outer query selects all

rows from the CTE.

WITH USACusts AS

(

 SELECT custid, companyname

 FROM Sales.Customers

 WHERE country = N'USA'

)

SELECT * FROM USACusts;

As with derived tables, as soon as the outer query inishes, the CTE goes out of scope.

164 Microsoft SQL Server 2012 T-SQL Fundamentals

note The WITH clause is used in T-SQL for several different purposes. To avoid ambigu-

ity, when the WITH clause is used to deine a CTE, the preceding statement in the same
batch—if one exists—must be terminated with a semicolon. And oddly enough, the semi-

colon for the entire CTE is not required, though I still recommend specifying it—as I do to

terminate all T-SQL statements.

assigning Column aliases in CTes
CTEs also support two forms of column aliasing—inline and external. For the inline form, specify

<expression> AS <column_alias>; for the external form, specify the target column list in parentheses

immediately after the CTE name.

Here’s an example of the inline form.

WITH C AS

(

 SELECT YEAR(orderdate) AS orderyear, custid

 FROM Sales.Orders

)

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM C

GROUP BY orderyear;

And here’s an example of the external form.

WITH C(orderyear, custid) AS

(

 SELECT YEAR(orderdate), custid

 FROM Sales.Orders

)

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM C

GROUP BY orderyear;

The motivations for using one form or the other are similar to those described in the context of

derived tables.

 CHAPTER 5 Table Expressions 165

Using arguments in CTes
As with derived tables, you can also use arguments in the query used to deine a CTE. Here’s an
example.

DECLARE @empid AS INT = 3;

WITH C AS

(

 SELECT YEAR(orderdate) AS orderyear, custid

 FROM Sales.Orders

 WHERE empid = @empid

)

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM C

GROUP BY orderyear;

Deining Multiple CTEs
On the surface, the difference between derived tables and CTEs might seem to be merely semantic.

However, the fact that you irst deine a CTE and then use it gives it several important advantages
over derived tables. One of those advantages is that if you need to refer to one CTE from another, you

don’t end up nesting them as you do with derived tables. Instead, you simply deine multiple CTEs
separated by commas under the same WITH statement. Each CTE can refer to all previously deined
CTEs, and the outer query can refer to all CTEs. For example, the following code is the CTE alternative

to the nested derived tables approach in Listing 5-2.

WITH C1 AS

(

 SELECT YEAR(orderdate) AS orderyear, custid

 FROM Sales.Orders

),

C2 AS

(

 SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

 FROM C1

 GROUP BY orderyear

)

SELECT orderyear, numcusts

FROM C2

WHERE numcusts > 70;

166 Microsoft SQL Server 2012 T-SQL Fundamentals

Because you deine a CTE before you use it, you don’t end up nesting CTEs. Each CTE appears
separately in the code in a modular manner. This modular approach substantially improves the read-

ability and maintainability of the code compared to the nested derived table approach.

Technically, you cannot nest CTEs, nor can you deine a CTE within the parentheses of a derived
table. However, nesting is a problematic practice; therefore, think of these restrictions as aids to code

clarity rather than as obstacles.

Multiple references in CTes
The fact that a CTE is deined irst and then queried has another advantage: As far as the FROM clause

of the outer query is concerned, the CTE already exists; therefore, you can refer to multiple instances

of the same CTE. For example, the following code is the logical equivalent of the code shown earlier in

Listing 5-3, using CTEs instead of derived tables.

WITH YearlyCount AS

(

 SELECT YEAR(orderdate) AS orderyear,

 COUNT(DISTINCT custid) AS numcusts

 FROM Sales.Orders

 GROUP BY YEAR(orderdate)

)

SELECT Cur.orderyear,

 Cur.numcusts AS curnumcusts, Prv.numcusts AS prvnumcusts,

 Cur.numcusts - Prv.numcusts AS growth

FROM YearlyCount AS Cur

 LEFT OUTER JOIN YearlyCount AS Prv

 ON Cur.orderyear = Prv.orderyear + 1;

As you can see, the CTE YearlyCount is deined once and accessed twice in the FROM clause of the

outer query—once as Cur and once as Prv. You need to maintain only one copy of the CTE query and

not multiple copies as you would with derived tables. This leads to a query that is much clearer and

easier to follow, and therefore less prone to errors.

If you’re curious about performance, recall that earlier I mentioned that table expressions typically

have no performance impact because they are not physically materialized anywhere. Both refer-

ences to the CTE in the previous query are going to be expanded. Internally, this query has a self

join between two instances of the Orders table, each of which involves scanning the table data and

aggregating it before the join—the same physical processing that takes place with the derived table

approach. If the work done per reference is very expensive and you want to avoid doing it multiple

times, you should persist the inner query’s result in a temporary table or a table variable. My focus in

this discussion is on coding aspects and not performance, and clearly the ability to specify the inner

query only once, and refer to the CTE name multiple times, is a great beneit over the counterpart
that uses derived tables.

recursive CTes
This section is optional because it covers subjects that are beyond the fundamentals.

 CHAPTER 5 Table Expressions 167

CTEs are unique among table expressions because they have recursive capabilities. A recursive

CTE is deined by at least two queries (more are possible)—at least one query known as the anchor
member and at least one query known as the recursive member. The general form of a basic recursive

CTE looks like the following.

WITH <CTE_Name>[(<target_column_list>)]

AS

(

 <anchor_member>

 UNION ALL

 <recursive_member>

)

<outer_query_against_CTE>;

The anchor member is a query that returns a valid relational result table—like a query that is used

to deine a nonrecursive table expression. The anchor member query is invoked only once.

The recursive member is a query that has a reference to the CTE name. The reference to the CTE

name represents what is logically the previous result set in a sequence of executions. The irst time
that the recursive member is invoked, the previous result set represents whatever the anchor mem-

ber returned. In each subsequent invocation of the recursive member, the reference to the CTE name

represents the result set returned by the previous invocation of the recursive member. The recursive

member has no explicit recursion termination check—the termination check is implicit. The recursive

member is invoked repeatedly until it returns an empty set or exceeds some limit.

Both queries must be compatible in terms of the number of columns they return and the data

types of the corresponding columns.

The reference to the CTE name in the outer query represents the uniied result sets of the invoca-

tion of the anchor member and all invocations of the recursive member.

If this is your irst encounter with recursive CTEs, you might ind this explanation hard to un-

derstand. They are best explained with an example. The following code demonstrates how to use

a recursive CTE to return information about an employee (Don Funk, employee ID 2) and all of the

employee’s subordinates in all levels (direct or indirect).

WITH EmpsCTE AS

(

 SELECT empid, mgrid, firstname, lastname

 FROM HR.Employees

 WHERE empid = 2

 UNION ALL

 SELECT C.empid, C.mgrid, C.firstname, C.lastname

 FROM EmpsCTE AS P

 JOIN HR.Employees AS C

 ON C.mgrid = P.empid

)

SELECT empid, mgrid, firstname, lastname

FROM EmpsCTE;

168 Microsoft SQL Server 2012 T-SQL Fundamentals

The anchor member queries the HR.Employees table and simply returns the row for employee 2.

 SELECT empid, mgrid, firstname, lastname

 FROM HR.Employees

 WHERE empid = 2

The recursive member joins the CTE—representing the previous result set—with the Employees

table to return the direct subordinates of the employees returned in the previous result set.

 SELECT C.empid, C.mgrid, C.firstname, C.lastname

 FROM EmpsCTE AS P

 JOIN HR.Employees AS C

 ON C.mgrid = P.empid

In other words, the recursive member is invoked repeatedly, and in each invocation it returns

the next level of subordinates. The irst time the recursive member is invoked, it returns the direct
subordinates of employee 2—employees 3 and 5. The second time the recursive member is invoked,

it returns the direct subordinates of employees 3 and 5—employees 4, 6, 7, 8, and 9. The third time

the recursive member is invoked, there are no more subordinates; the recursive member returns an

empty set, and therefore recursion stops.

The reference to the CTE name in the outer query represents the uniied result sets; in other words,
employee 2 and all of the employee’s subordinates.

Here’s the output of this code.

empid mgrid firstname lastname

----------- ----------- ---------- --------------------

2 1 Don Funk

3 2 Judy Lew

5 2 Sven Buck

6 5 Paul Suurs

7 5 Russell King

9 5 Zoya Dolgopyatova

4 3 Yael Peled

8 3 Maria Cameron

In the event of a logical error in the join predicate in the recursive member, or problems with

the data that result in cycles, the recursive member can potentially be invoked an ininite number
of times. As a safety measure, by default SQL Server restricts the number of times that the recur-

sive member can be invoked to 100. The code will fail upon the one hundred irst invocation of
the recursive member. You can change the default maximum recursion limit by specifying the hint

OPTION(MAXRECURSION n) at the end of the outer query, where n is an integer in the range 0

through 32,767 representing the maximum recursion limit you want to set. If you want to remove

the restriction altogether, specify MAXRECURSION 0. Note that SQL Server stores the intermediate

result sets returned by the anchor and recursive members in a work table in tempdb; if you remove

the restriction and have a runaway query, the work table will quickly get very large. If tempdb can’t

grow anymore—for example, when you run out of disk space—the query will fail.

 CHAPTER 5 Table Expressions 169

Views

The two types of table expressions discussed so far—derived tables and CTEs—have a very limited

scope, which is the single-statement scope. As soon as the outer query against those table expres-

sions is inished, they are gone. This means that derived tables and CTEs are not reusable.

Views and inline table-valued functions (inline TVFs) are two reusable types of table expressions;

their deinitions are stored as database objects. After they have been created, those objects are per-
manent parts of the database and are only removed from the database if they are explicitly dropped.

In most other respects, views and inline TVFs are treated like derived tables and CTEs. For example,

when querying a view or an inline TVF, SQL Server expands the deinition of the table expression and
queries the underlying objects directly, as with derived tables and CTEs.

In this section, I describe views; in the next section, I describe inline TVFs.

As I mentioned earlier, a view is a reusable table expression whose deinition is stored in the
database. For example, the following code creates a view called USACusts in the Sales schema in the

TSQL2012 database, representing all customers from the United States.

IF OBJECT_ID('Sales.USACusts') IS NOT NULL

 DROP VIEW Sales.USACusts;

GO

CREATE VIEW Sales.USACusts

AS

SELECT

 custid, companyname, contactname, contacttitle, address,

 city, region, postalcode, country, phone, fax

FROM Sales.Customers

WHERE country = N'USA';

GO

Note that just as with derived tables and CTEs, instead of using inline column aliasing as shown in

the preceding code, you can use external column aliasing by specifying the target column names in

parentheses immediately after the view name.

After you have created this view, you can query it much like you query other tables in the database.

SELECT custid, companyname

FROM Sales.USACusts;

Because a view is an object in the database, you can control access to the view with permissions

just as you can with other objects that can be queried (these permissions include SELECT, INSERT,

UPDATE, and DELETE permissions). For example, you can deny direct access to the underlying objects

while granting access to the view.

170 Microsoft SQL Server 2012 T-SQL Fundamentals

Note that the general recommendation to avoid using SELECT * has speciic relevance in the con-

text of views. The columns are enumerated in the compiled form of the view, and new table columns

will not be automatically added to the view. For example, suppose you deine a view based on the
query SELECT * FROM dbo.T1, and at the view creation time the table T1 has the columns col1 and

col2. SQL Server stores information only on those two columns in the view’s metadata. If you alter the

deinition of the table to add new columns, those new columns will not be added to the view. You can
refresh the view’s metadata by using the stored procedure sp_refreshview or sp_refreshsqlmodule, but

to avoid confusion, the best practice is to explicitly list the column names that you need in the deini-
tion of the view. If columns are added to the underlying tables and you need them in the view, use

the ALTER VIEW statement to revise the view deinition accordingly.

Views and the ORDER BY Clause
The query that you use to deine a view must meet all requirements mentioned earlier with respect
to table expressions in the context of derived tables. The view should not guarantee any order to

the rows, all view columns must have names, and all column names must be unique. In this section, I

elaborate a bit about the ordering issue, which is a fundamental point that is crucial to understand.

Remember that a presentation ORDER BY clause is not allowed in the query deining a table
expression because there’s no order among the rows of a relational table. An attempt to create an

ordered view is absurd because it violates fundamental properties of a relation as deined by the rela-

tional model. If you need to return rows from a view sorted for presentation purposes, you shouldn’t

try to make the view something it shouldn’t be. Instead, you should specify a presentation ORDER BY

clause in the outer query against the view, like this.

SELECT custid, companyname, region

FROM Sales.USACusts

ORDER BY region;

Try running the following code to create a view with a presentation ORDER BY clause.

ALTER VIEW Sales.USACusts

AS

SELECT

 custid, companyname, contactname, contacttitle, address,

 city, region, postalcode, country, phone, fax

FROM Sales.Customers

WHERE country = N'USA'

ORDER BY region;

GO

This attempt fails, and you get the following error.

Msg 1033, Level 15, State 1, Procedure USACusts, Line 9

The ORDER BY clause is invalid in views, inline functions, derived tables, subqueries, and

common table expressions, unless TOP, OFFSET or FOR XML is also specified.

 CHAPTER 5 Table Expressions 171

The error message indicates that SQL Server allows the ORDER BY clause in three exceptional

cases—when the TOP, OFFSET-FETCH, or FOR XML option is used. In all cases, the ORDER BY clause

serves a purpose beyond the usual presentation purpose. Even standard SQL has a similar restriction,

with a similar exception when the standard OFFSET-FETCH option is used.

Because T-SQL allows an ORDER BY clause in a view when TOP or OFFSET-FETCH is also speciied,
some people think that they can create “ordered views.” One of the ways to try to achieve this is by
using TOP (100) PERCENT, like the following.

ALTER VIEW Sales.USACusts

AS

SELECT TOP (100) PERCENT

 custid, companyname, contactname, contacttitle, address,

 city, region, postalcode, country, phone, fax

FROM Sales.Customers

WHERE country = N'USA'

ORDER BY region;

GO

Even though the code is technically valid and the view is created, you should be aware that be-

cause the query is used to deine a table expression, the ORDER BY clause here is only guaranteed

to serve the logical iltering purpose for the TOP option. If you query the view and don’t specify an

ORDER BY clause in the outer query, presentation order is not guaranteed.

For example, run the following query against the view.

SELECT custid, companyname, region

FROM Sales.USACusts;

Here is the output from one of my executions showing that the rows are not sorted by region.

custid companyname region

----------- ----------------------- ---------------

32 Customer YSIQX OR

36 Customer LVJSO OR

43 Customer UISOJ WA

45 Customer QXPPT CA

48 Customer DVFMB OR

55 Customer KZQZT AK

65 Customer NYUHS NM

71 Customer LCOUJ ID

75 Customer XOJYP WY

77 Customer LCYBZ OR

78 Customer NLTYP MT

82 Customer EYHKM WA

89 Customer YBQTI WA

172 Microsoft SQL Server 2012 T-SQL Fundamentals

In some cases, a query that is used to deine a table expression has the TOP option with an ORDER

BY clause, and the query against the table expression doesn’t have an ORDER BY clause. In those cases,

therefore, the output might or might not be returned in the speciied order. If the results happen to
be ordered, it may be due to optimization reasons, especially when you use values other than TOP

(100) PERCENT. The point I’m trying to make is that any order of the rows in the output is considered

valid, and no speciic order is guaranteed; therefore, when querying a table expression, you should
not assume any order unless you specify an ORDER BY clause in the outer query.

In SQL Server 2012, there’s a new way to try to get a “sorted view,” by using the OFFSET clause with

0 ROWS, and without a FETCH clause, like the following.

ALTER VIEW Sales.USACusts

AS

SELECT

 custid, companyname, contactname, contacttitle, address,

 city, region, postalcode, country, phone, fax

FROM Sales.Customers

WHERE country = N'USA'

ORDER BY region

OFFSET 0 ROWS;

GO

At the moment, when I query the view and don’t indicate an ORDER BY clause in the outer query,

the result rows happen to be sorted by region. But I stress—do not assume that that’s guaranteed.

It happens to be the case due to current optimization. If you need a guarantee that the rows will be

returned from the query against the view sorted, you need an ORDER BY clause in the outer query.

Do not confuse the behavior of a query that is used to deine a table expression with a query
that isn’t. A query with an ORDER BY clause and a TOP or OFFSET-FETCH option does not guarantee

presentation order only in the context of a table expression. In the context of a query that is not used

to deine a table expression, the ORDER BY clause serves both the iltering purpose for the TOP or

OFFSET-FETCH option and the presentation purpose.

View Options
When you create or alter a view, you can specify view attributes and options as part of the view

deinition. In the header of the view, under the WITH clause, you can specify attributes such as

ENCRYPTION and SCHEMABINDING, and at the end of the query you can specify WITH CHECK

OPTION. The following sections describe the purpose of these options.

The ENCRYPTION Option

The ENCRYPTION option is available when you create or alter views, stored procedures, triggers, and

user-deined functions (UDFs). The ENCRYPTION option indicates that SQL Server will internally store

the text with the deinition of the object in an obfuscated format. The obfuscated text is not directly

visible to users through any of the catalog objects—only to privileged users through special means.

 CHAPTER 5 Table Expressions 173

Before you look at the ENCRYPTION option, run the following code to alter the deinition of the
USACusts view to its original version.

ALTER VIEW Sales.USACusts

AS

SELECT

 custid, companyname, contactname, contacttitle, address,

 city, region, postalcode, country, phone, fax

FROM Sales.Customers

WHERE country = N'USA';

GO

To get the deinition of the view, invoke the OBJECT_DEFINITION function like this.

SELECT OBJECT_DEFINITION(OBJECT_ID('Sales.USACusts'));

The text with the deinition of the view is available because the view was created without the
ENCRYPTION option. You get the following output.

CREATE VIEW Sales.USACusts

AS

SELECT

 custid, companyname, contactname, contacttitle, address,

 city, region, postalcode, country, phone, fax

FROM Sales.Customers

WHERE country = N'USA';

Next, alter the view deinition—only this time, include the ENCRYPTION option.

ALTER VIEW Sales.USACusts WITH ENCRYPTION

AS

SELECT

 custid, companyname, contactname, contacttitle, address,

 city, region, postalcode, country, phone, fax

FROM Sales.Customers

WHERE country = N'USA';

GO

Try again to get the text with the deinition of the view.

SELECT OBJECT_DEFINITION(OBJECT_ID('Sales.USACusts'));

This time you get a NULL back.

As an alternative to the OBJECT_DEFINITION function, you can use the sp_helptext stored proce-

dure to get object deinitions. For example, the following code requests the object deinition of the
USACusts view.

EXEC sp_helptext 'Sales.USACusts';

174 Microsoft SQL Server 2012 T-SQL Fundamentals

Because in our case the view was created with the ENCRYPTION option, you will not get the object

deinition back, but instead you will get the following message.

The text for object 'Sales.USACusts' is encrypted.

The SCHEMABINDING Option

The SCHEMABINDING option is available to views and UDFs; it binds the schema of referenced ob-

jects and columns to the schema of the referencing object. It indicates that referenced objects cannot

be dropped and that referenced columns cannot be dropped or altered.

For example, alter the USACusts view with the SCHEMABINDING option.

ALTER VIEW Sales.USACusts WITH SCHEMABINDING

AS

SELECT

 custid, companyname, contactname, contacttitle, address,

 city, region, postalcode, country, phone, fax

FROM Sales.Customers

WHERE country = N'USA';

GO

Now try to drop the Address column from the Customers table.

ALTER TABLE Sales.Customers DROP COLUMN address;

You get the following error.

Msg 5074, Level 16, State 1, Line 1

The object 'USACusts' is dependent on column 'address'.

Msg 4922, Level 16, State 9, Line 1

ALTER TABLE DROP COLUMN address failed because one or more objects access this column.

Without the SCHEMABINDING option, you would have been allowed to make such a schema

change, as well as drop the Customers table altogether. This can lead to errors at run time when you

try to query the view and referenced objects or columns do not exist. If you create the view with the

SCHEMABINDING option, you can avoid these errors.

To support the SCHEMABINDING option, the object deinition must meet a couple of technical
requirements. The query is not allowed to use * in the SELECT clause; instead, you have to explicitly

list column names. Also, you must use schema-qualiied two-part names when referring to objects.
Both requirements are actually good practices in general.

As you can imagine, creating your objects with the SCHEMABINDING option is a good practice.

The CHECK OPTION Option

The purpose of CHECK OPTION is to prevent modiications through the view that conlict with the
view’s ilter—assuming that one exists in the query deining the view.

 CHAPTER 5 Table Expressions 175

The query deining the view USACusts ilters customers whose country attribute is equal to N’USA’.

The view is currently deined without CHECK OPTION. This means that you can currently insert rows

through the view with customers from countries other than the United States, and you can update

existing customers through the view, changing their country to one other than the United States. For

example, the following code successfully inserts a customer with company name Customer ABCDE

from the United Kingdom through the view.

INSERT INTO Sales.USACusts(

 companyname, contactname, contacttitle, address,

 city, region, postalcode, country, phone, fax)

 VALUES(

 N'Customer ABCDE', N'Contact ABCDE', N'Title ABCDE', N'Address ABCDE',

 N'London', NULL, N'12345', N'UK', N'012-3456789', N'012-3456789');

The row was inserted through the view into the Customers table. However, because the view ilters
only customers from the United States, if you query the view looking for the new customer, you get

an empty set back.

SELECT custid, companyname, country

FROM Sales.USACusts

WHERE companyname = N'Customer ABCDE';

Query the Customers table directly looking for the new customer.

SELECT custid, companyname, country

FROM Sales.Customers

WHERE companyname = N'Customer ABCDE';

You get the customer information in the output, because the new row made it to the Customers

table.

custid companyname country

----------- ------------------ ---------------

92 Customer ABCDE UK

Similarly, if you update a customer row through the view, changing the country attribute to a

country other than the United States, the update makes it to the table. But that customer information

doesn’t show up anymore in the view because it doesn’t satisfy the view’s query ilter.

If you want to prevent modiications that conlict with the view’s ilter, add WITH CHECK OPTION

at the end of the query deining the view.

ALTER VIEW Sales.USACusts WITH SCHEMABINDING

AS

SELECT

 custid, companyname, contactname, contacttitle, address,

 city, region, postalcode, country, phone, fax

FROM Sales.Customers

WHERE country = N'USA'

WITH CHECK OPTION;

GO

176 Microsoft SQL Server 2012 T-SQL Fundamentals

Now try to insert a row that conlicts with the view’s ilter.

INSERT INTO Sales.USACusts(

 companyname, contactname, contacttitle, address,

 city, region, postalcode, country, phone, fax)

 VALUES(

 N'Customer FGHIJ', N'Contact FGHIJ', N'Title FGHIJ', N'Address FGHIJ',

 N'London', NULL, N'12345', N'UK', N'012-3456789', N'012-3456789');

You get the following error.

Msg 550, Level 16, State 1, Line 1

The attempted insert or update failed because the target view either specifies WITH CHECK

OPTION or spans a view that specifies WITH CHECK OPTION and one or more rows resulting from the

operation did not qualify under the CHECK OPTION constraint.

The statement has been terminated.

When you’re done, run the following code for cleanup.

DELETE FROM Sales.Customers

WHERE custid > 91;

IF OBJECT_ID('Sales.USACusts') IS NOT NULL DROP VIEW Sales.USACusts;

Inline Table-Valued Functions

Inline TVFs are reusable table expressions that support input parameters. In all respects except for the

support for input parameters, inline TVFs are similar to views. For this reason, I like to think of inline

TVFs as parameterized views, even though they are not called this formally.

For example, the following code creates an inline TVF called GetCustOrders in the TSQL2012

database.

USE TSQL2012;

IF OBJECT_ID('dbo.GetCustOrders') IS NOT NULL

 DROP FUNCTION dbo.GetCustOrders;

GO

CREATE FUNCTION dbo.GetCustOrders

 (@cid AS INT) RETURNS TABLE

AS

RETURN

 SELECT orderid, custid, empid, orderdate, requireddate,

 shippeddate, shipperid, freight, shipname, shipaddress, shipcity,

 shipregion, shippostalcode, shipcountry

 FROM Sales.Orders

 WHERE custid = @cid;

GO

 CHAPTER 5 Table Expressions 177

This inline TVF accepts an input parameter called @cid, representing a customer ID, and returns

all orders that were placed by the input customer. You query inline TVFs by using DML statements,

the same way you query other tables. If the function accepts input parameters, you specify those in

parentheses following the function’s name. Also, make sure you provide an alias for the table expres-

sion. Providing a table expression with an alias is not always a requirement, but it is a good practice

because it makes your code more readable and less prone to errors. For example, the following code

queries the function, requesting all orders that were placed by customer 1.

SELECT orderid, custid

FROM dbo.GetCustOrders(1) AS O;

This code returns the following output.

orderid custid

----------- -----------

10643 1

10692 1

10702 1

10835 1

10952 1

11011 1

As with other tables, you can refer to an inline TVF as part of a join. For example, the following

query joins the inline TVF returning customer 1’s orders with the Sales.OrderDetails table, matching

customer 1’s orders with the related order lines.

SELECT O.orderid, O.custid, OD.productid, OD.qty

FROM dbo.GetCustOrders(1) AS O

 JOIN Sales.OrderDetails AS OD

 ON O.orderid = OD.orderid;

This code returns the following output.

orderid custid productid qty

----------- ----------- ----------- ------

10643 1 28 15

10643 1 39 21

10643 1 46 2

10692 1 63 20

10702 1 3 6

10702 1 76 15

10835 1 59 15

10835 1 77 2

10952 1 6 16

10952 1 28 2

11011 1 58 40

11011 1 71 20

178 Microsoft SQL Server 2012 T-SQL Fundamentals

When you’re done, run the following code for cleanup.

IF OBJECT_ID('dbo.GetCustOrders') IS NOT NULL

 DROP FUNCTION dbo.GetCustOrders;

The APPLY Operator

The APPLY operator is a very powerful table operator. Like all table operators, this operator is used

in the FROM clause of a query. The two supported types of APPLY operator are CROSS APPLY and

OUTER APPLY. CROSS APPLY implements only one logical query processing phase, whereas OUTER

APPLY implements two.

note APPLY isn’t standard; the standard counterpart is called LATERAL, but the standard

form wasn’t implemented in SQL Server.

The APPLY operator operates on two input tables, the second of which can be a table expression;

I’ll refer to them as the “left” and “right” tables. The right table is usually a derived table or an inline
TVF. The CROSS APPLY operator implements one logical query processing phase—it applies the right

table expression to each row from the left table and produces a result table with the uniied result sets.

So far it might sound like the CROSS APPLY operator is very similar to a cross join, and in a sense

that’s true. For example, the following two queries return the same result sets.

SELECT S.shipperid, E.empid

FROM Sales.Shippers AS S

 CROSS JOIN HR.Employees AS E;

SELECT S.shipperid, E.empid

FROM Sales.Shippers AS S

 CROSS APPLY HR.Employees AS E;

However, with the CROSS APPLY operator, the right table expression can represent a different set

of rows per each row from the left table, unlike in a join. You can achieve this when you use a derived

table in the right side, and in the derived table query refer to attributes from the left side. Alterna-

tively, when you use an inline TVF, you can pass attributes from the left side as input arguments.

For example, the following code uses the CROSS APPLY operator to return the three most recent

orders for each customer.

SELECT C.custid, A.orderid, A.orderdate

FROM Sales.Customers AS C

 CROSS APPLY

 (SELECT TOP (3) orderid, empid, orderdate, requireddate

 FROM Sales.Orders AS O

 WHERE O.custid = C.custid

 ORDER BY orderdate DESC, orderid DESC) AS A;

 CHAPTER 5 Table Expressions 179

You can think of the table expression A as a correlated table subquery. In terms of logical query

processing, the right table expression (a derived table, in this case) is applied to each row from the

Customers table. Notice the reference to the attribute C.custid from the left table in the derived

table’s query ilter. The derived table returns the three most recent orders for the customer from the
current left row. Because the derived table is applied to each row from the left side, the CROSS APPLY

operator returns the three most recent orders for each customer.

Here’s the output of this query, shown in abbreviated form.

custid orderid orderdate

----------- ----------- -----------------------

1 11011 2008-04-09 00:00:00.000

1 10952 2008-03-16 00:00:00.000

1 10835 2008-01-15 00:00:00.000

2 10926 2008-03-04 00:00:00.000

2 10759 2007-11-28 00:00:00.000

2 10625 2007-08-08 00:00:00.000

3 10856 2008-01-28 00:00:00.000

3 10682 2007-09-25 00:00:00.000

3 10677 2007-09-22 00:00:00.000

...

(263 row(s) affected)

Remember that, starting with SQL Server 2012, you can use the standard OFFSET-FETCH option

instead of TOP, like the following.

SELECT C.custid, A.orderid, A.orderdate

FROM Sales.Customers AS C

 CROSS APPLY

 (SELECT orderid, empid, orderdate, requireddate

 FROM Sales.Orders AS O

 WHERE O.custid = C.custid

 ORDER BY orderdate DESC, orderid DESC

 OFFSET 0 ROWS FETCH FIRST 3 ROWS ONLY) AS A;

If the right table expression returns an empty set, the CROSS APPLY operator does not return the

corresponding left row. For example, customers 22 and 57 did not place orders. In both cases, the

derived table is an empty set; therefore, those customers are not returned in the output. If you want

to return rows from the left table for which the right table expression returns an empty set, use the

OUTER APPLY operator instead of CROSS APPLY. The OUTER APPLY operator adds a second logical

phase that identiies rows from the left side for which the right table expression returns an empty set,
and it adds those rows to the result table as outer rows with NULL marks in the right side’s attributes

as placeholders. In a sense, this phase is similar to the phase that adds outer rows in a left outer join.

180 Microsoft SQL Server 2012 T-SQL Fundamentals

For example, run the following code to return the three most recent orders for each customer, and

include in the output customers with no orders as well.

SELECT C.custid, A.orderid, A.orderdate

FROM Sales.Customers AS C

 OUTER APPLY

 (SELECT TOP (3) orderid, empid, orderdate, requireddate

 FROM Sales.Orders AS O

 WHERE O.custid = C.custid

 ORDER BY orderdate DESC, orderid DESC) AS A;

This time, customers 22 and 57, who did not place orders, are included in the output, which is

shown here in abbreviated form.

custid orderid orderdate

----------- ----------- -----------------------

1 11011 2008-04-09 00:00:00.000

1 10952 2008-03-16 00:00:00.000

1 10835 2008-01-15 00:00:00.000

2 10926 2008-03-04 00:00:00.000

2 10759 2007-11-28 00:00:00.000

2 10625 2007-08-08 00:00:00.000

3 10856 2008-01-28 00:00:00.000

3 10682 2007-09-25 00:00:00.000

3 10677 2007-09-22 00:00:00.000

...

22 NULL NULL

...

57 NULL NULL

...

(265 row(s) affected)

Here’s the counterpart using OFFSET-FETCH instead of TOP.

SELECT C.custid, A.orderid, A.orderdate

FROM Sales.Customers AS C

 OUTER APPLY

 (SELECT orderid, empid, orderdate, requireddate

 FROM Sales.Orders AS O

 WHERE O.custid = C.custid

 ORDER BY orderdate DESC, orderid DESC

 OFFSET 0 ROWS FETCH FIRST 3 ROWS ONLY) AS A;

For encapsulation purposes, you might ind it more convenient to work with inline TVFs instead of
derived tables. if you do, your code will be simpler to follow and maintain. For example, the follow-

ing code creates an inline TVF called TopOrders that accepts as inputs a customer ID (@custid) and a

number (@n), and returns the @n most recent orders for customer @custid.

 CHAPTER 5 Table Expressions 181

IF OBJECT_ID('dbo.TopOrders') IS NOT NULL

 DROP FUNCTION dbo.TopOrders;

GO

CREATE FUNCTION dbo.TopOrders

 (@custid AS INT, @n AS INT)

 RETURNS TABLE

AS

RETURN

 SELECT TOP (@n) orderid, empid, orderdate, requireddate

 FROM Sales.Orders

 WHERE custid = @custid

 ORDER BY orderdate DESC, orderid DESC;

GO

By using OFFSET-FETCH instead of TOP, you can replace the inner query in the function with this one.

 SELECT orderid, empid, orderdate, requireddate

 FROM Sales.Orders

 WHERE custid = @custid

 ORDER BY orderdate DESC, orderid DESC

 OFFSET 0 ROWS FETCH FIRST @n ROWS ONLY;

You can now substitute the use of the derived table from the previous examples with the new

function.

SELECT

 C.custid, C.companyname,

 A.orderid, A.empid, A.orderdate, A.requireddate

FROM Sales.Customers AS C

 CROSS APPLY dbo.TopOrders(C.custid, 3) AS A;

The code is much more readable and easier to maintain. In terms of physical processing, noth-

ing really changed because, as I stated earlier, the deinition of table expressions is expanded, and
SQL Server will in any case end up querying the underlying objects directly.

Conclusion

Table expressions can help you simplify your code, improve its maintainability, and encapsulate que-

rying logic. When you need to use table expressions and are not planning to reuse their deinitions,
use derived tables or CTEs. CTEs have a couple of advantages over derived tables; you do not nest

CTEs as you do derived tables, making CTEs more modular and easier to maintain. Also, you can refer

to multiple instances of the same CTE, which you cannot do with derived tables.

When you need to deine reusable table expressions, use views or inline TVFs. When you do not
need to support input parameters, use views; otherwise, use inline TVFs.

Use the APPLY operator when you want to apply a table expression to each row from a source

table and unify all result sets into one result table.

182 Microsoft SQL Server 2012 T-SQL Fundamentals

Exercises

This section provides exercises to help you familiarize yourself with the subjects discussed in this chap-

ter. All the exercises in this chapter require your session to be connected to the TSQL2012 database.

1-1
Write a query that returns the maximum value in the orderdate column for each employee.

 ■ Tables involved: TSQL2012 database, Sales.Orders table

 ■ Desired output:

empid maxorderdate

----------- -----------------------

3 2008-04-30 00:00:00.000

6 2008-04-23 00:00:00.000

9 2008-04-29 00:00:00.000

7 2008-05-06 00:00:00.000

1 2008-05-06 00:00:00.000

4 2008-05-06 00:00:00.000

2 2008-05-05 00:00:00.000

5 2008-04-22 00:00:00.000

8 2008-05-06 00:00:00.000

(9 row(s) affected)

1-2
Encapsulate the query from Exercise 1-1 in a derived table. Write a join query between the derived

table and the Orders table to return the orders with the maximum order date for each employee.

 ■ Tables involved: Sales.Orders

 ■ Desired output:

empid orderdate orderid custid

----------- ------------------------- ----------- -----------

9 2008-04-29 00:00:00.000 11058 6

8 2008-05-06 00:00:00.000 11075 68

7 2008-05-06 00:00:00.000 11074 73

6 2008-04-23 00:00:00.000 11045 10

5 2008-04-22 00:00:00.000 11043 74

4 2008-05-06 00:00:00.000 11076 9

3 2008-04-30 00:00:00.000 11063 37

2 2008-05-05 00:00:00.000 11073 58

2 2008-05-05 00:00:00.000 11070 44

1 2008-05-06 00:00:00.000 11077 65

(10 row(s) affected)

 CHAPTER 5 Table Expressions 183

2-1
Write a query that calculates a row number for each order based on orderdate, orderid ordering.

 ■ Tables involved: Sales.Orders

 ■ Desired output (abbreviated):

orderid orderdate custid empid rownum

----------- ------------------------- ----------- ----------- -------

10248 2006-07-04 00:00:00.000 85 5 1

10249 2006-07-05 00:00:00.000 79 6 2

10250 2006-07-08 00:00:00.000 34 4 3

10251 2006-07-08 00:00:00.000 84 3 4

10252 2006-07-09 00:00:00.000 76 4 5

10253 2006-07-10 00:00:00.000 34 3 6

10254 2006-07-11 00:00:00.000 14 5 7

10255 2006-07-12 00:00:00.000 68 9 8

10256 2006-07-15 00:00:00.000 88 3 9

10257 2006-07-16 00:00:00.000 35 4 10

...

(830 row(s) affected)

2-2
Write a query that returns rows with row numbers 11 through 20 based on the row number deinition
in Exercise 2-1. Use a CTE to encapsulate the code from Exercise 2-1.

 ■ Tables involved: Sales.Orders

 ■ Desired output:

orderid orderdate custid empid rownum

----------- ------------------------- ----------- ----------- -------

10258 2006-07-17 00:00:00.000 20 1 11

10259 2006-07-18 00:00:00.000 13 4 12

10260 2006-07-19 00:00:00.000 56 4 13

10261 2006-07-19 00:00:00.000 61 4 14

10262 2006-07-22 00:00:00.000 65 8 15

10263 2006-07-23 00:00:00.000 20 9 16

10264 2006-07-24 00:00:00.000 24 6 17

10265 2006-07-25 00:00:00.000 7 2 18

10266 2006-07-26 00:00:00.000 87 3 19

10267 2006-07-29 00:00:00.000 25 4 20

(10 row(s) affected)

184 Microsoft SQL Server 2012 T-SQL Fundamentals

3 (Optional, advanced)
Write a solution using a recursive CTE that returns the management chain leading to Zoya

 Dolgopyatova (employee ID 9).

 ■ Tables involved: HR.Employees

 ■ Desired output:

empid mgrid firstname lastname

----------- ----------- ---------- --------------------

9 5 Zoya Dolgopyatova

5 2 Sven Buck

2 1 Don Funk

1 NULL Sara Davis

(4 row(s) affected)

4-1
Create a view that returns the total quantity for each employee and year.

 ■ Tables involved: Sales.Orders and Sales.OrderDetails

 ■ When running the following code:

SELECT * FROM Sales.VEmpOrders ORDER BY empid, orderyear;

 ■ Desired output:

empid orderyear qty

----------- ----------- -----------

1 2006 1620

1 2007 3877

1 2008 2315

2 2006 1085

2 2007 2604

2 2008 2366

3 2006 940

3 2007 4436

3 2008 2476

4 2006 2212

4 2007 5273

4 2008 2313

5 2006 778

5 2007 1471

5 2008 787

6 2006 963

6 2007 1738

6 2008 826

7 2006 485

7 2007 2292

7 2008 1877

 CHAPTER 5 Table Expressions 185

8 2006 923

8 2007 2843

8 2008 2147

9 2006 575

9 2007 955

9 2008 1140

(27 row(s) affected)

4-2 (Optional, advanced)
Write a query against Sales.VEmpOrders that returns the running total quantity for each employee

and year.

 ■ Tables involved: Sales.VEmpOrders view

 ■ Desired output:

empid orderyear qty runqty

----------- ----------- ----------- -----------

1 2006 1620 1620

1 2007 3877 5497

1 2008 2315 7812

2 2006 1085 1085

2 2007 2604 3689

2 2008 2366 6055

3 2006 940 940

3 2007 4436 5376

3 2008 2476 7852

4 2006 2212 2212

4 2007 5273 7485

4 2008 2313 9798

5 2006 778 778

5 2007 1471 2249

5 2008 787 3036

6 2006 963 963

6 2007 1738 2701

6 2008 826 3527

7 2006 485 485

7 2007 2292 2777

7 2008 1877 4654

8 2006 923 923

8 2007 2843 3766

8 2008 2147 5913

9 2006 575 575

9 2007 955 1530

9 2008 1140 2670

(27 row(s) affected)

186 Microsoft SQL Server 2012 T-SQL Fundamentals

5-1
Create an inline function that accepts as inputs a supplier ID (@supid AS INT) and a requested num-

ber of products (@n AS INT). The function should return @n products with the highest unit prices that

are supplied by the speciied supplier ID.

 ■ Tables involved: Production.Products

 ■ When issuing the following query:

SELECT * FROM Production.TopProducts(5, 2);

 ■ Desired output:

productid productname unitprice

----------- ------------------ ---------------

12 Product OSFNS 38.00

11 Product QMVUN 21.00

(2 row(s) affected)

5-2
Using the CROSS APPLY operator and the function you created in Exercise 4-1, return, for each sup-

plier, the two most expensive products.

 ■ Desired output (shown here in abbreviated form).

supplierid companyname productid productname unitprice

----------- ----------------- ----------- --------------- ----------

8 Supplier BWGYE 20 Product QHFFP 81.00

8 Supplier BWGYE 68 Product TBTBL 12.50

20 Supplier CIYNM 43 Product ZZZHR 46.00

20 Supplier CIYNM 44 Product VJIEO 19.45

23 Supplier ELCRN 49 Product FPYPN 20.00

23 Supplier ELCRN 76 Product JYGFE 18.00

5 Supplier EQPNC 12 Product OSFNS 38.00

5 Supplier EQPNC 11 Product QMVUN 21.00

...

(55 row(s) affected)

 ■ When you’re done, run the following code for cleanup.

IF OBJECT_ID('Sales.VEmpOrders') IS NOT NULL

 DROP VIEW Sales.VEmpOrders;

IF OBJECT_ID('Production.TopProducts') IS NOT NULL

 DROP FUNCTION Production.TopProducts;

 CHAPTER 5 Table Expressions 187

Solutions

This section provides solutions to the exercises in the preceding section.

1-1
This exercise is just a preliminary step required for the next exercise. This step involves writing a query

that returns the maximum order date for each employee.

USE TSQL2012;

SELECT empid, MAX(orderdate) AS maxorderdate

FROM Sales.Orders

GROUP BY empid;

1-2
This exercise requires you to use the query from the previous step to deine a derived table and join
this derived table with the Orders table to return the orders with the maximum order date for each

employee, like the following.

SELECT O.empid, O.orderdate, O.orderid, O.custid

FROM Sales.Orders AS O

 JOIN (SELECT empid, MAX(orderdate) AS maxorderdate

 FROM Sales.Orders

 GROUP BY empid) AS D

 ON O.empid = D.empid

 AND O.orderdate = D.maxorderdate;

2-1
This exercise is a preliminary step for the next exercise. It requires you to query the Orders table and

calculate row numbers based on orderdate, orderid ordering, like the following.

SELECT orderid, orderdate, custid, empid,

 ROW_NUMBER() OVER(ORDER BY orderdate, orderid) AS rownum

FROM Sales.Orders;

188 Microsoft SQL Server 2012 T-SQL Fundamentals

2-2
This exercise requires you to deine a CTE based on the query from the previous step, and ilter only
rows with row numbers in the range 11 through 20 from the CTE, like the following.

WITH OrdersRN AS

(

 SELECT orderid, orderdate, custid, empid,

 ROW_NUMBER() OVER(ORDER BY orderdate, orderid) AS rownum

 FROM Sales.Orders

)

SELECT * FROM OrdersRN WHERE rownum BETWEEN 11 AND 20;

You might wonder why you need a table expression here. Window functions (such as the ROW_

NUMBER function) are only allowed in the SELECT and ORDER BY clauses of a query, and not directly

in the WHERE clause. By using a table expression, you can invoke the ROW_NUMBER function in the

SELECT clause, assign an alias to the result column, and refer to the result column in the WHERE clause

of the outer query.

3
You can think of this exercise as the inverse of the request to return an employee and all subordinates

in all levels. Here, the anchor member is a query that returns the row for employee 9. The recursive

member joins the CTE (call it C)—representing the subordinate/child from the previous level—with

the Employees table (call it P)—representing the manager/parent in the next level. This way, each

invocation of the recursive member returns the manager from the next level, until no next-level man-

ager is found (in the case of the CEO).

Here’s the complete solution query.

WITH EmpsCTE AS

(

 SELECT empid, mgrid, firstname, lastname

 FROM HR.Employees

 WHERE empid = 9

 UNION ALL

 SELECT P.empid, P.mgrid, P.firstname, P.lastname

 FROM EmpsCTE AS C

 JOIN HR.Employees AS P

 ON C.mgrid = P.empid

)

SELECT empid, mgrid, firstname, lastname

FROM EmpsCTE;

 CHAPTER 5 Table Expressions 189

4-1
This exercise is a preliminary step for the next exercise. Here you are required to deine a view based
on a query that joins the Orders and OrderDetails tables, group the rows by employee ID and order

year, and return the total quantity for each group. The view deinition should look like the following.

USE TSQL2012;

IF OBJECT_ID('Sales.VEmpOrders') IS NOT NULL

 DROP VIEW Sales.VEmpOrders;

GO

CREATE VIEW Sales.VEmpOrders

AS

SELECT

 empid,

 YEAR(orderdate) AS orderyear,

 SUM(qty) AS qty

FROM Sales.Orders AS O

 JOIN Sales.OrderDetails AS OD

 ON O.orderid = OD.orderid

GROUP BY

 empid,

 YEAR(orderdate);

GO

4-2
In this exercise, you query the VEmpOrders view and return the running total quantity for each em-

ployee and order year. To achieve this, you can write a query against the VEmpOrders view (call it

V1) that returns from each row the employee ID, order year, and quantity. In the SELECT list, you can

incorporate a subquery against a second instance of VEmpOrders (call it V2), that returns the sum of

all quantities from the rows where the employee ID is equal to the one in V1, and the order year is

smaller than or equal to the one in V1. The complete solution query looks like the following.

SELECT empid, orderyear, qty,

 (SELECT SUM(qty)

 FROM Sales.VEmpOrders AS V2

 WHERE V2.empid = V1.empid

 AND V2.orderyear <= V1.orderyear) AS runqty

FROM Sales.VEmpOrders AS V1

ORDER BY empid, orderyear;

Note that in Chapter 7, “Beyond the Fundamentals of Querying,” you will learn about new tech-

niques to compute running totals by using window functions.

190 Microsoft SQL Server 2012 T-SQL Fundamentals

5-1
This exercise requires you to deine a function called TopProducts that accepts a supplier ID (@supid)
and a number (@n), and is supposed to return the @n most expensive products supplied by the input

supplier ID. Here’s how the function deinition should look.

USE TSQL2012;

IF OBJECT_ID('Production.TopProducts') IS NOT NULL

 DROP FUNCTION Production.TopProducts;

GO

CREATE FUNCTION Production.TopProducts

 (@supid AS INT, @n AS INT)

 RETURNS TABLE

AS

RETURN

 SELECT TOP (@n) productid, productname, unitprice

 FROM Production.Products

 WHERE supplierid = @supid

 ORDER BY unitprice DESC;

GO

Starting with SQL Server 2012, you can use the OFFSET-FETCH ilter instead of TOP. You would

replace the inner query in the function with the following one.

 SELECT productid, productname, unitprice

 FROM Production.Products

 WHERE supplierid = @supid

 ORDER BY unitprice DESC

 OFFSET 0 ROWS FETCH FIRST @n ROWS ONLY;

5-2
In this exercise, you write a query against the Production.Suppliers table and use the CROSS APPLY op-

erator to apply the function you deined in the previous step to each supplier. Your query is supposed
to return the two most expensive products for each supplier. Here’s the solution query.

SELECT S.supplierid, S.companyname, P.productid, P.productname, P.unitprice

FROM Production.Suppliers AS S

 CROSS APPLY Production.TopProducts(S.supplierid, 2) AS P;

 191

C H A P T E R 6

Set Operators

Set operators are operators that are applied between two input sets—or, to use the more accu-

rate SQL term, multisets—that result from two input queries. Remember, a multiset is not a true

set, because it can contain duplicates. When I use the term multiset in this chapter, I’m referring to

the intermediate results from two input queries that might contain duplicates. Although there are

two multisets as inputs to an operator, depending on the lavor of the operator, the result is either a
set or a multiset. If the operator is a true set operator (a DISTINCT lavor), the result is a set with no
duplicates. If the operator is a multiset operator (an ALL lavor), the result is a multiset with possible
duplicates. This chapter focuses on set operators but also covers multiset operators.

T-SQL supports three set operators: UNION, INTERSECT, and EXCEPT. In this chapter, I irst intro-

duce the general form and requirements of the operators, and then I describe each operator in detail.

The general form of a query with a set operator is as follows.

Input Query1

<set_operator>

Input Query2

[ORDER BY ...]

A set operator compares complete rows between the result sets of the two input queries involved.

Whether a row will be returned in the result of the operator depends upon the outcome of the

comparison and the operator used. Because by deinition a set operator is applied to two sets (or, in
SQL, multisets) and a set has no guaranteed order, the two queries involved cannot have ORDER BY

clauses. Remember that a query with an ORDER BY clause guarantees presentation order and there-

fore does not return a set (or a multiset)—it returns a cursor. However, although the queries involved

cannot have ORDER BY clauses, you can optionally add an ORDER BY clause that is applied to the

result of the operator.

In terms of logical query processing, each of the individual queries can have all logical query pro-

cessing phases except for a presentation ORDER BY, as I just explained. The set operator is applied to

the results of the two queries, and the outer ORDER BY clause (if one exists) is applied to the result of

the set operator.

The two queries involved in a set operator must produce results with the same number of columns,

and corresponding columns must have compatible data types. By compatible data types I mean that

the data type that is lower in terms of data type precedence must be implicitly convertible to the

higher data type.

192 Microsoft SQL Server 2012 T-SQL Fundamentals

The names of the columns in the result of a set operator are determined by the irst query; there-

fore, if you need to assign aliases to result columns, you should assign those in the irst query.

An interesting aspect of set operators is that when it is comparing rows, a set operator considers

two NULLs as equal. I’ll demonstrate the importance of this point later in the chapter.

Standard SQL supports two “lavors” of each operator—DISTINCT (the default) and ALL. The DIS-

TINCT lavor eliminates duplicates and returns a set. ALL doesn’t attempt to remove duplicates and

therefore returns a multiset. All three operators in Microsoft SQL Server support an implicit distinct

version, but only the UNION operator supports the ALL version. In terms of syntax, you cannot explic-

itly specify the DISTINCT clause. Instead, it is implied when you don’t specify ALL explicitly. I’ll provide

alternatives to the missing INTERSECT ALL and EXCEPT ALL operators in the “The INTERSECT ALL

Multiset Operator” and “The EXCEPT ALL Multiset Operator” sections later in this chapter.

The UNION Operator

In set theory, the union of two sets (call them A and B) is the set containing all elements of both A and

B. In other words, if an element belongs to any of the input sets, it belongs to the result set. Figure 6-1

shows a set diagram (also known as a Venn diagram) with a graphical depiction of the union of two

sets. The shaded area represents the result of the set operator.

Union: A U B

A B

FIGuRE 6-1 A union of two sets.

In T-SQL, the UNION operator uniies the results of two input queries. If a row appears in any of
the input sets, it will appear in the result of the UNION operator. T-SQL supports both the UNION ALL

and UNION (implicit DISTINCT) lavors of the UNION operator.

The UNION ALL Multiset Operator
The UNION ALL multiset operator returns all rows that appear in any of the input multisets resulting

from the two input queries, without really comparing rows and without eliminating duplicates. As-

suming that Query1 returns m rows and Query2 returns n rows, Query1 UNION ALL Query2 returns

m + n rows.

 CHAPTER 6 Set Operators 193

For example, the following code uses the UNION ALL operator to unify employee locations and

customer locations.

USE TSQL2012;

SELECT country, region, city FROM HR.Employees

UNION ALL

SELECT country, region, city FROM Sales.Customers;

The result has 100 rows—9 from the Employees table and 91 from the Customers table—and is

shown here in abbreviated form:

country region city

--------------- --------------- ---------------

USA WA Seattle

USA WA Tacoma

USA WA Kirkland

USA WA Redmond

UK NULL London

UK NULL London

UK NULL London

...

Finland NULL Oulu

Brazil SP Resende

USA WA Seattle

Finland NULL Helsinki

Poland NULL Warszawa

(100 row(s) affected)

Because UNION ALL doesn’t eliminate duplicates, the result is a multiset and not a set. The same

row can appear multiple times in the result, as is the case with (UK, NULL, London) in the result of this

query.

The UNION distinct Set Operator
The UNION (implicit DISTINCT) set operator uniies the results of the two queries and eliminates
duplicates. Note that if a row appears in both input sets, it will appear only once in the result; in other

words, the result is a set and not a multiset.

For example, the following code returns distinct locations that are either employee locations or

customer locations.

SELECT country, region, city FROM HR.Employees

UNION

SELECT country, region, city FROM Sales.Customers;

194 Microsoft SQL Server 2012 T-SQL Fundamentals

The difference between this example and the previous one with the UNION ALL operator is that in

this example, the operator removed duplicates, whereas in the previous example, it didn’t. Hence, the

result of this query has 71 distinct rows, as shown here in abbreviated form.

country region city

--------------- --------------- ---------------

Argentina NULL Buenos Aires

Austria NULL Graz

Austria NULL Salzburg

Belgium NULL Bruxelles

Belgium NULL Charleroi

...

USA WY Lander

Venezuela DF Caracas

Venezuela Lara Barquisimeto

Venezuela Nueva Esparta I. de Margarita

Venezuela Táchira San Cristóbal

(71 row(s) affected)

So when should you use UNION ALL and when should you use UNION? If a potential exists for du-

plicates after the two inputs of the operator have been uniied, and you need to return the duplicates,
use UNION ALL. If a potential exists for duplicates but you need to return distinct rows, use UNION. If

no potential exists for duplicates after the two inputs have been uniied, UNION and UNION ALL are

logically equivalent. However, in such a case I’d recommend that you use UNION ALL because adding

ALL removes the overhead incurred by SQL Server checking for duplicates.

The INTERSECT Operator

In set theory, the intersection of two sets (call them A and B) is the set of all elements that belong to A

and also belong to B. Figure 6-2 shows a graphical depiction of the intersection of two sets.

A B

Intersection: A B
U

FIGuRE 6-2 The intersection of two sets.

In T-SQL, the INTERSECT set operator returns the intersection of the result sets of two input que-

ries, returning only rows that appear in both inputs. After I describe INTERSECT (implicit DISTINCT), I

provide an alternative solution to the INTERSECT ALL multiset operator that has not yet been imple-

mented as of SQL Server 2012.

 CHAPTER 6 Set Operators 195

The INTERSECT distinct Set Operator
The INTERSECT set operator logically irst eliminates duplicate rows from the two input multisets—

turning them to sets—and then returns only rows that appear in both sets. In other words, a row is

returned provided that it appears at least once in both input multisets.

For example, the following code returns distinct locations that are both employee locations and

customer locations.

SELECT country, region, city FROM HR.Employees

INTERSECT

SELECT country, region, city FROM Sales.Customers;

This query returns the following output.

country region city

--------------- --------------- ---------------

UK NULL London

USA WA Kirkland

USA WA Seattle

It doesn’t matter how many occurrences there are of an employee or customer location—if the

location appears at least once in the Employees table and also at least once in the Customers table,

the location is returned. The output of this query shows that three locations are both customer and

employee locations.

I mentioned earlier that when it is comparing rows, a set operator considers two NULL marks as

equal. There are both customers and employees with the location (UK, NULL, London), but it’s not

trivial that this row appears in the output. The country and city attributes do not allow NULL marks,

so the comparison that the set operator performs between these column values in an employee row

and in a customer row is straightforward. What’s not straightforward is that when the set operator

compares the NULL region in the employee row and the NULL region in the customer row, it consid-

ers the two equal, and that’s why it returns the row.

When this is the behavior of NULL comparison that you want—as it is in this case—set operators

have a powerful advantage over alternatives. For example, one alternative to using the INTERSECT

operator is to use an inner join, and another is to use the EXISTS predicate. In both cases, when the

NULL in the region attribute of an employee is compared with the NULL in the region attribute of a

customer, the comparison yields UNKNOWN, and such a row is iltered out. This means that unless
you add extra logic that handles NULL marks in a special manner, neither the inner join nor the EXISTS

alternative returns the row (UK, NULL, London), even though it does appear in both sides.

The INTERSECT ALL Multiset Operator
I provide this section as optional reading for those who feel very comfortable with the material

covered so far in this chapter. Standard SQL supports an ALL lavor of the INTERSECT operator,

but this lavor has not yet been implemented as of SQL Server 2012. After I describe the meaning
of INTERSECT ALL in standard SQL, I’ll provide an alternative in T-SQL.

196 Microsoft SQL Server 2012 T-SQL Fundamentals

Remember the meaning of the ALL keyword in the UNION ALL operator: it returns all duplicate

rows. Similarly, the keyword ALL in the INTERSECT ALL operator means that duplicate intersections

will not be removed. INTERSECT ALL is different from UNION ALL in that the former does not return

all duplicates but only returns the number of duplicate rows, matching the lower of the counts in both

multisets. Another way to look at it is that the INTERSECT ALL operator doesn’t only care about the

existence of a row in both sides—it also cares about the number of occurrences of the row in each

side. It’s as if this operator looks for matches per occurrence of each row. If there are x occurrences

of a row R in the irst input multiset and y occurrences of R in the second, R appears minimum(x, y)
times in the result of the operator. For example, the location (UK, NULL, London) appears four times

in Employees and six times in Customers; hence, an INTERSECT ALL operator between the employee

locations and the customer locations should return four occurrences of (UK, NULL, London), because

at the logical level, four occurrences can be intersected.

Even though SQL Server does not support a built-in INTERSECT ALL operator, you can provide a

solution that produces the same result. You can use the ROW_NUMBER function to number the oc-

currences of each row in each input query. To achieve this, specify all participating attributes in the

PARTITION BY clause of the function, and use (SELECT <constant>) in the ORDER BY clause of the

function to indicate that order doesn’t matter.

Tip Using ORDER BY (SELECT <constant>) as the ordering speciication for a window func-

tion is one of several ways to tell SQL Server that order doesn’t matter. SQL Server is smart

enough to realize that the same constant will be assigned to all rows, and therefore it’s not

necessary to actually sort the data and incur the associated overhead.

Then apply the INTERSECT operator between the two queries with the ROW_NUMBER function.

Because the occurrences of each row are numbered, the intersection is based on the row numbers in

addition to the original attributes. For example, in the Employees table, which has four occurrences of

the location (UK, NULL, London), those occurrences would be numbered 1 through 4. In the Customers

table, which has six occurrences of the location (UK, NULL, London), those occurrences would be num-

bered 1 through 6. Occurrences 1 through 4 would all be intersected between the two.

Here’s the complete solution code.

SELECT

 ROW_NUMBER()

 OVER(PARTITION BY country, region, city

 ORDER BY (SELECT 0)) AS rownum,

 country, region, city

FROM HR.Employees

INTERSECT

SELECT

 ROW_NUMBER()

 OVER(PARTITION BY country, region, city

 ORDER BY (SELECT 0)),

 country, region, city

FROM Sales.Customers;

 CHAPTER 6 Set Operators 197

This code produces the following output.

rownum country region city

-------------------- --------------- --------------- ---------------

1 UK NULL London

1 USA WA Kirkland

1 USA WA Seattle

2 UK NULL London

3 UK NULL London

4 UK NULL London

Of course, the INTERSECT ALL operator is not supposed to return any row numbers; those are

used to support the solution. If you don’t want to return those in the output, you can deine a table
expression such as a common table expression (CTE) based on this query and select only the original

attributes from the table expression. Here’s an example of how you can use INTERSECT ALL to return

all occurrences of employee and customer locations that intersect.

WITH INTERSECT_ALL

AS

(

 SELECT

 ROW_NUMBER()

 OVER(PARTITION BY country, region, city

 ORDER BY (SELECT 0)) AS rownum,

 country, region, city

 FROM HR.Employees

 INTERSECT

 SELECT

 ROW_NUMBER()

 OVER(PARTITION BY country, region, city

 ORDER BY (SELECT 0)),

 country, region, city

 FROM Sales.Customers

)

SELECT country, region, city

FROM INTERSECT_ALL;

Here’s the output of this query, which is equivalent to what the standard INTERSECT ALL would

have returned.

country region city

--------------- --------------- ---------------

UK NULL London

USA WA Kirkland

USA WA Seattle

UK NULL London

UK NULL London

UK NULL London

198 Microsoft SQL Server 2012 T-SQL Fundamentals

The EXCEPT Operator

In set theory, the difference of sets A and B (A – B) is the set of elements that belong to A and do not

belong to B. You can think of the set difference A – B as A minus the members of B also in A. Figure 6-3

shows a graphical depiction of the set difference A – B.

A B

Difference: A – B

FIGuRE 6-3 Set difference.

In T-SQL, set difference is implemented with the EXCEPT set operator. EXCEPT operates on the re-

sult sets of two input queries and returns rows that appear in the irst input but not the second. After
I describe the EXCEPT (implicit DISTINCT) operator, I’ll describe EXCEPT ALL, which has not yet been

implemented as of SQL Server 2012, and how to provide an alternative to this operator.

The EXCEPT distinct Set Operator
The EXCEPT set operator logically irst eliminates duplicate rows from the two input multisets—turn-

ing them to sets—and then returns only rows that appear in the irst set but not the second. In other
words, a row is returned provided that it appears at least once in the irst input multiset and zero
times in the second. Note that unlike the other two operators, EXCEPT is asymmetric; that is, with

the other set operators, it doesn’t matter which input query appears irst and which second—with
EXCEPT, it does.

For example, the following code returns distinct locations that are employee locations but not

customer locations.

SELECT country, region, city FROM HR.Employees

EXCEPT

SELECT country, region, city FROM Sales.Customers;

This query returns the following two locations.

country region city

--------------- --------------- ---------------

USA WA Redmond

USA WA Tacoma

 CHAPTER 6 Set Operators 199

The following query returns distinct locations that are customer locations but not employee

locations.

SELECT country, region, city FROM Sales.Customers

EXCEPT

SELECT country, region, city FROM HR.Employees;

This query returns 66 locations, shown here in abbreviated form.

country region city

--------------- --------------- ---------------

Argentina NULL Buenos Aires

Austria NULL Graz

Austria NULL Salzburg

Belgium NULL Bruxelles

Belgium NULL Charleroi

...

USA WY Lander

Venezuela DF Caracas

Venezuela Lara Barquisimeto

Venezuela Nueva Esparta I. de Margarita

Venezuela Táchira San Cristóbal

(66 row(s) affected)

You can also use alternatives to the EXCEPT operator. One alternative is an outer join that ilters only
outer rows, which are rows that appear in one side but not the other. Another alternative is to use the

NOT EXISTS predicate. However, if you want to consider two NULL marks as equal, set operators give

you this behavior by default with no need for special treatment, whereas the alternatives don’t.

The EXCEPT ALL Multiset Operator
I provide this section as optional reading for those who feel very comfortable with the material cov-

ered so far in this chapter. The EXCEPT ALL operator is very similar to the EXCEPT operator, but it also

takes into account the number of occurrences of each row. Provided that a row R appears x times in

the irst multiset and y times in the second, and x > y, R will appear x - y times in Query1 EXCEPT ALL

Query2. In other words, at the logical level, EXCEPT ALL returns only occurrences of a row from the

irst multiset that do not have a corresponding occurrence in the second.

SQL Server does not provide a built-in EXCEPT ALL operator, but you can provide an alternative

with a very similar solution to the one provided for INTERSECT ALL. Namely, add a ROW_NUMBER

calculation to each of the input queries to number the occurrences of each row, and use the EXCEPT

operator between the two input queries. Only occurrences that don’t ind matches will be returned.

The following example shows how you can use EXCEPT ALL to return occurrences of employee

locations that have no corresponding occurrences of customer locations.

200 Microsoft SQL Server 2012 T-SQL Fundamentals

WITH EXCEPT_ALL

AS

(

 SELECT

 ROW_NUMBER()

 OVER(PARTITION BY country, region, city

 ORDER BY (SELECT 0)) AS rownum,

 country, region, city

 FROM HR.Employees

 EXCEPT

 SELECT

 ROW_NUMBER()

 OVER(PARTITION BY country, region, city

 ORDER BY (SELECT 0)),

 country, region, city

 FROM Sales.Customers

)

SELECT country, region, city

FROM EXCEPT_ALL;

This query returns the following output.

country region city

--------------- --------------- ---------------

USA WA Redmond

USA WA Tacoma

USA WA Seattle

Precedence

SQL deines precedence among set operators. The INTERSECT operator precedes UNION and EXCEPT,

and UNION and EXCEPT are considered equal. In a query that contains multiple set operators, irst
INTERSECT operators are evaluated, and then operators with the same precedence are evaluated

based on order of appearance.

Consider the following query, which shows how INTERSECT precedes EXCEPT.

SELECT country, region, city FROM Production.Suppliers

EXCEPT

SELECT country, region, city FROM HR.Employees

INTERSECT

SELECT country, region, city FROM Sales.Customers;

Because INTERSECT precedes EXCEPT, the INTERSECT operator is evaluated irst, even though it
appears second. Therefore, the meaning of this query is, “locations that are supplier locations but not
(locations that are both employee and customer locations).”

 CHAPTER 6 Set Operators 201

This query returns the following output.

country region city

--------------- --------------- ---------------

Australia NSW Sydney

Australia Victoria Melbourne

Brazil NULL Sao Paulo

Canada Québec Montréal

Canada Québec Ste-Hyacinthe

Denmark NULL Lyngby

Finland NULL Lappeenranta

France NULL Annecy

France NULL Montceau

France NULL Paris

Germany NULL Berlin

Germany NULL Cuxhaven

Germany NULL Frankfurt

Italy NULL Ravenna

Italy NULL Salerno

Japan NULL Osaka

Japan NULL Tokyo

Netherlands NULL Zaandam

Norway NULL Sandvika

Singapore NULL Singapore

Spain Asturias Oviedo

Sweden NULL Göteborg

Sweden NULL Stockholm

UK NULL Manchester

USA LA New Orleans

USA MA Boston

USA MI Ann Arbor

USA OR Bend

(28 row(s) affected)

To control the order of evaluation of set operators, use parentheses, because they have the highest

precedence. Also, using parentheses increases the readability, thus reducing the chance for errors. For

example, if you want to return “(locations that are supplier locations but not employee locations) and
that are also customer locations,” use the following code.

(SELECT country, region, city FROM Production.Suppliers

 EXCEPT

 SELECT country, region, city FROM HR.Employees)

INTERSECT

SELECT country, region, city FROM Sales.Customers;

This query returns the following output.

country region city

--------------- --------------- ---------------

Canada Québec Montréal

France NULL Paris

Germany NULL Berlin

202 Microsoft SQL Server 2012 T-SQL Fundamentals

Circumventing unsupported Logical Phases

This section may be considered advanced for the book’s target audience and is provided here as

optional reading. The individual queries that are used as inputs to a set operator support all logi-

cal query processing phases (such as table operators, WHERE, GROUP BY, and HAVING) except

for ORDER BY. However, only the ORDER BY phase is allowed on the result of the operator. What if

you need to apply other logical phases besides ORDER BY to the result of the operator? This is not

supported directly as part of the query that applies the operator, but you can easily circumvent this

restriction by using table expressions. Deine a table expression based on a query with a set opera-

tor, and apply any logical query processing phases that you want in the outer query against the table

expression. For example, the following query returns the number of distinct locations that are either

employee or customer locations in each country.

SELECT country, COUNT(*) AS numlocations

FROM (SELECT country, region, city FROM HR.Employees

 UNION

 SELECT country, region, city FROM Sales.Customers) AS U

GROUP BY country;

This query returns the following output.

country numlocations

--------------- ------------

Argentina 1

Austria 2

Belgium 2

Brazil 4

Canada 3

Denmark 2

Finland 2

France 9

Germany 11

Ireland 1

Italy 3

Mexico 1

Norway 1

Poland 1

Portugal 1

Spain 3

Sweden 2

Switzerland 2

UK 2

USA 14

Venezuela 4

(21 row(s) affected)

This query demonstrates how to apply the GROUP BY logical query processing phase to the result

of a UNION operator; similarly, you could of course apply any logical query processing phase in the

outer query.

 CHAPTER 6 Set Operators 203

The fact that you cannot specify ORDER BY with the individual queries involved in the set operator

might also cause logical problems. What if you need to restrict the number of rows in those queries

with the TOP or OFFSET-FETCH option? Again, you can resolve this problem with table expressions.

Recall that an ORDER BY clause is allowed in a query with TOP or OFFSET-FETCH, even when the

query is used to deine a table expression. In such a case, the ORDER BY clause serves only as part of

the iltering speciication and has no presentation meaning.

So if you need a query with TOP or OFFSET-FETCH to participate in a set operator, simply deine a
table expression and have an outer query against the table expression participate in the operator. For

example, the following code uses TOP queries to return the two most recent orders for those employ-

ees with an employee ID of 3 or 5.

SELECT empid, orderid, orderdate

FROM (SELECT TOP (2) empid, orderid, orderdate

 FROM Sales.Orders

 WHERE empid = 3

 ORDER BY orderdate DESC, orderid DESC) AS D1

UNION ALL

SELECT empid, orderid, orderdate

FROM (SELECT TOP (2) empid, orderid, orderdate

 FROM Sales.Orders

 WHERE empid = 5

 ORDER BY orderdate DESC, orderid DESC) AS D2;

This query returns the following output.

empid orderid orderdate

----------- ----------- -----------------------

3 11063 2008-04-30 00:00:00.000

3 11057 2008-04-29 00:00:00.000

5 11043 2008-04-22 00:00:00.000

5 10954 2008-03-17 00:00:00.000

Here’s the logical equivalent using OFFSET-FETCH.

SELECT empid, orderid, orderdate

FROM (SELECT empid, orderid, orderdate

 FROM Sales.Orders

 WHERE empid = 3

 ORDER BY orderdate DESC, orderid DESC

 OFFSET 0 ROWS FETCH FIRST 2 ROWS ONLY) AS D1

UNION ALL

SELECT empid, orderid, orderdate

FROM (SELECT empid, orderid, orderdate

 FROM Sales.Orders

 WHERE empid = 5

 ORDER BY orderdate DESC, orderid DESC

 OFFSET 0 ROWS FETCH FIRST 2 ROWS ONLY) AS D2;

204 Microsoft SQL Server 2012 T-SQL Fundamentals

Conclusion

This chapter covered set operators, including the general syntax and requirements of set operators,

and describing in detail each supported set operator—UNION, INTERSECT, and EXCEPT. I explained

that standard SQL supports two lavors of each operator—DISTINCT (set) and ALL (multiset)—and

that as of SQL Server 2012, SQL Server implements the ALL lavor only with the UNION operator. I

provided alternatives to the missing INTERSECT ALL and EXCEPT ALL operators that make use of the

ROW_NUMBER function and table expressions. Finally, I introduced precedence among set opera-

tors, and explained how to circumvent unsupported logical query processing phases by using table

expressions.

Exercises

This section provides exercises to help you familiarize yourself with the subjects discussed in Chapter 6.

All exercises except for the irst require you to be connected to the sample database TSQL2012.

1
Write a query that generates a virtual auxiliary table of 10 numbers in the range 1 through 10 without

using a looping construct. You do not need to guarantee any order of the rows in the output of your

solution.

 ■ Tables involved: None

 ■ Desired output:

n

1

2

3

4

5

6

7

8

9

10

(10 row(s) affected)

2
Write a query that returns customer and employee pairs that had order activity in January 2008 but

not in February 2008.

 ■ Tables involved: TSQL2012 database, Sales.Orders table

 CHAPTER 6 Set Operators 205

 ■ Desired output:

custid empid

----------- -----------

1 1

3 3

5 8

5 9

6 9

7 6

9 1

12 2

16 7

17 1

20 7

24 8

25 1

26 3

32 4

38 9

39 3

40 2

41 2

42 2

44 8

47 3

47 4

47 8

49 7

55 2

55 3

56 6

59 8

63 8

64 9

65 3

65 8

66 5

67 5

70 3

71 2

75 1

76 2

76 5

80 1

81 1

81 3

81 4

82 6

84 1

84 3

84 4

88 7

89 4

(50 row(s) affected)

206 Microsoft SQL Server 2012 T-SQL Fundamentals

3
Write a query that returns customer and employee pairs that had order activity in both January 2008

and February 2008.

 ■ Tables involved: Sales.Orders

 ■ Desired output:

custid empid

----------- -----------

20 3

39 9

46 5

67 1

71 4

(5 row(s) affected)

4
Write a query that returns customer and employee pairs that had order activity in both January 2008

and February 2008 but not in 2007.

 ■ Tables involved: Sales.Orders

 ■ Desired output:

custid empid

----------- -----------

67 1

46 5

(2 row(s) affected)

5 (Optional, advanced)
You are given the following query.

SELECT country, region, city

FROM HR.Employees

UNION ALL

SELECT country, region, city

FROM Production.Suppliers;

 CHAPTER 6 Set Operators 207

You are asked to add logic to the query so that it guarantees that the rows from Employees are

returned in the output before the rows from Suppliers. Also, within each segment, the rows should be

sorted by country, region, and city.

 ■ Tables involved: HR.Employees and Production.Suppliers

 ■ Desired output:

country region city

--------------- --------------- ---------------

UK NULL London

UK NULL London

UK NULL London

UK NULL London

USA WA Kirkland

USA WA Redmond

USA WA Seattle

USA WA Seattle

USA WA Tacoma

Australia NSW Sydney

Australia Victoria Melbourne

Brazil NULL Sao Paulo

Canada Québec Montréal

Canada Québec Ste-Hyacinthe

Denmark NULL Lyngby

Finland NULL Lappeenranta

France NULL Annecy

France NULL Montceau

France NULL Paris

Germany NULL Berlin

Germany NULL Cuxhaven

Germany NULL Frankfurt

Italy NULL Ravenna

Italy NULL Salerno

Japan NULL Osaka

Japan NULL Tokyo

Netherlands NULL Zaandam

Norway NULL Sandvika

Singapore NULL Singapore

Spain Asturias Oviedo

Sweden NULL Göteborg

Sweden NULL Stockholm

UK NULL London

UK NULL Manchester

USA LA New Orleans

USA MA Boston

USA MI Ann Arbor

USA OR Bend

(38 row(s) affected)

208 Microsoft SQL Server 2012 T-SQL Fundamentals

Solutions

This section provides solutions to the Chapter 6 exercises.

1
T-SQL supports a SELECT statement based on constants with no FROM clause. Such a SELECT state-

ment returns a table with a single row. For example, the following statement returns a row with a

single column called n with the value 1.

SELECT 1 AS n;

Here’s the output of this statement.

n

1

(1 row(s) affected)

By using the UNION ALL operator, you can unify the result sets of multiple statements like the

one just mentioned, each returning a row with a different number in the range 1 through 10, like

the following.

SELECT 1 AS n

UNION ALL SELECT 2

UNION ALL SELECT 3

UNION ALL SELECT 4

UNION ALL SELECT 5

UNION ALL SELECT 6

UNION ALL SELECT 7

UNION ALL SELECT 8

UNION ALL SELECT 9

UNION ALL SELECT 10;

Tip SQL Server supports an enhanced VALUES clause that you might be familiar with in the

context of the INSERT statement. The VALUES clause is not restricted to representing a sin-

gle row; it can represent multiple rows. Also, the VALUES clause is not restricted to INSERT

statements but can be used to deine a table expression with rows based on constants. As
an example, here’s how you can use the VALUES clause to provide a solution to this exercise

instead of using the UNION ALL operator.

SELECT n

FROM (VALUES(1),(2),(3),(4),(5),(6),(7),(8),(9),(10)) AS Nums(n);

I will provide details about the VALUES clause and row value constructors in Chapter 8,

“Data Modiication,” as part of the discussion of the INSERT statement.

 CHAPTER 6 Set Operators 209

2
You can solve this exercise by using the EXCEPT set operator. The left input is a query that returns

customer and employee pairs that had order activity in January 2008. The right input is a query that

returns customer and employee pairs that had order activity in February 2008. Here’s the solution

query.

USE TSQL2012;

SELECT custid, empid

FROM Sales.Orders

WHERE orderdate >= '20080101' AND orderdate < '20080201'

EXCEPT

SELECT custid, empid

FROM Sales.Orders

WHERE orderdate >= '20080201' AND orderdate < '20080301';

3
Whereas Exercise 2 requested customer and employee pairs that had activity in one period but not

another, this exercise concerns customer and employee pairs that had activity in both periods. So this

time, instead of using the EXCEPT operator, you need to use the INTERSECT operator, like this.

SELECT custid, empid

FROM Sales.Orders

WHERE orderdate >= '20080101' AND orderdate < '20080201'

INTERSECT

SELECT custid, empid

FROM Sales.Orders

WHERE orderdate >= '20080201' AND orderdate < '20080301';

4
This exercise requires you to combine set operators. To return customer and employee pairs that had

order activity in both January 2008 and February 2008, you need to use the INTERSECT operator, as

in Exercise 3. To exclude customer and employee pairs that had order activity in 2007 from the result,

you need to use the EXCEPT operator between the result and a third query. The solution query looks

like this.

SELECT custid, empid

FROM Sales.Orders

WHERE orderdate >= '20080101' AND orderdate < '20080201'

INTERSECT

210 Microsoft SQL Server 2012 T-SQL Fundamentals

SELECT custid, empid

FROM Sales.Orders

WHERE orderdate >= '20080201' AND orderdate < '20080301'

EXCEPT

SELECT custid, empid

FROM Sales.Orders

WHERE orderdate >= '20070101' AND orderdate < '20080101';

Keep in mind that the INTERSECT operator precedes EXCEPT. In this case, the default precedence

is also the precedence you want, so you don’t need to intervene by using parentheses. But you might

prefer to add them for clarity, as shown here.

(SELECT custid, empid

 FROM Sales.Orders

 WHERE orderdate >= '20080101' AND orderdate < '20080201'

 INTERSECT

 SELECT custid, empid

 FROM Sales.Orders

 WHERE orderdate >= '20080201' AND orderdate < '20080301')

EXCEPT

SELECT custid, empid

FROM Sales.Orders

WHERE orderdate >= '20070101' AND orderdate < '20080101';

5
The problem here is that the individual queries are not allowed to have ORDER BY clauses, and for a

good reason. You can solve the problem by adding a result column based on a constant to each of

the queries involved in the operator (call it sortcol). In the query against Employees, specify a smaller

constant than the one you specify in the query against Suppliers. Deine a table expression based on
the query with the operator, and in the ORDER BY clause of the outer query, specify sortcol as the irst
sort column, followed by country, region, and city. Here’s the complete solution query.

SELECT country, region, city

FROM (SELECT 1 AS sortcol, country, region, city

 FROM HR.Employees

 UNION ALL

 SELECT 2, country, region, city

 FROM Production.Suppliers) AS D

ORDER BY sortcol, country, region, city;

 211

C H A P T E R 7

Beyond the Fundamentals of
Querying

This chapter starts with the profound window functions, which allow you to apply calculations

against sets in a lexible and eficient manner. The chapter then proceeds with techniques for piv-

oting and unpivoting data. Pivoting means rotating data from a state of rows to a state of columns.

Unpivoting means rotating data from a state of columns to a state of rows. The chapter then inishes
with a discussion of grouping sets. Grouping sets are sets of attributes by which data can be grouped.

This chapter covers techniques for requesting multiple grouping sets in the same query.

Note that all subjects covered in this chapter may be considered advanced for readers who are

new to T-SQL; therefore, the chapter is optional reading. If you already feel comfortable with the ma-

terial discussed in the book so far, you may want to tackle this chapter; otherwise, feel free to skip it at

this point and return to it later after you’ve gained more experience.

Window Functions

A window function is a function that, for each row, computes a scalar result value based on a calcula-

tion against a subset of the rows from the underlying query. The subset of rows is known as a window

and is based on a window descriptor that relates to the current row. The syntax for window functions

uses a clause called OVER, in which you provide the window speciication.

If this sounds too technical, simply think of the need to perform a calculation against a set and

return a single value. A classic example would be aggregate calculations such as SUM, COUNT, and

AVG, but there are others as well, such as ranking functions. If you’re reading this chapter, you should

be familiar already with a couple of ways to apply such calculations—one is by using grouped queries,

and another is by using subqueries. However, both options have shortcomings that window functions

elegantly resolve.

Grouped queries do provide insights into new information in the form of aggregates, but they also

cause you to lose something—the detail. After you group the rows, all computations in the query

have to be done in the context of the deined groups. Often you need to perform calculations that
involve both a detail element and the result of a set calculation such as an aggregate. Window func-

tions are not limited in the same way. A window function has an OVER clause that deines the set of
rows for the function to work with, without imposing the same arrangement of rows on the query

212 Microsoft SQL Server 2012 T-SQL Fundamentals

itself. In other words, grouped queries deine the sets, or groups, in the query, and therefore all calcu-

lations in the query have to be done in the context of those groups. With window functions, the set is

deined for each function, not for the entire query.

As for subqueries, they do allow you to apply a calculation against a set, but a subquery starts

from a fresh view of the data. If the query has table operators or ilters, for example, and you need
the subquery to operate on a subset of rows from the underlying query, you have to repeat a lot of

logic from the underlying query also in the subquery. In contrast, a window function is applied to a

subset of rows from the underlying query’s result set—not a fresh view of the data. Therefore, any-

thing you add to the underlying query is automatically applicable to all window functions used in the

query. Then, different elements in the window function’s OVER clause allow you to further restrict the

window as a subset of the underlying query’s result set.

Another beneit of window functions is the ability to deine order, when applicable, as part of the
speciication of the calculation, without conlicting with relational aspects of the result set. That is, or-
der is deined for the calculation, and not confused with presentation ordering. The ordering specii-

cation for the window function, if applicable, is different from the ordering speciication for presenta-

tion. If you don’t include a presentation ORDER BY clause, there are no assurances that the result will

be returned in a particular order. If you do decide to force certain presentation ordering, the resulting

ordering can be different than the ordering for the window function.

Following is an example of a query against the Sales.EmpOrders view in the TSQL2012 database that

uses a window aggregate function to compute the running total values for each employee and month.

USE TSQL2012;

SELECT empid, ordermonth, val,

 SUM(val) OVER(PARTITION BY empid

 ORDER BY ordermonth

 ROWS BETWEEN UNBOUNDED PRECEDING

 AND CURRENT ROW) AS runval

FROM Sales.EmpOrders;

Here’s the output of this query, shown in abbreviated form.

empid ordermonth val runval

------ ----------- -------- ----------

1 2006-07-01 1614.88 1614.88

1 2006-08-01 5555.90 7170.78

1 2006-09-01 6651.00 13821.78

1 2006-10-01 3933.18 17754.96

1 2006-11-01 9562.65 27317.61

...

2 2006-07-01 1176.00 1176.00

2 2006-08-01 1814.00 2990.00

2 2006-09-01 2950.80 5940.80

2 2006-10-01 5164.00 11104.80

2 2006-11-01 4614.58 15719.38

...

(192 row(s) affected)

 CHAPTER 7 Beyond the Fundamentals of Querying 213

The window speciication in the OVER clause has three main parts: partitioning, ordering, and

framing. An empty OVER() clause exposes to the function a window made of all rows from the under-

lying query’s result set. Then anything you add to the window speciication essentially further restricts
the window.

The window partition clause (PARTITION BY) restricts the window to the subset of rows from the

underlying query’s result set that share the same values in the partitioning columns as in the current

row. In the example, the window is partitioned by empid. Consider, for example, a row in which the

empid value is 1. The window exposed to the function in respect to that row will have only the subset

of rows in which the empid value is 1.

The window order clause (ORDER BY) deines ordering in the window, but don’t confuse this with
presentation ordering; the window ordering is what gives meaning to window framing. In this case,

the window ordering is based on ordermonth.

After order has been deined in the window, a window frame clause (ROWS BETWEEN <top

delimiter> AND <bottom delimiter>) ilters a frame, or a subset, of rows from the window partition
between the two speciied delimiters. In this example, the frame is between the beginning of the
par tition (UNBOUNDED PRECEDING) and the current row (CURRENT ROW). In addition to the window

frame unit ROWS, there’s another called RANGE, but it was implemented in a very limited form as of

Microsoft SQL Server 2012.

Putting all of these together, what you get from the function in the example is the running total

values for each employee and month.

Note that because the starting point of a window function is the underlying query’s result set,

and the underlying query’s result set is generated only when you reach the SELECT phase, window

functions are allowed only in the SELECT and ORDER BY clauses of a query. If you need to refer to

a window function in an earlier logical query processing phase (such as WHERE), you need to use a

table expression. You specify the window function in the SELECT list of the inner query and assign it

with an alias. Then in the outer query, you can refer to that alias anywhere you like.

As with any new concept, the windowing concept can take some getting used to, but when you

are comfortable with it, you’ll realize that it’s actually much better aligned with the way we humans

tend to think of calculations. Hence, in the long run, window functions will allow you to phrase what

you want in a natural and intuitive manner. Window functions also lend themselves to very eficient
optimization for common-use cases.

There were two major milestones in SQL Server’s support for window functions. SQL Server 2005

introduced ranking window functions with complete implementation (partitioning and ordering), and

partial support for window aggregate functions (only partitioning, without ordering and framing).

SQL Server 2012 adds a lot of functionality, including support for ordering and framing for aggre-

gates, as well as new types of functions: offset and distribution. There are still standard windowing

capabilities that were not yet implemented in SQL Server, and I hope very much to see Microsoft

continuing the investment in this area.

214 Microsoft SQL Server 2012 T-SQL Fundamentals

In the next sections, I provide more speciics about ranking, offset, and aggregate window func-

tions. Because this book is about fundamentals, there are some things that I will not get into here.

Those include optimization of window functions, distribution functions, and the RANGE window

frame unit.

See Also Because window functions are so profound and so useful, I wrote an entire book on the subject called
Microsoft SQL Server 2012 High-Performance T-SQL Using Window Functions (Microsoft Press, 2012). In that

book, I do get into the gory details, optimization, and lots of practical uses.

ranking Window Functions
Ranking window functions allow you to rank each row in respect to others in several different ways.

SQL Server supports four ranking functions: ROW_NUMBER, RANK, DENSE_RANK, and NTILE. The fol-

lowing query demonstrates the use of these functions.

SELECT orderid, custid, val,

 ROW_NUMBER() OVER(ORDER BY val) AS rownum,

 RANK() OVER(ORDER BY val) AS rank,

 DENSE_RANK() OVER(ORDER BY val) AS dense_rank,

 NTILE(100) OVER(ORDER BY val) AS ntile

FROM Sales.OrderValues

ORDER BY val;

This query generates the following output, shown here in abbreviated form.

orderid custid val rownum rank dense_rank ntile

----------- ----------- --------- ------- ------- ---------- -----

10782 12 12.50 1 1 1 1

10807 27 18.40 2 2 2 1

10586 66 23.80 3 3 3 1

10767 76 28.00 4 4 4 1

10898 54 30.00 5 5 5 1

10900 88 33.75 6 6 6 1

10883 48 36.00 7 7 7 1

11051 41 36.00 8 7 7 1

10815 71 40.00 9 9 8 1

10674 38 45.00 10 10 9 1

...

10691 63 10164.80 821 821 786 10

10540 63 10191.70 822 822 787 10

10479 65 10495.60 823 823 788 10

10897 37 10835.24 824 824 789 10

10817 39 10952.85 825 825 790 10

10417 73 11188.40 826 826 791 10

10889 65 11380.00 827 827 792 10

11030 71 12615.05 828 828 793 10

10981 34 15810.00 829 829 794 10

10865 63 16387.50 830 830 795 10

(830 row(s) affected)

 CHAPTER 7 Beyond the Fundamentals of Querying 215

I already described the ROW_NUMBER function in Chapter 2, “Single-Table Queries,” but for
the sake of completeness, I’ll describe it here again. This function assigns incrementing sequential

integers to the rows in the result set of a query, based on logical order that is speciied in the ORDER

BY subclause of the OVER clause. In the sample query, the logical order is based on the val column;

therefore, you can see in the output that when the value increases, the row number increases as well.

However, even when the ordering value doesn’t increase, the row number still must increase. There-

fore, if the ROW_NUMBER function’s ORDER BY list is non-unique, as in the preceding example, the

query is nondeterministic. That is, more than one correct result is possible. For example, observe that

two rows with the value 36.00 got the row numbers 7 and 8. Any arrangement of these row numbers

would have been considered correct. If you want to make a row number calculation deterministic, you

need to add elements to the ORDER BY list to make it unique; meaning that the list of elements in

the ORDER BY clause would uniquely identify rows. For example, you can add the orderid column as a

tiebreaker to the ORDER BY list to make the row number calculation deterministic.

As mentioned, the ROW_NUMBER function must produce unique values even when there are ties

in the ordering values. If you want to treat ties in the ordering values the same way, you will prob-

ably want to use the RANK or DENSE_RANK function instead. Both are similar to the ROW_NUMBER

function, but they produce the same ranking value in all rows that have the same logical ordering

value. The difference between RANK and DENSE_RANK is that RANK indicates how many rows have

a lower ordering value, whereas DENSE_RANK indicates how many distinct ordering values are lower.

For example, in the sample query, a rank of 9 indicates eight rows with lower values. A dense rank of 9

indicates eight distinct lower values.

The NTILE function allows you to associate the rows in the result with tiles (equally sized groups of

rows) by assigning a tile number to each row. You specify the number of tiles you are after as input

to the function, and in the OVER clause, you specify the logical ordering. The sample query has 830

rows and the request was for 10 tiles; therefore, the tile size is 83 (830 divided by 10). Logical ordering

is based on the val column. This means that the 83 rows with the lowest values are assigned with tile

number 1, the next 83 with tile number 2, the next 83 with tile number 3, and so on. The NTILE func-

tion is logically related to the ROW_NUMBER function. It’s as if you assigned row numbers to the rows

based on val ordering, and based on the calculated tile size of 83, you assigned tile number 1 to rows

1 through 83, tile number 2 to rows 84 through 166, and so on. If the number of rows doesn’t divide

evenly by the number of tiles, an extra row is added to each of the irst tiles from the remainder. For
example, if there had been 102 rows and ive tiles were requested, the irst two tiles would have had
21 rows instead of 20.

Ranking functions support window partition clauses. Remember that window partitioning restricts

the window to only those rows that share the same values in the partitioning attributes as in the cur-

rent row. For example, the expression ROW_NUMBER() OVER(PARTITION BY custid ORDER BY val)

independently assigns row numbers for each subset of rows that have the same custid, as opposed to

assigning those row numbers across the whole set. Here’s the expression in a query.

SELECT orderid, custid, val,

 ROW_NUMBER() OVER(PARTITION BY custid

 ORDER BY val) AS rownum

FROM Sales.OrderValues

ORDER BY custid, val;

216 Microsoft SQL Server 2012 T-SQL Fundamentals

This query generates the following output , shown here in abbreviated form.

orderid custid val rownum

----------- ----------- ------------ -------

10702 1 330.00 1

10952 1 471.20 2

10643 1 814.50 3

10835 1 845.80 4

10692 1 878.00 5

11011 1 933.50 6

10308 2 88.80 1

10759 2 320.00 2

10625 2 479.75 3

10926 2 514.40 4

10682 3 375.50 1

...

(830 row(s) affected)

As you can see in the output, the row numbers are calculated independently for each customer, as

though the calculation were reset for each customer.

Remember that window ordering has nothing to do with presentation ordering and does not

change the nature of the result from being relational. If you need to guarantee presentation ordering,

you have to add a presentation ORDER BY clause, as I did in the last two queries demonstrating the

use of ranking functions.

As you saw in Chapter 2, window functions are evaluated as part of the evaluation of the expres-

sions in the SELECT list, before the DISTINCT clause is evaluated. If you’re wondering why it matters,

I’ll explain with an example. Currently the OrderValues view has 830 rows with 795 distinct values in

the val column. Consider the following query and its output, shown here in abbreviated form.

SELECT DISTINCT val, ROW_NUMBER() OVER(ORDER BY val) AS rownum

FROM Sales.OrderValues;

val rownum

---------- -------

12.50 1

18.40 2

23.80 3

28.00 4

30.00 5

33.75 6

36.00 7

36.00 8

40.00 9

45.00 10

...

12615.05 828

15810.00 829

16387.50 830

(830 row(s) affected)

 CHAPTER 7 Beyond the Fundamentals of Querying 217

The ROW_NUMBER function is processed before the DISTINCT clause. First, unique row numbers

are assigned to the 830 rows from the OrderValues view. Then the DISTINCT clause is processed—

therefore, there are no duplicate rows to remove. You can consider it a best practice not to specify

both DISTINCT and ROW_NUMBER in the same SELECT clause, because the DISTINCT clause has no

effect in such a case. If you want to assign row numbers to the 795 unique values, you need to come

up with a different solution. For example, because the GROUP BY phase is processed before the SELECT

phase, you could use the following query.

SELECT val, ROW_NUMBER() OVER(ORDER BY val) AS rownum

FROM Sales.OrderValues

GROUP BY val;

This query generates the following output, shown here in abbreviated form.

val rownum

--------- -------

12.50 1

18.40 2

23.80 3

28.00 4

30.00 5

33.75 6

36.00 7

40.00 8

45.00 9

48.00 10

...

12615.05 793

15810.00 794

16387.50 795

(795 row(s) affected)

Here, the GROUP BY phase produces 795 groups for the 795 distinct values, and then the SELECT

phase produces a row for each group with val and a row number based on val order.

Offset Window Functions
Offset window functions allow you to return an element from a row that is at a certain offset from the

current row or from the beginning or end of a window frame. SQL Server 2012 supports four offset

functions: LAG and LEAD, and FIRST_VALUE and LAST_VALUE.

The LAG and LEAD functions support window partition and window order clauses. There’s no

relevance to window framing here. These functions allow you to obtain an element from a row that is

at a certain offset from the current row within the partition, based on the indicated ordering. The LAG

function looks before the current row, and the LEAD function looks ahead. The irst argument to the
functions (which is mandatory) is the element you want to return; the second argument (optional) is

the offset (1 if not speciied); the third argument (optional) is the default value to return in case there
is no row at the requested offset (NULL if not speciied).

218 Microsoft SQL Server 2012 T-SQL Fundamentals

As an example, the following query returns order information from the OrderValues view. For each

customer order, the query uses the LAG function to return the value of the previous customer’s order

and the LEAD function to return the value of the next customer’s order.

SELECT custid, orderid, val,

 LAG(val) OVER(PARTITION BY custid

 ORDER BY orderdate, orderid) AS prevval,

 LEAD(val) OVER(PARTITION BY custid

 ORDER BY orderdate, orderid) AS nextval

FROM Sales.OrderValues;

Here’s the output of this query in abbreviated form.

custid orderid val prevval nextval

------- -------- -------- -------- --------

1 10643 814.50 NULL 878.00

1 10692 878.00 814.50 330.00

1 10702 330.00 878.00 845.80

1 10835 845.80 330.00 471.20

1 10952 471.20 845.80 933.50

1 11011 933.50 471.20 NULL

2 10308 88.80 NULL 479.75

2 10625 479.75 88.80 320.00

2 10759 320.00 479.75 514.40

2 10926 514.40 320.00 NULL

3 10365 403.20 NULL 749.06

3 10507 749.06 403.20 1940.85

3 10535 1940.85 749.06 2082.00

3 10573 2082.00 1940.85 813.37

3 10677 813.37 2082.00 375.50

3 10682 375.50 813.37 660.00

3 10856 660.00 375.50 NULL

...

(830 row(s) affected)

Because you didn’t indicate the offset, the functions assumed 1 by default; in other words, LAG ob-

tained the value of the immediately previous customer’s order, and LEAD from the immediately next.

Also, because you didn’t specify a third argument, NULL was assumed by default when there was no

previous or next row. The expression LAG(val, 3, 0) would obtain the value from three rows back and

would return 0 if a row wasn’t found.

In this example, I just returned the values from the previous and next orders, but normally you would

compute something based on the returned values. For example, you could compute the difference

between the current customer’s order value and that of the previous customer’s: val - LAG(val) OVER(…),

or the difference from the next: val - LEAD(val) OVER(…).

The FIRST_VALUE and LAST_VALUE functions allow you to return an element from the irst and last
rows in the window frame, respectively. Therefore, these functions support window partition, order,

and frame clauses. If you want the element from the irst row in the window partition, use FIRST_VALUE

 CHAPTER 7 Beyond the Fundamentals of Querying 219

with the window frame extent ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. If

you want the element from the last row in the window partition, use LAST_VALUE with the window

frame extent ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING. Note that if you

specify ORDER BY without a window frame unit (such as ROWS), the bottom delimiter will by default

be CURRENT ROW, and clearly that’s not what you want with LAST_VALUE. Also, for reasons that

are beyond the scope of this book, you should be explicit about the window frame extent even for

FIRST_VALUE.

As an example, the following query uses the FIRST_VALUE function to return the value of the irst
customer’s order and the LAST_VALUE function to return the value of the last customer’s order.

SELECT custid, orderid, val,

 FIRST_VALUE(val) OVER(PARTITION BY custid

 ORDER BY orderdate, orderid

 ROWS BETWEEN UNBOUNDED PRECEDING

 AND CURRENT ROW) AS firstval,

 LAST_VALUE(val) OVER(PARTITION BY custid

 ORDER BY orderdate, orderid

 ROWS BETWEEN CURRENT ROW

 AND UNBOUNDED FOLLOWING) AS lastval

FROM Sales.OrderValues

ORDER BY custid, orderdate, orderid;

This query generates the following output, shown here in abbreviated form.

custid orderid val firstval lastval

------- -------- -------- --------- --------

1 10643 814.50 814.50 933.50

1 10692 878.00 814.50 933.50

1 10702 330.00 814.50 933.50

1 10835 845.80 814.50 933.50

1 10952 471.20 814.50 933.50

1 11011 933.50 814.50 933.50

2 10308 88.80 88.80 514.40

2 10625 479.75 88.80 514.40

2 10759 320.00 88.80 514.40

2 10926 514.40 88.80 514.40

3 10365 403.20 403.20 660.00

3 10507 749.06 403.20 660.00

3 10535 1940.85 403.20 660.00

3 10573 2082.00 403.20 660.00

3 10677 813.37 403.20 660.00

3 10682 375.50 403.20 660.00

3 10856 660.00 403.20 660.00

...

(830 row(s) affected)

As with LAG and LEAD, normally you would compute something based on the returned values. For

example, you could compute the difference between the current customer’s order value and the irst:
val – FIRST_VALUE(val) OVER(…) or the difference from the last: val – LAST_VALUE(val) OVER(…).

220 Microsoft SQL Server 2012 T-SQL Fundamentals

aggregate Window Functions
Prior to SQL Server 2012, window aggregate functions supported only a window partition clause.

In SQL Server 2012, they also support window order and frame clauses, advancing their usefulness

dramatically.

I’ll start with an example that doesn’t involve ordering and framing. Recall that using an OVER

clause with empty parentheses exposes a window of all rows from the underlying query’s result

set to the function. So, for example, SUM(val) OVER() returns the grand total of all values. If you

do add a window partition clause, you expose a restricted window to the function, with only those

rows from the underlying query’s result set that share the same values in the partitioning elements

as in the current row. So, for example, SUM(val) OVER(PARTITION BY custid) returns the total values

for the current customer.

Here’s a query against OrderValues that returns, along with each order, the grand total of all order

values, as well as the customer total.

SELECT orderid, custid, val,

 SUM(val) OVER() AS totalvalue,

 SUM(val) OVER(PARTITION BY custid) AS custtotalvalue

FROM Sales.OrderValues;

This query returns the following output, shown here in abbreviated form.

orderid custid val totalvalue custtotalvalue

----------- ----------- ------------ ---------------- ---------------

10643 1 814.50 1265793.22 4273.00

10692 1 878.00 1265793.22 4273.00

10702 1 330.00 1265793.22 4273.00

10835 1 845.80 1265793.22 4273.00

10952 1 471.20 1265793.22 4273.00

11011 1 933.50 1265793.22 4273.00

10926 2 514.40 1265793.22 1402.95

10759 2 320.00 1265793.22 1402.95

10625 2 479.75 1265793.22 1402.95

10308 2 88.80 1265793.22 1402.95

10365 3 403.20 1265793.22 7023.98

...

(830 row(s) affected)

The totalvalue column shows, for each row, the total value calculated for all rows. The column

custtotalvalue has the total value for all rows that have the same custid value as in the current row.

As mentioned, one of the great advantages of window functions is that by enabling you to return

detail elements and aggregate them in the same row, they also enable you to write expressions that

mix detail and aggregates. For example, the following query calculates for each row the percentage

that the current value is of the grand total, and also the percentage that the current value is of the

customer total.

 CHAPTER 7 Beyond the Fundamentals of Querying 221

SELECT orderid, custid, val,

 100. * val / SUM(val) OVER() AS pctall,

 100. * val / SUM(val) OVER(PARTITION BY custid) AS pctcust

FROM Sales.OrderValues;

This query returns the following output, shown here in abbreviated form.

orderid custid val pctall pctcust

------------ ------ ----------- ----------------------------- -----------------------------

10643 1 814.50 0.0643470029014691672941 19.0615492628130119354083

10692 1 878.00 0.0693636200705830925528 20.5476246197051252047741

10702 1 330.00 0.0260706089103558320528 7.7229113035338169904048

10835 1 845.80 0.0668197606556938265161 19.7940556985724315469225

10952 1 471.20 0.0372256694501808123130 11.0273812309852562602387

11011 1 933.50 0.0737482224782338461253 21.8464778843903580622513

10926 2 514.40 0.0406385491620819394181 36.6655974910011048148544

10759 2 320.00 0.0252805904585268674452 22.8090808653195053280587

10625 2 479.75 0.0379011352264945770526 34.1958017035532271285505

10308 2 88.80 0.0070153638522412057160 6.3295199401261627285362

10365 3 403.20 0.0318535439777438529809 5.7403352515240647040566

...

(830 row(s) affected)

SQL Server 2012 adds support for window ordering and framing for aggregate functions. This

allows for more sophisticated calculations such as running and moving aggregates, YTD calculations,

and others. Let’s re-examine the query I used in the introduction to the section about window func-

tions.

SELECT empid, ordermonth, val,

 SUM(val) OVER(PARTITION BY empid

 ORDER BY ordermonth

 ROWS BETWEEN UNBOUNDED PRECEDING

 AND CURRENT ROW) AS runval

FROM Sales.EmpOrders;

This query generates the following output (abbreviated).

empid ordermonth val runval

------ ----------- -------- ----------

1 2006-07-01 1614.88 1614.88

1 2006-08-01 5555.90 7170.78

1 2006-09-01 6651.00 13821.78

1 2006-10-01 3933.18 17754.96

1 2006-11-01 9562.65 27317.61

...

2 2006-07-01 1176.00 1176.00

2 2006-08-01 1814.00 2990.00

2 2006-09-01 2950.80 5940.80

2 2006-10-01 5164.00 11104.80

2 2006-11-01 4614.58 15719.38

...

(192 row(s) affected)

222 Microsoft SQL Server 2012 T-SQL Fundamentals

Each row in the EmpOrders view holds information about the order activity for each employee and

month. The query returns for each employee and month the monthly total, plus the running-total

values from the beginning of the employee’s activity through the current month. To apply the calcula-

tion to each employee independently, you partition the window by empid. Then you deine ordering
based on ordermonth, giving meaning to the window frame extent: ROWS BETWEEN UNBOUNDED

PRECEDING AND CURRENT ROW. This frame means “all activity from the beginning of the partition
through the current month.”

SQL Server supports other delimiters for the ROWS window frame unit. You can indicate an off-

set back from the current row as well as an offset forward. For example, to capture all rows from

two rows before the current row and through one row ahead, you would use ROWS BETWEEN 2

 PRECEDING AND 1 FOLLOWING. Also, if you want no upper bound, you can use UNBOUNDED

FOLLOWING. SQL Server also supports a window frame unit called RANGE, but in a very limited

form. This option is beyond the scope of this book, but I will say that at least with the current imple-

mentation, you should avoid it.

Because window functions are so profound and have so many practical uses, I urge you to invest

the time and effort to get to know the concept well. The investment is worth its weight in gold.

Pivoting Data

Pivoting data involves rotating data from a state of rows to a state of columns, possibly aggregating

values along the way. Don’t worry that this description isn’t enough to clarify exactly what pivoting

data means; this is a subject best explained through examples. In many cases, pivoting of data is

handled by the presentation layer. This section teaches you how to handle pivoting with T-SQL for

those cases that you do decide to handle in the database.

For the rest of the topics in this chapter, I use a sample table called dbo.Orders that you create and

populate in the TSQL2012 database by running the code in Listing 7-1.

LISTING 7-1 Code to Create and Populate the dbo.Orders Table

USE TSQL2012;

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

CREATE TABLE dbo.Orders

(

 orderid INT NOT NULL,

 orderdate DATE NOT NULL,

 empid INT NOT NULL,

 custid VARCHAR(5) NOT NULL,

 qty INT NOT NULL,

 CONSTRAINT PK_Orders PRIMARY KEY(orderid)

);

 CHAPTER 7 Beyond the Fundamentals of Querying 223

INSERT INTO dbo.Orders(orderid, orderdate, empid, custid, qty)

VALUES

 (30001, ‘20070802’, 3, ‘A’, 10),

 (10001, ‘20071224’, 2, ‘A’, 12),

 (10005, ‘20071224’, 1, ‘B’, 20),

 (40001, ‘20080109’, 2, ‘A’, 40),

 (10006, ‘20080118’, 1, ‘C’, 14),

 (20001, ‘20080212’, 2, ‘B’, 12),

 (40005, ‘20090212’, 3, ‘A’, 10),

 (20002, ‘20090216’, 1, ‘C’, 20),

 (30003, ‘20090418’, 2, ‘B’, 15),

 (30004, ‘20070418’, 3, ‘C’, 22),

 (30007, ‘20090907’, 3, ‘D’, 30);

SELECT * FROM dbo.Orders;

The query at the end of the code in Listing 7-1 produces the following output showing the

contents of the dbo.Orders table.

orderid orderdate empid custid qty

----------- ----------- -------------- --------- -----------

10001 2007-12-24 2 A 12

10005 2007-12-24 1 B 20

10006 2008-01-18 1 C 14

20001 2008-02-12 2 B 12

20002 2009-02-16 1 C 20

30001 2007-08-02 3 A 10

30003 2009-04-18 2 B 15

30004 2007-04-18 3 C 22

30007 2009-09-07 3 D 30

40001 2008-01-09 2 A 40

40005 2009-02-12 3 A 10

Before I further explain what pivoting is, consider a request to produce a report with the total

order quantity for each employee and customer. The request is satisied with the following simple
query.

SELECT empid, custid, SUM(qty) AS sumqty

FROM dbo.Orders

GROUP BY empid, custid;

This query generates the following output.

empid custid sumqty

----------- --------- -----------

2 A 52

3 A 20

1 B 20

2 B 27

1 C 34

3 C 22

3 D 30

224 Microsoft SQL Server 2012 T-SQL Fundamentals

Suppose, however, that you have a requirement to produce the output in the form shown in

Table 7-1.

TABLE 1-1 Pivoted View of Total Quantity per Employee (on Rows) and Customer (on Columns)

empid A B C D

1 NULL 20 34 NULL

2 52 27 NULL NULL

3 20 NULL 22 30

What you see in Table 7-1 is an aggregated and pivoted view of the data from the dbo.Orders

table; the technique for generating this view of the data is called pivoting.

Every pivoting request involves three logical processing phases, each with associated elements:

 a grouping phase with an associated grouping or on rows element, a spreading phase with an

assoc iated spreading or on cols element, and an aggregation phase with an associated aggregation

ele ment and aggregate function.

In this example, you need to produce a single row in the result for each unique employee ID. This

means that the rows from the dbo.Orders table need to be grouped by the empid attribute, and

therefore the grouping element in this case is the empid attribute.

The dbo.Orders table has a single column that holds all customer ID values and a single column

that holds their ordered quantities. The pivoting process is supposed to produce a different result

column for each unique customer ID, and each column contains the aggregated quantities for that

customer. You can think of this process as “spreading” quantities by customer ID. The spreading ele-

ment in this case is the custid attribute.

Finally, because pivoting involves grouping, you need to aggregate data to produce the result val-

ues in the “intersection” of the grouping and spreading elements. You need to identify the aggregate
function (SUM, in this case) and the aggregation element (the qty attribute, in this case).

To recap, pivoting involves grouping, spreading, and aggregating. In this example, you group by

empid, spread (quantities) by custid, and aggregate with SUM(qty). After you have identiied the ele-

ments involved in pivoting, the rest is just a matter of incorporating those elements in the right places

in a generic query template for pivoting.

This chapter presents two solutions for pivoting—a standard solution and a solution that uses a

T-SQL–speciic PIVOT operator.

pivoting with Standard SQL
The standard solution for pivoting handles all three phases involved in a very straightforward manner.

The grouping phase is achieved with a GROUP BY clause; in this case, GROUP BY empid.

 CHAPTER 7 Beyond the Fundamentals of Querying 225

The spreading phase is achieved in the SELECT clause with a CASE expression for each target col-

umn. You need to know the spreading element values ahead of time and specify a separate expres-

sion for each. Because in this case you need to “spread” the quantities of four customers (A, B, C, and
D), there are four CASE expressions. For example, here’s the CASE expression for customer A.

CASE WHEN custid = 'A' THEN qty END

This expression returns the quantity from the current row only when the current row represents

an order for customer A; otherwise the expression returns a NULL. Remember that if an ELSE clause

is not speciied in a CASE expression, the default is ELSE NULL. This means that in the target column

for customer A, only quantities associated with customer A appear as column values, and in all other

cases the column values are NULL.

If you don’t know the values that you need to spread by ahead of time (the distinct customer IDs

in this case) and you want to query them from the data, you need to use dynamic SQL to construct

the query string and execute it. Dynamic pivoting is demonstrated in Chapter 10, “Programmable
Objects.”

Finally, the aggregation phase is achieved by applying the relevant aggregate function (SUM, in

this case) to the result of each CASE expression. For example, here’s the expression that produces the

result column for customer A.

SUM(CASE WHEN custid = 'A' THEN qty END) AS A

Of course, depending on the request, you might need to use another aggregate function (such as

MAX, MIN, or COUNT).

Here’s the complete solution query that pivots order data, returning the total quantity for each

employee (on rows) and customer (on columns).

SELECT empid,

 SUM(CASE WHEN custid = 'A' THEN qty END) AS A,

 SUM(CASE WHEN custid = 'B' THEN qty END) AS B,

 SUM(CASE WHEN custid = 'C' THEN qty END) AS C,

 SUM(CASE WHEN custid = 'D' THEN qty END) AS D

FROM dbo.Orders

GROUP BY empid;

This query produces the output shown earlier in Table 7-1.

pivoting with the native T-SQL PIVOT Operator
SQL Server supports a T-SQL–speciic table operator called PIVOT. The PIVOT operator operates in

the context of the FROM clause of a query like other table operators (for example, JOIN). It operates

on a source table or table expression, pivots the data, and returns a result table. The PIVOT operator

involves the same logical processing phases as described earlier (grouping, spreading, and aggregat-

ing) with the same pivoting elements, but it uses different, native syntax.

226 Microsoft SQL Server 2012 T-SQL Fundamentals

The general form of a query with the PIVOT operator is shown here.

SELECT ...

FROM <source_table_or_table_expression>

 PIVOT(<agg_func>(<aggregation_element>)

 FOR <spreading_element>

 IN (<list_of_target_columns>)) AS <result_table_alias>

...;

In the parentheses of the PIVOT operator, you specify the aggregate function (SUM, in this ex-

ample), aggregation element (qty), spreading element (custid), and the list of target column names (A,

B, C, D). Following the parentheses of the PIVOT operator, you specify an alias for the result table.

It is important to note that with the PIVOT operator, you do not explicitly specify the grouping ele-

ments, removing the need for GROUP BY in the query. The PIVOT operator igures out the grouping
elements implicitly as all attributes from the source table (or table expression) that were not speciied
as either the spreading element or the aggregation element. You must ensure that the source table

for the PIVOT operator has no attributes besides the grouping, spreading, and aggregation elements,

so that after specifying the spreading and aggregation elements, the only attributes left are those

you intend as grouping elements. You achieve this by not applying the PIVOT operator to the original

table directly (Orders in this case), but instead to a table expression that includes only the attributes

representing the pivoting elements and no others. For example, here’s the solution query to the origi-

nal pivoting request, using the native PIVOT operator.

SELECT empid, A, B, C, D

FROM (SELECT empid, custid, qty

 FROM dbo.Orders) AS D

 PIVOT(SUM(qty) FOR custid IN(A, B, C, D)) AS P;

Instead of operating directly on the dbo.Orders table, the PIVOT operator operates on a derived

table called D that includes only the pivoting elements empid, custid, and qty. When you account for

the spreading element, which is custid, and the aggregation element, which is qty, what’s left is empid,

which will be considered the grouping element.

This query returns the output shown earlier in Table 7-1.

To understand why you’re required to use a table expression here, consider the following query

that applies the PIVOT operator directly to the dbo.Orders table.

SELECT empid, A, B, C, D

FROM dbo.Orders

 PIVOT(SUM(qty) FOR custid IN(A, B, C, D)) AS P;

The dbo.Orders table contains the attributes orderid, orderdate, empid, custid, and qty. Because the

query speciied custid as the spreading element and qty as the aggregation element, the remaining

attributes (orderid, orderdate, and empid) are all considered the grouping elements. This query, there-

fore, returns the following output.

 CHAPTER 7 Beyond the Fundamentals of Querying 227

empid A B C D

----------- ----------- ----------- ----------- -----------

2 12 NULL NULL NULL

1 NULL 20 NULL NULL

1 NULL NULL 14 NULL

2 NULL 12 NULL NULL

1 NULL NULL 20 NULL

3 10 NULL NULL NULL

2 NULL 15 NULL NULL

3 NULL NULL 22 NULL

3 NULL NULL NULL 30

2 40 NULL NULL NULL

3 10 NULL NULL NULL

(11 row(s) affected)

Because orderid is part of the grouping elements, you get a row for each order instead of a row for

each employee. The logical equivalent of this query that uses the standard solution for pivoting has

orderid, orderdate, and empid listed in the GROUP BY list as follows.

SELECT empid,

 SUM(CASE WHEN custid = 'A' THEN qty END) AS A,

 SUM(CASE WHEN custid = 'B' THEN qty END) AS B,

 SUM(CASE WHEN custid = 'C' THEN qty END) AS C,

 SUM(CASE WHEN custid = 'D' THEN qty END) AS D

FROM dbo.Orders

GROUP BY orderid, orderdate, empid;

I strongly recommend that you never operate on the base table directly, even when the table con-

tains only columns used as pivoting elements. You never know whether new columns will be added to

the table in the future, rendering your queries incorrect. I recommend considering the use of a table

expression as the input table to the PIVOT operator as if it were part of the requirement of the opera-

tor’s syntax.

As another example of a pivoting request, suppose that instead of returning employees on rows

and customers on columns, you want it the other way around: the grouping element is custid, the

spreading element is empid, and the aggregation element and aggregate function remain SUM(qty).

After you learn the “template” for a pivoting solution (standard or native), it’s just a matter of itting
those elements in the right places. The following solution query uses the native PIVOT operator to

achieve the result.

SELECT custid, [1], [2], [3]

FROM (SELECT empid, custid, qty

 FROM dbo.Orders) AS D

 PIVOT(SUM(qty) FOR empid IN([1], [2], [3])) AS P;

The employee IDs 1, 2, and 3 are values in the empid column in the source table, but in terms of

the result, these values become target column names. Therefore, in the PIVOT IN clause, you must

refer to them as identiiers. When identiiers are irregular (for example, when they start with a digit),
you need to delimit them—hence the use of square brackets.

228 Microsoft SQL Server 2012 T-SQL Fundamentals

This query returns the following output.

custid 1 2 3

--------- ----------- ----------- -----------

A NULL 52 20

B 20 27 NULL

C 34 NULL 22

D NULL NULL 30

unpivoting Data

Unpivoting is a technique to rotate data from a state of columns to a state of rows. Usually it involves

querying a pivoted state of the data, producing from each source row multiple result rows, each

with a different source column value. In other words, each source row of the pivoted table becomes

potentially many rows, one row for each of the speciied source column values. This may be dificult
to understand at irst, but an example should help.

Run the following code to create and populate a table called EmpCustOrders in the TSQL2012

sample database.

USE TSQL2012;

IF OBJECT_ID('dbo.EmpCustOrders', 'U') IS NOT NULL DROP TABLE dbo.EmpCustOrders;

CREATE TABLE dbo.EmpCustOrders

(

 empid INT NOT NULL

 CONSTRAINT PK_EmpCustOrders PRIMARY KEY,

 A VARCHAR(5) NULL,

 B VARCHAR(5) NULL,

 C VARCHAR(5) NULL,

 D VARCHAR(5) NULL

);

INSERT INTO dbo.EmpCustOrders(empid, A, B, C, D)

 SELECT empid, A, B, C, D

 FROM (SELECT empid, custid, qty

 FROM dbo.Orders) AS D

 PIVOT(SUM(qty) FOR custid IN(A, B, C, D)) AS P;

SELECT * FROM dbo.EmpCustOrders;

Here’s the output of the query against EmpCustOrders showing its contents.

empid A B C D

----------- ----------- ----------- ----------- -----------

1 NULL 20 34 NULL

2 52 27 NULL NULL

3 20 NULL 22 30

 CHAPTER 7 Beyond the Fundamentals of Querying 229

The table has a row for each employee; a column for each of the four customers A, B, C, and D;

and the order quantity for each employee and customer in the employee-customer intersections.

Notice that irrelevant intersections (employee-customer combinations that had no intersecting order

activity) are represented by NULL marks. Suppose that you receive a request to unpivot the data,

requiring you to return a row for each employee and customer, along with the order quantity. The

resulting output should look like this.

empid custid qty

----------- --------- -----------

1 B 20

1 C 34

2 A 52

2 B 27

3 A 20

3 C 22

3 D 30

In the following sections, I’ll discuss two techniques for solving this problem—a technique that fol-

lows the SQL standard and a technique that uses a T-SQL–speciic UNPIVOT operator.

Unpivoting with Standard SQL
The standard solution to unpivoting involves implementing three logical processing phases in a very

explicit manner: producing copies, extracting elements, and eliminating irrelevant intersections.

The irst step in the solution involves producing multiple copies of each source row—one for each
column that you need to unpivot. In this case, you need to produce a copy for each of the columns

A, B, C, and D, which represent customer IDs. In relational algebra and in SQL, the operation used to

produce multiple copies of each row is a Cartesian product (a cross join). You need to apply a cross

join between the EmpCustOrders table and a table that has a row for each customer.

You can use a table value constructor in the form of a VALUES clause to create a virtual table with a

row for each customer. The query implementing the irst step in the solution looks like this.

SELECT *

FROM dbo.EmpCustOrders

 CROSS JOIN (VALUES('A'),('B'),('C'),('D')) AS Custs(custid);

Note that if you’re not familiar yet with the VALUES clause, it is described in detail in Chapter 8,

“Data Modiication.”

230 Microsoft SQL Server 2012 T-SQL Fundamentals

In this example, the query that implements the irst step in the solution returns the following output.

empid A B C D custid

----------- ----------- ----------- ----------- ----------- ------

1 NULL 20 34 NULL A

1 NULL 20 34 NULL B

1 NULL 20 34 NULL C

1 NULL 20 34 NULL D

2 52 27 NULL NULL A

2 52 27 NULL NULL B

2 52 27 NULL NULL C

2 52 27 NULL NULL D

3 20 NULL 22 30 A

3 20 NULL 22 30 B

3 20 NULL 22 30 C

3 20 NULL 22 30 D

As you can see, four copies were produced for each source row—one each for customers A, B, C,

and D.

The second step in the solution is to produce a column (call it qty in this case) that returns the

value from the column that corresponds to the customer represented by the current copy. More

speciically in this case, if the current custid value is A, the qty column should return the value from

column A, if custid is B, qty should return the value from column B, and so on. You can implement this

step with a simple CASE expression like this.

SELECT empid, custid,

 CASE custid

 WHEN 'A' THEN A

 WHEN 'B' THEN B

 WHEN 'C' THEN C

 WHEN 'D' THEN D

 END AS qty

FROM dbo.EmpCustOrders

 CROSS JOIN (VALUES('A'),('B'),('C'),('D')) AS Custs(custid);

This query returns the following output.

empid custid qty

----------- --------- -----------

1 A NULL

1 B 20

1 C 34

1 D NULL

2 A 52

2 B 27

2 C NULL

2 D NULL

3 A 20

3 B NULL

3 C 22

3 D 30

 CHAPTER 7 Beyond the Fundamentals of Querying 231

Recall that in the original table, NULL marks represent irrelevant intersections. To eliminate irrele-

vant intersections, deine a table expression based on the query that implements step 2 in the solution,
and in the outer query, ilter out NULL marks. Here’s the complete solution query.

SELECT *

FROM (SELECT empid, custid,

 CASE custid

 WHEN 'A' THEN A

 WHEN 'B' THEN B

 WHEN 'C' THEN C

 WHEN 'D' THEN D

 END AS qty

 FROM dbo.EmpCustOrders

 CROSS JOIN (VALUES('A'),('B'),('C'),('D')) AS Custs(custid)) AS D

WHERE qty IS NOT NULL;

This query returns the following output.

empid custid qty

----------- --------- -----------

1 B 20

1 C 34

2 A 52

2 B 27

3 A 20

3 C 22

3 D 30

Unpivoting with the native T-SQL UNPIVOT Operator
Unpivoting data involves producing two result columns from any number of source columns that you

unpivot. In this example, you need to unpivot the source columns A, B, C and D, producing two result

columns called custid and qty. The former will hold the source column names (A, B, C, and D), and the

latter will hold the source column values (quantities in this case). SQL Server supports a very elegant,

minimalistic native UNPIVOT table operator. The general form of a query with the UNPIVOT operator

is as follows.

SELECT ...

FROM <source_table_or_table_expression>

 UNPIVOT(<target_col_to_hold_source_col_values>

 FOR <target_col_to_hold_source_col_names> IN(<list_of_source_columns>)) AS

<result_table_alias>

...;

Like the PIVOT operator, UNPIVOT was also implemented as a table operator in the context of the

FROM clause. It operates on a source table or table expression (EmpCustOrders in this case). Within

the parentheses of the UNPIVOT operator, you specify the name you want to assign to the column

that will hold the source column values (qty here), the name you want to assign to the column that

will hold the source column names (custid), and the list of source column names (A, B, C, and D). Fol-

lowing the parentheses, you provide an alias to the table resulting from the table operator.

232 Microsoft SQL Server 2012 T-SQL Fundamentals

Here’s the complete solution query that uses the UNPIVOT operator to satisfy the unpivoting

request in the example.

SELECT empid, custid, qty

FROM dbo.EmpCustOrders

 UNPIVOT(qty FOR custid IN(A, B, C, D)) AS U;

Note that the UNPIVOT operator implements the same logical processing phases described earlier—

generating copies, extracting elements, and eliminating NULL intersections. The last phase is not an

optional phase as in the solution based on standard SQL.

Also note that unpivoting a pivoted table cannot bring back the original table. Rather, unpivoting

is just a rotation of the pivoted values into a new format. However, the table that has been unpivoted

can be pivoted back to its original pivoted state. In other words, the aggregation results in a loss of

detail information in the original pivoting. After the initial pivot, all the aggregations can be preserved

between the operations, provided that the unpivot does not lose information.

When you are done, run the following code for cleanup.

IF OBJECT_ID('dbo.EmpCustOrders', 'U') IS NOT NULL DROP TABLE dbo.EmpCustOrders;

Grouping Sets

This section describes both what grouping sets are and the features in SQL Server that support

grouping sets.

A grouping set is simply a set of attributes by which you group. Traditionally in SQL, a single ag-

gregate query deines a single grouping set. For example, each of the following four queries deines
a single grouping set.

SELECT empid, custid, SUM(qty) AS sumqty

FROM dbo.Orders

GROUP BY empid, custid;

SELECT empid, SUM(qty) AS sumqty

FROM dbo.Orders

GROUP BY empid;

SELECT custid, SUM(qty) AS sumqty

FROM dbo.Orders

GROUP BY custid;

SELECT SUM(qty) AS sumqty

FROM dbo.Orders;

The irst query deines the grouping set (empid, custid); the second (empid), the third (custid), and

the last query deine what’s known as the empty grouping set, (). This code returns four result sets—

one for each of the four queries.

 CHAPTER 7 Beyond the Fundamentals of Querying 233

Suppose that instead of four separate result sets, you wanted a single uniied result set with the ag-

gregated data for all four grouping sets. You could achieve this by using the UNION ALL set operation

to unify the result sets of all four queries. Because set operations require all result sets to have compat-

ible schemas with the same number of columns, you need to adjust the queries by adding placeholders

(for example, NULL marks) to account for missing columns. Here’s what the code would look like.

SELECT empid, custid, SUM(qty) AS sumqty

FROM dbo.Orders

GROUP BY empid, custid

UNION ALL

SELECT empid, NULL, SUM(qty) AS sumqty

FROM dbo.Orders

GROUP BY empid

UNION ALL

SELECT NULL, custid, SUM(qty) AS sumqty

FROM dbo.Orders

GROUP BY custid

UNION ALL

SELECT NULL, NULL, SUM(qty) AS sumqty

FROM dbo.Orders;

This code generates a single result set, with the aggregates for all four grouping sets being uniied.

empid custid sumqty

----------- --------- -----------

2 A 52

3 A 20

1 B 20

2 B 27

1 C 34

3 C 22

3 D 30

1 NULL 54

2 NULL 79

3 NULL 72

NULL A 72

NULL B 47

NULL C 56

NULL D 30

NULL NULL 205

(15 row(s) affected)

Even though you managed to get what you were after, this solution has two main problems—the

length of the code and the performance. This solution requires you to specify a whole GROUP BY

query for each grouping set. When you have a large number of grouping sets, the query can get

quite long. Also, to process the query, SQL Server will scan the source table separately for each query,

which is ineficient.

234 Microsoft SQL Server 2012 T-SQL Fundamentals

SQL Server supports several features that follow standard SQL and address the need to deine mul-
tiple grouping sets in the same query. Those are the GROUPING SETS, CUBE, and ROLLUP subclauses

of the GROUP BY clause and the GROUPING and GROUPING_ID functions.

The GROUPING SETS Subclause
The GROUPING SETS subclause is a powerful enhancement to the GROUP BY clause that is used

mainly in reporting and data warehousing. By using this subclause, you can deine multiple grouping
sets in the same query. Simply list the grouping sets that you want to deine, separated by commas
within the parentheses of the GROUPING SETS subclause, and for each grouping set list the members

separated by commas within parentheses. For example, the following query deines four grouping
sets: (empid, custid), (empid), (custid), and ().

SELECT empid, custid, SUM(qty) AS sumqty

FROM dbo.Orders

GROUP BY

 GROUPING SETS

 (

 (empid, custid),

 (empid),

 (custid),

 ()

);

This query is a logical equivalent of the previous solution that uniied the result sets of four ag-

gregate queries, returning the same output. This query, though, has two main advantages over the

previous solution—obviously it requires much less code, and SQL Server will optimize the number of

times it scans the source table and won’t necessarily scan it separately for each grouping set.

The CUBE Subclause
The CUBE subclause of the GROUP BY clause provides an abbreviated way to deine multiple group-

ing sets. In the parentheses of the CUBE subclause, you provide a list of members separated by

commas, and you get all possible grouping sets that can be deined based on the input members. For
example, CUBE(a, b, c) is equivalent to GROUPING SETS((a, b, c), (a, b), (a, c), (b, c), (a), (b), (c), ()). In

set theory, the set of all subsets of elements that can be produced from a particular set is called the

power set. You can think of the CUBE subclause as producing the power set of grouping sets that can

be formed from the given set of elements.

Instead of using the GROUPING SETS subclause in the previous query to deine the four group-

ing sets (empid, custid), (empid), (custid), and (), you can simply use CUBE(empid, custid). Here’s the

complete query.

SELECT empid, custid, SUM(qty) AS sumqty

FROM dbo.Orders

GROUP BY CUBE(empid, custid);

 CHAPTER 7 Beyond the Fundamentals of Querying 235

The ROLLUP Subclause
The ROLLUP subclause of the GROUP BY clause also provides an abbreviated way to deine multiple
grouping sets. However, unlike the CUBE subclause, ROLLUP doesn’t produce all possible group-

ing sets that can be deined based on the input members—it produces a subset of those. ROLLUP

assumes a hierarchy among the input members and produces all grouping sets that make sense

considering the hierarchy. In other words, whereas CUBE(a, b, c) produces all eight possible grouping

sets from the three input members, ROLLUP(a, b, c) produces only four grouping sets, assuming the

hierarchy a>b>c, and is the equivalent of specifying GROUPING SETS((a, b, c), (a, b), (a), ()).

For example, suppose that you want to return total quantities for all grouping sets that can be de-

ined based on the time hierarchy order year > order month > order day. You could use the GROUPING

SETS subclause and explicitly list all four possible grouping sets.

GROUPING SETS(

 (YEAR(orderdate), MONTH(orderdate), DAY(orderdate)),

 (YEAR(orderdate), MONTH(orderdate)),

 (YEAR(orderdate)),

 ())

The logical equivalent that uses the ROLLUP subclause is much more economical.

ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate))

Here’s the complete query that you need to run.

SELECT

 YEAR(orderdate) AS orderyear,

 MONTH(orderdate) AS ordermonth,

 DAY(orderdate) AS orderday,

 SUM(qty) AS sumqty

FROM dbo.Orders

GROUP BY ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate));

This query produces the following output.

orderyear ordermonth orderday sumqty

----------- -------------- ----------- -----------

2007 4 18 22

2007 4 NULL 22

2007 8 2 10

2007 8 NULL 10

2007 12 24 32

2007 12 NULL 32

2007 NULL NULL 64

2008 1 9 40

2008 1 18 14

2008 1 NULL 54

2008 2 12 12

2008 2 NULL 12

2008 NULL NULL 66

236 Microsoft SQL Server 2012 T-SQL Fundamentals

2009 2 12 10

2009 2 16 20

2009 2 NULL 30

2009 4 18 15

2009 4 NULL 15

2009 9 7 30

2009 9 NULL 30

2009 NULL NULL 75

NULL NULL NULL 205

The GROUPING and GROUPING_ID Functions
When you have a single query that deines multiple grouping sets, you might need to be able to
associate result rows and grouping sets—that is, to identify for each result row the grouping set

it is associated with. As long as all grouping elements are deined as NOT NULL, this is easy. For

example, consider the following query.

SELECT empid, custid, SUM(qty) AS sumqty

FROM dbo.Orders

GROUP BY CUBE(empid, custid);

This query produces the following output.

empid custid sumqty

----------- --------- -----------

2 A 52

3 A 20

NULL A 72

1 B 20

2 B 27

NULL B 47

1 C 34

3 C 22

NULL C 56

3 D 30

NULL D 30

NULL NULL 205

1 NULL 54

2 NULL 79

3 NULL 72

Because both the empid and custid columns were deined in the dbo.Orders table as NOT NULL, a

NULL in those columns can only represent a placeholder, indicating that the column did not partici-

pate in the current grouping set. So, for example, all rows in which empid is not NULL and custid is

not NULL are associated with the grouping set (empid, custid). All rows in which empid is not NULL

and custid is NULL are associated with the grouping set (empid), and so on. Some people override the

presentation of NULL marks with ALL or a similar designator, provided that the original columns are

not nullable. This helps for reporting.

 CHAPTER 7 Beyond the Fundamentals of Querying 237

However, if a grouping column is deined as allowing NULL marks in the table, you cannot tell for

sure whether a NULL in the result set originated from the data or is a placeholder for a nonpartici-

pating member in a grouping set. One way to determine grouping set association in a deterministic

manner, even when grouping columns allow NULL marks, is to use the GROUPING function. This

function accepts a name of a column and returns 0 if it is a member of the current grouping set and 1

otherwise.

note I ind it counterintuitive that the GROUPING function returns 1 when the element

isn’t part of the grouping set and 0 when it is. To me, it would have made more sense for

the function to return 1 (meaning true) when the element is part of the grouping set and

0 otherwise. But that’s the implementation, so you just need to make sure that you realize

this fact.

For example, the following query invokes the GROUPING function for each of the grouping

elements.

SELECT

 GROUPING(empid) AS grpemp,

 GROUPING(custid) AS grpcust,

 empid, custid, SUM(qty) AS sumqty

FROM dbo.Orders

GROUP BY CUBE(empid, custid);

This query returns the following output.

grpemp grpcust empid custid sumqty

--------- ---------- ----------- --------- -----------

0 0 2 A 52

0 0 3 A 20

1 0 NULL A 72

0 0 1 B 20

0 0 2 B 27

1 0 NULL B 47

0 0 1 C 34

0 0 3 C 22

1 0 NULL C 56

0 0 3 D 30

1 0 NULL D 30

1 1 NULL NULL 205

0 1 1 NULL 54

0 1 2 NULL 79

0 1 3 NULL 72

(15 row(s) affected)

238 Microsoft SQL Server 2012 T-SQL Fundamentals

Now you don’t need to rely on the NULL marks anymore to igure out the association between
result rows and grouping sets. For example, all rows in which grpemp is 0 and grpcust is 0 are associ-

ated with the grouping set (empid, custid). All rows in which grpemp is 0 and grpcust is 1 are associated

with the grouping set (empid), and so on.

SQL Server supports another function called GROUPING_ID that can further simplify the process of

associating result rows and grouping sets. You provide the function with all elements that participate

in any grouping set as inputs—for example, GROUPING_ID(a, b, c, d)—and the function returns an

integer bitmap in which each bit represents a different input element—the rightmost element repre-

sented by the rightmost bit. For example, the grouping set (a, b, c, d) is represented by the integer 0

(0×8 + 0×4 + 0×2 + 0×1). The grouping set (a, c) is represented by the integer 5 (0×8 + 1×4 + 0×2 +

1×1), and so on.

Instead of calling the GROUPING function for each grouping element as in the previous query,

you can call the GROUPING_ID function once and provide it with all grouping elements as input, as

shown here.

SELECT

 GROUPING_ID(empid, custid) AS groupingset,

 empid, custid, SUM(qty) AS sumqty

FROM dbo.Orders

GROUP BY CUBE(empid, custid);

This query produces the following output.

groupingset empid custid sumqty

-------------- ----------- --------- -----------

0 2 A 52

0 3 A 20

2 NULL A 72

0 1 B 20

0 2 B 27

2 NULL B 47

0 1 C 34

0 3 C 22

2 NULL C 56

0 3 D 30

2 NULL D 30

3 NULL NULL 205

1 1 NULL 54

1 2 NULL 79

1 3 NULL 72

Now you can easily igure out which grouping set each row is associated with. The integer 0
(binary 00) represents the grouping set (empid, custid); the integer 1 (binary 01) represents (empid);

the integer 2 (binary 10) represents (custid); and the integer 3 (binary (11) represents ().

 CHAPTER 7 Beyond the Fundamentals of Querying 239

Conclusion

This chapter covered window functions, pivoting and unpivoting data, and features related to group-

ing sets.

Window functions allow you to perform calculations against sets in a more lexible and eficient
manner when compared to alternative methods. Window functions have numerous practical uses, so

it’s well worth your time to get to know them well.

I provided both standard and nonstandard techniques to achieve pivoting and unpivoting. The

nonstandard techniques use the T-SQL–speciic PIVOT and UNPIVOT operators; the main advantage

of these is that they require less code than standard techniques.

SQL Server supports several important features that make the handling of grouping sets lex-

ible and eficient: the GROUPING SETS, CUBE, and ROLLUP subclauses and the GROUPING and

GROUPING_ID function.

Exercises

This section provides exercises to help you familiarize yourself with the subjects discussed in Chapter 7.

All exercises for this chapter involve querying the dbo.Orders table in the TSQL2012 database that you

created and populated earlier in this chapter by running the code in Listing 7-1.

1
Write a query against the dbo.Orders table that computes for each customer order both a rank and a

dense rank, partitioned by custid and ordered by qty.

 ■ Tables involved: TSQL2012 database and dbo.Orders table

 ■ Desired output:

custid orderid qty rnk drnk

------ ----------- ----------- -------------------- --------------------

A 30001 10 1 1

A 40005 10 1 1

A 10001 12 3 2

A 40001 40 4 3

B 20001 12 1 1

B 30003 15 2 2

B 10005 20 3 3

C 10006 14 1 1

C 20002 20 2 2

C 30004 22 3 3

D 30007 30 1 1

240 Microsoft SQL Server 2012 T-SQL Fundamentals

2
Write a query against the dbo.Orders table that computes for each customer order both the dif-

ference between the current order quantity and the customer’s previous order quantity and the

difference between the current order quantity and the customer’s next order quantity.

 ■ Tables involved: TSQL2012 database and dbo.Orders table

 ■ Desired output:

custid orderid qty diffprev diffnext

------ ----------- ----------- ----------- -----------

A 30001 10 NULL -2

A 10001 12 2 -28

A 40001 40 28 30

A 40005 10 -30 NULL

B 10005 20 NULL 8

B 20001 12 -8 -3

B 30003 15 3 NULL

C 30004 22 NULL 8

C 10006 14 -8 -6

C 20002 20 6 NULL

D 30007 30 NULL NULL

3
Write a query against the dbo.Orders table that returns a row for each employee, a column for each

order year, and the count of orders for each employee and order year.

 ■ Tables involved: TSQL2012 database and dbo.Orders table

 ■ Desired output:

empid cnt2007 cnt2008 cnt2009

----------- ----------- ----------- -----------

1 1 1 1

2 1 2 1

3 2 0 2

 CHAPTER 7 Beyond the Fundamentals of Querying 241

4
Run the following code to create and populate the EmpYearOrders table.

USE TSQL2012;

IF OBJECT_ID('dbo.EmpYearOrders', 'U') IS NOT NULL DROP TABLE dbo.EmpYearOrders;

CREATE TABLE dbo.EmpYearOrders

(

 empid INT NOT NULL

 CONSTRAINT PK_EmpYearOrders PRIMARY KEY,

 cnt2007 INT NULL,

 cnt2008 INT NULL,

 cnt2009 INT NULL

);

INSERT INTO dbo.EmpYearOrders(empid, cnt2007, cnt2008, cnt2009)

 SELECT empid, [2007] AS cnt2007, [2008] AS cnt2008, [2009] AS cnt2009

 FROM (SELECT empid, YEAR(orderdate) AS orderyear

 FROM dbo.Orders) AS D

 PIVOT(COUNT(orderyear)

 FOR orderyear IN([2007], [2008], [2009])) AS P;

SELECT * FROM dbo.EmpYearOrders;

Here is the output for the query.

empid cnt2007 cnt2008 cnt2009

----------- ----------- ----------- -----------

1 1 1 1

2 1 2 1

3 2 0 2

Write a query against the EmpYearOrders table that unpivots the data, returning a row for each

employee and order year with the number of orders. Exclude rows in which the number of orders is 0

(in this example, employee 3 in the year 2008).

 ■ Desired output:

empid orderyear numorders

----------- ----------- -----------

1 2007 1

1 2008 1

1 2009 1

2 2007 1

2 2008 2

2 2009 1

3 2007 2

3 2009 2

242 Microsoft SQL Server 2012 T-SQL Fundamentals

5
Write a query against the dbo.Orders table that returns the total quantities for each: (employee,

customer, and order year), (employee and order year), and (customer and order year). Include a result

column in the output that uniquely identiies the grouping set with which the current row is associated.

 ■ Tables involved: TSQL2012 database and dbo.Orders table

 ■ Desired output:

groupingset empid custid orderyear sumqty

-------------- ----------- --------- ----------- -----------

0 2 A 2007 12

0 3 A 2007 10

4 NULL A 2007 22

0 2 A 2008 40

4 NULL A 2008 40

0 3 A 2009 10

4 NULL A 2009 10

0 1 B 2007 20

4 NULL B 2007 20

0 2 B 2008 12

4 NULL B 2008 12

0 2 B 2009 15

4 NULL B 2009 15

0 3 C 2007 22

4 NULL C 2007 22

0 1 C 2008 14

4 NULL C 2008 14

0 1 C 2009 20

4 NULL C 2009 20

0 3 D 2009 30

4 NULL D 2009 30

2 1 NULL 2007 20

2 2 NULL 2007 12

2 3 NULL 2007 32

2 1 NULL 2008 14

2 2 NULL 2008 52

2 1 NULL 2009 20

2 2 NULL 2009 15

2 3 NULL 2009 40

(29 row(s) affected)

When you are done with the exercises in this chapter, run the following code for cleanup.

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

 CHAPTER 7 Beyond the Fundamentals of Querying 243

Solutions

This section provides solutions to the Chapter 7 exercises.

1
This exercise is very technical. It’s just a matter of being familiar with the syntax for window ranking

functions. Here’s the solution query, returning for each order both the rank and the dense rank, parti-

tioned by custid and ordered by qty.

SELECT custid, orderid, qty,

 RANK() OVER(PARTITION BY custid ORDER BY qty) AS rnk,

 DENSE_RANK() OVER(PARTITION BY custid ORDER BY qty) AS drnk

FROM dbo.Orders;

2
The window offset functions LAG and LEAD allow you to return an element from a previous and next

row, respectively, based on the indicated partitioning and ordering speciication. In this exercise,
you need to perform the calculations within each customer’s orders, hence the window partitioning

should be based on custid. As for ordering, use orderdate as the irst ordering column and orderid as

the tiebreaker. Here’s the complete solution query.

SELECT custid, orderid, qty,

 qty - LAG(qty) OVER(PARTITION BY custid

 ORDER BY orderdate, orderid) AS diffprev,

 qty - LEAD(qty) OVER(PARTITION BY custid

 ORDER BY orderdate, orderid) AS diffnext

FROM dbo.Orders;

This query is a good example that shows that you can mix detail elements from the row with win-

dow functions in the same expression.

3
Solving a pivoting problem is all about identifying the elements involved: the grouping element, the

spreading element, the aggregation element, and the aggregate function. After you identify the ele-

ments involved, you simply it them into the “template” query for pivoting—whether it is the standard
solution or the solution using the native PIVOT operator.

In this exercise, the grouping element is the employee (empid), the spreading element is order

year (YEAR(orderdate)), and the aggregate function is COUNT; however, identifying the aggregation

element is not that straightforward. You want the COUNT aggregate function to count matching rows

and orders—you don’t really care which attribute it counts. In other words, you can use any attribute

that you want, as long as the attribute does not allow NULL marks, because aggregate functions

ignore NULL marks, and counting an attribute that allows NULL marks would result in an incorrect

count of the orders.

244 Microsoft SQL Server 2012 T-SQL Fundamentals

If it doesn’t really matter which attribute you use as the input to the COUNT aggregate, why not

use the same attribute that you already use as the spreading element? In this case, you can use the

order year as both the spreading and aggregation element.

Now that you’ve identiied all pivoting elements, you’re ready to write the complete solution.
Here’s the solution query without using the PIVOT operator.

USE TSQL2012;

SELECT empid,

 COUNT(CASE WHEN orderyear = 2007 THEN orderyear END) AS cnt2007,

 COUNT(CASE WHEN orderyear = 2008 THEN orderyear END) AS cnt2008,

 COUNT(CASE WHEN orderyear = 2009 THEN orderyear END) AS cnt2009

FROM (SELECT empid, YEAR(orderdate) AS orderyear

 FROM dbo.Orders) AS D

GROUP BY empid;

Recall that if you do not specify an ELSE clause in a CASE expression, an implicit ELSE NULL is as-

sumed. Thus the CASE expression produces non-NULL marks only for matching orders (orders placed

by the current employee in the current order year), and only those matching orders are taken into

consideration by the COUNT aggregate.

Notice that even though the standard solution does not require you to use a table expression, I

used one here to alias the YEAR(orderdate) expression as orderyear to avoid repeating the expression

YEAR(orderdate) multiple times in the outer query.

Here’s the solution query that uses the native PIVOT operator.

SELECT empid, [2007] AS cnt2007, [2008] AS cnt2008, [2009] AS cnt2009

FROM (SELECT empid, YEAR(orderdate) AS orderyear

 FROM dbo.Orders) AS D

 PIVOT(COUNT(orderyear)

 FOR orderyear IN([2007], [2008], [2009])) AS P;

As you can see, it’s just a matter of itting the pivoting elements in the right places.

If you prefer to use your own target column names and not the ones based on the actual data, of

course you can provide your own aliases in the SELECT list. In this query, I aliased the result columns

[2007], [2008], and [2009] as cnt2007, cnt2008, and cnt2009, respectively.

 CHAPTER 7 Beyond the Fundamentals of Querying 245

4
This exercise involves a request to unpivot the source columns cnt2007, cnt2008, and cnt2009 to two

target columns—orderyear to hold the year that the source column name represents and numorders

to hold the source column value. You can use the solutions that I showed in the chapter as the basis

for solving this exercise with a couple of small revisions.

In the examples I used in the chapter, NULL marks in the table represented irrelevant column

values. The unpivoting solutions I presented iltered out rows with NULL marks. The EmpYearOrders

table has no NULL marks, but it does have zeros in some cases, and the request is to ilter out rows
with 0 number of orders. With the standard solution, simply use the predicate numorders <> 0 in-

stead of using IS NOT NULL. Here’s the version that uses the VALUES clause.

SELECT *

FROM (SELECT empid, orderyear,

 CASE orderyear

 WHEN 2007 THEN cnt2007

 WHEN 2008 THEN cnt2008

 WHEN 2009 THEN cnt2009

 END AS numorders

 FROM dbo.EmpYearOrders

 CROSS JOIN (VALUES(2007),(2008),(2009)) AS Years (orderyear)) AS D

WHERE numorders <> 0;

As for the solution that uses the native UNPIVOT operator, remember that it eliminates NULL

marks as an integral part of its logic. However, it does not eliminate zeros—you have to take care of

eliminating zeros yourself by adding a WHERE clause, like this.

SELECT empid, CAST(RIGHT(orderyear, 4) AS INT) AS orderyear, numorders

FROM dbo.EmpYearOrders

 UNPIVOT(numorders FOR orderyear IN(cnt2007, cnt2008, cnt2009)) AS U

WHERE numorders <> 0;

Notice the expression used in the SELECT list to produce the orderyear result column:

CAST(RIGHT(orderyear, 4) AS INT). The original column names that the query unpivots are

cnt2007, cnt2008, and cnt2009. These column names become the values ‘cnt2007’, ‘cnt2008’,

and ‘cnt2009’, respectively, in the orderyear column in the result of the UNPIVOT operator. The

purpose of this expression is to extract the four rightmost characters representing the order year

and convert the value to an integer. This manipulation was not required in the standard solution

because the constants used to construct the table expression Years were speciied as the integer
order years to begin with.

246 Microsoft SQL Server 2012 T-SQL Fundamentals

5
If you understand the concept of grouping sets, this exercise should be straightforward for you. You

can use the GROUPING SETS subclause to list the requested grouping sets and the GROUPING_ID

function to produce a unique identiier for the grouping set with which each row is associated. Here’s
the complete solution query.

SELECT

 GROUPING_ID(empid, custid, YEAR(Orderdate)) AS groupingset,

 empid, custid, YEAR(Orderdate) AS orderyear, SUM(qty) AS sumqty

FROM dbo.Orders

GROUP BY

 GROUPING SETS

 (

 (empid, custid, YEAR(orderdate)),

 (empid, YEAR(orderdate)),

 (custid, YEAR(orderdate))

);

The requested grouping sets are neither a power set nor a rollup of some set of attributes. There-

fore, you cannot use either the CUBE or the ROLLUP subclause to further abbreviate the code.

 247

C H A P T E R 8

Data Modiication

SQL has a set of statements known as Data Manipulation Language (DML) that deals with, well, data

manipulation. Some people think that DML involves only statements that modify data, but in fact it

also involves data retrieval. DML includes the statements SELECT, INSERT, UPDATE, DELETE, TRUNCATE,

and MERGE. Up to this point in the book, I’ve focused on the SELECT statement. This chapter focuses

on data modiication statements. In addition to covering standard aspects of data modiication, in this
chapter, I’ll also cover aspects speciic to T-SQL.

To avoid changing data in your existing sample databases, for demonstration purposes, most of

the examples in this chapter create, populate, and operate against tables in the TSQL2012 database

that use the dbo schema.

Inserting Data

T-SQL provides several statements for inserting data into tables: INSERT VALUES, INSERT SELECT,

INSERT EXEC, SELECT INTO, and BULK INSERT. I’ll irst describe those statements, and then I’ll talk
about tools for automatically generating keys, such as the identity column property and the se-

quence object.

The INSERT VALUES Statement
You use the INSERT VALUES statement to insert rows into a table based on speciied values. To prac-

tice using this statement and others, you will work with a table called Orders in the dbo schema in the

TSQL2012 database. Run the following code to create the Orders table.

USE TSQL2012;

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

CREATE TABLE dbo.Orders

(

 orderid INT NOT NULL

 CONSTRAINT PK_Orders PRIMARY KEY,

 orderdate DATE NOT NULL

 CONSTRAINT DFT_orderdate DEFAULT(SYSDATETIME()),

 empid INT NOT NULL,

 custid VARCHAR(10) NOT NULL

)

248 Microsoft SQL Server 2012 T-SQL Fundamentals

The following example demonstrates how to use the INSERT VALUES statement to insert a single

row into the Orders table.

INSERT INTO dbo.Orders(orderid, orderdate, empid, custid)

 VALUES(10001, '20090212', 3, 'A');

Specifying the target column names right after the table name is optional, but by doing so, you

control the value-column associations instead of relying on the order in which the columns appeared

when the table was deined (or the table structure was last altered).

If you specify a value for a column, Microsoft SQL Server will use that value. If you don’t, SQL Server

will check whether a default value is deined for the column, and if so, the default will be used. If a de-

fault value isn’t deined and the column allows NULL marks, a NULL will be used. If you do not specify

a value for a column that does not allow NULL marks and does not somehow get its value automati-

cally, your INSERT statement will fail. As an example of relying on a default value or expression, the

following statement inserts a row into the Orders table without specifying a value for the orderdate

column, but because this column has a default expression deined for it (SYSDATETIME), that default

will be used.

INSERT INTO dbo.Orders(orderid, empid, custid)

 VALUES(10002, 5, 'B');

SQL Server 2008 and SQL Server 2012 support an enhanced VALUES clause that allows you to

specify multiple rows separated by commas. For example, the following statement inserts four rows

into the Orders table.

INSERT INTO dbo.Orders

 (orderid, orderdate, empid, custid)

VALUES

 (10003, '20090213', 4, 'B'),

 (10004, '20090214', 1, 'A'),

 (10005, '20090213', 1, 'C'),

 (10006, '20090215', 3, 'C');

This statement is processed as an atomic operation, meaning that if any row fails to enter the table,

none of the rows in the statement enters the table.

There’s more to this enhanced VALUES clause. You can use it in a standard way as a table value

constructor to construct a derived table. Here’s an example.

SELECT *

FROM (VALUES

 (10003, '20090213', 4, 'B'),

 (10004, '20090214', 1, 'A'),

 (10005, '20090213', 1, 'C'),

 (10006, '20090215', 3, 'C'))

 AS O(orderid, orderdate, empid, custid);

 CHAPTER 8 Data Modiication 249

Following the parentheses that contain the table value constructor, you assign an alias to the table

(O in this case), and following the table alias, you assign aliases to the target columns in parentheses.

This query generates the following output.

orderid orderdate empid custid

----------- ----------- ----------- ------

10003 20090213 4 B

10004 20090214 1 A

10005 20090213 1 C

10006 20090215 3 C

The INSERT SELECT Statement
The INSERT SELECT statement inserts a set of rows returned by a SELECT query into a target table.

The syntax is very similar to that of an INSERT VALUES statement, but instead of the VALUES clause,

you specify a SELECT query. For example, the following code inserts into the dbo.Orders table the

result of a query against the Sales.Orders table returning orders that were shipped to the United

Kingdom.

INSERT INTO dbo.Orders(orderid, orderdate, empid, custid)

 SELECT orderid, orderdate, empid, custid

 FROM Sales.Orders

 WHERE shipcountry = 'UK';

The INSERT SELECT statement also allows you the option of specifying the target column names,

and the recommendations I gave earlier regarding specifying those names remain the same. The re-

quirement to provide values for all columns that do not somehow get their values automatically and

the implicit use of default values or NULL marks when a value is not provided are also the same as

with the INSERT VALUES statement. The INSERT SELECT statement is performed as an atomic opera-

tion, so if any row fails to enter the target table, none of the rows enters the table.

Before SQL Server enhanced the VALUES clause, if you wanted to construct a virtual table based on

values, you had to use multiple SELECT statements, each returning a single row based on values, and

unify the rows with UNION ALL set operations. In the context of an INSERT SELECT statement, you

could use this technique to insert multiple rows based on values in a single statement that is consid-

ered an atomic operation. For example, the following statement inserts four rows based on values

into the Orders table.

INSERT INTO dbo.Orders(orderid, orderdate, empid, custid)

 SELECT 10007, '20090215', 2, 'B' UNION ALL

 SELECT 10008, '20090215', 1, 'C' UNION ALL

 SELECT 10009, '20090216', 2, 'C' UNION ALL

 SELECT 10010, '20090216', 3, 'A';

However, this syntax isn’t standard because it uses SELECT statements without FROM clauses. Use

of a table value constructor based on the VALUES clause is standard, and hence it is the preferred

option.

250 Microsoft SQL Server 2012 T-SQL Fundamentals

The INSERT EXEC Statement
You use the INSERT EXEC statement to insert a result set returned from a stored procedure or a dyn-

amic SQL batch into a target table. You’ll ind information about stored procedures, batches, and
dynamic SQL in Chapter 10, “Programmable Objects.” The INSERT EXEC statement is very similar in

syntax and concept to the INSERT SELECT statement, but instead of a SELECT statement, you specify

an EXEC statement.

For example, the following code creates a stored procedure called Sales.usp_getorders, returning

orders that were shipped to a speciied input country (with the @country parameter).

IF OBJECT_ID('Sales.usp_getorders', 'P') IS NOT NULL

 DROP PROC Sales.usp_getorders;

GO

CREATE PROC Sales.usp_getorders

 @country AS NVARCHAR(40)

AS

SELECT orderid, orderdate, empid, custid

FROM Sales.Orders

WHERE shipcountry = @country;

GO

To test the stored procedure, execute it with the input country France.

EXEC Sales.usp_getorders @country = 'France';

You get the following output.

orderid orderdate empid custid

----------- ------------------------- ----------- -----------

10248 2006-07-04 00:00:00.000 5 85

10251 2006-07-08 00:00:00.000 3 84

10265 2006-07-25 00:00:00.000 2 7

10274 2006-08-06 00:00:00.000 6 85

10295 2006-09-02 00:00:00.000 2 85

10297 2006-09-04 00:00:00.000 5 7

10311 2006-09-20 00:00:00.000 1 18

10331 2006-10-16 00:00:00.000 9 9

10334 2006-10-21 00:00:00.000 8 84

10340 2006-10-29 00:00:00.000 1 9

...

(77 row(s) affected)

By using an INSERT EXEC statement, you can direct the result set returned from the procedure to

the dbo.Orders table.

INSERT INTO dbo.Orders(orderid, orderdate, empid, custid)

 EXEC Sales.usp_getorders @country = 'France';

 CHAPTER 8 Data Modiication 251

The SELECT INTO Statement
The SELECT INTO statement is a nonstandard T-SQL statement that creates a target table and popu-

lates it with the result set of a query. By “nonstandard,” I mean that it is not part of the ISO and ANSI
SQL standards. You cannot use this statement to insert data into an existing table. In terms of syntax,

simply add INTO <target_table_name> right before the FROM clause of the SELECT query that you

want to use to produce the result set. For example, the following code creates a table called dbo.Orders

and populates it with all rows from the Sales.Orders table.

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

SELECT orderid, orderdate, empid, custid

INTO dbo.Orders

FROM Sales.Orders;

The target table’s structure and data are based on the source table. The SELECT INTO statement

copies from the source the base structure (column names, types, nullability, and identity property) and

the data. There are four things that the statement does not copy from the source: constraints, indexes,

triggers, and permissions. If you need those in the target, you will need to create them yourself.

note At the date of this writing, Windows Azure SQL Database doesn’t support heaps

(tables without clustered indexes). SELECT INTO creates a heap because it doesn’t copy

indexes— including clustered ones. For this reason, SQL Database doesn’t support SELECT

INTO. You will need to issue a CREATE TABLE statement followed by an INSERT SELECT

statement to achieve the same result.

One of the beneits of the SELECT INTO statement is that as long as a database property called Re-

covery Model is not set to FULL, the SELECT INTO operation is performed in a minimally logged mode.

This translates to a very fast operation compared to a fully logged one. Note also that the INSERT

SELECT statement can beneit from minimal logging, but the list of requirements it needs to meet is
longer. For details, see “Prerequisites for Minimal Logging in Bulk Import” in SQL Server Books Online
at the following URL: http://msdn.microsoft.com/en-us/library/ms190422.aspx.

If you need to use a SELECT INTO statement with set operations, you specify the INTO clause right

in front of the FROM clause of the irst query. For example, the following SELECT INTO statement

creates a table called Locations and populates it with the result of an EXCEPT set operation, returning

locations where there are customers but not employees.

IF OBJECT_ID('dbo.Locations', 'U') IS NOT NULL DROP TABLE dbo.Locations;

SELECT country, region, city

INTO dbo.Locations

FROM Sales.Customers

EXCEPT

SELECT country, region, city

FROM HR.Employees;

252 Microsoft SQL Server 2012 T-SQL Fundamentals

The BULK INSERT Statement
You use the BULK INSERT statement to insert into an existing table data originating from a ile. In the
statement, you specify the target table, the source ile, and options. You can specify many options,
including the data ile type (for example, char or native), the ield terminator, the row terminator, and
others—all of which are fully documented.

For example, the following code bulk inserts the contents of the ile c:\temp\orders.txt into the

table dbo.Orders, specifying that the data ile type is char, the ield terminator is a comma, and the
row terminator is the newline character.

BULK INSERT dbo.Orders FROM 'c:\temp\orders.txt'

 WITH

 (

 DATAFILETYPE = 'char',

 FIELDTERMINATOR = ',',

 ROWTERMINATOR = '\n'

);

Note that if you want to actually run this statement, you need to place the orders.txt ile provided
along with the source code for this book into the c:\temp folder.

You can run the BULK INSERT statement in a fast, minimally logged mode in certain scenarios pro-

vided that certain requirements are met. For details, see “Prerequisites for Minimal Logging in Bulk
Import” in SQL Server Books Online.

The Identity property and the Sequence Object
SQL Server supports two built-in solutions to automatically generate keys: the identity column prop-

erty and the sequence object. The identity property has been supported for as long as I can remem-

ber in SQL Server. It works well for some scenarios, but it also has many shortcomings. The sequence

object was added in SQL Server 2012, and it resolves many of the identity property’s limitations. I’ll

start with identity.

Identity

SQL Server allows you to deine a property called identity for a column with any numeric type with a

scale of zero (no fraction). This property generates values automatically upon INSERT based on a seed

(irst value) and an increment (step value) that are provided in the column’s deinition. Typically, you
would use this property to generate surrogate keys, which are keys that are produced by the system

and are not derived from the application data.

 CHAPTER 8 Data Modiication 253

For example, the following code creates a table called dbo.T1.

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 keycol INT NOT NULL IDENTITY(1, 1)

 CONSTRAINT PK_T1 PRIMARY KEY,

 datacol VARCHAR(10) NOT NULL

 CONSTRAINT CHK_T1_datacol CHECK(datacol LIKE '[A-Za-z]%')

);

The table contains a column called keycol that is deined with an identity property using 1 as the

seed and 1 as the increment. The table also contains a character string column called datacol, whose

data is restricted with a CHECK constraint to strings starting with an alphabetical character.

In your INSERT statements, you should completely ignore the identity column, pretending as

though it isn’t in the table. For example, the following code inserts three rows into the table, specify-

ing values only for the datacol column.

INSERT INTO dbo.T1(datacol) VALUES('AAAAA');

INSERT INTO dbo.T1(datacol) VALUES('CCCCC');

INSERT INTO dbo.T1(datacol) VALUES('BBBBB');

SQL Server produced the values for keycol automatically. To see the values that SQL Server pro-

duced, query the table.

SELECT * FROM dbo.T1;

You get the following output.

keycol datacol

----------- ----------

1 AAAAA

2 CCCCC

3 BBBBB

When you query the table, naturally you can refer to the identity column by its name (keycol in this

case). SQL Server also provides a way to refer to the identity column by using the more generic form

$identity.

For example, the following query selects the identity column from T1 by using the generic form.

SELECT $identity FROM dbo.T1;

254 Microsoft SQL Server 2012 T-SQL Fundamentals

This query returns the following output.

keycol

1

2

3

When you insert a new row into the table, SQL Server generates a new identity value based on the

current identity value in the table and the increment. If you need to obtain the newly generated iden-

tity value—for example, to insert child rows into a referencing table—you query one of two functions

called @@identity and SCOPE_IDENTITY. The @@identity function is an old feature that returns the

last identity value generated by the session, regardless of scope (for example, the current procedure

and the trigger ired by INSERT are different scopes). SCOPE_IDENTITY returns the last identity value

generated by the session in the current scope (for example, the same procedure). Except for very spe-

cial cases when you don’t really care about scope, you should use the SCOPE_IDENTITY function.

For example, the following code inserts a row into table T1, obtains the newly generated identity

value into a variable by querying the SCOPE_IDENTITY function, and queries the variable.

DECLARE @new_key AS INT;

INSERT INTO dbo.T1(datacol) VALUES('AAAAA');

SET @new_key = SCOPE_IDENTITY();

SELECT @new_key AS new_key

If you ran all previous code samples provided in this section, this code returns the following output.

new_key

4

Remember that both @@identity and SCOPE_IDENTITY return the last identity value produced by

the current session. Neither is affected by inserts issued by other sessions. However, if you want to

know the current identity value in a table (the last value produced) regardless of session, you should

use the IDENT_CURRENT function and provide the table name as input. For example, run the follow-

ing code from a new session (not the one from which you ran the previous INSERT statements).

SELECT

 SCOPE_IDENTITY() AS [SCOPE_IDENTITY],

 @@identity AS [@@identity],

 IDENT_CURRENT('dbo.T1') AS [IDENT_CURRENT];

You get the following output.

SCOPE_IDENTITY @@identity IDENT_CURRENT

---------------- ------------ -------------

NULL NULL 4

 CHAPTER 8 Data Modiication 255

Both @@identity and SCOPE_IDENTITY returned NULL marks because no identity values were cre-

ated in the session in which this query ran. IDENT_CURRENT returned the value 4 because it returns

the current identity value in the table, regardless of the session in which it was produced.

The rest of this section provides several important details regarding the identity property.

The change to the current identity value in a table is not undone if the INSERT that generated the

change fails or the transaction in which the statement runs is rolled back. For example, run the follow-

ing INSERT statement, which contradicts the CHECK constraint deined in the table.

INSERT INTO dbo.T1(datacol) VALUES('12345');

The insert fails, and you get the following error.

Msg 547, Level 16, State 0, Line 1

The INSERT statement conflicted with the CHECK constraint "CHK_T1_datacol". The conflict

occurred in database "TSQL2012", table "dbo.T1", column 'datacol'.

The statement has been terminated.

Even though the insert failed, the current identity value in the table changed from 4 to 5, and this

change was not undone because of the failure. This means that the next insert will produce the value 6.

INSERT INTO dbo.T1(datacol) VALUES('EEEEE');

Query the table.

SELECT * FROM dbo.T1;

Notice a gap between the values 4 and 6 in the output.

keycol datacol

----------- ----------

1 AAAAA

2 CCCCC

3 BBBBB

4 AAAAA

6 EEEEE

Of course, this means that you should only rely on the identity property to automatically gener-

ate values when you don’t care about having gaps. Otherwise, you should consider using your own

alternative mechanism.

Another important aspect of the identity property is that you cannot add it to an existing column

or remove it from an existing column; you can only deine the property along with a column as part
of a CREATE TABLE statement or an ALTER TABLE statement that adds a new column. However, SQL

Server does allow you to explicitly specify your own values for the identity column in INSERT state-

ments, provided that you set a session option called IDENTITY_INSERT against the table involved. No

option allows you to update an identity column, though.

256 Microsoft SQL Server 2012 T-SQL Fundamentals

For example, the following code demonstrates how to insert a row into T1 with the explicit value 5

in keycol.

SET IDENTITY_INSERT dbo.T1 ON;

INSERT INTO dbo.T1(keycol, datacol) VALUES(5, 'FFFFF');

SET IDENTITY_INSERT dbo.T1 OFF;

Interestingly, SQL Server changes the current identity value in the table only if the explicit value

provided for the identity column is higher than the current identity value in the table. Because

the current identity value in the table prior to running the preceding code was 6, and the INSERT

statement in this code used the lower explicit value 5, the current identity value in the table did not

change. So if, at this point, after running the preceding code, you query the IDENT_CURRENT func-

tion for this table, you will get 6 and not 5. This way the next INSERT statement against the table will

produce the value 7.

INSERT INTO dbo.T1(datacol) VALUES('GGGGG');

Query the current contents of the table T1.

SELECT * FROM dbo.T1;

You get the following output.

keycol datacol

----------- ----------

1 AAAAA

2 CCCCC

3 BBBBB

4 AAAAA

5 FFFFF

6 EEEEE

7 GGGGG

It is important to understand that the identity property itself does not enforce uniqueness in the

column. I already explained that you can provide your own explicit values after setting the IDENTITY_

INSERT option to ON, and those values can be ones that already exist in rows in the table. Also, you

can reseed the current identity value in the table by using the DBCC CHECKIDENT com mand. For de-

tails about the syntax of the DBCC CHECKIDENT command, see “DBCC CHECKIDENT (Transact-SQL)”

in SQL Server Books Online. In short, the identity property does not enforce uniqueness. If you need

to guarantee uniqueness in an identity column, make sure you also deine a primary key or a unique
constraint on that column.

Sequence

The sequence object is a feature that was added in SQL Server 2012 as an alternative key-generating

mechanism for identity. It is a standard feature that some of the other database platforms had already

implemented, and now migrations from those platforms are easier. The sequence object is more lex-

ible than identity in many ways, making it the preferred choice in many cases.

 CHAPTER 8 Data Modiication 257

One of the advantages of the sequence object is that, unlike identity, it is not tied to a particular

column in a particular table; rather, it is an independent object in the database. Whenever you need

to generate a new value, you invoke a function against the object, and use the returned value wher-

ever you like. This means that you can use one sequence object that will help you maintain keys that

would not conlict across multiple tables.

To create a sequence object, use the CREATE SEQUENCE command. The minimum required in for-

mation is just the sequence name, but note that the defaults in such a case might not be what you

want. If you don’t indicate the type, SQL Server will use BIGINT by default. If you want a different

type, indicate AS <type>. The type can be any numeric type with a scale of zero. For example, if you

need your sequence to be of an INT type, indicate AS INT.

Unlike the identity property, the sequence object supports the speciication of a minimum value

(MINVALUE <val>) and a maximum value (MAXVALUE <val>) within the type. If you don’t indicate

what the minimum and maximum values are, the sequence object will assume the minimum and

maximum values supported by the type. For example, for an INT type, those would be -2,147,483,648

and 2,147,483,647, respectively.

Also, unlike identity, the sequence object supports cycling. Note, though, that the default is not to

cycle, so if you want the sequence object to cycle, you will need to be explicit about it by using the

CYCLE option.

Like identity, the sequence object allows you to specify the starting value (START WITH <val>) and

the increment (INCREMENET BY <val>). If you don’t indicate the starting value, the default will be

the same as the minimum value (MINVALUE). If you don’t indicate the increment value, it will be 1 by

default.

So, for example, suppose you want to create a sequence that will help you generate order IDs. You

want it to be of an INT type, have a minimum value of 1 and a maximum value that is the maximum

supported by the type, start with 1, increment by 1, and allow cycling. Here’s the CREATE SEQUENCE

command you could use to create such a sequence.

CREATE SEQUENCE dbo.SeqOrderIDs AS INT

 MINVALUE 1

 CYCLE;

You had to be explicit about the type, minimum value, and cycling option, because they are dif-

ferent than the defaults. You didn’t need to indicate the maximum, start with, and increment values

because you wanted the defaults.

The sequence object also supports a caching option (CACHE <val> | NO CACHE) that tells SQL

Server how many values to write to disk. If you write less frequently to disk, you’ll get better perfor-

mance when generating a value (on average), but you’ll risk losing more values in case of an unex-

pected shutdown of the SQL Server process. SQL Server has a default cache value that Microsoft

prefers not to publish so that they can change it.

258 Microsoft SQL Server 2012 T-SQL Fundamentals

In addition to the type, you can change any of the other options with an ALTER SEQUENCE com-

mand (MINVAL <val>, MAXVAL <val>, RESTART WITH <val>, INCREMENT BY <val>, CYCLE | NO CYCLE,

or CACHE <val> | NO CACHE). For example, suppose you wanted to prevent the dbo.SeqOrderIDs

from cycling. You would change the current sequence deinition with the following ALTER SEQUENCE

command.

ALTER SEQUENCE dbo.SeqOrderIDs

 NO CYCLE;

To generate a new sequence value, you need to invoke the function NEXT VALUE FOR <sequence

name>. It might seem strange that the aforementioned expression is a function, but nevertheless, it is.

You can just call it in a SELECT statement, like this.

SELECT NEXT VALUE FOR dbo.SeqOrderIDs;

This code generates the following output.

1

Notice that unlike with identity, you didn’t need to insert a row into a table in order to generate a

new value. Some applications need to generate the new value before using it. With sequences, you

can store the result of the function in a variable, and then use it wherever you like. To demonstrate

this, irst create a table called T1 with the following code.

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 keycol INT NOT NULL

 CONSTRAINT PK_T1 PRIMARY KEY,

 datacol VARCHAR(10) NOT NULL

);

The following code generates a new sequence value, stores it in a variable, and then uses the vari-

able in an INSERT statement to insert a row into the table.

DECLARE @neworderid AS INT = NEXT VALUE FOR dbo.SeqOrderIDs;

INSERT INTO dbo.T1(keycol, datacol) VALUES(@neworderid, 'a');

SELECT * FROM dbo.T1;

This code returns the following output.

keycol datacol

----------- ----------

2 a

If you need to use the new key in related rows that you need to insert into another table, you

could use the variable in those INSERT statements as well.

 CHAPTER 8 Data Modiication 259

If you don’t need to generate the new sequence value before using it, you can specify the NEXT

VALUE FOR function directly as part of your INSERT statement, like this.

INSERT INTO dbo.T1(keycol, datacol)

 VALUES(NEXT VALUE FOR dbo.SeqOrderIDs, 'b');

SELECT * FROM dbo.T1;

This code returns the following output.

keycol datacol

----------- ----------

2 a

3 b

Unlike with identity, you can generate new sequence values in an UPDATE statement, like this.

UPDATE dbo.T1

 SET keycol = NEXT VALUE FOR dbo.SeqOrderIDs;

SELECT * FROM dbo.T1;

This code returns the following output.

keycol datacol

----------- ----------

4 a

5 b

To get information about your sequences, query a view called sys.sequences. For example, to ind
the current sequence value in the SeqOrderIDs sequence, you would use the following code.

SELECT current_value

FROM sys.sequences

WHERE OBJECT_ID = OBJECT_ID('dbo.SeqOrderIDs');

This code generates the following output.

current_value

5

SQL Server extends its support for the sequence option with capabilities beyond what the com-

petitors and the standard currently support. One of the extensions enables you to control the order of

the assigned sequence values in a multi-row insert by using an OVER clause similar to the one window

functions use. Here’s an example.

INSERT INTO dbo.T1(keycol, datacol)

 SELECT

 NEXT VALUE FOR dbo.SeqOrderIDs OVER(ORDER BY hiredate),

 LEFT(firstname, 1) + LEFT(lastname, 1)

 FROM HR.Employees;

SELECT * FROM dbo.T1;

260 Microsoft SQL Server 2012 T-SQL Fundamentals

This code returns the following output.

keycol datacol

----------- ----------

4 a

5 b

6 JL

7 SD

8 DF

9 YP

10 SB

11 PS

12 RK

13 MC

14 ZD

Another extension allows the use of the NEXT VALUE FOR function in a default constraint. Here’s

an example.

ALTER TABLE dbo.T1

 ADD CONSTRAINT DFT_T1_keycol

 DEFAULT (NEXT VALUE FOR dbo.SeqOrderIDs)

 FOR keycol;

Now when you insert rows into the table, you don’t have to indicate a value for keycol.

INSERT INTO dbo.T1(datacol) VALUES('c');

SELECT * FROM dbo.T1;

This code returns the following output.

keycol datacol

----------- ----------

4 a

5 b

6 JL

7 SD

8 DF

9 YP

10 SB

11 PS

12 RK

13 MC

14 ZD

15 C

This is a great advantage over identity—you can add a default constraint to an existing table and

remove it from an existing table as well.

Finally, another extension allows you to allocate a whole range of sequence values at once by using

a stored procedure called sp_sequence_get_range. The idea is that if the application needs to assign a

range of sequence values, it is easiest to update the sequence only once, incrementing it by the size of

 CHAPTER 8 Data Modiication 261

the range. You call the procedure, indicate the size of the range you want, and collect the irst value in
the range, as well as other information, by using output parameters. Here’s an example of calling the

procedure and asking for a range of 1,000 sequence values.

DECLARE @first AS SQL_VARIANT;

EXEC sys.sp_sequence_get_range

 @sequence_name = N'dbo.SeqOrderIDs',

 @range_size = 1000,

 @range_first_value = @first OUTPUT ;

SELECT @first;

If you run the code twice, you will ind that the returned irst value in the second call is greater
than the irst by 1,000.

Note that like identity, the sequence object does not guarantee that you will have no gaps. If a new

sequence value was generated by a transaction that failed, the sequence change is not undone.

When you’re done, run the following code for cleanup.

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

IF OBJECT_ID('dbo.SeqOrderIDs', 'So') IS NOT NULL DROP SEQUENCE dbo.SeqOrderIDs;

Deleting Data

T-SQL provides two statements for deleting rows from a table—DELETE and TRUNCATE. In this sec-

tion, I’ll describe those statements. The examples I provide in this section are against copies of the

Customers and Orders tables from the Sales schema created in the dbo schema. Run the following

code to create and populate those tables.

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

IF OBJECT_ID('dbo.Customers', 'U') IS NOT NULL DROP TABLE dbo.Customers;

CREATE TABLE dbo.Customers

(

 custid INT NOT NULL,

 companyname NVARCHAR(40) NOT NULL,

 contactname NVARCHAR(30) NOT NULL,

 contacttitle NVARCHAR(30) NOT NULL,

 address NVARCHAR(60) NOT NULL,

 city NVARCHAR(15) NOT NULL,

 region NVARCHAR(15) NULL,

 postalcode NVARCHAR(10) NULL,

 country NVARCHAR(15) NOT NULL,

 phone NVARCHAR(24) NOT NULL,

 fax NVARCHAR(24) NULL,

 CONSTRAINT PK_Customers PRIMARY KEY(custid)

);

262 Microsoft SQL Server 2012 T-SQL Fundamentals

CREATE TABLE dbo.Orders

(

 orderid INT NOT NULL,

 custid INT NULL,

 empid INT NOT NULL,

 orderdate DATETIME NOT NULL,

 requireddate DATETIME NOT NULL,

 shippeddate DATETIME NULL,

 shipperid INT NOT NULL,

 freight MONEY NOT NULL

 CONSTRAINT DFT_Orders_freight DEFAULT(0),

 shipname NVARCHAR(40) NOT NULL,

 shipaddress NVARCHAR(60) NOT NULL,

 shipcity NVARCHAR(15) NOT NULL,

 shipregion NVARCHAR(15) NULL,

 shippostalcode NVARCHAR(10) NULL,

 shipcountry NVARCHAR(15) NOT NULL,

 CONSTRAINT PK_Orders PRIMARY KEY(orderid),

 CONSTRAINT FK_Orders_Customers FOREIGN KEY(custid)

 REFERENCES dbo.Customers(custid)

);

GO

INSERT INTO dbo.Customers SELECT * FROM Sales.Customers;

INSERT INTO dbo.Orders SELECT * FROM Sales.Orders;

The DELETE Statement
The DELETE statement is a standard statement used to delete data from a table based on a predicate.

The standard statement has only two clauses—the FROM clause, in which you specify the target table

name, and a WHERE clause, in which you specify a predicate. Only the subset of rows for which the

predicate evaluates to TRUE will be deleted.

For example, the following statement deletes, from the dbo.Orders table, all orders that were

placed prior to 2007.

DELETE FROM dbo.Orders

WHERE orderdate < '20070101';

Run this statement. SQL Server will report that it deleted 152 rows.

(152 row(s) affected)

Note that the message indicating the number of rows that were affected appears only if the

 NOCOUNT session option is OFF, which it is by default. If it is ON, SQL Server Management Studio

will only state that the command completed successfully.

The DELETE statement is fully logged. Therefore, you should expect it to run for a while when you

delete a large number of rows.

 CHAPTER 8 Data Modiication 263

The TRUNCATE Statement
The TRUNCATE statement deletes all rows from a table. Unlike the DELETE statement, TRUNCATE has

no ilter. For example, to delete all rows from a table called dbo.T1, you run the following code.

TRUNCATE TABLE dbo.T1;

The advantage that TRUNCATE has over DELETE is that the former is minimally logged, whereas

the latter is fully logged, resulting in signiicant performance differences. For example, if you use the
TRUNCATE statement to delete all rows from a table with millions of rows, the operation will inish in
a matter of seconds. If you use the DELETE statement, the operation can take minutes or even hours.

Note that I said that TRUNCATE is minimally logged, as opposed to not being logged at all. This

means that it’s fully transactional (despite the common misconception), and in case of a ROLLBACK,

SQL Server can undo the truncation.

TRUNCATE and DELETE also have a functional difference when the table has an identity column.

TRUNCATE resets the identity value back to the original seed, but DELETE doesn’t.

The TRUNCATE statement is not allowed when the target table is referenced by a foreign key con-

straint, even if the referencing table is empty and even if the foreign key is disabled. The only way to

allow a TRUNCATE statement is to drop all foreign keys referencing the table.

Accidents such as truncating or dropping the incorrect table can happen. For example, let’s say

you have connections open against both the production and the development environments, and

you submit your code in the wrong connection. Both the TRUNCATE and DROP statements are so

fast that before you realize your mistake, the transaction is committed. To prevent such accidents,

you can protect a production table by simply creating a dummy table with a foreign key pointing to

the production table. You can even disable the foreign key so that it won’t have any impact on per-

formance. As I mentioned earlier, even when disabled, this foreign key prevents you from truncating

or dropping the referenced table.

DELETE Based on a Join
T-SQL supports a nonstandard DELETE syntax based on joins. The join itself serves a iltering purpose
because it has a ilter based on a predicate (the ON clause). The join also gives you access to attri-

butes of related rows from another table that you can refer to in the WHERE clause. This means that

you can delete rows from one table based on a ilter against attributes in related rows from another
table.

For example, the following statement deletes orders placed by customers from the United States.

DELETE FROM O

FROM dbo.Orders AS O

 JOIN dbo.Customers AS C

 ON O.custid = C.custid

WHERE C.country = N'USA';

264 Microsoft SQL Server 2012 T-SQL Fundamentals

Very much like in a SELECT statement, the irst clause that is logically processed in a DELETE state-

ment is the FROM clause (the second one that appears in this statement). Then the WHERE clause is

processed, and inally the DELETE clause. The way to “read” or interpret this query is, “The query joins
the Orders table (aliased as O) with the Customers table (aliased as C) based on a match between

the order’s customer ID and the customer’s customer ID. The query then ilters only orders placed
by customers from the United States. Finally, the query deletes all qualifying rows from O (the alias

representing the Orders table).”

The two FROM clauses in a DELETE statement based on a join might be confusing. But when you

develop the code, develop it as if it were a SELECT statement with a join. That is, start with the FROM

clause with the joins, move on to the WHERE clause, and inally, instead of specifying a SELECT clause,

specify a DELETE clause with the alias of the side of the join that is supposed to be the target for the

deletion.

As I mentioned earlier, a DELETE statement based on a join is nonstandard. If you want to stick to

standard code, you can use subqueries instead of joins. For example, the following DELETE statement

uses a subquery to achieve the same task.

DELETE FROM dbo.Orders

WHERE EXISTS

 (SELECT *

 FROM dbo.Customers AS C

 WHERE Orders.Custid = C.Custid

 AND C.Country = 'USA');

This code deletes all rows from the Orders table for which a related customer in the Customers

table from the United States exists.

SQL Server will most likely process the two queries the same way; therefore, you shouldn’t expect

any performance difference between the two. So why do people even consider using the nonstan-

dard syntax? Some people feel more comfortable with joins, whereas others feel more comfortable

with subqueries. I usually recommend sticking to the standard as much as possible unless you have a

very compelling reason to do otherwise—for example, in the case of a big performance difference.

When you’re done, run the following code for cleanup.

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

IF OBJECT_ID('dbo.Customers', 'U') IS NOT NULL DROP TABLE dbo.Customers;

updating Data

T-SQL supports a standard UPDATE statement that allows you to update rows in a table. T-SQL also

supports nonstandard uses of the UPDATE statement with joins and with variables. This section de-

scribes the various uses of the UPDATE statement.

 CHAPTER 8 Data Modiication 265

The examples I provide in this section are against copies of the Orders and OrderDetails tables

from the Sales schema created in the dbo schema. Run the following code to create and populate

those tables.

IF OBJECT_ID('dbo.OrderDetails', 'U') IS NOT NULL DROP TABLE dbo.OrderDetails;

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

CREATE TABLE dbo.Orders

(

 orderid INT NOT NULL,

 custid INT NULL,

 empid INT NOT NULL,

 orderdate DATETIME NOT NULL,

 requireddate DATETIME NOT NULL,

 shippeddate DATETIME NULL,

 shipperid INT NOT NULL,

 freight MONEY NOT NULL

 CONSTRAINT DFT_Orders_freight DEFAULT(0),

 shipname NVARCHAR(40) NOT NULL,

 shipaddress NVARCHAR(60) NOT NULL,

 shipcity NVARCHAR(15) NOT NULL,

 shipregion NVARCHAR(15) NULL,

 shippostalcode NVARCHAR(10) NULL,

 shipcountry NVARCHAR(15) NOT NULL,

 CONSTRAINT PK_Orders PRIMARY KEY(orderid)

);

CREATE TABLE dbo.OrderDetails

(

 orderid INT NOT NULL,

 productid INT NOT NULL,

 unitprice MONEY NOT NULL

 CONSTRAINT DFT_OrderDetails_unitprice DEFAULT(0),

 qty SMALLINT NOT NULL

 CONSTRAINT DFT_OrderDetails_qty DEFAULT(1),

 discount NUMERIC(4, 3) NOT NULL

 CONSTRAINT DFT_OrderDetails_discount DEFAULT(0),

 CONSTRAINT PK_OrderDetails PRIMARY KEY(orderid, productid),

 CONSTRAINT FK_OrderDetails_Orders FOREIGN KEY(orderid)

 REFERENCES dbo.Orders(orderid),

 CONSTRAINT CHK_discount CHECK (discount BETWEEN 0 AND 1),

 CONSTRAINT CHK_qty CHECK (qty > 0),

 CONSTRAINT CHK_unitprice CHECK (unitprice >= 0)

);

GO

INSERT INTO dbo.Orders SELECT * FROM Sales.Orders;

INSERT INTO dbo.OrderDetails SELECT * FROM Sales.OrderDetails;

The UPDATE Statement
The UPDATE statement is a standard statement that allows you to update a subset of rows in a table.

To identify the subset of rows that are the target of the update, you specify a predicate in a WHERE

clause. You specify the assignment of values or expressions to columns in a SET clause, separated by

commas.

266 Microsoft SQL Server 2012 T-SQL Fundamentals

For example, the following UPDATE statement increases the discount of all order details for prod-

uct 51 by 5 percent.

UPDATE dbo.OrderDetails

 SET discount = discount + 0.05

WHERE productid = 51;

Of course, you can run a SELECT statement with the same ilter before and after the update to
see the changes. Later in this chapter, I’ll show you another way to see the changes, by using a clause

called OUTPUT that you can add to modiication statements.

SQL Server 2008 and SQL Server 2012 support compound assignment operators: += (plus equal),

–= (minus equal), *= (multiplication equal), /= (division equal), and %= (modulo equal), allowing you

to shorten assignment expressions such as the one in the preceding query. Instead of the expression

discount = discount + 0.05, you can use the shorter form: discount += 0.05. The full UPDATE statement

looks like this.

UPDATE dbo.OrderDetails

 SET discount += 0.05

WHERE productid = 51;

All-at-once operations are an important aspect of SQL that you should keep in mind when writing

UPDATE statements. I explained the concept in Chapter 2, “Single-Table Queries,” in the context of
SELECT statements, but it’s just as applicable with UPDATE statements. Remember the concept that

says that all expressions in the same logical phase are evaluated logically at the same point in time. To

understand the relevance of this concept, consider the following UPDATE statement.

UPDATE dbo.T1

 SET col1 = col1 + 10, col2 = col1 + 10;

Suppose that one row in the table has the values 100 in col1 and 200 in col2 prior to the update.

Can you determine the values of those columns after the update?

If you do not consider the all-at-once concept, you would think that col1 will be set to 110 and col2

to 120, as if the assignments were performed from left to right. However, the assignments take place

all at once, meaning that both assignments use the same value of col1—the value before the update.

The result of this update is that both col1 and col2 will end up with the value 110.

With the concept of all-at-once in mind, can you igure out how to write an UPDATE statement

that swaps the values in the columns col1 and col2? In most programming languages where expres-

sions and assignments are evaluated in some order (typically left to right), you need a temporary vari-

able. However, because in SQL all assignments take place as if at the same point in time, the solution

is very simple.

UPDATE dbo.T1

 SET col1 = col2, col2 = col1;

In both assignments, the source column values used are those prior to the update, so you don’t

need a temporary variable.

 CHAPTER 8 Data Modiication 267

UPDATE Based on a Join
Similar to the DELETE statement, the UPDATE statement is also supported by T-SQL in a nonstandard

syntax for statements based on joins. As with DELETE statements, the join serves a iltering purpose.

The syntax is very similar to a SELECT statement based on a join; that is, the FROM and WHERE

clauses are the same, but instead of the SELECT clause, you specify an UPDATE clause. The UPDATE

keyword is followed by the alias of the table that is the target of the update (you can’t update more

than one table in the same statement), followed by the SET clause with the column assignments.

For example, the UPDATE statement in Listing 8-1 increases the discount of all order details of

orders placed by customer 1 by 5 percent.

LISTING 8-1 UPDATE Based on a Join

UPDATE OD

 SET discount += 0.05

FROM dbo.OrderDetails AS OD

 JOIN dbo.Orders AS O

 ON OD.orderid = O.orderid

WHERE O.custid = 1;

To “read” or interpret the query, start with the FROM clause, move on to the WHERE clause, and

inally go to the UPDATE clause. The query joins the OrderDetails table (aliased as OD) with the Orders

table (aliased as O) based on a match between the order detail’s order ID and the order’s order ID.

The query then ilters only the rows where the order’s customer ID is 1. The query then speciies in the
UPDATE clause that OD (the alias of the OrderDetails table) is the target of the update, and increases

the discount by 5 percent.

If you want to achieve the same task by using standard code, you would need to use a subquery

instead of a join, like this.

UPDATE dbo.OrderDetails

 SET discount += 0.05

WHERE EXISTS

 (SELECT * FROM dbo.Orders AS O

 WHERE O.orderid = OrderDetails.orderid

 AND O.custid = 1);

The query’s WHERE clause ilters only order details in which a related order is placed by cus-
tomer 1. With this particular task, SQL Server will most likely interpret both versions the same way;

therefore, you shouldn’t expect performance differences between the two. Again, the version you

feel more comfortable with probably depends on whether you feel more comfortable with joins or

subqueries. But as I mentioned earlier in regard to the DELETE statement, I recommend sticking to

standard code unless you have a compelling reason to do otherwise. With the current task, I do not

see a compelling reason.

268 Microsoft SQL Server 2012 T-SQL Fundamentals

However, in some cases, the join version will have a performance advantage over the subquery

version. In addition to iltering, the join also gives you access to attributes from other tables that you
can use in the column assignments in the SET clause. The same access to the other table can allow you

to both ilter and obtain attribute values from the other table for the assignments. However, with the
subquery approach, each subquery involves a separate access to the other table—that’s at least the

way subqueries are processed today by SQL Server’s engine.

For example, consider the following nonstandard UPDATE statement based on a join.

UPDATE T1

 SET col1 = T2.col1,

 col2 = T2.col2,

 col3 = T2.col3

FROM dbo.T1 JOIN dbo.T2

 ON T2.keycol = T1.keycol

WHERE T2.col4 = 'ABC';

This statement joins the tables T1 and T2 based on a match between T1.keycol and T2.keycol. The

WHERE clause ilters only rows where T2.col4 is equal to ‘ABC’. The UPDATE statement marks the T1

table as the target for the UPDATE, and the SET clause sets the values of the columns col1, col2, and

col3 in T1 to the values of the corresponding columns from T2.

An attempt to express this task by using standard code with subqueries yields the following

lengthy query.

UPDATE dbo.T1

 SET col1 = (SELECT col1

 FROM dbo.T2

 WHERE T2.keycol = T1.keycol),

 col2 = (SELECT col2

 FROM dbo.T2

 WHERE T2.keycol = T1.keycol),

 col3 = (SELECT col3

 FROM dbo.T2

 WHERE T2.keycol = T1.keycol)

WHERE EXISTS

 (SELECT *

 FROM dbo.T2

 WHERE T2.keycol = T1.keycol

 AND T2.col4 = 'ABC');

Not only is this version convoluted (unlike the join version), but each subquery also involves sepa-

rate access to table T2. So this version is less eficient than the join version.

Standard SQL has support for row constructors (also known as vector expressions) that were only

implemented partially as of SQL Server 2012. Many aspects of row constructors have not yet been

implemented in SQL Server, including the ability to use them in the SET clause of an UPDATE state-

ment like this.

 CHAPTER 8 Data Modiication 269

UPDATE dbo.T1

 SET (col1, col2, col3) =

 (SELECT col1, col2, col3

 FROM dbo.T2

 WHERE T2.keycol = T1.keycol)

WHERE EXISTS

 (SELECT *

 FROM dbo.T2

 WHERE T2.keycol = T1.keycol

 AND T2.col4 = 'ABC');

But as you can see, this version would still be more complicated than the join version, because

it requires separate subqueries for the iltering part and for obtaining the attributes from the other
table for the assignments.

assignment UPDATE
T-SQL supports a proprietary UPDATE syntax that both updates data in a table and assigns values to

variables at the same time. This syntax saves you the need to use separate UPDATE and SELECT state-

ments to achieve the same task.

One of the common cases for which you can use this syntax is in maintaining a custom

sequence/autonumbering mechanism when the identity column property and the sequence object

don’t work for you. One example where this might be the case is if you need a sequencing mechanism

that guar antees no gaps. The idea is to keep the last-used value in a table, and to use this special UP-

DATE syntax to increment the value in the table and assign the new value to a variable.

Run the following code to irst create the Sequence table with the column val, and then populate it

with a single row with the value 0—one less than the irst value that you want to use.

 IF OBJECT_ID('dbo.Sequences', 'U') IS NOT NULL DROP TABLE dbo.Sequences;

CREATE TABLE dbo.Sequences

(

 id VARCHAR(10) NOT NULL

 CONSTRAINT PK_Sequences PRIMARY KEY(id),

 val INT NOT NULL

);

INSERT INTO dbo.Sequences VALUES('SEQ1', 0);

Now, whenever you need to obtain a new sequence value, use the following code.

DECLARE @nextval AS INT;

UPDATE dbo.Sequences

 SET @nextval = val += 1

WHERE id = 'SEQ1';

SELECT @nextval;

270 Microsoft SQL Server 2012 T-SQL Fundamentals

The code declares a local variable called @nextval. Then it uses the special UPDATE syntax to incre-

ment the column value by 1, assigns the updated column value to the variable, and presents the value

in the variable. The assignments in the SET clause take place from right to left. That is, irst val is set to

val + 1, then the result (val + 1) is set to the variable @nextval.

The specialized UPDATE syntax is run as an atomic operation, and it is more eficient than using
separate UPDATE and SELECT statements because it accesses the data only once.

When you’re done, run the following code for cleanup.

IF OBJECT_ID('dbo.Sequences', 'U') IS NOT NULL DROP TABLE dbo.Sequences;

Merging Data

SQL Server 2008 and SQL Server 2012 support a statement called MERGE that allows you to modify

data, applying different actions (INSERT, UPDATE, and DELETE) based on conditional logic. The

MERGE statement is part of the SQL standard, although the T-SQL version adds a few nonstandard

extensions to the statement.

A task achieved by a single MERGE statement will typically translate to a combination of several

other DML statements (INSERT, UPDATE, and DELETE) without MERGE. The beneit of using MERGE

over the alternatives is that it allows you to express the request with less code and run it more ef-

iciently because it requires fewer accesses to the tables involved.

To demonstrate the MERGE statement, I’ll use tables called dbo.Customers and dbo.Customers-

Stage. Run the code in Listing 8-2 to create those tables and populate them with sample data.

LISTING 8-2 Code That Creates and Populates Customers and CustomersStage

IF OBJECT_ID('dbo.Customers', 'U') IS NOT NULL DROP TABLE dbo.Customers;

GO

CREATE TABLE dbo.Customers

(

 custid INT NOT NULL,

 companyname VARCHAR(25) NOT NULL,

 phone VARCHAR(20) NOT NULL,

 address VARCHAR(50) NOT NULL,

 CONSTRAINT PK_Customers PRIMARY KEY(custid)

);

 CHAPTER 8 Data Modiication 271

INSERT INTO dbo.Customers(custid, companyname, phone, address)

VALUES

 (1, 'cust 1', '(111) 111-1111', 'address 1'),

 (2, 'cust 2', '(222) 222-2222', 'address 2'),

 (3, 'cust 3', '(333) 333-3333', 'address 3'),

 (4, 'cust 4', '(444) 444-4444', 'address 4'),

 (5, 'cust 5', '(555) 555-5555', 'address 5');

IF OBJECT_ID('dbo.CustomersStage', 'U') IS NOT NULL DROP TABLE dbo.

CustomersStage;

GO

CREATE TABLE dbo.CustomersStage

(

 custid INT NOT NULL,

 companyname VARCHAR(25) NOT NULL,

 phone VARCHAR(20) NOT NULL,

 address VARCHAR(50) NOT NULL,

 CONSTRAINT PK_CustomersStage PRIMARY KEY(custid)

);

INSERT INTO dbo.CustomersStage(custid, companyname, phone, address)

VALUES

 (2, 'AAAAA', '(222) 222-2222', 'address 2'),

 (3, 'cust 3', '(333) 333-3333', 'address 3'),

 (5, 'BBBBB', 'CCCCC', 'DDDDD'),

 (6, 'cust 6 (new)', '(666) 666-6666', 'address 6'),

 (7, 'cust 7 (new)', '(777) 777-7777', 'address 7');

Run the following query to examine the contents of the Customers table.

SELECT * FROM dbo.Customers;

This query returns the following output.

custid companyname phone address

----------- ---------------- -------------------- ------------

1 cust 1 (111) 111-1111 address 1

2 cust 2 (222) 222-2222 address 2

3 cust 3 (333) 333-3333 address 3

4 cust 4 (444) 444-4444 address 4

5 cust 5 (555) 555-5555 address 5

Run the following query to examine the contents of the CustomersStage table.

SELECT * FROM dbo.CustomersStage;

272 Microsoft SQL Server 2012 T-SQL Fundamentals

This query returns the following output.

custid companyname phone address

----------- ---------------- -------------------- ------------

2 AAAAA (222) 222-2222 address 2

3 cust 3 (333) 333-3333 address 3

5 BBBBB CCCCC DDDDD

6 cust 6 (new) (666) 666-6666 address 6

7 cust 7 (new) (777) 777-7777 address 7

The purpose of the irst example of the MERGE statement that I’ll demonstrate is to merge the

contents of the CustomersStage table (the source) into the Customers table (the target). More specii-

cally, the example will add customers that do not exist, and update the attributes of customers that

already exist.

If you already feel comfortable with the sections that covered deletions and updates based on

joins, you should feel quite comfortable with MERGE, which is based on join semantics. You specify

the target table name in the MERGE clause and the source table name in the USING clause. You de-

ine a merge condition by specifying a predicate in the ON clause, very much as you do in a join. The

merge condition deines which rows in the source table have matches in the target and which don’t.
You deine the action to take when a match is found in a clause called WHEN MATCHED THEN, and

the action to take when a match is not found in the WHEN NOT MATCHED THEN clause.

Here’s the irst example for the MERGE statement: adding nonexistent customers and updating

existing ones.

MERGE INTO dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

 ON TGT.custid = SRC.custid

WHEN MATCHED THEN

 UPDATE SET

 TGT.companyname = SRC.companyname,

 TGT.phone = SRC.phone,

 TGT.address = SRC.address

WHEN NOT MATCHED THEN

 INSERT (custid, companyname, phone, address)

 VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address);

note It is mandatory to terminate the MERGE statement with a semicolon, whereas in most

other statements in T-SQL, this is optional. But if you follow best practices to terminate all

statements with a semicolon (as I mentioned earlier in this book), this shouldn’t concern you.

This MERGE statement deines the Customers table as the target (in the MERGE clause) and the

CustomersStage table as the source (in the USING clause). Notice that you can assign aliases to the

target and source tables for brevity (TGT and SRC in this case). The predicate TGT.custid = SRC.custid

is used to deine what is considered a match and what is considered a nonmatch. In this case, if a
customer ID that exists in the source also exists in the target, that’s a match. If a customer ID in the

source does not exist in the target, that’s a nonmatch.

 CHAPTER 8 Data Modiication 273

The MERGE statement deines an UPDATE action when a match is found, setting the target

companyname, phone, and address values to those of the corresponding row from the source.

Notice that the syntax of the UPDATE action is similar to a normal UPDATE statement, except that

you don’t need to provide the name of the table that is the target of the update because it was

already deined in the MERGE clause.

The MERGE statement deines an INSERT action when a match is not found, inserting the row from

the source to the target. Again, the syntax of the INSERT action is similar to a normal INSERT state-

ment, except that you don’t need to provide the name of the table that is the target of the activity

because it was already deined in the MERGE clause.

The MERGE statement reports that ive rows were modiied.

(5 row(s) affected)

This includes three rows that were updated (customers 2, 3, and 5) and two that were inserted

(customers 6 and 7). Query the Customers table to get the new contents.

SELECT * FROM dbo.Customers;

This query returns the following output.

custid companyname phone address

----------- ------------------- -------------------- ----------

1 cust 1 (111) 111-1111 address 1

2 AAAAA (222) 222-2222 address 2

3 cust 3 (333) 333-3333 address 3

4 cust 4 (444) 444-4444 address 4

5 BBBBB CCCCC DDDDD

6 cust 6 (new) (666) 666-6666 address 6

7 cust 7 (new) (777) 777-7777 address 7

The WHEN MATCHED clause deines what action to take when a source row is matched by a target
row. The WHEN NOT MATCHED clause deines what action to take when a source row is not matched
by a target row. T-SQL also supports a third clause that deines what action to take when a target row
is not matched by a source row; this clause is called WHEN NOT MATCHED BY SOURCE. For example,

suppose that you want to add logic to the MERGE example to delete rows from the target when the

target row is not matched by a source row. All you need to do is add the WHEN NOT MATCHED BY

SOURCE clause with a DELETE action, like this.

MERGE dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

 ON TGT.custid = SRC.custid

WHEN MATCHED THEN

 UPDATE SET

 TGT.companyname = SRC.companyname,

 TGT.phone = SRC.phone,

 TGT.address = SRC.address

WHEN NOT MATCHED THEN

 INSERT (custid, companyname, phone, address)

 VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address)

WHEN NOT MATCHED BY SOURCE THEN

 DELETE;

274 Microsoft SQL Server 2012 T-SQL Fundamentals

Query the Customers table to see the result of this MERGE statement.

SELECT * FROM dbo.Customers;

This query returns the following output, showing that customers 1 and 4 were deleted.

custid companyname phone address

----------- ------------------- -------------------- ----------

2 AAAAA (222) 222-2222 address 2

3 cust 3 (333) 333-3333 address 3

5 BBBBB CCCCC DDDDD

6 cust 6 (new) (666) 666-6666 address 6

7 cust 7 (new) (777) 777-7777 address 7

Going back to the irst MERGE example, which updates existing customers and adds nonexistent

ones, you can see that it is not written in the most eficient way. The statement doesn’t check whether
column values have actually changed before overwriting the attributes of an existing customer. This

means that a customer row is modiied even when the source and target rows are identical. You can
address this by adding predicates to the different action clauses by using the AND option; except

for the original condition, action will take place only if the additional predicate evaluates to TRUE. In

this case, you need to add a predicate under the WHEN MATCHED AND clause that checks whether

at least one of the attributes changed to justify the UPDATE action. The complete MERGE statement

looks like this.

MERGE dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

 ON TGT.custid = SRC.custid

WHEN MATCHED AND

 (TGT.companyname <> SRC.companyname

 OR TGT.phone <> SRC.phone

 OR TGT.address <> SRC.address) THEN

 UPDATE SET

 TGT.companyname = SRC.companyname,

 TGT.phone = SRC.phone,

 TGT.address = SRC.address

WHEN NOT MATCHED THEN

 INSERT (custid, companyname, phone, address)

 VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address);

As you can see, the MERGE statement is very powerful, allowing you to express modiication logic
with less code and more eficiently than the alternatives.

Modifying Data Through Table Expressions

SQL Server doesn’t limit the actions against table expressions (derived tables, common table expres-

sions [CTEs], views, and inline table-valued user-deined functions [UDFs]) to SELECT only, but also

allows other DML statements (INSERT, UPDATE, DELETE, and MERGE) against those expressions. Think

about it: a table expression doesn’t really contain data—it’s a relection of underlying data in base
tables. With this in mind, think of a modiication against a table expression as modifying the data in

 CHAPTER 8 Data Modiication 275

the underlying tables through the table expression. Just as with a SELECT statement against a table

expression, and also with a data modiication statement, the deinition of the table expression is ex-

panded, so in practice the activity is done against the underlying tables.

Modifying data through table expressions has a few logical restrictions. For example:

 ■ If the query deining the table expression joins tables, you’re only allowed to affect one of the
sides of the join and not both in the same modiication statement.

 ■ You cannot update a column that is a result of a calculation; SQL Server doesn’t try to reverse-

engineer the values.

 ■ INSERT statements must specify values for any columns in the underlying table that do not

have implicit values. A column can get a value implicitly if it allows NULL marks, has a default

value, has an identity property, or is typed as ROWVERSION.

You can ind other requirements in SQL Server Books Online, but as you can see, the requirements
make sense.

Now that you know that you can modify data through table expressions, the question is, why

would you want to? One reason is for better debugging and troubleshooting. For example, Listing 8-1

contained the following UPDATE statement.

UPDATE OD

 SET discount += 0.05

FROM dbo.OrderDetails AS OD

 JOIN dbo.Orders AS O

 ON OD.orderid = O.orderid

WHERE O.custid = 1;

Suppose that for troubleshooting purposes, you irst want to see which rows would be modiied by
this statement without actually modifying them. One option is to revise the code to a SELECT state-

ment, and after troubleshooting the code, change it back to an UPDATE statement. But instead of

making such revisions back and forth between SELECT and UPDATE statements, you can simply use

a table expression. That is, you can deine a table expression based on a SELECT statement with the

join query, and issue an UPDATE statement against the table expression. The following example uses

a CTE.

WITH C AS

(

 SELECT custid, OD.orderid,

 productid, discount, discount + 0.05 AS newdiscount

 FROM dbo.OrderDetails AS OD

 JOIN dbo.Orders AS O

 ON OD.orderid = O.orderid

 WHERE O.custid = 1

)

UPDATE C

 SET discount = newdiscount;

276 Microsoft SQL Server 2012 T-SQL Fundamentals

And here’s an example using a derived table.

UPDATE D

 SET discount = newdiscount

FROM (SELECT custid, OD.orderid,

 productid, discount, discount + 0.05 AS newdiscount

 FROM dbo.OrderDetails AS OD

 JOIN dbo.Orders AS O

 ON OD.orderid = O.orderid

 WHERE O.custid = 1) AS D;

With the table expression, troubleshooting is simpler because you can always highlight just the

SELECT statement that deines the table expression and run it without making any data changes. With
this example, the use of table expressions is for convenience. However, with some problems, using a

table expression is the only option. To demonstrate such a problem, I’ll use a table called T1 that you

create and populate by running the following code.

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1(col1 INT, col2 INT);

GO

INSERT INTO dbo.T1(col1) VALUES(10),(20),(30);

SELECT * FROM dbo.T1;

The SELECT statement returns the following output showing the current contents of the table T1.

col1 col2

----------- -----------

10 NULL

20 NULL

30 NULL

Suppose that you want to update the table, setting col2 to the result of an expression with the

ROW_NUMBER function. The problem is that the ROW_NUMBER function is not allowed in the SET

clause of an UPDATE statement. Try running the following code.

UPDATE dbo.T1

 SET col2 = ROW_NUMBER() OVER(ORDER BY col1);

You get the following error.

Msg 4108, Level 15, State 1, Line 2

Windowed functions can only appear in the SELECT or ORDER BY clauses.

 CHAPTER 8 Data Modiication 277

To get around this problem, deine a table expression that returns both the column that you need
to update (col2) and a result column based on an expression with the ROW_NUMBER function (call it

rownum). The outer statement against the table expression would then be an UPDATE statement set-

ting col2 to rownum. Here’s how the code would look if you were using a CTE.

WITH C AS

(

 SELECT col1, col2, ROW_NUMBER() OVER(ORDER BY col1) AS rownum

 FROM dbo.T1

)

UPDATE C

 SET col2 = rownum;

Query the table to see the result of the update.

SELECT * FROM dbo.T1;

You get the following output.

col1 col2

----------- -----------

10 1

20 2

30 3

Modiications with TOP and OFFSET-FETCH

SQL Server supports using the TOP option directly in INSERT, UPDATE, DELETE, and MERGE state-

ments. When you use the TOP option, SQL Server stops processing the modiication statement as
soon as the speciied number or percentage of rows are processed. Unfortunately, unlike with the
SELECT statement, you cannot specify an ORDER BY clause for the TOP option with modiication
statements. Essentially, whichever rows SQL Server happens to access irst will be the rows affected
by the modiication.

An example for a typical usage scenario for modiications with TOP is when you have a large modi-

ication, such as a large deletion operation, and you want to split it into multiple smaller chunks.

The new alternative to TOP, OFFSET-FETCH, is considered to be part of the ORDER BY clause in

T-SQL. Because modiication statements do not support an ORDER BY clause, they do not support the

OFFSET-FETCH option either—at least not directly.

278 Microsoft SQL Server 2012 T-SQL Fundamentals

I’ll demonstrate modiications with TOP by using a table called dbo.Orders that you create and

populate by running the following code.

IF OBJECT_ID('dbo.OrderDetails', 'U') IS NOT NULL DROP TABLE dbo.OrderDetails;

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

CREATE TABLE dbo.Orders

(

 orderid INT NOT NULL,

 custid INT NULL,

 empid INT NOT NULL,

 orderdate DATETIME NOT NULL,

 requireddate DATETIME NOT NULL,

 shippeddate DATETIME NULL,

 shipperid INT NOT NULL,

 freight MONEY NOT NULL

 CONSTRAINT DFT_Orders_freight DEFAULT(0),

 shipname NVARCHAR(40) NOT NULL,

 shipaddress NVARCHAR(60) NOT NULL,

 shipcity NVARCHAR(15) NOT NULL,

 shipregion NVARCHAR(15) NULL,

 shippostalcode NVARCHAR(10) NULL,

 shipcountry NVARCHAR(15) NOT NULL,

 CONSTRAINT PK_Orders PRIMARY KEY(orderid)

);

GO

INSERT INTO dbo.Orders SELECT * FROM Sales.Orders;

The following example demonstrates the use of a DELETE statement with the TOP option to delete

50 rows from the Orders table.

DELETE TOP(50) FROM dbo.Orders;

Because you are not allowed to specify a logical ORDER BY for the TOP option in a modiication
statement, this query is problematic in the sense that you can’t control which 50 rows will be deleted.

They will be the irst 50 rows from the table that SQL Server happens to access irst. This problem
demonstrates the limitations of using TOP for modiications.

Similarly, you can use the TOP option with UPDATE and INSERT statements, but again, an ORDER

BY is not allowed. As an example of an UPDATE statement with TOP, the following code updates 50

rows from the Orders table, increasing their freight values by 10.

UPDATE TOP(50) dbo.Orders

 SET freight += 10.00;

Again, you cannot control which 50 rows will be updated; they are the irst 50 rows that SQL Server
happens to access irst.

In practice, of course, you would usually care which rows are affected and you wouldn’t want them

to be chosen arbitrarily. To get around this problem, you can rely on the fact that you can modify

data through table expressions. You can deine a table expression based on a SELECT query with the

 CHAPTER 8 Data Modiication 279

TOP option based on a logical ORDER BY clause that deines precedence among rows. You can then
issue the modiication statement against the table expression.

For example, the following code deletes the 50 orders with the lowest order ID values rather than

just any 50 rows.

WITH C AS

(

 SELECT TOP(50) *

 FROM dbo.Orders

 ORDER BY orderid

)

DELETE FROM C;

Similarly, the following code updates the 50 orders with the highest order ID values, increasing

their freight values by 10.

WITH C AS

(

 SELECT TOP(50) *

 FROM dbo.Orders

 ORDER BY orderid DESC

)

UPDATE C

 SET freight += 10.00;

In SQL Server 2012, you can use the OFFSET-FETCH option instead of TOP in the inner SELECT

queries. Here’s the revised DELETE example.

WITH C AS

(

 SELECT *

 FROM dbo.Orders

 ORDER BY orderid

 OFFSET 0 ROWS FETCH FIRST 50 ROWS ONLY

)

DELETE FROM C;

And here’s the revised UPDATE example.

WITH C AS

(

 SELECT *

 FROM dbo.Orders

 ORDER BY orderid DESC

 OFFSET 0 ROWS FETCH FIRST 50 ROWS ONLY

)

UPDATE C

 SET freight += 10.00;

280 Microsoft SQL Server 2012 T-SQL Fundamentals

The OUTPUT Clause

Normally, you would not expect a modiication statement to do more than modify data. That is, you
would not expect a modiication statement to return any output. However, in some scenarios, being
able to get data back from the modiied rows can be useful. For example, think about the advantages
of requesting an UPDATE statement to not only modify data, but to also return the old and new val-

ues of the updated columns. This can be useful for troubleshooting, auditing, and other purposes.

SQL Server supports this capability via a clause called OUTPUT that you add to the modiication
statement. In this OUTPUT clause, you specify the attributes and expressions that you want to return

from the modiied rows.

You can think of the OUTPUT clause in terms very similar to those you use to think about the SELECT

clause. That is, you list the attributes and expressions based on existing attributes that you want to

return. What’s special in terms of the OUTPUT clause syntax is that you need to preix the attribute
names with either the inserted or the deleted keyword. In an INSERT statement, you refer to inserted;

in a DELETE statement, you refer to deleted; and in an UPDATE statement, you refer to deleted when

you’re after the image of the row before the change and inserted when you’re after the image of the

row after the change.

The OUTPUT clause will return the requested attributes from the modiied rows as a result set, very
much like a SELECT statement does. If you want to direct the result set to a table, add an INTO clause

with the target table name. If you want to return modiied rows back to the caller and also direct a
copy to a table, specify two OUTPUT clauses—one with the INTO clause and one without it.

The following sections provide examples of using the OUTPUT clause with the different modiica-

tion statements.

INSERT with OUTPUT
An example of an INSERT statement for which the OUTPUT clause can be useful is when you need to

insert a row set into a table with an identity column, and you need to get back all identity values that

were generated. The SCOPE_IDENTITY function returns only the very last identity value that was gen-

erated by your session; it doesn’t help you much in obtaining all identity values that were generated

by an insert of a row set. The OUTPUT clause makes the task very simple. To demonstrate the tech-

nique, irst create a table called T1 with an identity column called keycol and another column called

datacol by running the following code.

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 keycol INT NOT NULL IDENTITY(1, 1) CONSTRAINT PK_T1 PRIMARY KEY,

 datacol NVARCHAR(40) NOT NULL

);

 CHAPTER 8 Data Modiication 281

Suppose you want to insert into T1 the result of a query against the HR.Employees table. To return

all newly generated identity values from the INSERT statement, simply add the OUTPUT clause and

specify the attributes you want to return.

INSERT INTO dbo.T1(datacol)

 OUTPUT inserted.keycol, inserted.datacol

 SELECT lastname

 FROM HR.Employees

 WHERE country = N'USA';

This statement returns the following result set.

keycol datacol

----------- ---------

1 Davis

2 Funk

3 Lew

4 Peled

5 Cameron

(5 row(s) affected)

As you can guess, you can use a similar technique to return sequence values generated for an

INSERT statement by the NEXT VALUE FOR function (either directly or in a default constraint).

As I mentioned earlier, you can also direct the result set into a table. The table can be a real table,

a temporary table, or a table variable. When the result set is stored in the target table, you can

manipulate the data by querying that table. For example, the following code declares a table vari-

able called @NewRows, inserts another result set into T1, and directs the result set returned by the

OUTPUT clause into the table variable. The code then queries the table variable just to show the data

that was stored in it.

DECLARE @NewRows TABLE(keycol INT, datacol NVARCHAR(40));

INSERT INTO dbo.T1(datacol)

 OUTPUT inserted.keycol, inserted.datacol

 INTO @NewRows

 SELECT lastname

 FROM HR.Employees

 WHERE country = N'UK';

SELECT * FROM @NewRows;

This code returns the following output showing the contents of the table variable.

keycol datacol

----------- -------------

6 Buck

7 Suurs

8 King

9 Dolgopyatova

(4 row(s) affected)

282 Microsoft SQL Server 2012 T-SQL Fundamentals

DELETE with OUTPUT
The next example demonstrates the use of the OUTPUT clause with a DELETE statement. First, run the

following code to create a copy of the Orders table from the Sales schema in the dbo schema.

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

CREATE TABLE dbo.Orders

(

 orderid INT NOT NULL,

 custid INT NULL,

 empid INT NOT NULL,

 orderdate DATETIME NOT NULL,

 requireddate DATETIME NOT NULL,

 shippeddate DATETIME NULL,

 shipperid INT NOT NULL,

 freight MONEY NOT NULL

 CONSTRAINT DFT_Orders_freight DEFAULT(0),

 shipname NVARCHAR(40) NOT NULL,

 shipaddress NVARCHAR(60) NOT NULL,

 shipcity NVARCHAR(15) NOT NULL,

 shipregion NVARCHAR(15) NULL,

 shippostalcode NVARCHAR(10) NULL,

 shipcountry NVARCHAR(15) NOT NULL,

 CONSTRAINT PK_Orders PRIMARY KEY(orderid)

);

GO

INSERT INTO dbo.Orders SELECT * FROM Sales.Orders;

The following code deletes all orders that were placed prior to 2008 and, using the OUTPUT

clause, returns attributes from the deleted rows.

DELETE FROM dbo.Orders

 OUTPUT

 deleted.orderid,

 deleted.orderdate,

 deleted.empid,

 deleted.custid

WHERE orderdate < '20080101';

This DELETE statement returns the following result set.

orderid orderdate empid custid

----------- ------------------------- ----------- -----------

10248 2006-07-04 00:00:00.000 5 85

10249 2006-07-05 00:00:00.000 6 79

10250 2006-07-08 00:00:00.000 4 34

10251 2006-07-08 00:00:00.000 3 84

10252 2006-07-09 00:00:00.000 4 76

...

10400 2007-01-01 00:00:00.000 1 19

10401 2007-01-01 00:00:00.000 1 65

10402 2007-01-02 00:00:00.000 8 20

 CHAPTER 8 Data Modiication 283

10403 2007-01-03 00:00:00.000 4 20

10404 2007-01-03 00:00:00.000 2 49

...

(560 row(s) affected)

If you want to archive the rows that are deleted, simply add an INTO clause and specify the archive

table name as the target.

UPDATE with OUTPUT
By using the OUTPUT clause with an UPDATE statement, you can refer to both the image of the modi-

ied row before the change (by preixing the attribute names with the deleted keyword) and to the

image after the change (by preixing the attribute names with the inserted keyword). This way, you

can return both old and new images of the updated attributes.

Before I demonstrate how to use the OUTPUT clause in an UPDATE statement, you should irst run
the following code to create a copy of the Sales.OrderDetails table from the Sales schema in the dbo

schema.

IF OBJECT_ID('dbo.OrderDetails', 'U') IS NOT NULL DROP TABLE dbo.OrderDetails;

CREATE TABLE dbo.OrderDetails

(

 orderid INT NOT NULL,

 productid INT NOT NULL,

 unitprice MONEY NOT NULL

 CONSTRAINT DFT_OrderDetails_unitprice DEFAULT(0),

 qty SMALLINT NOT NULL

 CONSTRAINT DFT_OrderDetails_qty DEFAULT(1),

 discount NUMERIC(4, 3) NOT NULL

 CONSTRAINT DFT_OrderDetails_discount DEFAULT(0),

 CONSTRAINT PK_OrderDetails PRIMARY KEY(orderid, productid),

 CONSTRAINT CHK_discount CHECK (discount BETWEEN 0 AND 1),

 CONSTRAINT CHK_qty CHECK (qty > 0),

 CONSTRAINT CHK_unitprice CHECK (unitprice >= 0)

);

GO

INSERT INTO dbo.OrderDetails SELECT * FROM Sales.OrderDetails;

The following UPDATE statement increases the discount of all order details for product 51 by 5

percent and uses the OUTPUT clause to return the product ID, old discount, and new discount from

the modiied rows.

UPDATE dbo.OrderDetails

 SET discount += 0.05

OUTPUT

 inserted.productid,

 deleted.discount AS olddiscount,

 inserted.discount AS newdiscount

WHERE productid = 51;

284 Microsoft SQL Server 2012 T-SQL Fundamentals

This statement returns the following output.

productid olddiscount newdiscount

----------- ------------ ------------

51 0.000 0.050

51 0.150 0.200

51 0.100 0.150

51 0.200 0.250

51 0.000 0.050

51 0.150 0.200

51 0.000 0.050

51 0.000 0.050

51 0.000 0.050

51 0.000 0.050

...

(39 row(s) affected)

MERGE with OUTPUT
You can also use the OUTPUT clause with the MERGE statement, but remember that a single MERGE

statement can invoke multiple different DML actions based on conditional logic. This means that

a single MERGE statement might return through the OUTPUT clause rows that were produced by

different DML actions. To identify which DML action produced the output row, you can invoke a func-

tion called $action in the OUTPUT clause, which will return a string representing the action (INSERT,

UPDATE, or DELETE). To demonstrate the use of the OUTPUT clause with the MERGE statement, I’ll

use one of the examples from the “Merging Data” section earlier in this chapter. To run this example,
make sure you rerun Listing 8-2 to re-create the dbo.Customers and dbo.CustomersStage tables.

The following code merges the contents of CustomersStage into Customers, updating the attri-

butes of customers who already exist in the target and adding customers who don’t.

MERGE INTO dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

 ON TGT.custid = SRC.custid

WHEN MATCHED THEN

 UPDATE SET

 TGT.companyname = SRC.companyname,

 TGT.phone = SRC.phone,

 TGT.address = SRC.address

WHEN NOT MATCHED THEN

 INSERT (custid, companyname, phone, address)

 VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address)

OUTPUT $action AS theaction, inserted.custid,

 deleted.companyname AS oldcompanyname,

 inserted.companyname AS newcompanyname,

 deleted.phone AS oldphone,

 inserted.phone AS newphone,

 deleted.address AS oldaddress,

 inserted.address AS newaddress;

 CHAPTER 8 Data Modiication 285

This MERGE statement uses the OUTPUT clause to return the old and new values of the modiied
rows. Of course, with INSERT actions, there are no old values, so all references to deleted attributes

return NULL marks. The $action function tells you whether an UPDATE or an INSERT action produced

the output row. Here’s the output of this MERGE statement.

theaction custid oldcompanyname newcompanyname

--------- ------ -------------- --------------

UPDATE 2 cust 2 AAAAA

UPDATE 3 cust 3 cust 3

UPDATE 5 cust 5 BBBBB

INSERT 6 NULL cust 6 (new)

INSERT 7 NULL cust 7 (new)

theaction custid oldphone newphone oldaddress newaddress

--------- ------ -------------- -------------- ---------- ----------

UPDATE 2 (222) 222-2222 (222) 222-2222 address 2 address 2

UPDATE 3 (333) 333-3333 (333) 333-3333 address 3 address 3

UPDATE 5 (555) 555-5555 CCCCC address 5 DDDDD

INSERT 6 NULL (666) 666-6666 NULL address 6

INSERT 7 NULL (777) 777-7777 NULL address 7

(5 row(s) affected)

Composable dML
The OUTPUT clause returns an output row for every modiied row. But what if you need to direct
only a subset of the modiied rows to a table, perhaps for auditing purposes? SQL Server supports a
feature called composable DML that allows you to directly insert into the inal target table only the
subset of rows that you need from the full set of modiied rows.

To demonstrate this capability, irst create a copy of the Products table from the Production

schema in the dbo schema, as well as the dbo.ProductsAudit table, by running the following code.

IF OBJECT_ID('dbo.ProductsAudit', 'U') IS NOT NULL DROP TABLE dbo.ProductsAudit;

IF OBJECT_ID('dbo.Products', 'U') IS NOT NULL DROP TABLE dbo.Products;

CREATE TABLE dbo.Products

(

 productid INT NOT NULL,

 productname NVARCHAR(40) NOT NULL,

 supplierid INT NOT NULL,

 categoryid INT NOT NULL,

 unitprice MONEY NOT NULL

 CONSTRAINT DFT_Products_unitprice DEFAULT(0),

 discontinued BIT NOT NULL

 CONSTRAINT DFT_Products_discontinued DEFAULT(0),

 CONSTRAINT PK_Products PRIMARY KEY(productid),

 CONSTRAINT CHK_Products_unitprice CHECK(unitprice >= 0)

);

INSERT INTO dbo.Products SELECT * FROM Production.Products;

CREATE TABLE dbo.ProductsAudit

286 Microsoft SQL Server 2012 T-SQL Fundamentals

(

 LSN INT NOT NULL IDENTITY PRIMARY KEY,

 TS DATETIME NOT NULL DEFAULT(CURRENT_TIMESTAMP),

 productid INT NOT NULL,

 colname SYSNAME NOT NULL,

 oldval SQL_VARIANT NOT NULL,

 newval SQL_VARIANT NOT NULL

);

Suppose that you now need to update all products that are supplied by supplier 1, increasing their

price by 15 percent. You also need to audit the old and new values of updated products, but only

those with an old price that was less than 20 and a new price that is greater than or equal to 20.

You can achieve this by using composable DML. You write an UPDATE statement with an OUTPUT

clause and deine a derived table based on the UPDATE statement. You write an INSERT SELECT

statement that queries the derived table, iltering only the subset of rows that is needed. Here’s the
complete solution code.

INSERT INTO dbo.ProductsAudit(productid, colname, oldval, newval)

 SELECT productid, N'unitprice', oldval, newval

 FROM (UPDATE dbo.Products

 SET unitprice *= 1.15

 OUTPUT

 inserted.productid,

 deleted.unitprice AS oldval,

 inserted.unitprice AS newval

 WHERE supplierid = 1) AS D

 WHERE oldval < 20.0 AND newval >= 20.0;

Recall earlier discussions in the book about logical query processing and table expressions—the

multiset output of one query can be used as input to subsequent SQL statements. Here, the output of

the OUTPUT clause is a multiset input for the SELECT statement, and then the output of the SELECT

statement is inserted into a table.

Run the following code to query the ProductsAudit table.

SELECT * FROM dbo.ProductsAudit;

You get the following output.

LSN TS ProductID ColName OldVal NewVal

--- ------------------------- ----------- ----------- -------- ------

1 2008-08-05 18:56:04.793 1 unitprice 18.00 20.70

2 2008-08-05 18:56:04.793 2 unitprice 19.00 21.85

Three products were updated, but only two were iltered by the outer query; therefore, only those
two were audited.

 CHAPTER 8 Data Modiication 287

When you’re done, run the following code for cleanup.

IF OBJECT_ID('dbo.OrderDetails', 'U') IS NOT NULL DROP TABLE dbo.OrderDetails;

IF OBJECT_ID('dbo.ProductsAudit', 'U') IS NOT NULL DROP TABLE dbo.ProductsAudit;

IF OBJECT_ID('dbo.Products', 'U') IS NOT NULL DROP TABLE dbo.Products;

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

IF OBJECT_ID('dbo.Customers', 'U') IS NOT NULL DROP TABLE dbo.Customers;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

IF OBJECT_ID('dbo.Sequences', 'U') IS NOT NULL DROP TABLE dbo.Sequences;

IF OBJECT_ID('dbo.CustomersStage', 'U') IS NOT NULL DROP TABLE dbo.CustomersStage;

Conclusion

In this chapter, I covered various aspects of data modiication. I described inserting, updating, delet-
ing, and merging data. I also discussed modifying data through table expressions, using TOP (and

indirectly OFFSET-FETCH) with modiication statements, and returning modiied rows using the
OUTPUT clause.

Exercises

This section provides exercises so you can practice the subjects discussed in this chapter. The database

assumed in the exercise is TSQL2012.

1
Run the following code to create the dbo.Customers table in the TSQL2012 database.

USE TSQL2012;

IF OBJECT_ID('dbo.Customers', 'U') IS NOT NULL DROP TABLE dbo.Customers;

CREATE TABLE dbo.Customers

(

 custid INT NOT NULL PRIMARY KEY,

 companyname NVARCHAR(40) NOT NULL,

 country NVARCHAR(15) NOT NULL,

 region NVARCHAR(15) NULL,

 city NVARCHAR(15) NOT NULL

);

288 Microsoft SQL Server 2012 T-SQL Fundamentals

1-1
Insert into the dbo.Customers table a row with:

 ■ custid: 100

 ■ companyname: Coho Winery

 ■ country: USA

 ■ region: WA

 ■ city: Redmond

1-2
Insert into the dbo.Customers table all customers from Sales.Customers who placed orders.

1-3
Use a SELECT INTO statement to create and populate the dbo.Orders table with orders from the

Sales.Orders table that were placed in the years 2006 through 2008. Note that this exercise can only

 be practiced in an on-premises SQL Server, because SQL Database doesn’t support the SELECT INTO

statement. In SQL Database, use a CREATE TABLE and INSERT SELECT statements instead.

2
Delete from the dbo.Orders table orders that were placed before August 2006. Use the OUTPUT

clause to return the orderid and orderdate of the deleted orders.

 ■ Desired output:

orderid orderdate

----------- -----------------------

10248 2006-07-04 00:00:00.000

10249 2006-07-05 00:00:00.000

10250 2006-07-08 00:00:00.000

10251 2006-07-08 00:00:00.000

10252 2006-07-09 00:00:00.000

10253 2006-07-10 00:00:00.000

10254 2006-07-11 00:00:00.000

10255 2006-07-12 00:00:00.000

10256 2006-07-15 00:00:00.000

10257 2006-07-16 00:00:00.000

10258 2006-07-17 00:00:00.000

10259 2006-07-18 00:00:00.000

10260 2006-07-19 00:00:00.000

10261 2006-07-19 00:00:00.000

10262 2006-07-22 00:00:00.000

10263 2006-07-23 00:00:00.000

10264 2006-07-24 00:00:00.000

 CHAPTER 8 Data Modiication 289

10265 2006-07-25 00:00:00.000

10266 2006-07-26 00:00:00.000

10267 2006-07-29 00:00:00.000

10268 2006-07-30 00:00:00.000

10269 2006-07-31 00:00:00.000

(22 row(s) affected)

3
Delete from the dbo.Orders table orders placed by customers from Brazil.

4
Run the following query against dbo.Customers, and notice that some rows have a NULL in the region

column.

SELECT * FROM dbo.Customers;

The output from this query is as follows.

custid companyname country region city

----------- ---------------- --------------- ---------- ---------------

1 Customer NRZBB Germany NULL Berlin

2 Customer MLTDN Mexico NULL México D.F.

3 Customer KBUDE Mexico NULL México D.F.

4 Customer HFBZG UK NULL London

5 Customer HGVLZ Sweden NULL Luleå

6 Customer XHXJV Germany NULL Mannheim

7 Customer QXVLA France NULL Strasbourg

8 Customer QUHWH Spain NULL Madrid

9 Customer RTXGC France NULL Marseille

10 Customer EEALV Canada BC Tsawassen

...

(90 row(s) affected)

Update the dbo.Customers table and change all NULL region values to <None>. Use the OUTPUT

clause to show the custid, oldregion, and newregion.

 ■ Desired output:

custid oldregion newregion

----------- --------------- ---------------

1 NULL <None>

2 NULL <None>

3 NULL <None>

4 NULL <None>

5 NULL <None>

6 NULL <None>

7 NULL <None>

8 NULL <None>

9 NULL <None>

290 Microsoft SQL Server 2012 T-SQL Fundamentals

11 NULL <None>

12 NULL <None>

13 NULL <None>

14 NULL <None>

16 NULL <None>

17 NULL <None>

18 NULL <None>

19 NULL <None>

20 NULL <None>

23 NULL <None>

24 NULL <None>

25 NULL <None>

26 NULL <None>

27 NULL <None>

28 NULL <None>

29 NULL <None>

30 NULL <None>

39 NULL <None>

40 NULL <None>

41 NULL <None>

44 NULL <None>

49 NULL <None>

50 NULL <None>

52 NULL <None>

53 NULL <None>

54 NULL <None>

56 NULL <None>

58 NULL <None>

59 NULL <None>

60 NULL <None>

63 NULL <None>

64 NULL <None>

66 NULL <None>

68 NULL <None>

69 NULL <None>

70 NULL <None>

72 NULL <None>

73 NULL <None>

74 NULL <None>

76 NULL <None>

79 NULL <None>

80 NULL <None>

83 NULL <None>

84 NULL <None>

85 NULL <None>

86 NULL <None>

87 NULL <None>

90 NULL <None>

91 NULL <None>

(58 row(s) affected)

 CHAPTER 8 Data Modiication 291

5
Update all orders in the dbo.Orders table that were placed by United Kingdom customers and set

their shipcountry, shipregion, and shipcity values to the country, region, and city values of the corre-

sponding customers.

6
When you’re done, run the following code for cleanup.

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

IF OBJECT_ID('dbo.Customers', 'U') IS NOT NULL DROP TABLE dbo.Customers;

Solutions

This section provides solutions to the preceding exercises.

1-1
Make sure that you are connected to the TSQL2012 database.

USE TSQL2012;

Use the following INSERT VALUES statement to insert a row into the Customers table with the

values provided in the exercise.

INSERT INTO dbo.Customers(custid, companyname, country, region, city)

 VALUES(100, N'Coho Winery', N'USA', N'WA', N'Redmond');

1-2
One way to identify customers who placed orders is to use the EXISTS predicate, as the following

query shows.

 SELECT custid, companyname, country, region, city

 FROM Sales.Customers AS C

 WHERE EXISTS

 (SELECT * FROM Sales.Orders AS O

 WHERE O.custid = C.custid);

To insert the rows returned from this query into the dbo.Customers table, you can use an INSERT

SELECT statement as follows.

INSERT INTO dbo.Customers(custid, companyname, country, region, city)

 SELECT custid, companyname, country, region, city

 FROM Sales.Customers AS C

 WHERE EXISTS

 (SELECT * FROM Sales.Orders AS O

 WHERE O.custid = C.custid);

292 Microsoft SQL Server 2012 T-SQL Fundamentals

1-3
The following code irst ensures that the session is connected to the TSQL2012 database, then it drops

the dbo.Orders table if it already exists, and then it uses the SELECT INTO statement to create a new

dbo.Orders table and populate it with orders from the Sales.Orders table placed in the years 2006

through 2008.

USE TSQL2012;

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

SELECT *

INTO dbo.Orders

FROM Sales.Orders

WHERE orderdate >= '20060101'

 AND orderdate < '20090101';

In SQL Database, you use CREATE TABLE and INSERT SELECT statements instead.

CREATE TABLE dbo.Orders

(

 orderid INT NOT NULL,

 custid INT NULL,

 empid INT NOT NULL,

 orderdate DATETIME NOT NULL,

 requireddate DATETIME NOT NULL,

 shippeddate DATETIME NULL,

 shipperid INT NOT NULL,

 freight MONEY NOT NULL,

 shipname NVARCHAR(40) NOT NULL,

 shipaddress NVARCHAR(60) NOT NULL,

 shipcity NVARCHAR(15) NOT NULL,

 shipregion NVARCHAR(15) NULL,

 shippostalcode NVARCHAR(10) NULL,

 shipcountry NVARCHAR(15) NOT NULL,

 CONSTRAINT PK_Orders PRIMARY KEY(orderid)

);

INSERT INTO dbo.Orders

 (orderid, custid, empid, orderdate, requireddate, shippeddate,

 shipperid, freight, shipname, shipaddress, shipcity, shipregion,

 shippostalcode, shipcountry)

SELECT

 orderid, custid, empid, orderdate, requireddate, shippeddate,

 shipperid, freight, shipname, shipaddress, shipcity, shipregion,

 shippostalcode, shipcountry

FROM Sales.Orders

WHERE orderdate >= '20060101'

 AND orderdate < '20090101';

 CHAPTER 8 Data Modiication 293

2
To delete orders placed before August 2006, you need a DELETE statement with a ilter based on the
predicate orderdate < ‘20060801’. As requested, use the OUTPUT clause to return attributes from the

deleted rows.

DELETE FROM dbo.Orders

 OUTPUT deleted.orderid, deleted.orderdate

WHERE orderdate < '20060801';

3
This exercise requires you to write a DELETE statement that deletes rows from one table (dbo.Orders)

based on the existence of a matching row in another table (dbo.Customers). One way to solve the

problem is to use a standard DELETE statement with an EXISTS predicate in the WHERE clause, like

this.

DELETE FROM dbo.Orders

WHERE EXISTS

 (SELECT *

 FROM dbo.Customers AS C

 WHERE Orders.custid = C.custid

 AND C.country = N'Brazil');

This DELETE statement deletes the rows from the dbo.Orders table for which a related row exists

in the dbo.Customers table with the same customer ID as the order’s customer ID and the customer’s

country is Brazil.

Another way to solve this problem is to use the T-SQL–speciic DELETE syntax based on a join, like

this.

DELETE FROM O

FROM dbo.Orders AS O

 JOIN dbo.Customers AS C

 ON O.custid = C.custid

WHERE country = N'Brazil';

Note that there are no matched rows, of course, if the previous DELETE is executed.

The join between the dbo.Orders and dbo.Customers tables serves a iltering purpose. The join
matches each order with the customer who placed the order. The WHERE clause ilters only rows for
which the customer’s country is Brazil. The DELETE FROM clause refers to the alias O representing the

table Orders, indicating that Orders is the target of the DELETE operation.

294 Microsoft SQL Server 2012 T-SQL Fundamentals

As a standard alternative, you can use the MERGE statement to solve this problem. Even though

you would normally think of using MERGE when you need to apply different actions based on condi-

tional logic, you can also use it when you need to apply one action when a certain predicate is TRUE.

In other words, you can use the MERGE statement with the WHEN MATCHED clause alone; you don’t

have to have a WHEN NOT MATCHED clause as well. The following MERGE statement handles the

request in the exercise.

MERGE INTO dbo.Orders AS O

USING dbo.Customers AS C

 ON O.custid = C.custid

 AND country = N'Brazil'

WHEN MATCHED THEN DELETE;

Again, note that there are no matched rows if either of the previous DELETE statements is executed.

This MERGE statement deines the dbo.Orders table as the target and the dbo.Customers table

as the source. An order is deleted from the target (dbo.Orders) when a matching row is found in the

source (dbo.Customers) with the same customer ID and the country Brazil.

4
This exercise involves writing an UPDATE statement that ilters only rows for which the region at-
tribute is NULL. Make sure you use the IS NULL predicate and not an equality operator when looking

for NULL marks. Use the OUTPUT clause to return the requested information. Here’s the complete

UPDATE statement.

UPDATE dbo.Customers

 SET region = '<None>'

OUTPUT

 deleted.custid,

 deleted.region AS oldregion,

 inserted.region AS newregion

WHERE region IS NULL;

5
One way to solve this exercise is to use the T-SQL–speciic UPDATE syntax based on a join. You can

join dbo.Orders and dbo.Customers based on a match between the order’s customer ID and the cus-

tomer’s customer ID. In the WHERE clause, you can ilter only the rows where the customer’s country
is the United Kingdom. In the UPDATE clause, specify the alias you assigned to the dbo.Orders table

to indicate that it’s the target of the modiication. In the SET clause, assign the values of the shipping

location attributes of the order to the location attributes of the corresponding customer. Here’s the

complete UPDATE statement.

 CHAPTER 8 Data Modiication 295

UPDATE O

 SET shipcountry = C.country,

 shipregion = C.region,

 shipcity = C.city

FROM dbo.Orders AS O

 JOIN dbo.Customers AS C

 ON O.custid = C.custid

WHERE C.country = 'UK';

Another solution to this exercise uses CTEs. You can deine a CTE based on a SELECT query that

joins dbo.Orders and dbo.Customers and returns both the target location attributes from dbo.Orders

and the source location attributes from dbo.Customers. The outer query would then be an UPDATE

statement modifying the target attributes with the values of the source attributes. Here’s the com-

plete solution statement.

WITH CTE_UPD AS

(

 SELECT

 O.shipcountry AS ocountry, C.country AS ccountry,

 O.shipregion AS oregion, C.region AS cregion,

 O.shipcity AS ocity, C.city AS ccity

 FROM dbo.Orders AS O

 JOIN dbo.Customers AS C

 ON O.custid = C.custid

 WHERE C.country = 'UK'

)

UPDATE CTE_UPD

 SET ocountry = ccountry, oregion = cregion, ocity = ccity;

You can also use the MERGE statement to achieve this task. As explained earlier, even though in a

MERGE statement you usually want to specify both the WHEN MATCHED and WHEN NOT MATCHED

clauses, the statement supports specifying only one of the clauses. Using only a WHEN MATCHED

clause with an UPDATE action, you can write a solution that is logically equivalent to the last two solu-

tions. Here’s the complete solution statement.

MERGE INTO dbo.Orders AS O

USING dbo.Customers AS C

 ON O.custid = C.custid

 AND C.country = 'UK'

WHEN MATCHED THEN

 UPDATE SET shipcountry = C.country,

 shipregion = C.region,

 shipcity = C.city;

 297

C H A P T E R 9

Transactions and Concurrency

This chapter covers transactions and their properties and describes how Microsoft SQL Server handles

users who are concurrently trying to access the same data. I explain how SQL Server uses locks to

isolate inconsistent data, how you can troubleshoot blocking situations, and how you can control the

level of consistency when you are querying data with isolation levels. This chapter also covers dead-

locks and ways to mitigate their occurrence.

Transactions

A transaction is a unit of work that might include multiple activities that query and modify data and

that can also change data deinition.

You can deine transaction boundaries either explicitly or implicitly. You deine the beginning of a
transaction explicitly with a BEGIN TRAN (or BEGIN TRANSACTION) statement. You deine the end of
a transaction explicitly with a COMMIT TRAN statement if you want to conirm it and with a ROLLBACK

TRAN (or ROLLBACK TRANSACTION) statement if you do not want to conirm it (that is, if you want
to undo its changes). Here’s an example of marking the boundaries of a transaction with two INSERT

statements.

BEGIN TRAN;

 INSERT INTO dbo.T1(keycol, col1, col2) VALUES(4, 101, 'C');

 INSERT INTO dbo.T2(keycol, col1, col2) VALUES(4, 201, 'X');

COMMIT TRAN;

If you do not mark the boundaries of a transaction explicitly, by default, SQL Server treats each in-

dividual statement as a transaction; in other words, by default, SQL Server automatically commits the

transaction at the end of each individual statement. You can change the way SQL Server handles im-

plicit transactions with a session option called IMPLICIT_TRANSACTIONS. This option is off by default.

When this option is on, you do not have to specify the BEGIN TRAN statement to mark the beginning

of a transaction, but you have to mark the transaction’s end with a COMMIT TRAN or a ROLLBACK

TRAN statement.

298 Microsoft SQL Server 2012 T-SQL Fundamentals

Transactions have four properties—atomicity, consistency, isolation, and durability—abbreviated

with the acronym ACID.

 ■ Atomicity A transaction is an atomic unit of work. Either all changes in the transaction take

place or none do. If the system fails before a transaction is completed (before the commit in-

struction is recorded in the transaction log), upon restart, SQL Server undoes the changes that

took place. Also, if errors are encountered during the transaction, normally SQL Server auto-

matically rolls back the transaction, with a few exceptions. Some errors, such as primary key

violation and lock expiration timeout (discussed later in this chapter, in the “Troubleshooting
Blocking” section), are not considered severe enough to justify an automatic rollback of the

transaction. You can use error-handling code to capture such errors and apply some course of

action (for example, log the error and roll back the transaction). Chapter 10, “Programmable
Objects,” provides an overview of error handling.

Tip At any point in your code, you can tell programmatically whether you are in an

open transaction by querying a function called @@TRANCOUNT. This function re turns

0 if you’re not in an open transaction and returns a value greater than 0 if you are.

 ■ Consistency The term consistency refers to the state of the data that the RDBMS gives you

access to as concurrent transactions modify and query it. As you can probably imagine, con-

sistency is a subjective term, which depends on your application’s needs. The “Isolation Levels”
section later in this chapter explains the level of consistency that SQL Server provides by de-

fault and how you can control consistency if the default behavior is not suitable for your appli-

cation. Consistency also refers to the fact that the database must adhere to all integrity rules

that have been deined within it by constraints (such as primary keys, unique constraints, and
foreign keys). The transaction transitions the database from one consistent state to another.

 ■ Isolation Isolation is a mechanism used to control access to data and ensure that transac-

tions access data only if the data is in the level of consistency that those transactions expect.

SQL Server supports two different models to handle isolation: a traditional one based on lock-

ing and a newer one based on row versioning. The model based on locking is the default in an

on-premises SQL Server installation. In this model, readers require shared locks. If the cur-

rent state of the data is inconsistent, readers are blocked until the state of the data becomes

consistent. The model based on row versioning is the default in Windows Azure SQL Database.

In this model, readers don’t take shared locks and don’t need to wait. If the current state of

the data is inconsistent, the reader gets an older consistent state. The “Isolation Levels” section
later in this chapter provides more details about both ways of handling isolation.

 ■ Durability Data changes are always written to the database’s transaction log on disk before

they are written to the data portion of the database on disk. After the commit instruction

is recorded in the transaction log on disk, the transaction is considered durable even if the

change hasn’t yet made it to the data portion on disk. When the system starts, either normally

or after a system failure, SQL Server inspects the transaction log of each database and runs a

recovery process with two phases—redo and undo. The redo phase involves rolling forward

 CHAPTER 9 Transactions and Concurrency 299

(replaying) all of the changes from any transaction whose commit instruction is written to

the log but whose changes haven’t yet made it to the data portion. The undo phase involves

rolling back (undoing) the changes from any transaction whose commit instruction was not

recorded in the log.

For example, the following code deines a transaction that records information about a new order
in the TSQL2012 database.

USE TSQL2012;

-- Start a new transaction

BEGIN TRAN;

 -- Declare a variable

 DECLARE @neworderid AS INT;

 -- Insert a new order into the Sales.Orders table

 INSERT INTO Sales.Orders

 (custid, empid, orderdate, requireddate, shippeddate,

 shipperid, freight, shipname, shipaddress, shipcity,

 shippostalcode, shipcountry)

 VALUES

 (85, 5, '20090212', '20090301', '20090216',

 3, 32.38, N'Ship to 85-B', N'6789 rue de l''Abbaye', N'Reims',

 N'10345', N'France');

 -- Save the new order ID in a variable

 SET @neworderid = SCOPE_IDENTITY();

 -- Return the new order ID

 SELECT @neworderid AS neworderid;

 -- Insert order lines for the new order into Sales.OrderDetails

 INSERT INTO Sales.OrderDetails

 (orderid, productid, unitprice, qty, discount)

 VALUES(@neworderid, 11, 14.00, 12, 0.000),

 (@neworderid, 42, 9.80, 10, 0.000),

 (@neworderid, 72, 34.80, 5, 0.000);

-- Commit the transaction

COMMIT TRAN;

The transaction’s code inserts a row with the order header information into the Sales.Orders table

and a few rows with the order lines information into the Sales.OrderDetails table. The new order ID is

produced automatically by SQL Server because the orderid column has an identity property. Immedi-

ately after the code inserts the new row into the Sales.Orders table, it stores the newly generated order

ID in a local variable, and then it uses that local variable when inserting rows into the Sales.OrderDetails

table. For test purposes, I added a SELECT statement that returns the order ID of the newly generated

order. Here’s the output from the SELECT statement after the code runs.

neworderid

11078

300 Microsoft SQL Server 2012 T-SQL Fundamentals

Note that this example has no error handling and does not make any provision for a ROLLBACK in

case of an error. To handle errors, you can enclose a transaction in a TRY/CATCH construct. You can

ind an overview of error handling in Chapter 10.

When you’re done, run the following code for cleanup.

DELETE FROM Sales.OrderDetails

WHERE orderid > 11077;

DELETE FROM Sales.Orders

WHERE orderid > 11077;

Locks and Blocking

SQL Server uses locks to enforce the isolation property of transactions. The following sections provide

details about locking and explain how to troubleshoot blocking situations that are caused by conlict-
ing lock requests.

Locks
Locks are control resources obtained by a transaction to guard data resources, preventing conlicting
or incompatible access by other transactions. I’ll irst cover the important lock modes supported by
SQL Server and their compatibility, and then I’ll describe the lockable resource types.

Lock Modes and Compatibility

As you start learning about transactions and concurrency, you should irst familiarize yourself with
two main lock modes—exclusive and shared.

When you try to modify data, your transaction requests an exclusive lock on the data resource,

regardless of your isolation level (you’ll learn more about isolation levels later in this chapter). If

granted, the exclusive lock is held until the end of the transaction. For single-statement transactions,

this means that the lock is held until the statement completes. For multistatement transactions, this

means that the lock is held until all statements complete and the transaction is ended by a COMMIT

TRAN or ROLLBACK TRAN command.

Exclusive locks are called “exclusive” because you cannot obtain an exclusive lock on a resource if
another transaction is holding any lock mode on the resource, and no lock mode can be obtained on

a resource if another transaction is holding an exclusive lock on the resource. This is the way modi-

ications behave by default, and this default behavior cannot be changed—not in terms of the lock
mode required to modify a data resource (exclusive) and not in terms of the duration of the lock (until

the end of the transaction). In practical terms, this means that if one transaction modiies rows, until
the transaction is completed, another transaction cannot modify the same rows. However, whether

another transaction can read the same rows or not depends on its isolation level.

 CHAPTER 9 Transactions and Concurrency 301

As for reading data, the defaults are different for on-premises SQL Server installations and

SQL Database. In an on-premises SQL Server installation, the default isolation level is called READ

COMMITTED. In this isolation, when you try to read data, by default your transaction requests a

shared lock on the data resource and releases the lock as soon as the read statement is done with

that resource. This lock mode is called “shared” because multiple transactions can hold shared
locks on the same data resource simultaneously. Although you cannot change the lock mode and

duration required when you are modifying data, you can control the way locking is handled when

you are reading data by changing your isolation level. As mentioned, I will elaborate on this later

in this chapter.

In SQL Database, the default isolation level is called READ COMMITTED SNAPSHOT. Instead of

relying on locking, this isolation relies on a row-versioning technology. Under this isolation level,

readers do not require shared locks, and therefore they never wait; they rely on the row-version-

ing technology to provide the expected isolation. In practical terms, this means that under the

READ COMMITTED isolation level, if a transaction modiies rows, until the transaction completes,
another trans action can’t read the same rows. This approach to concurrency control is known as

the pessimistic concurrency approach. Under the READ COMMITTED SNAPSHOT isolation level, if

a transaction modiies rows, another transaction trying to read the data will get the last commit-
ted state of the rows that was available when the statement started. This approach to concurrency

control is known as the optimistic concurrency approach.

This lock interaction between transactions is known as lock compatibility. Table 9-1 shows the lock

compatibility of exclusive and shared locks (when you are working with an isolation level that generates

these locks). The columns represent granted lock modes, and the rows represent requested lock modes.

TABLE 9-1 Lock Compatibility of Exclusive and Shared Locks

Requested Mode Granted Exclusive (X) Granted Shared (S)

Grant request for exclusive? No No

Grant request for shared? No Yes

A “No” in the intersection means that the locks are incompatible and the requested mode is de-

nied; the requester must wait. A “Yes” in the intersection means that the locks are compatible and the
requested mode is accepted.

The following summarizes lock interaction between transactions in simple terms: data that was

modiied by one transaction can neither be modiied nor read (at least by default in an on-premises
SQL Server installation) by another transaction until the irst transaction inishes. And while data is
being read by one transaction, it cannot be modiied by another (at least by default in an on-premises
SQL Server installation).

302 Microsoft SQL Server 2012 T-SQL Fundamentals

Lockable resource Types

SQL Server can lock different types of resources. The types of resources that can be locked include

RIDs or keys (row), pages, objects (for example, tables), databases, and others. Rows reside within

pages, and pages are the physical data blocks that contain table or index data. You should irst famil-
iarize yourself with these resource types, and at a more advanced stage, you might want to familiarize

yourself with other lockable resource types such as extents, allocation units, and heaps or B-trees.

To obtain a lock on a certain resource type, your transaction must irst obtain intent locks of
the same mode on higher levels of granularity. For example, to get an exclusive lock on a row, your

transaction must irst acquire an intent exclusive lock on the page where the row resides and an in-

tent exclusive lock on the object that owns the page. Similarly, to get a shared lock on a certain level

of granularity, your transaction irst needs to acquire intent shared locks on higher levels of granular-
ity. The purpose of intent locks is to eficiently detect incompatible lock requests on higher levels of
granularity and prevent the granting of those. For example, if one transaction holds a lock on a row

and another asks for an incompatible lock mode on the whole page or table where that row resides,

it is easy for SQL Server to identify the conlict because of the intent locks that the irst transaction
acquired on the page and table. Intent locks do not interfere with requests for locks on lower levels

of granularity. For example, an intent lock on a page doesn’t prevent other transactions from acquir-

ing incompatible lock modes on rows within the page. Table 9-2 expands on the lock compatibility

table shown in Table 9-1, adding intent exclusive and intent shared locks.

TABLE 9-2 Lock Compatibility Including Intent Locks

Requested Mode
Granted
Exclusive (X)

Granted Shared
(S)

Granted Intent
Exclusive (IX)

Granted Intent
Shared (IS)

Grant request for exclusive? No No No No

Grant request for shared? No Yes No Yes

Grant request for intent exclusive? No No Yes Yes

Grant request for intent shared? No Yes Yes Yes

SQL Server determines dynamically which resource types to lock. Naturally, for ideal concurrency,

it is best to lock only what needs to be locked, namely only the affected rows. However, locks require

memory resources and internal management overhead. So SQL Server considers both concurrency

and system resources when it is choosing which resource types to lock.

SQL Server might irst acquire ine-grained locks (such as row or page locks), and in certain circum-

stances, try to escalate the ine-grained locks to more coarse-grained locks (such as table locks). For
example, lock escalation is triggered when a single statement acquires at least 5,000 locks, and then

for every 1,250 new locks, if previous attempts at lock escalation were unsuccessful.

In SQL Server 2008 and SQL Server 2012, you can set a table option called LOCK_ESCALATION by

using the ALTER TABLE statement to control the way lock escalation behaves. You can disable lock es-

calation if you like, or determine whether escalation takes place at a table level (default) or a partition

level. (A table can be physically organized into multiple smaller units called partitions.)

 CHAPTER 9 Transactions and Concurrency 303

Troubleshooting Blocking
When one transaction holds a lock on a data resource and another transaction requests an incom-

patible lock on the same resource, the request is blocked and the requester enters a wait state. By

default, the blocked request keeps waiting until the blocker releases the interfering lock. Later in

this section, I’ll explain how you can deine a lock expiration time-out in your session if you want to
restrict the amount of time that a blocked request waits before it times out.

Blocking is normal in a system as long as requests are satisied within a reasonable amount of time.
However, if some requests end up waiting too long, you might need to troubleshoot the blocking

situation and see whether you can do something to prevent such long latencies. For example, long-

running transactions result in locks being held for long periods. You can try to shorten such transac-

tions, moving activities that are not supposed to be part of the unit of work outside the transaction. A

bug in the application might result in a transaction that remains open in certain circumstances. If you

identify such a bug, you can ix it and ensure that the transaction is closed in all circumstances.

This section demonstrates a blocking situation and walks you through the process of trouble-

shooting it. Note that this demonstration assumes that you’re connected to an on-premises SQL

Server instance and using the READ COMMITTED isolation level, meaning that by default SELECT

statements will request a shared lock. Remember that in SQL Database the default isolation is READ

COMMITTED SNAPSHOT, in which SELECT statements do not ask for a shared lock by default. If you

want to run the demo in SQL Database, to work under READ COMMITTED, you will need to add a

table hint called READCOMMITTEDLOCK to your SELECT statements, as in SELECT * FROM T1 WITH

(READCOMMITTEDLOCK). Also, by default, connections to SQL Database time out quite quickly. So

if a demo you’re running doesn’t work as expected, it could be that a connection involved in that

demo timed out.

Open three separate query windows in SQL Server Management Studio. (For this example, I will

refer to them as Connection 1, Connection 2, and Connection 3.) Make sure that in all of them you are

connected to the sample database TSQL2012.

USE TSQL2012;

Run the following code in Connection 1 to update a row in the Production.Products table, adding

1.00 to the current unit price of 19.00 for product 2.

BEGIN TRAN;

 UPDATE Production.Products

 SET unitprice += 1.00

 WHERE productid = 2;

To update the row, your session had to acquire an exclusive lock, and if the update was success-

ful, SQL Server granted your session the lock. Recall that exclusive locks are kept until the end of the

transaction, and because the transaction remains open, the lock is still held.

304 Microsoft SQL Server 2012 T-SQL Fundamentals

Run the following code in Connection 2 to try to query the same row (uncomment the hint WITH

(READCOMMITTEDLOCK) in this and subsequent queries if you’re running this on SQL Database).

SELECT productid, unitprice

FROM Production.Products -- WITH (READCOMMITTEDLOCK)

WHERE productid = 2;

Your session needs a shared lock to read the data, but because the row is exclusively locked by the

other session, and a shared lock is incompatible with an exclusive lock, your session is blocked and has

to wait.

Assuming that such a blocking situation happens in your system, and the blocked session ends up

waiting for a long time, you probably want to troubleshoot the situation. The rest of this section pro-

vides queries against dynamic management objects, including views and functions, that you should

run from Connection 3 when you troubleshoot the blocking situation.

To get lock information, including both locks that are currently granted to sessions and locks that

sessions are waiting for, query the dynamic management view (DMV) sys.dm_tran_locks in Connec-

tion 3.

SELECT -- use * to explore other available attributes

 request_session_id AS spid,

 resource_type AS restype,

 resource_database_id AS dbid,

 DB_NAME(resource_database_id) AS dbname,

 resource_description AS res,

 resource_associated_entity_id AS resid,

 request_mode AS mode,

 request_status AS status

FROM sys.dm_tran_locks;

When I run this code in my on-premises system (with no other query window open), I get the fol-

lowing output.

spid restype dbid dbname res resid mode status

---- -------- ---- --------------------- -------------- ----------------- ---- ------

53 DATABASE 8 TSQL2012 0 S GRANT

52 DATABASE 8 TSQL2012 0 S GRANT

51 DATABASE 8 TSQL2012 0 S GRANT

54 DATABASE 8 TSQL2012 0 S GRANT

53 PAGE 8 TSQL2012 1:127 72057594038845440 IS GRANT

52 PAGE 8 TSQL2012 1:127 72057594038845440 IX GRANT

53 OBJECT 8 TSQL2012 133575514 IS GRANT

52 OBJECT 8 TSQL2012 133575514 IX GRANT

52 KEY 8 TSQL2012 (020068e8b274) 72057594038845440 X GRANT

53 KEY 8 TSQL2012 (020068e8b274) 72057594038845440 S WAIT

Each session is identiied by a unique server process ID (SPID). You can determine your session’s

SPID by querying the function @@SPID. If you’re working with SQL Server Management Studio, you

will ind the session SPID in parentheses to the right of the logon name in the status bar at the bot-
tom of the screen, and also in the caption of the connected query window. For example, Figure 9-1

 CHAPTER 9 Transactions and Concurrency 305

shows a screen shot of SQL Server Management Studio, where the SPID 53 appears to the right of the

logon name K2\Gandalf.

FIGuRE 9-1 The SSID shown in SQL Server Management Studio.

As you can see in the output of the query against sys.dm_tran_locks, four sessions (51, 52, 53, and

54) are currently holding locks. You can see the following:

 ■ The resource type that is locked (for example, KEY for a row in an index)

 ■ The ID of the database in which it is locked, which you can translate to the database name by

using the DB_NAME function

 ■ The resource and resource ID

 ■ The lock mode

 ■ Whether the lock was granted or the session is waiting for it

Note that this is only a subset of the view’s attributes; I recommend that you explore the other at-

tributes of the view to learn what other information about locks is available.

In the output from my query, you can observe that process 53 is waiting for a shared lock on a row

in the sample database TSQL2012. (The database name is obtained with the DB_NAME function.) No-

tice that process 52 is holding an exclusive lock on the same row. You can determine this by observing

that both processes lock a row with the same res and resid values. You can igure out which table is
involved by moving upward in the lock hierarchy for either process 52 or 53 and inspecting the intent

locks on the page and the object (table) where the row resides. You can use the OBJECT_NAME func-

tion to translate the object ID (133575514 in this example) that appears under the resid attribute in

the object lock. You will ind that the table involved is Production.Product.

306 Microsoft SQL Server 2012 T-SQL Fundamentals

The sys.dm_tran_locks view only gives you information about the IDs of the processes involved in

the blocking chain and nothing else. To get information about the connections associated with the

processes involved in the blocking chain, query a view called sys.dm_exec_connections, and ilter only
the SPIDs that are involved.

SELECT -- use * to explore

 session_id AS spid,

 connect_time,

 last_read,

 last_write,

 most_recent_sql_handle

FROM sys.dm_exec_connections

WHERE session_id IN(52, 53);

Note that the process IDs that were involved in the blocking chain in my system were 52 and 53.

Depending on what else you are doing in your system, you might get different process IDs. When you

run the queries that I demonstrate here in your system, make sure that you substitute the process IDs

with those you ind involved in your blocking chain.

This query returns the following output (split into several parts for display purposes here).

spid connect_time last_read

------ ------------------------- -----------------------

52 2012-06-25 15:20:03.360 2012-06-25 15:20:15.750

53 2012-06-25 15:20:07.300 2012-06-25 15:20:20.950

spid last_write most_recent_sql_handle

------ ------------------------- --

52 2012-06-25 15:20:15.817 0x01000800DE2DB71FB0936F05000000000000000000000000

53 2012-06-25 15:20:07.327 0x0200000063FC7D052E09844778CDD615CFE7A2D1FB411802

The information that this query gives you about the connections includes:

 ■ The time they connected.

 ■ The time of their last read and write.

 ■ A binary value holding a handle to the most recent SQL batch run by the connection. You

provide this handle as an input parameter to a table function called sys.dm_exec_sql_text,

and the function returns the batch of code represented by the handle. You can query the

table function passing the binary handle explicitly, but you will probably ind it more conve-

nient to use the APPLY table operator described in Chapter 5, “Table Expressions,” to apply
the table function to each connection row like this (run in Connection 3).

SELECT session_id, text

FROM sys.dm_exec_connections

 CROSS APPLY sys.dm_exec_sql_text(most_recent_sql_handle) AS ST

WHERE session_id IN(52, 53);

When I run this query, I get the following output, showing the last batch of code invoked by each

connection involved in the blocking chain.

 CHAPTER 9 Transactions and Concurrency 307

session_id text

----------- -------------------------------------

52 BEGIN TRAN;

 UPDATE Production.Products

 SET unitprice += 1.00

 WHERE productid = 2;

53 (@1 tinyint)

 SELECT [productid],[unitprice]

 FROM [Production].[Products]

 WHERE [productid]=@1

The blocked process—53—shows the query that is waiting because that’s the last thing that the

process ran. As for the blocker, in this example, you can see the statement that caused the problem,

but keep in mind that the blocker might continue working and that the last thing you see in the code

isn’t necessarily the statement that caused the trouble.

You can also ind a lot of useful information about the sessions involved in a blocking situation in
the DMV sys.dm_exec_sessions. The following query returns only a small subset of the attributes avail-

able about those sessions.

SELECT -- use * to explore

 session_id AS spid,

 login_time,

 host_name,

 program_name,

 login_name,

 nt_user_name,

 last_request_start_time,

 last_request_end_time

FROM sys.dm_exec_sessions

WHERE session_id IN(52, 53);

This query returns the following output in this example, split here into several parts.

spid login_time host_name

---- ------------------------- ---------

52 2012-06-25 15:20:03.407 K2

53 2012-06-25 15:20:07.303 K2

spid program_name login_name

------ -- ---------------

52 Microsoft SQL Server Management Studio - Query K2\Gandalf

53 Microsoft SQL Server Management Studio - Query K2\Gandalf

spid nt_user_name last_request_start_time last_request_end_time

------ -------------- ------------------------- -----------------------

52 Gandalf 2012-06-25 15:20:15.703 2012-06-25 15:20:15.750

53 Gandalf 2012-06-25 15:20:20.693 2012-06-25 15:20:07.320

This output contains information such as the session’s logon time, host name, program name, log on

name, Windows NT user name, the time that the last request started, and the time that the last request

ended. This kind of information gives you a good idea of what those sessions are doing.

308 Microsoft SQL Server 2012 T-SQL Fundamentals

Another DMV that you will probably ind very useful for troubleshooting blocking situations is
sys.dm_exec_requests. This view has a row for each active request, including blocked requests. In fact,

you can easily isolate blocked requests because the attribute blocking_session_id is greater than zero.

For example, the following query ilters only blocked requests.

SELECT -- use * to explore

 session_id AS spid,

 blocking_session_id,

 command,

 sql_handle,

 database_id,

 wait_type,

 wait_time,

 wait_resource

FROM sys.dm_exec_requests

WHERE blocking_session_id > 0;

This query returns the following output, split across several lines.

spid blocking_session_id command

------ --------------------- -------

53 52 SELECT

spid sql_handle database_id

------ -- -----------

53 0x0200000063FC7D052E09844778CDD615CFE7A2D1FB411802 8

spid wait_type wait_time wait_resource

------ ----------- ----------- ---------------------------------------

53 LCK_M_S 1383760 KEY: 8:72057594038845440 (020068e8b274)

You can easily identify the sessions that participate in the blocking chain, the resource in dispute,

how long the blocked session is waiting in milliseconds, and more.

If you need to terminate the blocker—for example, if you realize that as a result of a bug in the

application the transaction remained open and nothing in the application can close it—you can do

so by using the KILL <spid> command. (Don’t do so yet.) Note that at the date of this writing, the KILL

command is not available in SQL Database.

Earlier, I mentioned that by default the session has no lock timeout set. If you want to restrict the

amount of time your session waits for a lock, you can set a session option called LOCK_TIMEOUT. You

specify a value in milliseconds—such as 5000 for 5 seconds, 0 for an immediate timeout, and -1 for no

timeout (which is the default). To see how this option works, irst stop the query in Connection 2 by
choosing Cancel Executing Query from the Query menu (or by using Alt+Break). Then run the follow-

ing code to set the lock timeout to ive seconds, and run the query again.

SET LOCK_TIMEOUT 5000;

SELECT productid, unitprice

FROM Production.Products -- WITH (READCOMMITTEDLOCK)

WHERE productid = 2;

 CHAPTER 9 Transactions and Concurrency 309

The query is still blocked because Connection 1 hasn’t yet ended the update transaction, but if

after 5 seconds the lock request is not satisied, SQL Server terminates the query and you get the fol-
lowing error.

Msg 1222, Level 16, State 51, Line 3

Lock request time out period exceeded.

Note that lock timeouts do not roll back transactions.

To remove the lock timeout value, set it back to the default (indeinite), and issue the query again,
run the following code in Connection 2.

SET LOCK_TIMEOUT -1;

SELECT productid, unitprice

FROM Production.Products -- WITH (READCOMMITTEDLOCK)

WHERE productid = 2;

To terminate the update transaction in Connection 1, run the following code from Connection 3

(assuming you’re connected to an on-premises SQL Server instance).

KILL 52;

This statement causes a rollback of the transaction in Connection 1, meaning that the price change

of product 2 from 19.00 to 20.00 is undone, and the exclusive lock is released. Go to Connection 2.

Notice that you get the data after the change is undone—namely, before the price change.

productid unitprice

----------- ---------------------

2 19.00

Isolation Levels

Isolation levels determine the behavior of concurrent users who read or write data. A reader is any

statement that selects data, using a shared lock by default. A writer is any statement that makes a

modiication to a table and requires an exclusive lock. You cannot control the way writers behave in
terms of the locks that they acquire and the duration of the locks, but you can control the way read-

ers behave. Also, as a result of controlling the behavior of readers, you can have an implicit inluence
on the behavior of writers. You do so by setting the isolation level, either at the session level with a

session option or at the query level with a table hint.

SQL Server supports four traditional isolation levels that are based on pessimistic concurrency

control (locking): READ UNCOMMITTED, READ COMMITTED (the default in on-premises SQL Server

instances), REPEATABLE READ, and SERIALIZABLE. SQL Server also supports two isolation levels that are

based on optimistic concurrency control (row versioning): SNAPSHOT and READ COMMITTED SNAP-

SHOT (the default in SQL Database). SNAPSHOT and READ COMMITTED SNAPSHOT are in a sense the

optimistic-concurrency-based counterparts of READ COMMITTED and SERIALIZABLE, respectively.

310 Microsoft SQL Server 2012 T-SQL Fundamentals

Note that some texts refer to READ COMMITTED and READ COMMITTED SNAPSHOT as one isola-

tion level with two different semantic treatments.

You can set the isolation level of the whole session by using the following command.

SET TRANSACTION ISOLATION LEVEL <isolation name>;

You can use a table hint to set the isolation level of a query.

SELECT ... FROM <table> WITH (<isolationname>);

Note that with the session option, you specify a space between the words in case the name of the

isolation level is made of more than one word, such as REPEATABLE READ. With the query hint, you

don’t specify a space between the words—for example, WITH (REPEATABLEREAD). Also, some of the

isolation level names used as table hints have synonyms. For example, NOLOCK is the equivalent of

specifying READUNCOMMITTED, and HOLDLOCK is the equivalent of specifying SERIALIZABLE.

The default isolation level in an on-premises SQL Server instance is READ COMMITTED (based on

locking). The default in SQL Database is READ COMMITTED SNAPSHOT (based on row versioning).

If you choose to override the default isolation level, your choice affects both the concurrency of the

database users and the consistency they get from the data.

With the irst four isolation levels, the higher the isolation level, the tougher the locks that readers
request and the longer their duration; therefore, the higher the isolation level, the higher the consis-

tency and the lower the concurrency. The converse is also true, of course.

With the two snapshot-based isolation levels, SQL Server is able to store previous committed ver-

sions of rows in tempdb. Readers do not request shared locks; instead, if the current version of the

rows is not what they are supposed to see, SQL Server provides them with an older version.

The following sections describe each of the six supported isolation levels and demonstrate their

behavior.

The READ UNCOMMITTED Isolation Level
READ UNCOMMITTED is the lowest available isolation level. In this isolation level, a reader doesn’t

ask for a shared lock. A reader that doesn’t ask for a shared lock can never be in conlict with a writer
that is holding an exclusive lock. This means that the reader can read uncommitted changes (also

known as dirty reads). It also means that the reader won’t interfere with a writer that asks for an ex-

clusive lock. In other words, a writer can change data while a reader that is running under the READ

UNCOMMITTED isolation level reads data.

To see how an uncommitted read (dirty read) works, open two query windows (I will refer to them

as Connection 1 and Connection 2). Make sure that in all connections your database context is that of

the sample database TSQL2012.

Run the following code in Connection 1 to open a transaction, update the unit price of product 2

by adding 1.00 to its current price (19.00), and then query the product’s row.

 CHAPTER 9 Transactions and Concurrency 311

BEGIN TRAN;

 UPDATE Production.Products

 SET unitprice += 1.00

 WHERE productid = 2;

 SELECT productid, unitprice

 FROM Production.Products

 WHERE productid = 2;

Note that the transaction remains open, meaning that the product’s row is locked exclusively by

Connection 1. The code in Connection 1 returns the following output showing the product’s new

price.

productid unitprice

----------- ---------------------

2 20.00

In Connection 2, run the following code to set the isolation level to READ UNCOMMITTED and

query the row for product 2.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;

SELECT productid, unitprice

FROM Production.Products

WHERE productid = 2;

Because the query did not request a shared lock, it was not in conlict with the other transaction.
This query returned the state of the row after the change, even though the change was not committed.

productid unitprice

----------- ---------------------

2 20.00

Keep in mind that Connection 1 might apply further changes to the row later in the transaction

or even roll back at some point. For example, run the following code in Connection 1 to roll back the

transaction.

ROLLBACK TRAN;

This rollback undoes the update of product 2, changing its price back to 19.00. The value 20.00

that the reader got was never committed. That’s an example of a dirty read.

The READ COMMITTED Isolation Level
If you want to prevent readers from reading uncommitted changes, you need to use a stronger isola-

tion level. The lowest isolation level that prevents dirty reads is READ COMMITTED, which is also the

default isolation level in an on-premises SQL Server installation. As the name indicates, this isolation

level allows readers to read only committed changes. It prevents uncommitted reads by requiring a

reader to obtain a shared lock. This means that if a writer is holding an exclusive lock, the reader’s

312 Microsoft SQL Server 2012 T-SQL Fundamentals

shared lock request will be in conlict with the writer, and it has to wait. As soon as the writer commits
the transaction, the reader can get its shared lock, but what it reads are necessarily only committed

changes.

The following example demonstrates that, in this isolation level, a reader can only read committed

changes.

Run the following code in Connection 1 to open a transaction, update the price of product 2, and

query the row to show the new price.

BEGIN TRAN;

 UPDATE Production.Products

 SET unitprice += 1.00

 WHERE productid = 2;

 SELECT productid, unitprice

 FROM Production.Products

 WHERE productid = 2;

This code returns the following output.

productid unitprice

----------- ---------------------

2 20.00

Connection 1 now locks the row for product 2 exclusively.

Run the following code in Connection 2 to set the session’s isolation level to READ COMMITTED

and query the row for product 2 (remember to uncomment the hint in SQL Database to use READ

 COMMITTED instead of READ COMMITTED SNAPSHOT).

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

SELECT productid, unitprice

FROM Production.Products -- WITH (READCOMMITTEDLOCK)

WHERE productid = 2;

Keep in mind that this isolation level is the default, so unless you previously changed the session’s

isolation level, you don’t need to set it explicitly. The SELECT statement is currently blocked because

it needs a shared lock to be able to read, and this shared lock request is in conlict with the exclusive
lock held by the writer in Connection 1.

Next, run the following code in Connection 1 to commit the transaction.

COMMIT TRAN;

Now go to Connection 2 and notice that you get the following output.

productid unitprice

----------- ---------------------

2 20.00

 CHAPTER 9 Transactions and Concurrency 313

Unlike in READ UNCOMMITTED, in the READ COMMITTED isolation level, you don’t get dirty

reads. Instead, you can only read committed changes.

In terms of the duration of locks, in the READ COMMITTED isolation level, a reader only holds the

shared lock until it is done with the resource. It doesn’t keep the lock until the end of the transaction;

in fact, it doesn’t even keep the lock until the end of the statement. This means that in between two

reads of the same data resource in the same transaction, no lock is held on the resource. Therefore,

another transaction can modify the resource in between those two reads, and the reader might get

different values in each read. This phenomenon is called non-repeatable reads or inconsistent analy-

sis. For many applications, this phenomenon is acceptable, but for some it isn’t.

When you are done, run the following code for cleanup in any of the open connections.

UPDATE Production.Products

 SET unitprice = 19.00

WHERE productid = 2;

The REPEATABLE READ Isolation Level
If you want to ensure that no one can change values in between reads that take place in the same

transaction, you need to move up in the isolation levels to REPEATABLE READ. In this isolation level,

not only does a reader need a shared lock to be able to read, but it also holds the lock until the

end of the transaction. This means that as soon as the reader has acquired a shared lock on a data

resource to read it, no one can obtain an exclusive lock to modify that resource until the reader ends

the transaction. This way, you’re guaranteed to get repeatable reads, or consistent analysis.

The following example demonstrates getting repeatable reads. Run the following code in Connec-

tion 1 to set the session’s isolation level to REPEATABLE READ, open a transaction, and read the row

for product 2.

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

BEGIN TRAN;

 SELECT productid, unitprice

 FROM Production.Products

 WHERE productid = 2;

This code returns the following output showing the current price of product 2.

productid unitprice

----------- ---------------------

2 19.00

Connection 1 still holds a shared lock on the row for product 2 because in REPEATABLE READ,

shared locks are held until the end of the transaction. Run the following code from Connection 2 to

try to modify the row for product 2.

UPDATE Production.Products

 SET unitprice += 1.00

WHERE productid = 2;

314 Microsoft SQL Server 2012 T-SQL Fundamentals

Notice that the attempt is blocked because the modiier’s request for an exclusive lock is in conlict
with the reader’s granted shared lock. If the reader was running under the READ UNCOMMITTED or

READ COMMITTED isolation level, it wouldn’t have held the shared lock at this point, and the attempt

to modify the row would have been successful.

Back in Connection 1, run the following code to read the row for product 2 a second time and

commit the transaction.

 SELECT productid, unitprice

 FROM Production.Products

 WHERE productid = 2;

COMMIT TRAN;

This code returns the following output.

productid unitprice

----------- ---------------------

2 19.00

Notice that the second read got the same unit price for product 2 as the irst read. Now that the
reader’s transaction has been committed and the shared lock is released, the modiier in Connection 2
can obtain the exclusive lock it was waiting for and update the row.

Another phenomenon prevented by REPEATABLE READ but not by lower isolation levels is called

a lost update. A lost update happens when two transactions read a value, make calculations based on

what they read, and then update the value. Because in isolation levels lower than REPEATABLE READ

no lock is held on the resource after the read, both transactions can update the value, and whichever

transaction updates the value last “wins,” overwriting the other transaction’s update. In REPEATABLE

READ, both sides keep their shared locks after the irst read, so neither can acquire an exclusive lock
later in order to update. The situation results in a deadlock, and the update conlict is prevented. I’ll
provide more details on deadlocks later in this chapter, in the “Deadlocks” section.

When you’re done, run the following code for cleanup.

UPDATE Production.Products

 SET unitprice = 19.00

WHERE productid = 2;

The SERIALIZABLE Isolation Level
Running under the REPEATABLE READ isolation level, readers keep shared locks until the end of the

transaction. Therefore, you are guaranteed to get a repeatable read of the rows that you read the irst
time in the transaction. However, your transaction locks resources (for example, rows) that the query

found the irst time it ran, not rows that weren’t there when the query ran. Therefore, a second read
in the same transaction might return new rows as well. Those new rows are called phantoms, and such

reads are called phantom reads. This happens if, in between the reads, another transaction adds new

rows that qualify for the reader’s query ilter.

 CHAPTER 9 Transactions and Concurrency 315

To prevent phantom reads, you need to move up in the isolation levels to SERIALIZABLE. For the

most part, the SERIALIZABLE isolation level behaves similarly to REPEATABLE READ: namely, it requires

a reader to obtain a shared lock to be able to read, and keeps the lock until the end of the transaction.

But the SERIALIZABLE isolation level adds another facet—logically, this isolation level causes a reader

to lock the whole range of keys that qualify for the query’s ilter. This means that the reader locks not
only the existing rows that qualify for the query’s ilter, but also future ones. Or, more accurately, it
blocks attempts made by other transactions to add rows that qualify for the reader’s query ilter.

The following example demonstrates that the SERIALIZABLE isolation level prevents phantom

reads. Run the following code in Connection 1 to set the transaction isolation level to SERIALIZABLE,

open a transaction, and query all products with category 1.

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

BEGIN TRAN

 SELECT productid, productname, categoryid, unitprice

 FROM Production.Products

 WHERE categoryid = 1;

You get the following output, showing 12 products in category 1.

productid productname categoryid unitprice

----------- -------------- ----------- ---------------------

1 Product HHYDP 1 18.00

2 Product RECZE 1 19.00

24 Product QOGNU 1 4.50

34 Product SWNJY 1 14.00

35 Product NEVTJ 1 18.00

38 Product QDOMO 1 263.50

39 Product LSOFL 1 18.00

43 Product ZZZHR 1 46.00

67 Product XLXQF 1 14.00

70 Product TOONT 1 15.00

75 Product BWRLG 1 7.75

76 Product JYGFE 1 18.00

(12 row(s) affected)

From Connection 2, run the following code in an attempt to insert a new product with category 1.

INSERT INTO Production.Products

 (productname, supplierid, categoryid,

 unitprice, discontinued)

 VALUES('Product ABCDE', 1, 1, 20.00, 0);

In all isolation levels that are lower than SERIALIZABLE, such an attempt would have been success-

ful. In the SERIALIZABLE isolation level, the attempt is blocked.

316 Microsoft SQL Server 2012 T-SQL Fundamentals

Back in Connection 1, run the following code to query products with category 1 a second time and

commit the transaction.

 SELECT productid, productname, categoryid, unitprice

 FROM Production.Products

 WHERE categoryid = 1;

COMMIT TRAN;

You get the same output as before, with no phantoms. Now that the reader’s transaction is com-

mitted, and the shared key-range lock is released, the modiier in Connection 2 can obtain the exclu-

sive lock it was waiting for and insert the row.

When you’re done, run the following code for cleanup.

DELETE FROM Production.Products

WHERE productid > 77;

Run the following code in all open connections to set the isolation level back to the default.

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

Isolation Levels Based on row Versioning
With SQL Server, you can store previous versions of committed rows in tempdb. SQL Server sup-

ports two isolation levels called SNAPSHOT and READ COMMITTED SNAPSHOT based on this

row-versioning technology. The SNAPSHOT isolation level is logically similar to the SERIALIZABLE

isolation level in terms of the types of consistency problems that can or cannot happen; the READ

COMMITTED SNAPSHOT isolation level is similar to the READ COMMITTED isolation level. How-

ever, readers using isolation levels based on row versioning do not issue shared locks, so they don’t

wait when the requested data is exclusively locked. Readers still get levels of consistency similar to

SERIALIZABLE and READ COMMITTED. SQL Server provides readers with an older version of the

row if the current version is not the one they are supposed to see.

Note that if you enable any of the snapshot-based isolation levels (which are enabled in SQL

Database by default), the DELETE and UPDATE statements need to copy the version of the row before

the change to tempdb; INSERT statements don’t need to be versioned in tempdb because no earlier

version of the row exists. But it is important to be aware that enabling any of the isolation levels that

are based on row versioning may have a negative impact on the performance of data updates and

deletes. The performance of readers usually improves because they do not acquire shared locks and

don’t need to wait when data is exclusively locked or its version is not the expected one. The next sec-

tions cover snapshot-based isolation levels and demonstrate their behavior.

 CHAPTER 9 Transactions and Concurrency 317

The SNAPSHOT Isolation Level

Under the SNAPSHOT isolation level, when the reader is reading data, it is guaranteed to get the last

committed version of the row that was available when the transaction started. This means that you

are guaranteed to get committed reads and repeatable reads, and also guaranteed not to get phantom

reads—just as in the SERIALIZABLE isolation level. But instead of using shared locks, this isolation

level relies on row versioning. As mentioned, snapshot isolation levels incur a performance penalty,

mainly when updating and deleting data, regardless of whether or not the modiication is executed
from a session running under one of the snapshot-based isolation levels. For this reason, to allow your

transactions to work with the SNAPSHOT isolation level in an on-premises SQL Server instance (this

behavior is enabled by default in SQL Database), you need to irst enable the option at the database
level by running the following code in any open query window.

ALTER DATABASE TSQL2012 SET ALLOW_SNAPSHOT_ISOLATION ON;

The following example demonstrates the behavior of the SNAPSHOT isolation level. Run the fol-

lowing code from Connection 1 to open a transaction, update the price of product 2 by adding 1.00

to its current price of 19.00, and query the product’s row to show the new price.

BEGIN TRAN;

 UPDATE Production.Products

 SET unitprice += 1.00

 WHERE productid = 2;

 SELECT productid, unitprice

 FROM Production.Products

 WHERE productid = 2;

Here the output of this code shows that the product’s price was updated to 20.00.

productid unitprice

----------- ---------------------

2 20.00

Note that even if the transaction in Connection 1 runs under the READ COMMITTED isolation

level, SQL Server has to copy the version of the row before the update (with the price of 19.00) to

tempdb. That’s because the SNAPSHOT isolation level is enabled at the database level. If someone

begins a transaction using the SNAPSHOT isolation level, they can request the version before the up-

date. For example, run the following code from Connection 2 to set the isolation level to SNAPSHOT,

open a transaction, and query the row for product 2.

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

BEGIN TRAN;

 SELECT productid, unitprice

 FROM Production.Products

 WHERE productid = 2;

318 Microsoft SQL Server 2012 T-SQL Fundamentals

If your transaction had been under the SERIALIZABLE isolation level, the query would have been

blocked. But because it is running under SNAPSHOT, you get the last committed version of the row

that was available when the transaction started. That version (with the price of 19.00) is not the cur-

rent version (with the price of 20.00), so SQL Server pulls the appropriate version from the version

store, and the code returns the following output.

productid unitprice

----------- ---------------------

2 19.00

Go back to Connection 1 and commit the transaction that modiied the row.

COMMIT TRAN;

At this point, the current version of the row with the price of 20.00 is a committed version. How-

ever, if you read the data again in Connection 2, you should still get the last committed version of the

row that was available when the transaction started (with a price of 19.00). Run the following code in

Connection 2 to read the data again, and then commit the transaction.

 SELECT productid, unitprice

 FROM Production.Products

 WHERE productid = 2;

COMMIT TRAN;

As expected, you get the following output with a price of 19.00.

productid unitprice

----------- ---------------------

2 19.00

Run the following code in Connection 2 to open a new transaction, query the data, and commit

the transaction.

BEGIN TRAN

 SELECT productid, unitprice

 FROM Production.Products

 WHERE productid = 2;

COMMIT TRAN;

This time, the last committed version of the row that was available when the transaction started is

the one with a price of 20.00. Therefore, you get the following output.

productid unitprice

----------- ---------------------

2 20.00

Now that no transaction needs the version of the row with the price of 19.00, a cleanup thread that

runs once a minute can remove it from tempdb the next time it runs.

 CHAPTER 9 Transactions and Concurrency 319

When you’re done, run the following code for cleanup.

UPDATE Production.Products

 SET unitprice = 19.00

WHERE productid = 2;

Conlict Detection
The SNAPSHOT isolation level prevents update conlicts, but unlike the REPEATABLE READ and

SERIALIZABLE isolation levels that do so by generating a deadlock, the SNAPSHOT isolation level

fails the transaction, indicating that an update conlict was detected. The SNAPSHOT isolation

level can detect update conlicts by examining the version store. It can igure out whether another
transaction modiied the data between a read and a write that took place in your transaction.

The following example demonstrates a scenario with no update conlict, followed by an example of
a scenario with an update conlict.

Run the following code in Connection 1 to set the transaction isolation level to SNAPSHOT, open a

transaction, and read the row for product 2.

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

BEGIN TRAN;

 SELECT productid, unitprice

 FROM Production.Products

 WHERE productid = 2;

You get the following output.

productid unitprice

----------- ---------------------

2 19.00

Assuming you have made some calculations based on what you read, run the following code while

still in Connection 1 to update the price of the product you queried previously to 20.00, and commit

the transaction.

 UPDATE Production.Products

 SET unitprice = 20.00

 WHERE productid = 2;

COMMIT TRAN;

No other transaction modiied the row between your read, calculation, and write; therefore, there
was no update conlict and SQL Server allowed the update to take place.

Run the following code to modify the price of product 2 back to 19.00.

UPDATE Production.Products

 SET unitprice = 19.00

WHERE productid = 2;

320 Microsoft SQL Server 2012 T-SQL Fundamentals

Next, run the following code in Connection 1, again, to open a transaction, and read the row for

product 2.

BEGIN TRAN;

 SELECT productid, unitprice

 FROM Production.Products

 WHERE productid = 2;

You get the following output, indicating that the price of the product is 19.00.

productid unitprice

----------- ---------------------

2 19.00

This time, run the following code in Connection 2 to update the price of product 2 to 25.00.

UPDATE Production.Products

 SET unitprice = 25.00

WHERE productid = 2;

Assume that you have made calculations in Connection 1 based on the price of 19.00 that you

read. Based on your calculations, try to update the price of the product to 20.00 in Connection 1.

 UPDATE Production.Products

 SET unitprice = 20.00

 WHERE productid = 2;

SQL Server detected that this time another transaction modiied the data between your read and
write; therefore, it fails your transaction with the following error.

Msg 3960, Level 16, State 2, Line 1

Snapshot isolation transaction aborted due to update conflict. You cannot use snapshot isolation

to access table 'Production.Products' directly or indirectly in database 'TSQL2012' to update,

delete, or insert the row that has been modified or deleted by another transaction. Retry the

transaction or change the isolation level for the update/delete statement.

Of course, you can use error handling code to retry the whole transaction when an update conlict
is detected.

When you’re done, run the following code for cleanup.

UPDATE Production.Products

 SET unitprice = 19.00

WHERE productid = 2;

Close all connections. Note that if all connections aren’t closed, your example results might not

match those in the chapter examples.

 CHAPTER 9 Transactions and Concurrency 321

The READ COMMITTED SNAPSHOT Isolation Level

The READ COMMITTED SNAPSHOT isolation level is also based on row versioning. It differs from

the SNAPSHOT isolation level in that instead of providing a reader with the last committed version

of the row that was available when the transaction started, a reader gets the last committed ver-

sion of the row that was available when the statement started. The READ COMMITTED SNAPSHOT

isolation level also does not detect update conlicts. This results in logical behavior very similar to
the READ COMMITTED isolation level, except that readers do not acquire shared locks and do not

wait when the requested resource is exclusively locked.

To enable the use of the READ COMMITTED SNAPSHOT isolation level in an on-premises SQL Server

database (the behavior is enabled by default in SQL Database), you need to turn on a different data-

base lag than the one required to enable the SNAPSHOT isolation level. Run the following code to

enable the use of the READ COMMITTED SNAPSHOT isolation level in the TSQL2012 database.

ALTER DATABASE TSQL2012 SET READ_COMMITTED_SNAPSHOT ON;

Note that for this code to run successfully, this connection must be the only connection open to

the TSQL2012 database.

An interesting aspect of enabling this database lag is that unlike with the SNAPSHOT isolation

level, this lag actually changes the meaning, or semantics, of the READ COMMITTED isolation level

to READ COMMITTED SNAPSHOT. This means that when this database lag is turned on, unless you
explicitly change the session’s isolation level, READ COMMITTED SNAPSHOT is the default.

For a demonstration of using the READ COMMITTED SNAPSHOT isolation level, open two connec-

tions. Run the following code in Connection 1 to open a transaction, update the row for product 2,

and read the row, leaving the transaction open.

USE TSQL2012;

BEGIN TRAN;

 UPDATE Production.Products

 SET unitprice += 1.00

 WHERE productid = 2;

 SELECT productid, unitprice

 FROM Production.Products

 WHERE productid = 2;

You get the following output, indicating that the product’s price was changed to 20.00.

productid unitprice

----------- ---------------------

2 20.00

322 Microsoft SQL Server 2012 T-SQL Fundamentals

In Connection 2, open a transaction and read the row for product 2, leaving the transaction open.

BEGIN TRAN;

 SELECT productid, unitprice

 FROM Production.Products

 WHERE productid = 2;

You get the last committed version of the row that was available when the statement started

(19.00).

productid unitprice

----------- ---------------------

2 19.00

Run the following code in Connection 1 to commit the transaction.

COMMIT TRAN;

Now run the code in Connection 2 to read the row for product 2 again, and commit the transaction.

 SELECT productid, unitprice

 FROM Production.Products

 WHERE productid = 2;

COMMIT TRAN;

If this code had been running under the SNAPSHOT isolation level, you would have gotten a price

of 19.00; however, because the code is running under the READ COMMITTED SNAPSHOT isolation

level, you get the last committed version of the row that was available when the statement started

(20.00) and not when the transaction started (19.00).

productid unitprice

----------- ---------------------

2 20.00

Recall that this phenomenon is called a non-repeatable read, or inconsistent analysis.

When you’re done, run the following code for cleanup.

UPDATE Production.Products

 SET unitprice = 19.00

WHERE productid = 2;

Close all connections. If you ran this demo in an on-premises SQL Server instance, open a new con-

nection and run the following code to disable the isolation levels that are based on row versioning in

the TSQL2012 database.

ALTER DATABASE TSQL2012 SET ALLOW_SNAPSHOT_ISOLATION OFF;

ALTER DATABASE TSQL2012 SET READ_COMMITTED_SNAPSHOT OFF;

 CHAPTER 9 Transactions and Concurrency 323

Summary of Isolation Levels
Table 9-3 provides a summary of the logical consistency problems that can or cannot happen in each

isolation level and indicates whether the isolation level detects update conlicts for you and whether
the isolation level uses row versioning.

TABLE 9-3 Summary of Isolation Levels

Isolation Level

Allows
uncommitted
Reads?

Allows
Non-
repeatable
Reads?

Allows
Lost
updates?

Allows
Phantom
Reads?

Detects
update
Conlicts?

uses
Row
Versioning?

READ UNCOMMITTED Yes Yes Yes Yes No No

READ COMMITTED No Yes Yes Yes No No

READ COMMITTED SNAPSHOT No Yes Yes Yes No Yes

REPEATABLE READ No No No Yes No No

SERIALIZABLE No No No No No No

SNAPSHOT No No No No Yes Yes

Deadlocks

A deadlock is a situation in which two or more processes block each other. An example of a two-

process deadlock is when process A blocks process B and process B blocks process A. An example of

a deadlock involving more than two processes is when process A blocks process B, process B blocks

process C, and process C blocks process A. In either case, SQL Server detects the deadlock and inter-

venes by terminating one of the transactions. If SQL Server does not intervene, the processes involved

would remain deadlocked forever.

Unless otherwise speciied, SQL Server chooses to terminate the transaction that did the least work,
because it is cheapest to roll that transaction’s work back. However, SQL Server allows you to set a ses-

sion option called DEADLOCK_PRIORITY to one of 21 values in the range –10 through 10. The process

with the lowest deadlock priority is chosen as the deadlock “victim” regardless of how much work is
done; in the event of a tie, the amount of work is used as a tiebreaker.

The following example demonstrates a simple deadlock. Then I’ll explain how you can mitigate

deadlock occurrences in the system.

Open two connections and make sure that you are connected to the TSQL2012 database in

both. Run the following code in Connection 1 to open a new transaction, update a row in the

Production.Products table for product 2, and leave the transaction open.

USE TSQL2012;

BEGIN TRAN;

 UPDATE Production.Products

 SET unitprice += 1.00

 WHERE productid = 2;

324 Microsoft SQL Server 2012 T-SQL Fundamentals

Run the following code in Connection 2 to open a new transaction, update a row in the

Sales.OrderDetails table for product 2, and leave the transaction open.

BEGIN TRAN;

 UPDATE Sales.OrderDetails

 SET unitprice += 1.00

 WHERE productid = 2;

At this point, the transaction in Connection 1 is holding an exclusive lock on the row for product 2 in

the Production.Products table, and the transaction in Connection 2 is now holding locks on the rows

for product 2 in the Sales.OrderDetails table. Both queries succeed, and no blocking has occurred yet.

Run the following code in Connection 1 to attempt to query the rows for product 2 in the

Sales.OrderDetails table and commit the transaction (remember to uncomment the hint if you

are running the transaction against SQL Database).

 SELECT orderid, productid, unitprice

 FROM Sales.OrderDetails -- WITH (READCOMMITTEDLOCK)

 WHERE productid = 2;

COMMIT TRAN;

The transaction in Connection 1 needs a shared lock to be able to perform its read. Because the

other transaction holds an exclusive lock on the same resource, the transaction in Connection 1 is

blocked. At this point, you have a blocking situation, not yet a deadlock. Of course, a chance remains

that Connection 2 will end the transaction, releasing all locks and allowing the transaction in Connec-

tion 1 to get the requested locks.

Next, run the following code in Connection 2 to attempt to query the row for product 2 in the

Product.Production table and commit the transaction.

 SELECT productid, unitprice

 FROM Production.Products -- WITH (READCOMMITTEDLOCK)

 WHERE productid = 2;

COMMIT TRAN;

To be able to perform its read, the transaction in Connection 2 needs a shared lock on the row

for product 2 in the Product.Production table, so this request is now in conlict with the exclusive lock
held on the same resource by Connection 1. Each of the processes blocks the other—you have a

deadlock. SQL Server identiies the deadlock (typically within a few seconds), chooses one of the two
processes as the deadlock victim, and terminates its transaction with the following error.

Msg 1205, Level 13, State 51, Line 1

Transaction (Process ID 52) was deadlocked on lock resources with another process and has been

chosen as the deadlock victim. Rerun the transaction.

 CHAPTER 9 Transactions and Concurrency 325

In this example, SQL Server chose to terminate the transaction in Connection 1 (shown here as

process ID 52). Because you didn’t set a deadlock priority and both transactions did a similar amount

of work, either transaction could have been terminated.

Deadlocks are expensive because they involve undoing work that has already been done. You can

follow a few practices to mitigate deadlock occurrences in your system.

Obviously, the longer the transactions are, the longer locks are kept, increasing the probability of

deadlocks. You should try to keep transactions as short as possible, taking activities out of the trans-

action that aren’t logically supposed to be part of the same unit of work.

A deadlock happens when transactions access resources in inverse order. For example, in the

example, Connection 1 irst accessed a row in Production.Products and then accessed a row in

Sales.OrderDetails, whereas Connection 2 irst accessed a row in Sales.OrderDetails and then

accessed a row in Production.Products. This type of deadlock can’t happen if both transactions

access resources in the same order. By swapping the order in one of the transactions, you can

prevent this type of deadlock from happening—assuming that it makes no logical difference to

your application.

The deadlock example has a real logical conlict because both sides try to access the same rows.
However, deadlocks often happen when there is no real logical conlict, because of a lack of good in-

dexing to support query ilters. For example, suppose that both statements in the transaction in Con-

nection 2 were to ilter product 5. Now that the statements in Connection 1 handle product 2 and the
statements in Connection 2 handle product 5, there shouldn’t be any conlict. However, if no indexes
on the productid column in the tables support the ilter, SQL Server has to scan (and lock) all rows in
the table. This, of course, can lead to a deadlock. In short, good index design can help mitigate the

occurrences of deadlocks that have no real logical conlict.

Another option to consider when mitigating deadlock occurrences is the choice of isolation level. The

SELECT statements in the example needed shared locks because they ran under the READ COMMITTED

isolation level. If you use the READ COMMITTED SNAPSHOT isolation level, readers will not need shared

locks, and such deadlocks that evolve due to the involvement of shared locks can be eliminated.

When you’re done, run the following code for cleanup in any connection.

UPDATE Production.Products

 SET unitprice = 19.00

WHERE productid = 2;

UPDATE Sales.OrderDetails

 SET unitprice = 19.00

WHERE productid = 2

 AND orderid >= 10500;

UPDATE Sales.OrderDetails

 SET unitprice = 15.20

WHERE productid = 2

 AND orderid < 10500;

326 Microsoft SQL Server 2012 T-SQL Fundamentals

Conclusion

This chapter introduced you to transactions and concurrency. I described what transactions are and

how SQL Server manages them. I explained how SQL Server isolates data accessed by one transaction

from inconsistent use by other transactions, and how to troubleshoot blocking scenarios. I described

how you can control the level of consistency that you get from the data by choosing an isolation

level, and the impact that your choice has on concurrency. I described four isolation levels that do not

rely on row versioning and two that do. Finally, I covered deadlocks and explained practices that you

can follow to reduce the frequency of their occurrence.

To practice what you’ve learned, perform the practice exercises.

Exercises

This section provides exercises to help you familiarize yourself with the subjects discussed in this chap-

ter. The exercises for most of the previous chapters involve requests for which you have to igure out
a solution in the form of a T-SQL query or statement. The exercises for this chapter are different. You

will be provided with instructions to follow to troubleshoot blocking and deadlock situations, and to

observe the behavior of different isolation levels. Therefore, this chapter’s exercises have no separate

“Solutions” section, as in other chapters.

For all exercises in this chapter, make sure you are connected to the TSQL2012 sample database by

running the following code.

USE TSQL2012;

Exercises 1-1 through 1-6 deal with blocking.

1-1
Open three connections in SQL Server Management Studio (the exercises will refer to them as Con-

nection 1, Connection 2, and Connection 3). Run the following code in Connection 1 to update rows

in Sales.OrderDetails.

BEGIN TRAN;

 UPDATE Sales.OrderDetails

 SET discount = 0.05

 WHERE orderid = 10249;

1-2
Run the following code in Connection 2 to query Sales.OrderDetails; Connection 2 will be blocked

(remember to uncomment the hint if you are running against SQL Database).

 CHAPTER 9 Transactions and Concurrency 327

SELECT orderid, productid, unitprice, qty, discount

FROM Sales.OrderDetails -- WITH (READCOMMITTEDLOCK)

WHERE orderid = 10249;

1-3
Run the following code in Connection 3 and identify the locks and process IDs involved in the block-

ing chain.

SELECT -- use * to explore

 request_session_id AS spid,

 resource_type AS restype,

 resource_database_id AS dbid,

 resource_description AS res,

 resource_associated_entity_id AS resid,

 request_mode AS mode,

 request_status AS status

FROM sys.dm_tran_locks;

1-4
Replace the process IDs 52 and 53 with the ones you found to be involved in the blocking chain in

the previous exercise. Run the following code to obtain connection, session, and blocking information

about the processes involved in the blocking chain.

-- Connection info:

SELECT -- use * to explore

 session_id AS spid,

 connect_time,

 last_read,

 last_write,

 most_recent_sql_handle

FROM sys.dm_exec_connections

WHERE session_id IN(52, 53);

-- Session info

SELECT -- use * to explore

 session_id AS spid,

 login_time,

 host_name,

 program_name,

 login_name,

 nt_user_name,

 last_request_start_time,

 last_request_end_time

FROM sys.dm_exec_sessions

WHERE session_id IN(52, 53);

328 Microsoft SQL Server 2012 T-SQL Fundamentals

-- Blocking

SELECT -- use * to explore

 session_id AS spid,

 blocking_session_id,

 command,

 sql_handle,

 database_id,

 wait_type,

 wait_time,

 wait_resource

FROM sys.dm_exec_requests

WHERE blocking_session_id > 0;

1-5
Run the following code to obtain the SQL text of the connections involved in the blocking chain.

SELECT session_id, text

FROM sys.dm_exec_connections

 CROSS APPLY sys.dm_exec_sql_text(most_recent_sql_handle) AS ST

WHERE session_id IN(52, 53);

1-6
Run the following code in Connection 1 to roll back the transaction.

ROLLBACK TRAN;

Observe in Connection 2 that the SELECT query returned the two order detail rows, and that those

rows were not modiied.

Remember that if you need to terminate the blocker’s transaction, you can use the KILL command.

Close all connections.

Exercises 2-1 through 2-6 deal with isolation levels.

2-1
In this exercise, you will practice using the READ UNCOMMITTED isolation level.

2-1a

Open two new connections. (This exercise will refer to them as Connection 1 and Connection 2.)

 CHAPTER 9 Transactions and Concurrency 329

2-1b

Run the following code in Connection 1 to update rows in Sales.OrderDetails and query it.

BEGIN TRAN;

 UPDATE Sales.OrderDetails

 SET discount += 0.05

 WHERE orderid = 10249;

 SELECT orderid, productid, unitprice, qty, discount

 FROM Sales.OrderDetails

 WHERE orderid = 10249;

2-1c

Run the following code in Connection 2 to set the isolation level to READ UNCOMMITTED and query

Sales.OrderDetails.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;

SELECT orderid, productid, unitprice, qty, discount

FROM Sales.OrderDetails

WHERE orderid = 10249;

Notice that you get the modiied, uncommitted version of the rows.

2-1d

Run the following code in Connection 1 to roll back the transaction.

ROLLBACK TRAN;

2-2
In this exercise, you will practice using the READ COMMITTED isolation level.

2-2a

Run the following code in Connection 1 to update rows in Sales.OrderDetails and query it.

BEGIN TRAN;

 UPDATE Sales.OrderDetails

 SET discount += 0.05

 WHERE orderid = 10249;

 SELECT orderid, productid, unitprice, qty, discount

 FROM Sales.OrderDetails

 WHERE orderid = 10249;

330 Microsoft SQL Server 2012 T-SQL Fundamentals

2-2b

Run the following code in Connection 2 to set the isolation level to READ COMMITTED and query

Sales.OrderDetails. (Remember to uncomment the hint if you are running against SQL Database.)

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

SELECT orderid, productid, unitprice, qty, discount

FROM Sales.OrderDetails -- WITH (READCOMMITTEDLOCK)

WHERE orderid = 10249;

Notice that you are now blocked.

2-2c

Run the following code in Connection 1 to commit the transaction.

COMMIT TRAN;

2-2d

Go to Connection 2 and notice that you get the modiied, committed version of the rows.

2-2e

Run the following code for cleanup.

UPDATE Sales.OrderDetails

 SET discount = 0.00

WHERE orderid = 10249;

2-3
In this exercise, you will practice using the REPEATABLE READ isolation level.

2-3a

Run the following code in Connection 1 to set the isolation level to REPEATABLE READ, open a trans-

action, and read data from Sales.OrderDetails.

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

BEGIN TRAN;

 SELECT orderid, productid, unitprice, qty, discount

 FROM Sales.OrderDetails

 WHERE orderid = 10249;

You get two rows with discount values of 0.00.

 CHAPTER 9 Transactions and Concurrency 331

2-3b

Run the following code in Connection 2 and notice that you are blocked.

UPDATE Sales.OrderDetails

 SET discount += 0.05

WHERE orderid = 10249;

2-3c

Run the following code in Connection 1 to read the data again and commit the transaction.

 SELECT orderid, productid, unitprice, qty, discount

 FROM Sales.OrderDetails

 WHERE orderid = 10249;

COMMIT TRAN;

You get the two rows with discount values of 0.00 again, giving you repeatable reads. Note that

if your code was running under a lower isolation level (such as READ UNCOMMITTED or READ

COMMITTED), the UPDATE statement wouldn’t have been blocked, and you would have gotten

non-repeatable reads.

2-3d

Go to Connection 2 and notice that the update has inished.

2-3e

Run the following code for cleanup.

UPDATE Sales.OrderDetails

 SET discount = 0.00

WHERE orderid = 10249;

2-4
In this exercise, you will practice using the SERIALIZABLE isolation level.

2-4a

Run the following code in Connection 1 to set the isolation level to SERIALIZABLE and query

Sales.OrderDetails.

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

BEGIN TRAN;

 SELECT orderid, productid, unitprice, qty, discount

 FROM Sales.OrderDetails

 WHERE orderid = 10249;

332 Microsoft SQL Server 2012 T-SQL Fundamentals

2-4b

Run the following code in Connection 2 to attempt to insert a row to Sales.OrderDetails with the same

order ID that is iltered by the previous query and notice that you are blocked.

INSERT INTO Sales.OrderDetails

 (orderid, productid, unitprice, qty, discount)

 VALUES(10249, 2, 19.00, 10, 0.00);

Note that in lower isolation levels (such as READ UNCOMMITTED, READ COMMITTED, or

REPEATABLE READ), this INSERT statement wouldn’t have been blocked.

2-4c

Run the following code in Connection 1 to query Sales.OrderDetails again and commit the transaction.

 SELECT orderid, productid, unitprice, qty, discount

 FROM Sales.OrderDetails

 WHERE orderid = 10249;

COMMIT TRAN;

You get the same result set that you got from the previous query in the same transaction, and

because the INSERT statement was blocked, you get no phantom reads.

2-4d

Go back to Connection 2 and notice that the INSERT statement has inished.

2-4e

Run the following code for cleanup.

DELETE FROM Sales.OrderDetails

WHERE orderid = 10249

 AND productid = 2;

2-4f

Run the following code in both Connection 1 and Connection 2 to set the isolation level to the

default.

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

2-5
In this exercise, you will practice using the SNAPSHOT isolation level.

 CHAPTER 9 Transactions and Concurrency 333

2-5a

If you’re doing the exercises against an on-premises SQL Server instance, run the following code to

set the SNAPSHOT isolation level in the TSQL2012 database (enabled in SQL Database by default):

ALTER DATABASE TSQL2012 SET ALLOW_SNAPSHOT_ISOLATION ON;

2-5b

Run the following code in Connection 1 to open a transaction, update rows in Sales.OrderDetails, and

query it.

BEGIN TRAN;

 UPDATE Sales.OrderDetails

 SET discount += 0.05

 WHERE orderid = 10249;

 SELECT orderid, productid, unitprice, qty, discount

 FROM Sales.OrderDetails

 WHERE orderid = 10249;

2-5c

Run the following code in Connection 2 to set the isolation level to SNAPSHOT and query

Sales.OrderDetails. Notice that you’re not blocked—instead, you get an earlier, consistent ver-

sion of the data that was available when the transaction started (with discount values of 0.00).

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

BEGIN TRAN;

 SELECT orderid, productid, unitprice, qty, discount

 FROM Sales.OrderDetails

 WHERE orderid = 10249;

2-5d

Go to Connection 1 and commit the transaction.

COMMIT TRAN;

2-5e

Go to Connection 2 and query the data again; notice that you still get discount values of 0.00.

 SELECT orderid, productid, unitprice, qty, discount

 FROM Sales.OrderDetails

 WHERE orderid = 10249;

334 Microsoft SQL Server 2012 T-SQL Fundamentals

2-5f

In Connection 2, commit the transaction and query the data again; notice that now you get discount

values of 0.05.

COMMIT TRAN;

SELECT orderid, productid, unitprice, qty, discount

FROM Sales.OrderDetails

WHERE orderid = 10249;

2-5g

Run the following code for cleanup.

UPDATE Sales.OrderDetails

 SET discount = 0.00

WHERE orderid = 10249;

Close all connections.

2-6
In this exercise, you will practice using the READ COMMITTED SNAPSHOT isolation level.

2-6a

If you are running against an on-premises SQL Server instance, turn on READ_COMMITTED_SNAPSHOT

in the TSQL2012 database (on by default in SQL Database).

ALTER DATABASE TSQL2012 SET READ_COMMITTED_SNAPSHOT ON;

2-6b

Open two new connections. (This exercise will refer to them as Connection 1 and Connection 2.)

2-6c

Run the following code in Connection 1 to open a transaction, update rows in Sales.OrderDetails, and

query it.

BEGIN TRAN;

 UPDATE Sales.OrderDetails

 SET discount += 0.05

 WHERE orderid = 10249;

 SELECT orderid, productid, unitprice, qty, discount

 FROM Sales.OrderDetails

 WHERE orderid = 10249;

 CHAPTER 9 Transactions and Concurrency 335

2-6d

Run the following code in Connection 2, which is now running under the READ COMMITTED

SNAPSHOT isolation level because the database lag READ_COMMITTED_SNAPSHOT is turned

on. Notice that you’re not blocked—instead, you get an earlier, consistent version of the data

that was available when the statement started (with discount values of 0.00).

BEGIN TRAN;

 SELECT orderid, productid, unitprice, qty, discount

 FROM Sales.OrderDetails

 WHERE orderid = 10249;

2-6e

Go to Connection 1 and commit the transaction.

COMMIT TRAN;

2-6f

Go to Connection 2, query the data again, and commit the transaction; notice that you get the new

discount values of 0.05.

 SELECT orderid, productid, unitprice, qty, discount

 FROM Sales.OrderDetails

 WHERE orderid = 10249;

COMMIT TRAN;

2-6g

Run the following code for cleanup.

UPDATE Sales.OrderDetails

 SET discount = 0.00

WHERE orderid = 10249;

Close all connections.

2-6h

If you are running against an on-premises SQL Server instance, change the database lags back to the
defaults, disabling isolation levels based on row versioning.

ALTER DATABASE TSQL2012 SET ALLOW_SNAPSHOT_ISOLATION OFF;

ALTER DATABASE TSQL2012 SET READ_COMMITTED_SNAPSHOT OFF;

Exercise 3 (steps 1 through 7) deals with deadlocks.

336 Microsoft SQL Server 2012 T-SQL Fundamentals

3-1
Open two new connections. (This exercise will refer to them as Connection 1 and Connection 2.)

3-2
Run the following code in Connection 1 to open a transaction and update the row for product 2 in

Production.Products.

BEGIN TRAN;

 UPDATE Production.Products

 SET unitprice += 1.00

 WHERE productid = 2;

3-3
Run the following code in Connection 2 to open a transaction and update the row for product 3 in

Production.Products.

BEGIN TRAN;

 UPDATE Production.Products

 SET unitprice += 1.00

 WHERE productid = 3;

3-4
Run the following code in Connection 1 to query product 3. You will be blocked. (Remember to un-

comment the hint if you are connected to SQL Database.)

 SELECT productid, unitprice

 FROM Production.Products -- WITH (READCOMMITTEDLOCK)

 WHERE productid = 3;

COMMIT TRAN;

3-5
Run the following code in Connection 2 to query product 2. You will be blocked, and a deadlock error

will be generated either in Connection 1 or Connection 2.

 SELECT productid, unitprice

 FROM Production.Products -- WITH (READCOMMITTEDLOCK)

 WHERE productid = 2;

COMMIT TRAN;

 CHAPTER 9 Transactions and Concurrency 337

3-6
Can you suggest a way to prevent this deadlock? Hint: Refer back to what you read in the “Deadlocks”
section.

3-7
Run the following code for cleanup.

UPDATE Production.Products

 SET unitprice = 19.00

WHERE productid = 2;

UPDATE Production.Products

 SET unitprice = 10.00

WHERE productid = 3;

 339

C H A P T E R 1 0

programmable Objects

This chapter provides a brief overview of programmable objects to familiarize you with the capa-

bilities of Microsoft SQL Server in this area and with the concepts involved. The chapter covers

variables; batches; low elements; cursors; temporary tables; routines such as user-deined functions,
stored procedures, and triggers; and dynamic SQL. The purpose of this chapter is to provide a high-

level overview, not to delve into technical details. Try to focus on the logical aspects and capabilities of

programmable objects rather than trying to understand all code elements and their technicalities.

Variables

Variables allow you to temporarily store data values for later use in the same batch in which they were

declared. I describe batches later in this chapter, but for now, the important thing for you to know is

that a batch is one T-SQL statement or more sent to SQL Server for execution as a single unit.

Use a DECLARE statement to declare one or more variables, and use a SET statement to assign a

value to a single variable. For example, the following code declares a variable called @i of an INT data

type and assigns it the value 10.

DECLARE @i AS INT;

SET @i = 10;

SQL Server 2008 and SQL Server 2012 support the declaration and initialization of variables in the

same statement, like this.

DECLARE @i AS INT = 10;

When you are assigning a value to a scalar variable, the value must be the result of a scalar expres-

sion. The expression can be a scalar subquery. For example, the following code declares a variable

called @empname and assigns it the result of a scalar subquery that returns the full name of the

employee with an ID of 3.

USE TSQL2012;

DECLARE @empname AS NVARCHAR(31);

SET @empname = (SELECT firstname + N' ' + lastname

 FROM HR.Employees

 WHERE empid = 3);

SELECT @empname AS empname;

340 Microsoft SQL Server 2012 T-SQL Fundamentals

This code returns the following output.

empname

Judy Lew

The SET statement can operate only on one variable at a time, so if you need to assign values to

multiple attributes, you need to use multiple SET statements. This can involve unnecessary overhead

when you need to pull multiple attribute values from the same row. For example, the following code

uses two separate SET statements to pull both the irst and the last names of the employee with the
ID of 3 to two separate variables.

DECLARE @firstname AS NVARCHAR(10), @lastname AS NVARCHAR(20);

SET @firstname = (SELECT firstname

 FROM HR.Employees

 WHERE empid = 3);

SET @lastname = (SELECT lastname

 FROM HR.Employees

 WHERE empid = 3);

SELECT @firstname AS firstname, @lastname AS lastname;

This code returns the following output.

firstname lastname

---------- ---------

Judy Lew

SQL Server also supports a nonstandard assignment SELECT statement, which allows you to query

data and assign multiple values obtained from the same row to multiple variables by using a single

statement. Here’s an example.

DECLARE @firstname AS NVARCHAR(10), @lastname AS NVARCHAR(20);

SELECT

 @firstname = firstname,

 @lastname = lastname

FROM HR.Employees

WHERE empid = 3;

SELECT @firstname AS firstname, @lastname AS lastname;

The assignment SELECT has predictable behavior when exactly one row qualiies. However, note
that if the query has more than one qualifying row, the code doesn’t fail. The assignments take place

per each qualifying row, and with each row accessed, the values from the current row overwrite the

existing values in the variables. When the assignment SELECT inishes, the values in the variables are
those from the last row that SQL Server happened to access. For example, the following assignment

SELECT has two qualifying rows.

 CHAPTER 10 Programmable Objects 341

DECLARE @empname AS NVARCHAR(31);

SELECT @empname = firstname + N' ' + lastname

FROM HR.Employees

WHERE mgrid = 2;

SELECT @empname AS empname;

The employee information that ends up in the variable after the assignment SELECT inishes de-

pends on the order in which SQL Server happens to access those rows—and you have no control over

this order. When I ran this code I got the following output.

empname

Sven Buck

The SET statement is safer than assignment SELECT because it requires you to use a scalar subque-

ry to pull data from a table. Remember that a scalar subquery fails at run time if it returns more than

one value. For example, the following code fails.

DECLARE @empname AS NVARCHAR(31);

SET @empname = (SELECT firstname + N' ' + lastname

 FROM HR.Employees

 WHERE mgrid = 2);

SELECT @empname AS empname;

Because the variable was not assigned a value, it remains NULL, which is the default for variables

that were not initialized. This code returns the following output.

Msg 512, Level 16, State 1, Line 3

Subquery returned more than 1 value. This is not permitted when the subquery follows =, !=, <,

<= , >, >= or when the subquery is used as an expression.

empname

NULL

Batches

A batch is one or more T-SQL statements sent by a client application to SQL Server for execution as

a single unit. The batch undergoes parsing (syntax checking), resolution (checking the existence of

referenced objects and columns), permissions checking, and optimization as a unit.

Don’t confuse transactions and batches. A transaction is an atomic unit of work. A batch can have

multiple transactions, and a transaction can be submitted in parts as multiple batches. When a trans-

action is canceled or rolled back in midstream, SQL Server undoes the partial activity that has taken

place since the beginning of the transaction, regardless of where the batch began.

342 Microsoft SQL Server 2012 T-SQL Fundamentals

Client application programming interfaces (APIs) such as ADO.NET provide you with methods for

submitting a batch of code to SQL Server for execution. SQL Server utilities such as SQL Server Man-

agement Studio, SQLCMD, and OSQL provide a client command called GO that signals the end of a

batch. Note that the GO command is a client command and not a T-SQL server command.

a Batch as a Unit of parsing
A batch is a set of commands that are parsed and executed as a unit. If the parsing is successful,

SQL Server will then attempt to execute the batch. In the event of a syntax error in the batch, the

whole batch is not submitted to SQL Server for execution. For example, the following code has three

batches, the second of which has a syntax error (FOM instead of FROM in the second query).

-- Valid batch

PRINT 'First batch';

USE TSQL2012;

GO

-- Invalid batch

PRINT 'Second batch';

SELECT custid FROM Sales.Customers;

SELECT orderid FOM Sales.Orders;

GO

-- Valid batch

PRINT 'Third batch';

SELECT empid FROM HR.Employees;

Because the second batch has a syntax error, the whole batch is not submitted to SQL Server for

execution. The irst and third batches pass syntax validation and therefore are submitted for execution.
This code produces the following output, showing that the whole second batch was not executed.

First batch

Msg 102, Level 15, State 1, Line 4

Incorrect syntax near 'Sales'.

Third batch

empid

2

7

1

5

6

8

3

9

4

(9 row(s) affected)

 CHAPTER 10 Programmable Objects 343

Batches and Variables
A variable is local to the batch in which it is deined. If you try to refer to a variable that was deined
in another batch, you will get an error saying that the variable was not deined. For example, the fol-
lowing code declares a variable and prints its content in one batch, and then tries to print its content

from another batch.

DECLARE @i AS INT;

SET @i = 10;

-- Succeeds

PRINT @i;

GO

-- Fails

PRINT @i;

The reference to the variable in the irst PRINT statement is valid because it appears in the same

batch where the variable was declared, but the second reference is invalid. Therefore, the irst PRINT

statement returns the variable’s value (10), whereas the second fails. Here’s the output returned from

this code.

10

Msg 137, Level 15, State 2, Line 3

Must declare the scalar variable "@i".

Statements That Cannot Be Combined in the Same Batch
The following statements cannot be combined with other statements in the same batch: CREATE

DEFAULT, CREATE FUNCTION, CREATE PROCEDURE, CREATE RULE, CREATE SCHEMA, CREATE

TRIGGER, and CREATE VIEW. For example, the following code has an IF statement followed by a

CREATE VIEW statement in the same batch and therefore is invalid.

IF OBJECT_ID('Sales.MyView', 'V') IS NOT NULL DROP VIEW Sales.MyView;

CREATE VIEW Sales.MyView

AS

SELECT YEAR(orderdate) AS orderyear, COUNT(*) AS numorders

FROM Sales.Orders

GROUP BY YEAR(orderdate);

GO

An attempt to run this code generates the following error.

Msg 111, Level 15, State 1, Line 3

'CREATE VIEW' must be the first statement in a query batch.

To get around the problem, separate the IF and CREATE VIEW statements into different batches by

adding a GO command after the IF statement.

344 Microsoft SQL Server 2012 T-SQL Fundamentals

a Batch as a Unit of resolution
A batch is a unit of resolution. This means that checking the existence of objects and columns hap-

pens at the batch level. Keep this fact in mind when you are designing batch boundaries. When you

apply schema changes to an object and try to manipulate the object data in the same batch, SQL

Server might not be aware of the schema changes yet and fail the data manipulation statement with

a resolution error. I’ll demonstrate the problem through an example and then recommend best prac-

tices.

Run the following code to create a table called T1 in the current database, with one column

called col1.

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1(col1 INT);

Next, try to add a column called col2 to T1 and query the new column in the same batch.

ALTER TABLE dbo.T1 ADD col2 INT;

SELECT col1, col2 FROM dbo.T1;

Even though the code might seem to be perfectly valid, the batch fails during the resolution phase

with the following error.

Msg 207, Level 16, State 1, Line 2

Invalid column name 'col2'.

At the time the SELECT statement was resolved, T1 had only one column, and the reference to the

col2 column caused the error. One best practice you can follow to avoid such problems is to separate

DDL and DML statements into different batches, as in the following example.

ALTER TABLE dbo.T1 ADD col2 INT;

GO

SELECT col1, col2 FROM dbo.T1;

The GO n Option
The GO command is not really a T-SQL command; it’s actually a command used by SQL Server’s client

tools, such as SSMS, to denote the end of a batch. This command supports an argument indicating

how many times you want to execute the batch. To see how the GO command with the argument

works, irst create the table T1 by using the following code.

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1(col1 INT IDENTITY);

The col1 column gets its values automatically from an identity property. Note that the demo would

work just as well if you used a default constraint to generate values from a sequence object. Next, run

the following code to suppress the default output produced by DML statements that indicates how

many rows were affected.

SET NOCOUNT ON;

 CHAPTER 10 Programmable Objects 345

Finally, run the following code to deine a batch with an INSERT DEFAULT VALUES statement and

to execute the batch 100 times.

INSERT INTO dbo.T1 DEFAULT VALUES;

GO 100

SELECT * FROM dbo.T1;

The query returns 100 rows with the values 1 through 100 in col1.

Flow Elements

Flow elements allow you to control the low of your code. T-SQL provides very basic forms of control
with low elements, including the IF . . . ELSE element and the WHILE element.

The IF . . . ELSE Flow element
The IF . . . ELSE element allows you to control the low of your code based on a predicate. You specify
a statement or statement block that is executed if the predicate is TRUE, and optionally a statement

or statement block that is executed if the predicate is FALSE or UNKNOWN.

For example, the following code checks whether today is the last day of the year (in other words,

whether today’s year is different than tomorrow’s year). If this is true, the code prints a message say-

ing that today is the last day of the year; if it is not true (“else”), the code prints a message saying that
today is not the last day of the year.

IF YEAR(SYSDATETIME()) <> YEAR(DATEADD(day, 1, SYSDATETIME()))

 PRINT 'Today is the last day of the year.';

ELSE

 PRINT 'Today is not the last day of the year.';

In this example, I use PRINT statements to demonstrate which parts of the code were executed and

which weren’t, but of course you can specify other statements as well.

Keep in mind that T-SQL uses three-valued logic and that the ELSE block is activated when the

predicate is either FALSE or UNKNOWN. In cases for which both FALSE and UNKNOWN are pos-

sible outcomes of the predicate (for example, when NULL marks are involved) and you need differ-

ent treatment for each case, make sure you have an explicit test for NULL marks with the IS NULL

predicate.

If the low you need to control involves more than two cases, you can nest IF . . . ELSE elements. For

example, the next code handles the following three cases differently:

1. Today is the last day of the year.

2. Today is the last day of the month but not the last day of the year.

3. Today is not the last day of the month.

346 Microsoft SQL Server 2012 T-SQL Fundamentals

IF YEAR(SYSDATETIME()) <> YEAR(DATEADD(day, 1, SYSDATETIME()))

 PRINT 'Today is the last day of the year.';

ELSE

 IF MONTH(SYSDATETIME()) <> MONTH(DATEADD(day, 1, SYSDATETIME()))

 PRINT 'Today is the last day of the month but not the last day of the year.';

 ELSE

 PRINT 'Today is not the last day of the month.';

If you need to run more than one statement in the IF or ELSE sections, you need to use a state-

ment block. You mark the boundaries of a statement block with the BEGIN and END keywords. For

example, the following code shows how to run one type of process if it’s the irst day of the month,
and another type of process if it isn’t.

IF DAY(SYSDATETIME()) = 1

BEGIN

 PRINT 'Today is the first day of the month.';

 PRINT 'Starting first-of-month-day process.';

 /* ... process code goes here ... */

 PRINT 'Finished first-of-month-day database process.';

END

ELSE

BEGIN

 PRINT 'Today is not the first day of the month.';

 PRINT 'Starting non-first-of-month-day process.';

 /* ... process code goes here ... */

 PRINT 'Finished non-first-of-month-day process.';

END

The WHILE Flow element
T-SQL provides the WHILE element to enable you to execute code in a loop. The WHILE element

executes a statement or statement block repeatedly while the predicate you specify after the WHILE

keyword is TRUE. When the predicate is FALSE or UNKNOWN, the loop terminates.

T-SQL doesn’t provide a built-in looping element that executes a predetermined number of times,

but it’s very easy to mimic such an element with a WHILE loop and a variable. For example, the fol-

lowing code demonstrates how to write a loop that iterates 10 times.

DECLARE @i AS INT = 1;

WHILE @i <= 10

BEGIN

 PRINT @i;

 SET @i = @i + 1;

END;

The code declares an integer variable called @i that serves as the loop counter and initializes it

with the value 1. The code then enters a loop that iterates while the variable is smaller than or equal

to 10. In each iteration, the code in the loop’s body prints the current value of @i and then increments

it by 1. This code returns the following output showing that the loop iterated 10 times.

 CHAPTER 10 Programmable Objects 347

1

2

3

4

5

6

7

8

9

10

If at some point in the loop’s body you want to break out of the current loop and proceed to exe-

cute the statement that appears after the loop’s body, use the BREAK command. For example, the

following code breaks from the loop if the value of @i is equal to 6.

DECLARE @i AS INT = 1;

WHILE @i <= 10

BEGIN

 IF @i = 6 BREAK;

 PRINT @i;

 SET @i = @i + 1;

END;

This code produces the following output showing that the loop iterated ive times and terminated
at the beginning of the sixth iteration.

1

2

3

4

5

Of course, this code is not very sensible; if you want the loop to iterate only ive times, you should
simply specify the predicate @i <= 5. Here I just wanted to demonstrate the use of the BREAK com-

mand with a simple example.

If at some point in the loop’s body you want to skip the rest of the activity in the current iteration

and evaluate the loop’s predicate again, use the CONTINUE command. For example, the following

code demonstrates how to skip the activity of the sixth iteration of the loop from the point where the

IF statement appears and until the end of the loop’s body.

DECLARE @i AS INT = 0;

WHILE @i < 10

BEGIN

 SET @i = @i + 1;

 IF @i = 6 CONTINUE;

 PRINT @i;

END;

348 Microsoft SQL Server 2012 T-SQL Fundamentals

The output of this code shows that the value of @i was printed in all iterations but the sixth.

1

2

3

4

5

7

8

9

10

an example of Using IF and WHILE
The following example illustrates how you can combine the use of the IF and WHILE elements. The

purpose of the code in this example is to create a table called dbo.Numbers and populate it with

1,000 rows with the values 1 through 1,000 in the column n.

SET NOCOUNT ON;

IF OBJECT_ID('dbo.Numbers', 'U') IS NOT NULL DROP TABLE dbo.Numbers;

CREATE TABLE dbo.Numbers(n INT NOT NULL PRIMARY KEY);

GO

DECLARE @i AS INT = 1;

WHILE @i <= 1000

BEGIN

 INSERT INTO dbo.Numbers(n) VALUES(@i);

 SET @i = @i + 1;

END

The code uses the IF statement to check whether the Numbers table already exists in the current

database, and if it does, the code drops it. The code then uses a WHILE loop to iterate 1,000 times

and populate the Numbers table with the values 1 through 1,000.

Cursors

In Chapter 2, “Single-Table Queries,” I explained that a query without an ORDER BY clause returns

a set (or a multiset), whereas a query with an ORDER BY clause returns what standard SQL calls a

cursor—a nonrelational result with order guaranteed among rows. In the context of the discussion in

Chapter 2, the use of the term “cursor” was conceptual. T-SQL also supports an object called cursor

that allows you to process rows from a result set of a query one at a time and in a requested order.

This is in contrast to using set-based queries—normal queries without a cursor for which you manipu-

late the set or multiset as a whole and cannot rely on order.

I want to stress that your default choice should be to use set-based queries; only when you have a

compelling reason to do otherwise should you consider using cursors. This recommendation is based

on several factors, such as the following.

 CHAPTER 10 Programmable Objects 349

1. First and foremost, when you use cursors you pretty much go against the relational model,

which is based on set theory.

2. The record-by-record manipulation done by the cursor has overhead. A certain extra cost is

associated with each record manipulation by the cursor when compared to set-based manipu-

lation. Given a set-based query and cursor code that do similar physical processing behind the

scenes, the cursor code is usually many times slower than the set-based code.

3. With cursors, you spend a lot of code on the physical aspects of the solution—in other words,

on how to process the data (declaring the cursor, opening it, looping through the cursor

records, closing the cursor, and deallocating the cursor). With set-based solutions, you mainly

focus on the logical aspects of the solution—in other words, on what to get instead of on how

to get it. Therefore, cursor solutions tend to be longer, less readable, and harder to maintain

compared to set-based solutions.

For most people, it is not simple to think in terms of sets immediately when they start learning SQL.

In contrast to thinking in relational terms, it is more intuitive for most people to think in terms of

cursors—processing one record at a time in a certain order. As a result, cursors are widely used, and

in most cases they are misused; that is, they are used where much better set-based solutions exist.

Make a conscious effort to adopt the set-based state of mind and to truly think in terms of sets. It can

take time—in some cases years—but as long as you’re working with a language that is based on the

relational model, that’s the right way to think.

Working with cursors is like ishing with a rod and catching one ish at a time. Working with sets,
on the other hand, is like ishing with a net and catching a whole group of ish at one time. As another
analogy, consider two kinds of orange-packing factories—an old-fashioned one and a modern one.

The factories are supposed to arrange oranges in three different kinds of packages based on size—

small, medium, and large. The old-fashioned factory works in cursor mode, which means that conveyor

belts loaded with oranges come in, and a person at the end of each conveyor belt examines each

orange and places it in the right kind of box based on its size. This type of processing is, of course,

very slow. Also, order can matter here: If the oranges arrive on the conveyor belt already sorted by

size, processing them is easier, so the conveyor belt can be set to a higher speed. The modern factory

works in a set-based mode: All oranges are placed in a big container with a grid at the bottom with

small holes. The machine shakes the container and only the small oranges go through the holes. The

machine then moves the oranges to a container with medium holes and shakes the container, allow-

ing the medium oranges to go through. The big oranges are left in the container.

Assuming you are convinced that set-based solutions should be your default choice, it is important

to understand the exceptions—when you should consider cursors. One example is when you need to

apply a certain task to each row from some table or view. For example, you might need to execute

some administrative task for each index or table in your database. In such a case, it makes sense to

use a cursor to iterate through the index or table names one at a time, and execute the relevant task

for each of those.

350 Microsoft SQL Server 2012 T-SQL Fundamentals

Another example of when you should consider cursors is when your set-based solution performs

badly and you exhaust your tuning efforts using the set-based approach. As I mentioned, set-based

solutions tend to be much faster, but in some cases the cursor solution is faster. Those cases tend

to be calculations that, if done by processing one row at a time in a certain order, involve much

less data access compared to the way the version of SQL Server you’re working with optimizes cor-

responding set-based solutions. One such example is computing running aggregates in versions of

SQL prior to SQL Server 2012. I provided a very eficient set-based solution to running aggregates in
Chapter 7, “Beyond the Fundamentals of Querying,” using enhanced window aggregate functions
in SQL Server 2012. However, if you’re using an earlier version of SQL Server, set-based solutions to

running aggregates don’t get optimized very well; they involve multiple scans of the data. Optimiza-

tion is outside the scope of this book, so I won’t go into detail here; all you need to know here is that

cursor solutions to running aggregates involve only one scan of the data, and therefore can be faster

than set-based solutions on pre-2012 versions of SQL Server.

In the chapter’s introduction, I mentioned that I’ll provide a high-level overview. Still, an example

of cursor code is probably appropriate here.

Working with a cursor generally involves the following steps:

1. Declare the cursor based on a query.

2. Open the cursor.

3. Fetch attribute values from the irst cursor record into variables.

4. Until the end of the cursor is reached (while the value of a function called @@FETCH_STATUS

is 0), loop through the cursor records; in each iteration of the loop, fetch attribute values from

the current cursor record into variables and perform the processing needed for the current row.

5. Close the cursor.

6. Deallocate the cursor.

The following example with cursor code calculates the running total quantity for each customer

and month from the Sales.CustOrders view.

SET NOCOUNT ON;

DECLARE @Result TABLE

(

 custid INT,

 ordermonth DATETIME,

 qty INT,

 runqty INT,

 PRIMARY KEY(custid, ordermonth)

);

 CHAPTER 10 Programmable Objects 351

DECLARE

 @custid AS INT,

 @prvcustid AS INT,

 @ordermonth DATETIME,

 @qty AS INT,

 @runqty AS INT;

DECLARE C CURSOR FAST_FORWARD /* read only, forward only */ FOR

 SELECT custid, ordermonth, qty

 FROM Sales.CustOrders

 ORDER BY custid, ordermonth;

OPEN C;

FETCH NEXT FROM C INTO @custid, @ordermonth, @qty;

SELECT @prvcustid = @custid, @runqty = 0;

WHILE @@FETCH_STATUS = 0

BEGIN

 IF @custid <> @prvcustid

 SELECT @prvcustid = @custid, @runqty = 0;

 SET @runqty = @runqty + @qty;

 INSERT INTO @Result VALUES(@custid, @ordermonth, @qty, @runqty);

 FETCH NEXT FROM C INTO @custid, @ordermonth, @qty;

END

CLOSE C;

DEALLOCATE C;

SELECT

 custid,

 CONVERT(VARCHAR(7), ordermonth, 121) AS ordermonth,

 qty,

 runqty

FROM @Result

ORDER BY custid, ordermonth;

The code declares a cursor based on a query that returns the rows from the CustOrders view

ordered by customer ID and order month, and iterates through the records one at a time. The code

keeps track of the current running total quantity in a variable called @runqty that is reset every time a

new customer is found. For each row, the code calculates the current running total by adding the cur-

rent month’s quantity (@qty) to @runqty, and inserts a row with the customer ID, order month, current

month’s quantity, and running quantity into a table variable called @Result. When the code is done

processing all cursor records, it queries the table variable to present the running aggregates.

352 Microsoft SQL Server 2012 T-SQL Fundamentals

Here’s the output returned by this code, shown in abbreviated form.

custid ordermonth qty runqty

----------- ---------- ----------- -----------

1 2007-08 38 38

1 2007-10 41 79

1 2008-01 17 96

1 2008-03 18 114

1 2008-04 60 174

2 2006-09 6 6

2 2007-08 18 24

2 2007-11 10 34

2 2008-03 29 63

3 2006-11 24 24

3 2007-04 30 54

3 2007-05 80 134

3 2007-06 83 217

3 2007-09 102 319

3 2008-01 40 359

...

89 2006-07 80 80

89 2006-11 105 185

89 2007-03 142 327

89 2007-04 59 386

89 2007-07 59 445

89 2007-10 164 609

89 2007-11 94 703

89 2008-01 140 843

89 2008-02 50 893

89 2008-04 90 983

89 2008-05 80 1063

90 2007-07 5 5

90 2007-09 15 20

90 2007-10 34 54

90 2008-02 82 136

90 2008-04 12 148

91 2006-12 45 45

91 2007-07 31 76

91 2007-12 28 104

91 2008-02 20 124

91 2008-04 81 205

(636 row(s) affected)

As explained in Chapter 7, SQL Server 2012 supports enhanced window functions that allow you to

provide elegant and highly eficient solutions to running aggregates, freeing you from needing to use

cursors. Here’s how you would address the same task with a window function.

SELECT custid, ordermonth, qty,

 SUM(qty) OVER(PARTITION BY custid

 ORDER BY ordermonth

 ROWS UNBOUNDED PRECEDING) AS runqty

FROM Sales.CustOrders

ORDER BY custid, ordermonth;

 CHAPTER 10 Programmable Objects 353

Temporary Tables

When you need to temporarily store data in tables, in certain cases you might prefer not to work

with permanent tables. Suppose you need the data to be visible only to the current session, or even

only to the current batch. As an example, suppose that you need to store temporary data during data

processing, as in the cursor example in the previous section.

SQL Server supports three kinds of temporary tables that you might ind more convenient to work
with than permanent tables in such cases: local temporary tables, global temporary tables, and table

variables. The following sections describe the three kinds and demonstrate their use with code samples.

Local Temporary Tables
You create a local temporary table by naming it with a single number sign as a preix, such as #T1. All

three kinds of temporary tables are created in the tempdb database.

A local temporary table is visible only to the session that created it, in the creating level and all

inner levels in the call stack (inner procedures, functions, triggers, and dynamic batches). A local

temporary table is destroyed automatically by SQL Server when the creating level in the call stack

goes out of scope. For example, suppose that a stored procedure called Proc1 calls a procedure called

Proc2, which in turn calls a procedure called Proc3, which in turn calls a procedure called Proc4. Proc2

creates a temporary table called #T1 before calling Proc3. The table #T1 is visible to Proc2, Proc3,

and Proc4 but not to Proc1, and is destroyed automatically by SQL Server when Proc2 inishes. If the
temporary table is created in an ad-hoc batch in the outermost nesting level of the session (in other

words, when the value of the @@NESTLEVEL function is 0), it is visible to all subsequent batches as

well and is destroyed by SQL Server automatically only when the creating session disconnects.

You might wonder how SQL Server prevents name conlicts when two sessions create local tem-

porary tables with the same name. SQL Server internally adds a sufix to the table name that makes
it unique in tempdb. As a developer, you shouldn’t care—you refer to the table using the name you

provided without the internal sufix, and only your session has access to your table.

One obvious scenario for which local temporary tables are useful is when you have a process that

needs to store intermediate results temporarily—such as during a loop—and later query the data.

Another scenario is when you need to access the result of some expensive processing multiple

times. For example, suppose that you need to join the Sales.Orders and Sales.OrderDetails tables,

aggregate order quantities by order year, and join two instances of the aggregated data to compare

each year’s total quantity with the previous year. The Orders and OrderDetails tables in the sample

database are very small, but in real-life situations such tables can have millions of rows. One option is

to use table expressions, but remember that table expressions are virtual. The expensive work involv-

ing scanning all the data, joining the Orders and OrderDetails tables, and aggregating the data would

have to happen twice with table expressions. Instead, it makes sense to do all the expensive work only

once—storing the result in a local temporary table—and then join two instances of the temporary

table, especially because the result of the expensive work is a very tiny set with only one row per each

order year.

354 Microsoft SQL Server 2012 T-SQL Fundamentals

The following code illustrates this scenario using a local temporary table.

IF OBJECT_ID('tempdb.dbo.#MyOrderTotalsByYear') IS NOT NULL

 DROP TABLE dbo.#MyOrderTotalsByYear;

GO

CREATE TABLE #MyOrderTotalsByYear

(

 orderyear INT NOT NULL PRIMARY KEY,

 qty INT NOT NULL

);

INSERT INTO #MyOrderTotalsByYear(orderyear, qty)

 SELECT

 YEAR(O.orderdate) AS orderyear,

 SUM(OD.qty) AS qty

 FROM Sales.Orders AS O

 JOIN Sales.OrderDetails AS OD

 ON OD.orderid = O.orderid

 GROUP BY YEAR(orderdate);

SELECT Cur.orderyear, Cur.qty AS curyearqty, Prv.qty AS prvyearqty

FROM dbo.#MyOrderTotalsByYear AS Cur

 LEFT OUTER JOIN dbo.#MyOrderTotalsByYear AS Prv

 ON Cur.orderyear = Prv.orderyear + 1;

This code produces the following output.

orderyear curyearqty prvyearqty

----------- ----------- -----------

2007 25489 9581

2008 16247 25489

2006 9581 NULL

To verify that the local temporary table is visible only to the creating session, try accessing it from

another session.

SELECT orderyear, qty FROM dbo.#MyOrderTotalsByYear;

You get the following error.

Msg 208, Level 16, State 0, Line 1

Invalid object name '#MyOrderTotalsByYear'.

When you’re done, go back to the original session and drop the temporary table.

IF OBJECT_ID('tempdb.dbo.#MyOrderTotalsByYear') IS NOT NULL

 DROP TABLE dbo.#MyOrderTotalsByYear;

It is generally recommended that you clean up resources as soon as you are done working with them.

 CHAPTER 10 Programmable Objects 355

Global Temporary Tables

note At the date of this writing, global temporary tables are not supported by Windows

Azure SQL Database, so if you want to run the code samples from this section, you will

need to connect to an on-premises SQL Server instance.

When you create a global temporary table, it is visible to all other sessions. Global temporary tables

are destroyed automatically by SQL Server when the creating session disconnects and there are no

active references to the table. You create a global temporary table by naming it with two number

signs as a preix, such as ##T1.

Global temporary tables are useful when you want to share temporary data with everyone. No

special permissions are required, and everyone has full DDL and DML access. Of course, the fact that

everyone has full access means that anyone can change or even drop the table, so consider the alter-

natives carefully.

For example, the following code creates a global temporary table called ##Globals with columns

called id and val.

CREATE TABLE dbo.##Globals

(

 id sysname NOT NULL PRIMARY KEY,

 val SQL_VARIANT NOT NULL

);

This table in this example is intended to mimic global variables, which are not supported by SQL

Server. The id column is of a sysname data type (the type that SQL Server uses internally to represent

identiiers), and the val column is of a SQL_VARIANT data type (a generic type that can store within it

a value of almost any base type).

Anyone can insert rows into the table. For example, run the following code to insert a row repre-

senting a variable called i and initialize it with the integer value 10.

INSERT INTO dbo.##Globals(id, val) VALUES(N'i', CAST(10 AS INT));

Anyone can modify and retrieve data from the table. For example, run the following code from any

session to query the current value of the variable i.

SELECT val FROM dbo.##Globals WHERE id = N'i';

This code returns the following output.

val

10

356 Microsoft SQL Server 2012 T-SQL Fundamentals

note Keep in mind that as soon as the session that created the global temporary table dis-

connects and there are no active references to the table, SQL Server automatically destroys

the table.

If you want a global temporary table to be created every time SQL Server starts, and you don’t

want SQL Server to try to destroy it automatically, you need to create the table from a stored pro-

cedure that is marked as a startup procedure (for details, see “sp_procoption” in SQL Server Books
Online at the following URL: http://msdn.microsoft.com/en-us/library/ms181720.aspx).

Run the following code from any session to explicitly destroy the global temporary table.

DROP TABLE dbo.##Globals;

Table Variables
Table variables are similar to local temporary tables in some ways and different in others. You declare

table variables much like you declare other variables, by using the DECLARE statement.

As with local temporary tables, table variables have a physical presence as a table in the tempdb

database, contrary to the common misconception that they exist only in memory. Like local tempo-

rary tables, table variables are visible only to the creating session, but they have a more limited scope:

only the current batch. Table variables are visible neither to inner batches in the call stack nor to

subsequent batches in the session.

If an explicit transaction is rolled back, changes made to temporary tables in that transaction are

rolled back as well; however, changes made to table variables by statements that completed in the

transaction aren’t rolled back. Only changes made by the active statement that failed or that was

terminated before completion are undone.

Temporary tables and table variables also have optimization differences, but those are outside the

scope of this book. For now, I’ll just say that in terms of performance, usually it makes more sense

to use table variables with very small volumes of data (only a few rows) and to use local temporary

tables otherwise.

For example, the following code uses a table variable instead of a local temporary table to com-

pare total order quantities of each order year with the year before.

DECLARE @MyOrderTotalsByYear TABLE

(

 orderyear INT NOT NULL PRIMARY KEY,

 qty INT NOT NULL

);

 CHAPTER 10 Programmable Objects 357

INSERT INTO @MyOrderTotalsByYear(orderyear, qty)

 SELECT

 YEAR(O.orderdate) AS orderyear,

 SUM(OD.qty) AS qty

 FROM Sales.Orders AS O

 JOIN Sales.OrderDetails AS OD

 ON OD.orderid = O.orderid

 GROUP BY YEAR(orderdate);

SELECT Cur.orderyear, Cur.qty AS curyearqty, Prv.qty AS prvyearqty

FROM @MyOrderTotalsByYear AS Cur

 LEFT OUTER JOIN @MyOrderTotalsByYear AS Prv

 ON Cur.orderyear = Prv.orderyear + 1;

This code returns the following output.

orderyear curyearqty prvyearqty

----------- ----------- -----------

2006 9581 NULL

2007 25489 9581

2008 16247 25489

Note that in SQL Server 2012, there is a more eficient way to achieve the same thing, by using the
LAG function, like this.

DECLARE @MyOrderTotalsByYear TABLE

(

 orderyear INT NOT NULL PRIMARY KEY,

 qty INT NOT NULL

);

INSERT INTO @MyOrderTotalsByYear(orderyear, qty)

 SELECT

 YEAR(O.orderdate) AS orderyear,

 SUM(OD.qty) AS qty

 FROM Sales.Orders AS O

 JOIN Sales.OrderDetails AS OD

 ON OD.orderid = O.orderid

 GROUP BY YEAR(orderdate);

SELECT orderyear, qty AS curyearqty,

 LAG(qty) OVER(ORDER BY orderyear) AS prvyearqty

FROM @MyOrderTotalsByYear;

Table Types
SQL Server 2008 and SQL Server 2012 support table types. When you create a table type, you pre-

serve a table deinition in the database and can later reuse it as the table deinition of table variables
and input parameters of stored procedures and user-deined functions.

358 Microsoft SQL Server 2012 T-SQL Fundamentals

For example, the following code creates a table type called dbo.OrderTotalsByYear in the current

database.

IF TYPE_ID('dbo.OrderTotalsByYear') IS NOT NULL

 DROP TYPE dbo.OrderTotalsByYear;

CREATE TYPE dbo.OrderTotalsByYear AS TABLE

(

 orderyear INT NOT NULL PRIMARY KEY,

 qty INT NOT NULL

);

After the table type is created, whenever you need to declare a table variable based on the table

type’s deinition, you won’t need to repeat the code—instead you can simply specify dbo.OrderTotals-

ByYear as the variable’s type, like this.

DECLARE @MyOrderTotalsByYear AS dbo.OrderTotalsByYear;

As a more complete example, the following code declares a variable called @MyOrderTotalsByYear

of the new table type, queries the Orders and OrderDetails tables to calculate total order quantities by

order year, stores the result of the query in the table variable, and queries the variable to present its

contents.

DECLARE @MyOrderTotalsByYear AS dbo.OrderTotalsByYear;

INSERT INTO @MyOrderTotalsByYear(orderyear, qty)

 SELECT

 YEAR(O.orderdate) AS orderyear,

 SUM(OD.qty) AS qty

 FROM Sales.Orders AS O

 JOIN Sales.OrderDetails AS OD

 ON OD.orderid = O.orderid

 GROUP BY YEAR(orderdate);

SELECT orderyear, qty FROM @MyOrderTotalsByYear;

This code returns the following output.

orderyear qty

----------- -----------

2006 9581

2007 25489

2008 16247

The beneit of the table type feature extends beyond just helping you shorten your code. As I
mentioned, you can use it as the type of input parameters of stored procedures and functions, which

is an extremely useful capability.

 CHAPTER 10 Programmable Objects 359

Dynamic SQL

SQL Server allows you to construct a batch of T-SQL code as a character string and then execute that

batch. This capability is called dynamic SQL. SQL Server provides two ways of executing dynamic SQL:

using the EXEC (short for EXECUTE) command, and using the sp_executesql stored procedure. I will

explain the difference between the two and provide examples for using each.

Dynamic SQL is useful for several purposes, including:

 ■ Automating administrative tasks For example, querying metadata and constructing and

executing a BACKUP DATABASE statement for each database in an on-premises instance

 ■ Improving performance of certain tasks For example, constructing parameterized ad-hoc

queries that can reuse previously cached execution plans (more on this later)

 ■ Constructing elements of the code based on querying the actual data For example,

constructing a PIVOT query dynamically when you don’t know ahead of time which elements

should appear in the IN clause of the PIVOT operator

note Be extremely careful when concatenating user input as part of your code. Hackers

can attempt to inject code you did not intend to run. The best measure you can take against

SQL injection is to avoid concatenating user input as part of your code (for example, by

using parameters). If you do concatenate user input as part of your code, make sure you

thoroughly inspect the input and look for SQL injection attempts. You can ind an excellent
article on the subject in SQL Server Books Online under “SQL Injection.”

The EXEC Command
The EXEC command is the original technique provided in T-SQL for executing dynamic SQL. EXEC

accepts a character string in parentheses as input and executes the batch of code within the character

string. EXEC supports both regular and Unicode character strings as input.

The following example stores a character string with a PRINT statement in the variable @sql and

then uses the EXEC command to invoke the batch of code stored within the variable.

DECLARE @sql AS VARCHAR(100);

SET @sql = 'PRINT ''This message was printed by a dynamic SQL batch.'';';

EXEC(@sql);

Notice the use of two single quotes to represent one single quote in a string within a string. This

code returns the following output.

This message was printed by a dynamic SQL batch.

360 Microsoft SQL Server 2012 T-SQL Fundamentals

The sp_executesql Stored procedure
The sp_executesql stored procedure was introduced after the EXEC command. It is more secure and

more lexible in the sense that it has an interface; that is, it supports input and output parame ters. Note
that unlike EXEC, sp_executesql supports only Unicode character strings as the input batch of code.

The fact that you can use input and output parameters in your dynamic SQL code can help you

write more secure and more eficient code. In terms of security, parameters that appear in the code
cannot be considered part of the code—they can only be considered operands in expressions. So, by

using parameters, you can eliminate your exposure to SQL injection.

The sp_executesql stored procedure can perform better than EXEC because its parameterization

aids in reusing cached execution plans. An execution plan is the physical processing plan that SQL

Server produces for a query, with the set of instructions regarding which objects to access, in what

order, which indexes to use, how to access them, which join algorithms to use, and so on. To simplify

things, one of the requirements for reusing a previously cached plan is that the query string be the

same as the one for which the plan exists in cache. The best way to eficiently reuse query execution
plans is to use stored procedures with parameters. This way, even when parameter values change, the

query string remains the same. But if for your own reasons you decide to use ad-hoc code instead of

stored procedures, at least you can still work with parameters if you use sp_executesql and therefore

increase the chances for plan reuse.

The sp_executesql procedure has two input parameters and an assignments section. You specify

the Unicode character string holding the batch of code you want to run in the irst parameter, which
is called @stmt. You provide a Unicode character string holding the declarations of input and output

parameters in the second input parameter, which is called @params. Then you specify the assign-

ments of input and output parameters separated by commas.

The following example constructs a batch of code with a query against the Sales.Orders table. The

example uses an input parameter called @orderid in the query’s ilter.

DECLARE @sql AS NVARCHAR(100);

SET @sql = N'SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderid = @orderid;';

EXEC sp_executesql

 @stmt = @sql,

 @params = N'@orderid AS INT',

 @orderid = 10248;

This code generates the following output.

orderid custid empid orderdate

----------- ----------- ----------- -----------------------

10248 85 5 2006-07-04 00:00:00.000

 CHAPTER 10 Programmable Objects 361

This code assigns the value 10248 to the input parameter, but even if you run it again with a differ-

ent value, the code string remains the same. This way, you increase the chances for reusing a previ-

ously cached plan.

Using PIVOT with dynamic SQL
This section is advanced and optional, and is intended for those readers who feel very comfortable

with pivoting techniques and dynamic SQL. In Chapter 7, I explained how to use the PIVOT opera-

tor to pivot data. I mentioned that in a static query, you have to know ahead of time which values

to specify in the IN clause of the PIVOT operator. Following is an example of a static query with the

PIVOT operator.

SELECT *

FROM (SELECT shipperid, YEAR(orderdate) AS orderyear, freight

 FROM Sales.Orders) AS D

 PIVOT(SUM(freight) FOR orderyear IN([2006],[2007],[2008])) AS P;

This example queries the Sales.Orders table and pivots the data so that it returns shipper IDs in the

rows, order years in the columns, and the total freight in the intersection of each shipper and order

year. This code returns the following output.

shipperid 2006 2007 2008

----------- ------------ ------------- -------------

3 4233.78 11413.35 4865.38

1 2297.42 8681.38 5206.53

2 3748.67 12374.04 12122.14

With the static query, you have to know ahead of time which values (order years in this case) to

specify in the IN clause of the PIVOT operator. This means that you need to revise the code every year.

Instead, you can query the distinct order years from the data, construct a batch of dynamic SQL code

based on the years that you queried, and execute the dynamic SQL batch like this.

DECLARE

 @sql AS NVARCHAR(1000),

 @orderyear AS INT,

 @first AS INT;

DECLARE C CURSOR FAST_FORWARD FOR

 SELECT DISTINCT(YEAR(orderdate)) AS orderyear

 FROM Sales.Orders

 ORDER BY orderyear;

SET @first = 1;

SET @sql = N'SELECT *

FROM (SELECT shipperid, YEAR(orderdate) AS orderyear, freight

 FROM Sales.Orders) AS D

 PIVOT(SUM(freight) FOR orderyear IN(';

OPEN C;

362 Microsoft SQL Server 2012 T-SQL Fundamentals

FETCH NEXT FROM C INTO @orderyear;

WHILE @@fetch_status = 0

BEGIN

 IF @first = 0

 SET @sql = @sql + N','

 ELSE

 SET @first = 0;

 SET @sql = @sql + QUOTENAME(@orderyear);

 FETCH NEXT FROM C INTO @orderyear;

END

CLOSE C;

DEALLOCATE C;

SET @sql = @sql + N')) AS P;';

EXEC sp_executesql @stmt = @sql;

note There are more eficient ways to concatenate strings than using a cursor, such as us-

ing Common Language Runtime (CLR) aggregates and the FOR XML PATH option, but they

are more advanced and are beyond the scope of this book.

Routines

Routines are programmable objects that encapsulate code to calculate a result or to execute activity.

SQL Server supports three types of routines: user-deined functions, stored procedures, and triggers.

SQL Server allows you to choose whether to develop a routine with T-SQL or with Microsoft .NET

code based on the CLR integration in the product. Because this book’s focus is T-SQL, the examples

here use T-SQL. Generally speaking, when the task at hand mainly involves data manipulation, T-SQL

is usually a better choice. When the task is more about iterative logic, string manipulation, or compu-

tationally intensive operations, .NET code is usually a better choice.

User-Deined Functions
The purpose of a user-deined function (UDF) is to encapsulate logic that calculates something, pos-
sibly based on input parameters, and return a result.

SQL Server supports scalar and table-valued UDFs. Scalar UDFs return a single value; table-valued

UDFs return a table. One beneit of using UDFs is that you can incorporate them in queries. Scalar
UDFs can appear anywhere in the query where an expression that returns a single value can appear

(for example, in the SELECT list). Table UDFs can appear in the FROM clause of a query. The example

in this section is a scalar UDF.

 CHAPTER 10 Programmable Objects 363

UDFs are not allowed to have any side effects. This obviously means that UDFs are not allowed

to apply any schema or data changes in the database. But other ways of causing side effects are less

obvious. For example, invoking the RAND function to return a random value or the NEWID function

to return a globally unique identiier (GUID) has side effects. Whenever you invoke the RAND func-

tion without specifying a seed, SQL Server generates a random seed that is based on the previous

invocation of RAND. For this reason, SQL Server needs to store information internally whenever you

invoke the RAND function. Similarly, whenever you invoke the NEWID function, the system needs to

set some information aside to be taken into consideration in the next invocation of NEWID. Because

RAND and NEWID have side effects, you’re not allowed to use them in your UDFs.

For example, the following code creates a UDF called dbo.GetAge that returns the age of a person

with a speciied birth date (@birthdate argument) at a speciied event date (@eventdate argument).

IF OBJECT_ID('dbo.GetAge') IS NOT NULL DROP FUNCTION dbo.GetAge;

GO

CREATE FUNCTION dbo.GetAge

(

 @birthdate AS DATE,

 @eventdate AS DATE

)

RETURNS INT

AS

BEGIN

 RETURN

 DATEDIFF(year, @birthdate, @eventdate)

 - CASE WHEN 100 * MONTH(@eventdate) + DAY(@eventdate)

 < 100 * MONTH(@birthdate) + DAY(@birthdate)

 THEN 1 ELSE 0

 END;

END;

GO

The function calculates the age as the difference, in terms of years, between the birth year and

the event year, minus 1 year in cases for which the year, the event month, and the day are smaller

than the birth month and day. The expression 100 * month + day is simply a trick to concatenate the

month and day. For example, for the twelfth day in the month of February, the expression yields the

integer 212.

Note that a function can have more than just a RETURN clause in its body. It can have code with

low elements, calculations, and more. But the function must have a RETURN clause that returns a

value.

To demonstrate using a UDF in a query, the following code queries the HR.Employees table and

invokes the GetAge function in the SELECT list to calculate the age of each employee today.

SELECT

 empid, firstname, lastname, birthdate,

 dbo.GetAge(birthdate, SYSDATETIME()) AS age

FROM HR.Employees;

364 Microsoft SQL Server 2012 T-SQL Fundamentals

For example, if you were to run this query on February 12, 2012, you would get the following

output.

empid firstname lastname birthdate age

----------- ---------- -------------------- ------------------------- ----

1 Sara Davis 1958-12-08 00:00:00.000 53

2 Don Funk 1962-02-19 00:00:00.000 49

3 Judy Lew 1973-08-30 00:00:00.000 38

4 Yael Peled 1947-09-19 00:00:00.000 64

5 Sven Buck 1965-03-04 00:00:00.000 46

6 Paul Suurs 1973-07-02 00:00:00.000 38

7 Russell King 1970-05-29 00:00:00.000 41

8 Maria Cameron 1968-01-09 00:00:00.000 44

9 Zoya Dolgopyatova 1976-01-27 00:00:00.000 36

(9 row(s) affected)

Note that if you run the query in your system, the values that you get in the age column depend

on the date on which you run the query.

Stored procedures
Stored procedures are server-side routines that encapsulate T-SQL code. Stored procedures can have

input and output parameters, they can return result sets of queries, and they are allowed to invoke

code that has side effects. Not only can you modify data through stored procedures, you can also

apply schema changes through them.

Compared to using ad-hoc code, the use of stored procedures gives you many beneits:

 ■ Stored procedures encapsulate logic. If you need to change the implementation of a

stored procedure, you can apply the change in one place in the database and the procedure

will be altered for all users of the procedure.

 ■ Stored procedures give you better control of security. You can grant a user permissions

to execute the procedure without granting the user direct permissions to perform the under-

lying activities. For example, suppose that you want to allow certain users to delete a customer

from the database, but you don’t want to grant them direct permissions to delete rows from

the Customers table. You want to ensure that requests to delete a customer are validated—for

example, by checking whether the customer has open orders or open debts—and you may

also want to audit the requests. By not granting direct permissions to delete rows from the

Customers table but instead granting permissions to execute a procedure that handles the

task, you ensure that all the required validations and auditing always take place. In addition,

stored procedures can help prevent SQL injection, especially when they replace ad-hoc SQL

from the client with parameters.

 ■ You can incorporate all error handling code within a procedure, silently taking correc-

tive action where relevant. I discuss error handling later in this chapter.

 CHAPTER 10 Programmable Objects 365

 ■ Stored procedures give you performance beneits. Earlier I talked about reuse of previ-

ously cached execution plans. Stored procedures reuse execution plans by default, whereas

SQL Server is more conservative with the reuse of ad-hoc plans. Also, the aging of procedure

plans is less rapid than that of ad-hoc plans. Another performance beneit of using stored
procedures is reduction of network trafic. The client application needs to submit only the
procedure name and its arguments to SQL Server. The server processes all of the procedure’s

code and returns only the output back to the caller. No back-and-forth trafic is associated
with intermediate steps of the procedure.

As a simple example, the following code creates a stored procedure called Sales.GetCustomer-

Orders. The procedure accepts a customer ID (@custid) and a date range (@fromdate and @todate)

as inputs. The procedure returns rows from the Sales.Orders table representing orders placed by the

requested customer in the requested date range as a result set, and the number of affected rows as

an output parameter (@numrows).

IF OBJECT_ID('Sales.GetCustomerOrders', 'P') IS NOT NULL

 DROP PROC Sales.GetCustomerOrders;

GO

CREATE PROC Sales.GetCustomerOrders

 @custid AS INT,

 @fromdate AS DATETIME = '19000101',

 @todate AS DATETIME = '99991231',

 @numrows AS INT OUTPUT

AS

SET NOCOUNT ON;

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE custid = @custid

 AND orderdate >= @fromdate

 AND orderdate < @todate;

SET @numrows = @@rowcount;

GO

When executing the procedure, if you don’t specify a value in the @fromdate parameter, the pro-

cedure will use the default 19000101, and if you don’t specify a value in the @todate parameter, the

procedure will use the default 99991231. Notice the use of the keyword OUTPUT to indicate that the

parameter @numrows is an output parameter. The SET NOCOUNT ON command is used to suppress

messages indicating how many rows were affected by DML statements, such as the SELECT statement

within the procedure.

Here’s an example of executing the procedure, requesting information about orders placed by the

customer with the ID of 1 in the year 2007. The code absorbs the value of the output parameter @

numrows in the local variable @rc and returns it to show how many rows were affected by the query.

DECLARE @rc AS INT;

EXEC Sales.GetCustomerOrders

 @custid = 1,

366 Microsoft SQL Server 2012 T-SQL Fundamentals

 @fromdate = '20070101',

 @todate = '20080101',

 @numrows = @rc OUTPUT;

SELECT @rc AS numrows;

The code returns the following output showing three qualifying orders.

orderid custid empid orderdate

----------- ----------- ----------- -----------------------

10643 1 6 2007-08-25 00:00:00.000

10692 1 4 2007-10-03 00:00:00.000

10702 1 4 2007-10-13 00:00:00.000

numrows

3

Run the code again, providing a customer ID that doesn’t exist in the Orders table (for example,

customer ID 100). You get the following output indicating that there are zero qualifying orders.

orderid custid empid orderdate

----------- ----------- ----------- -----------------------

numrows

0

Of course, this is just a basic example. You can do much more with stored procedures.

Triggers
A trigger is a special kind of stored procedure—one that cannot be executed explicitly. Instead, it is

attached to an event. Whenever the event takes place, the trigger ires and the trigger’s code runs.
SQL Server supports the association of triggers with two kinds of events—data manipulation events

(DML triggers) such as INSERT, and data deinition events (DDL triggers) such as CREATE TABLE.

You can use triggers for many purposes, including auditing, enforcing integrity rules that cannot

be enforced with constraints, and enforcing policies.

A trigger is considered part of the transaction that includes the event that caused the trigger to

ire. Issuing a ROLLBACK TRAN command within the trigger’s code causes a rollback of all changes

that took place in the trigger, and also of all changes that took place in the transaction associated

with the trigger.

Triggers in SQL Server ire per statement and not per modiied row.

 CHAPTER 10 Programmable Objects 367

dML Triggers

SQL Server supports two kinds of DML triggers—after and instead of. An after trigger ires after the
event it is associated with inishes and can only be deined on permanent tables. An instead of trigger

ires instead of the event it is associated with and can be deined on permanent tables and views.

In the trigger’s code, you can access tables called inserted and deleted that contain the rows that

were affected by the modiication that caused the trigger to ire. The inserted table holds the new
image of the affected rows in the case of INSERT and UPDATE actions. The deleted table holds the

old image of the affected rows in the case of DELETE and UPDATE actions. Remember that INSERT,

UPDATE, and DELETE actions can be invoked by the INSERT, UPDATE, and DELETE statements, as well

as by the MERGE statement. In the case of instead of triggers, the inserted and deleted tables contain

the rows that were supposed to be affected by the modiication that caused the trigger to ire.

The following simple example of an after trigger audits inserts to a table. Run the following code

to create a table called dbo.T1 in the current database, and another table called dbo.T1_Audit that

holds audit information for insertions to T1.

IF OBJECT_ID('dbo.T1_Audit', 'U') IS NOT NULL DROP TABLE dbo.T1_Audit;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 keycol INT NOT NULL PRIMARY KEY,

 datacol VARCHAR(10) NOT NULL

);

CREATE TABLE dbo.T1_Audit

(

 audit_lsn INT NOT NULL IDENTITY PRIMARY KEY,

 dt DATETIME NOT NULL DEFAULT(SYSDATETIME()),

 login_name sysname NOT NULL DEFAULT(ORIGINAL_LOGIN()),

 keycol INT NOT NULL,

 datacol VARCHAR(10) NOT NULL

);

In the audit table, the audit_lsn column has an identity property and represents an audit log serial

number. The dt column represents the date and time of the insertion, using the default expression

SYSDATETIME(). The login_name column represents the name of the logon that performed the inser-

tion, using the default expression ORIGINAL_LOGIN().

Next, run the following code to create the AFTER INSERT trigger trg_T1_insert_audit on the T1

table to audit insertions.

CREATE TRIGGER trg_T1_insert_audit ON dbo.T1 AFTER INSERT

AS

SET NOCOUNT ON;

INSERT INTO dbo.T1_Audit(keycol, datacol)

 SELECT keycol, datacol FROM inserted;

GO

368 Microsoft SQL Server 2012 T-SQL Fundamentals

As you can see, the trigger simply inserts into the audit table the result of a query against the

inserted table. The values of the columns in the audit table that are not listed explicitly in the INSERT

statement are generated by the default expressions described earlier. To test the trigger, run the fol-

lowing code.

INSERT INTO dbo.T1(keycol, datacol) VALUES(10, 'a');

INSERT INTO dbo.T1(keycol, datacol) VALUES(30, 'x');

INSERT INTO dbo.T1(keycol, datacol) VALUES(20, 'g');

The trigger ires after each statement. Next, query the audit table.

SELECT audit_lsn, dt, login_name, keycol, datacol

FROM dbo.T1_Audit;

You get the following output, only with dt and login_name values that relect the date and time
when you ran the inserts, and the logon you used to connect to SQL Server.

audit_lsn dt login_name keycol datacol

----------- ----------------------- ---------------- ----------- ----------

1 2012-02-12 09:04:27.713 K2\Gandalf 10 a

2 2012-02-12 09:04:27.733 K2\Gandalf 30 x

3 2012-02-12 09:04:27.733 K2\Gandalf 20 g

When you’re done, run the following code for cleanup.

IF OBJECT_ID('dbo.T1_Audit', 'U') IS NOT NULL DROP TABLE dbo.T1_Audit;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

ddL Triggers

SQL Server supports DDL triggers, which can be used for purposes such as auditing, policy enforce-

ment, and change management. On-premises SQL Server supports the creation of DDL triggers at

two scopes, the database scope and the server scope, depending on the scope of the event. SQL

Database currently supports only database triggers.

You create a database trigger for events with a database scope, such as CREATE TABLE. You create

an all server trigger for events with a server scope, such as CREATE DATABASE. SQL Server supports

only after DDL triggers; it doesn’t support instead of DDL triggers.

Within the trigger, you obtain information on the event that caused the trigger to ire by querying
a function called EVENTDATA that returns the event information as an XML value. You can use XQuery

expressions to extract event attributes such as post time, event type, and logon name from the XML

value.

 CHAPTER 10 Programmable Objects 369

The following code creates the dbo.AuditDDLEvents table, which holds the audit information.

IF OBJECT_ID('dbo.AuditDDLEvents', 'U') IS NOT NULL

 DROP TABLE dbo.AuditDDLEvents;

CREATE TABLE dbo.AuditDDLEvents

(

 audit_lsn INT NOT NULL IDENTITY,

 posttime DATETIME NOT NULL,

 eventtype sysname NOT NULL,

 loginname sysname NOT NULL,

 schemaname sysname NOT NULL,

 objectname sysname NOT NULL,

 targetobjectname sysname NULL,

 eventdata XML NOT NULL,

 CONSTRAINT PK_AuditDDLEvents PRIMARY KEY(audit_lsn)

);

Notice that the table has a column called eventdata that has an XML data type. In addition to the

individual attributes that the trigger extracts from the event information and stores in individual at-

tributes, it also stores the full event information in the eventdata column.

Run the following code to create the trg_audit_ddl_events audit trigger on the database by using

the event group DDL_DATABASE_LEVEL_EVENTS , which represents all DDL events at the database

level.

CREATE TRIGGER trg_audit_ddl_events

 ON DATABASE FOR DDL_DATABASE_LEVEL_EVENTS

AS

SET NOCOUNT ON;

DECLARE @eventdata AS XML = eventdata();

INSERT INTO dbo.AuditDDLEvents(

 posttime, eventtype, loginname, schemaname,

 objectname, targetobjectname, eventdata)

 VALUES(

 @eventdata.value('(/EVENT_INSTANCE/PostTime)[1]', 'VARCHAR(23)'),

 @eventdata.value('(/EVENT_INSTANCE/EventType)[1]', 'sysname'),

 @eventdata.value('(/EVENT_INSTANCE/LoginName)[1]', 'sysname'),

 @eventdata.value('(/EVENT_INSTANCE/SchemaName)[1]', 'sysname'),

 @eventdata.value('(/EVENT_INSTANCE/ObjectName)[1]', 'sysname'),

 @eventdata.value('(/EVENT_INSTANCE/TargetObjectName)[1]', 'sysname'),

 @eventdata);

GO

370 Microsoft SQL Server 2012 T-SQL Fundamentals

The trigger’s code irst stores the event information obtained from the EVENTDATA function in the

@eventdata variable. The code then inserts a row into the audit table with the attributes extracted by

using XQuery expressions by the .value method from the event information, plus the XML value with

the full event information.

To test the trigger, run the following code, which contains a few DDL statements.

CREATE TABLE dbo.T1(col1 INT NOT NULL PRIMARY KEY);

ALTER TABLE dbo.T1 ADD col2 INT NULL;

ALTER TABLE dbo.T1 ALTER COLUMN col2 INT NOT NULL;

CREATE NONCLUSTERED INDEX idx1 ON dbo.T1(col2);

Next, run the following code to query the audit table.

SELECT * FROM dbo.AuditDDLEvents;

You get the following output (split here into two sections for display purposes), but with values in

the posttime and loginname attributes that relect the post time and logon name in your environment.

audit_lsn posttime eventtype loginname

--------- ------------------------- -------------- ----------------

1 2012-02-12 09:06:18.293 CREATE_TABLE K2\Gandalf

2 2012-02-12 09:06:18.413 ALTER_TABLE K2\Gandalf

3 2012-02-12 09:06:18.423 ALTER_TABLE K2\Gandalf

4 2012-02-12 09:06:18.423 CREATE_INDEX K2\Gandalf

audit_lsn schemaname objectname targetobjectname eventdata

----------- ------------- ------------- ----------------- -------------------

1 dbo T1 NULL <EVENT_INSTANCE>...

2 dbo T1 NULL <EVENT_INSTANCE>...

3 dbo T1 NULL <EVENT_INSTANCE>...

4 dbo idx1 T1 <EVENT_INSTANCE>...

When you’re done, run the following code for cleanup.

DROP TRIGGER trg_audit_ddl_events ON DATABASE;

DROP TABLE dbo.AuditDDLEvents;

Error Handling

SQL Server provides you with tools to handle errors in your T-SQL code. The main tool used for error

handling is a construct called TRY. . .CATCH. SQL Server also provides a set of functions that you can

invoke to get information about the error. I’ll start with a basic example demonstrating the use of

TRY. . .CATCH, followed by a more detailed example demonstrating the use of the error functions.

 CHAPTER 10 Programmable Objects 371

You work with the TRY. . .CATCH construct by placing the usual T-SQL code in a TRY block (between

the BEGIN TRY and END TRY keywords), and all the error-handling code in the adjacent CATCH block

(between the BEGIN CATCH and END CATCH keywords). If the TRY block has no error, the CATCH

block is simply skipped. If the TRY block has an error, control is passed to the corresponding CATCH

block. Note that if a TRY. . .CATCH block captures and handles an error, as far as the caller is con-

cerned, there was no error.

Run the following code to demonstrate a case with no error in the TRY block.

BEGIN TRY

 PRINT 10/2;

 PRINT 'No error';

END TRY

BEGIN CATCH

 PRINT 'Error';

END CATCH;

All code in the TRY block completed successfully; therefore, the CATCH block was skipped. This

code generates the following output.

5

No error

Next, run similar code, but this time divide by zero. An error occurs.

BEGIN TRY

 PRINT 10/0;

 PRINT 'No error';

END TRY

BEGIN CATCH

 PRINT 'Error';

END CATCH;

When the divide by zero error happened in the irst PRINT statement in the TRY block, control was

passed to the corresponding CATCH block. The second PRINT statement in the TRY block was not

executed. Therefore, this code generates the following output.

Error

Typically, error handling involves some work in the CATCH block investigating the cause of the error

and taking a course of action. SQL Server gives you information about the error via a set of functions.

The ERROR_NUMBER function returns an integer with the number of the error and is probably the

most important of the error functions. The CATCH block usually includes low code that inspects the
error number to determine what course of action to take. The ERROR_MESSAGE function returns error

message text. To get the list of error numbers and messages, query the sys.messages catalog view. The

ERROR_SEVERITY and ERROR_STATE functions return the error severity and state. The ERROR_LINE

function returns the line number where the error happened. Finally, the ERROR_PROCEDURE function

returns the name of the procedure in which the error happened and returns NULL if the error did not

happen within a procedure.

372 Microsoft SQL Server 2012 T-SQL Fundamentals

To demonstrate a more detailed error-handling example including the use of the error functions,

irst run the following code, which creates a table called dbo.Employees in the current database.

IF OBJECT_ID('dbo.Employees') IS NOT NULL DROP TABLE dbo.Employees;

CREATE TABLE dbo.Employees

(

 empid INT NOT NULL,

 empname VARCHAR(25) NOT NULL,

 mgrid INT NULL,

 CONSTRAINT PK_Employees PRIMARY KEY(empid),

 CONSTRAINT CHK_Employees_empid CHECK(empid > 0),

 CONSTRAINT FK_Employees_Employees

 FOREIGN KEY(mgrid) REFERENCES dbo.Employees(empid)

);

The following code inserts a new row into the Employees table in a TRY block, and if an error oc-

curs, shows how to identify the error by inspecting the ERROR_NUMBER function in the CATCH block.

The code uses low control to identify and handle errors you want to deal with in the CATCH block,

and re-throws the error otherwise.

note The ability to re-throw an error by using the THROW command was added in

SQL Server 2012.

The code also prints the values of the other error functions simply to show what information is

available to you upon error.

BEGIN TRY

 INSERT INTO dbo.Employees(empid, empname, mgrid)

 VALUES(1, 'Emp1', NULL);

 -- Also try with empid = 0, 'A', NULL

END TRY

BEGIN CATCH

 IF ERROR_NUMBER() = 2627

 BEGIN

 PRINT ' Handling PK violation...';

 END

 ELSE IF ERROR_NUMBER() = 547

 BEGIN

 PRINT ' Handling CHECK/FK constraint violation...';

 END

 ELSE IF ERROR_NUMBER() = 515

 BEGIN

 PRINT ' Handling NULL violation...';

 END

 ELSE IF ERROR_NUMBER() = 245

 BEGIN

 PRINT ' Handling conversion error...';

 END

 ELSE

 CHAPTER 10 Programmable Objects 373

 BEGIN

 PRINT 'Re-throwing error...';

 THROW; -- SQL Server 2012 only

 END

 PRINT ' Error Number : ' + CAST(ERROR_NUMBER() AS VARCHAR(10));

 PRINT ' Error Message : ' + ERROR_MESSAGE();

 PRINT ' Error Severity: ' + CAST(ERROR_SEVERITY() AS VARCHAR(10));

 PRINT ' Error State : ' + CAST(ERROR_STATE() AS VARCHAR(10));

 PRINT ' Error Line : ' + CAST(ERROR_LINE() AS VARCHAR(10));

 PRINT ' Error Proc : ' + COALESCE(ERROR_PROCEDURE(), 'Not within proc');

END CATCH;

When you run this code for the irst time, the new row is inserted into the Employees table success-

fully, and therefore the CATCH block is skipped. You get the following output.

(1 row(s) affected)

When you run the same code a second time, the INSERT statement fails, control is passed to the

CATCH block, and a primary key violation error is identiied. You get the following output.

Handling PK violation...

Error Number : 2627

Error Message : Violation of PRIMARY KEY constraint 'PK_Employees'. Cannot insert duplicate key

in object 'dbo.Employees'.

Error Severity: 14

Error State : 1

Error Line : 3

Error Proc : Not within proc

To see other errors, run the code with the values 0, ‘A’, and NULL as the employee ID.

Here, for demonstration purposes, I used PRINT statements as the actions when an error was iden-

tiied. Of course, error handling usually involves more than just printing a message indicating that the
error was identiied.

Note that you can create a stored procedure that encapsulates reusable error-handling code like this.

IF OBJECT_ID('dbo.ErrInsertHandler', 'P') IS NOT NULL

 DROP PROC dbo.ErrInsertHandler;

GO

CREATE PROC dbo.ErrInsertHandler

AS

SET NOCOUNT ON;

IF ERROR_NUMBER() = 2627

BEGIN

 PRINT 'Handling PK violation...';

END

ELSE IF ERROR_NUMBER() = 547

374 Microsoft SQL Server 2012 T-SQL Fundamentals

BEGIN

 PRINT 'Handling CHECK/FK constraint violation...';

END

ELSE IF ERROR_NUMBER() = 515

BEGIN

 PRINT 'Handling NULL violation...';

END

ELSE IF ERROR_NUMBER() = 245

BEGIN

 PRINT 'Handling conversion error...';

END

PRINT 'Error Number : ' + CAST(ERROR_NUMBER() AS VARCHAR(10));

PRINT 'Error Message : ' + ERROR_MESSAGE();

PRINT 'Error Severity: ' + CAST(ERROR_SEVERITY() AS VARCHAR(10));

PRINT 'Error State : ' + CAST(ERROR_STATE() AS VARCHAR(10));

PRINT 'Error Line : ' + CAST(ERROR_LINE() AS VARCHAR(10));

PRINT 'Error Proc : ' + COALESCE(ERROR_PROCEDURE(), 'Not within proc');

GO

In your CATCH block, you check whether the error number is one of those you want to deal with

locally, in which case you simply execute the stored procedure; otherwise, you re-throw the error.

BEGIN TRY

 INSERT INTO dbo.Employees(empid, empname, mgrid)

 VALUES(1, 'Emp1', NULL);

END TRY

BEGIN CATCH

 IF ERROR_NUMBER() IN (2627, 547, 515, 245)

 EXEC dbo.ErrInsertHandler;

 ELSE

 THROW;

END CATCH;

This way you can maintain the reusable error-handling code in one place.

Conclusion

This chapter provided a high-level overview of programmable objects so that you can be aware of

SQL Server’s capabilities in this area and start building your vocabulary. This chapter covered vari-

ables, batches, low elements, cursors, temporary tables, dynamic SQL, user-deined functions, stored
procedures, triggers, and error handling—quite a few subjects. I hope that you focused on concepts

and capabilities rather than getting sidetracked by every bit of code in the examples.

 375

A P P E N D I X

Getting Started

The purpose of this appendix is to help you get started and set up your environment so that you

have everything you need to get the most out of this book.

You can run all of the code samples in this book on an on-premises installation of Microsoft SQL

Server—box lavor—and most of the examples on Windows Azure SQL Database (formerly called SQL
Azure)—cloud lavor. For details about the differences between the lavors, see the section “The ABC
Flavors of SQL Server” in Chapter 1, “Background to T-SQL Querying and Programming.”

The irst section, “Getting Started with SQL Database,” provides a link to the website where you
can ind the information you need to get started with SQL Database.

The second section, “Installing an On-Premises Installation of SQL Server,” assumes that you want
to connect to an on-premises instance of SQL Server to run the code samples in this book, and that

you don’t have an instance to connect to already. This section walks you through the installation

proc ess for a SQL Server 2012 instance. If you already have an instance of SQL Server to connect to,

feel free to skip the irst section.

The third section, “Downloading Source Code and Installing the Sample Database,” points you to
the website where you can get the downloadable source code for the book and provides instruc-

tions for installing the book’s sample database on both an on-premises SQL Server instance and SQL

Database.

The fourth section, “Working with SQL Server Management Studio,” explains how to develop and
execute T-SQL code in SQL Server by using SQL Server Management Studio (SSMS).

The last section, “Working with SQL Server Books Online,” describes SQL Server Books Online and
explains its importance in helping you get information about T-SQL.

Getting Started with SQL Database

If you want to run the code samples in this book on SQL Database, you will need access to a SQL

Database server, with an account that has privileges to create a new database (or ask an admin-

istrator to create the sample database for you). If you don’t already have access to SQL Database,

you can ind useful information on how to get started on the Windows Azure main page at
http://www.windowsazure.com.

376 Microsoft SQL Server 2012 T-SQL Fundamentals

You will need a Windows Live ID so that you can set up a Windows Azure platform account. If you

don’t already have a Windows Live ID, you can create one at https://signup.live.com. When you have

a Windows Azure subscription, you can connect to the Windows Azure Platform Management Portal,

from which you can manage your SQL Database servers and databases.

The Windows Azure main page offers different options for getting started (by buying a subscrip-

tion or getting a free trial) and provides access to various resources such as the management portal,

community, and support.

When you have access to SQL Database, proceed to the instructions on how to download the

source code and install the sample database later in this appendix.

Installing an On-Premises Implementation of SQL Server

This section is relevant for those who want to run the code samples in this book and practice the exer-

cises against an on-premises instance of SQL Server and don’t already have access to one. You can use

any edition of SQL Server 2012 except SQL Server Compact, which doesn’t have full-ledged T-SQL
support as the other editions do. Assuming that you don’t already have an instance of SQL Server to

connect to, the following sections describe where you can obtain SQL Server and how to install it.

1. Obtain SQL Server
As I mentioned, you can use any edition of SQL Server 2012 except SQL Server Compact to practice

the materials in this book. If you have a subscription to the Microsoft Developer Network (MSDN),

you can use the SQL Server 2012 Developer for learning purposes. You can download it from http://

msdn.microsoft.com/en-us/sqlserver/default.aspx. Otherwise, you can use the free trial software of SQL

Server 2012, which you can download from http://www.microsoft.com/sqlserver/en/us/get-sql-server

/try-it.aspx. In this appendix, I demonstrate the installation of the SQL Server 2012 Enterprise evalua-

tion edition.

2. Create a User account
Prior to installing SQL Server, you need to create a user account that you will later use as the service

account for SQL Server services.

To create a user account

1. Right-click Computer and choose Manage to open the Computer Management snap-in.

2. Navigate to Computer Management (Local) | System Tools | Local Users and Groups | Users.

3. Right-click the Users folder and choose New User.

4. Fill in the details for the new user account in the New User dialog box, as shown in Figure A-1.

http://www.microsoft.com/sqlserver/en/us/get-sql-server/try-it.aspx
http://www.microsoft.com/sqlserver/en/us/get-sql-server/try-it.aspx

 APPENDIX Getting Started 377

FIGuRE A-1 The New User dialog box.

4-1. Type a user name (for example, SQL), a full name if you want to (for example, SQL

Server Services Account), a description if you want one (for example, Account for

SQL Server services), and a secure password, and then conirm the password.

4-2. Clear the User Must Change Password At Next Logon check box.

4-3. Select the User Cannot Change Password and Password Never Expires check boxes.

4-4. Click Create to create the new user account.

3. Install prerequisites
At this point, you can start the setup.exe program from the SQL Server installation folder. Before in-

stalling SQL Server, the setup program checks to determine whether all of the prerequisites are already

installed. The prerequisites include the Microsoft .NET Framework 3.5 SP1 and the .NET Framework 4,

and an updated Windows Installer. If .NET 3.5 doesn’t exist on your computer, the setup program will

generate an error and provide you with a link to the download center. The other prerequisites will be

installed by the setup program if it doesn’t ind them. You may be required to restart the computer
and rerun the setup program.

4. Install the database engine, documentation, and Tools
When all prerequisites have been installed, you can move on to installing the actual product.

To install the database engine, documentation, and tools

1. After all prerequisites have been installed, run the setup.exe program. You should see the SQL

Server Installation Center dialog box shown in Figure A-2.

378 Microsoft SQL Server 2012 T-SQL Fundamentals

FIGuRE A-2 SQL Server Installation Center.

2. In the left pane, choose Installation. Note that the screen changes.

3. In the right pane, choose New SQL Server Stand-Alone Installation Or Add Features To An

 Existing Installation. The Setup Support Rules dialog box appears.

4. Click Show Details to view the status of the setup support rules, as shown in Figure A-3, and

ensure that no problems are indicated.

FIGuRE A-3 The Setup Support Rules dialog box.

 APPENDIX Getting Started 379

5. When you are done, click OK to continue. The Product Key dialog box appears, as shown in

Figure A-4.

FIGuRE A-4 The Product Key dialog box.

Note that in certain circumstances, the Setup Support Files and Setup Support Rules dialog

boxes described in steps 7–9 might appear before the Product Key dialog box. If they do,

simply follow the instructions in steps 7–9 now instead of later.

6. Make sure that Evaluation is chosen in the Specify A Free Edition list box, and click Next to

continue. The License Terms dialog box appears.

7. Conirm that you accept the license terms, and click Next to continue. The Setup Support Files
dialog box appears.

8. Click Install to continue. The Setup Support Rules dialog box appears again.

9. Click Show Details to view the status of the setup support rules and ensure that no problems

are indicated. Click Next to continue. The Setup Role dialog box appears. Leave the SQL Server

Feature Installation option selected and click Next to continue. The Feature Selection dialog

box appears. Select the features to install, as shown in Figure A-5.

380 Microsoft SQL Server 2012 T-SQL Fundamentals

FIGuRE A-5 The Feature Selection dialog box.

Select the following features:

• Database Engine Services

• Client Tools Connectivity

• Documentation Components

• Management Tools - Complete

For the purposes of this book, you don’t need any of the other features.

When you are done, click Next to continue. If the Installation Rules dialog box appears, click

Next to continue. The Instance Coniguration dialog box appears, as shown in Figure A-6.

 APPENDIX Getting Started 381

FIGuRE A-6 The Instance Coniguration dialog box.

If you are not familiar with the concept of SQL Server instances, you can ind details in Chapter
1, in the “SQL Server Architecture” section.

10. If a default instance of SQL Server is not installed on your computer and you would like to

conigure the new instance as the default, simply conirm that the Default Instance option
is selected. If you want to conigure the new instance as a named instance, make sure the
Named Instance option is selected and that you specify a name for the new instance (for

example, SQL2012). When you later connect to SQL Server, you will specify only the computer

name for a default instance (for example, DENALI), and the computer name\instance name

for a named instance (for example, DENALI\SQL2012).

11. When you’re done, click Next to continue. The Disk Space Requirements dialog box appears.

Make sure that you have enough disk space for the installation.

12. Click Next to continue. The Server Coniguration dialog box appears.

382 Microsoft SQL Server 2012 T-SQL Fundamentals

13. As shown in Figure A-7, for the service account for the SQL Server Agent and SQL Server

Database Engine services, specify the user name and password of the user account you

created earlier.

FIGuRE A-7 The Server Coniguration dialog box.

Of course, if you named your user account something other than SQL, specify the name you

assigned to the account.

For the purposes of this book, you do not need to change the default choices in the Collation

dialog box, but if you want to know more about collation, you can ind details in Chapter 2,
“Single-Table Queries,” in the “Working with Character Data” section.

14. Click Next to continue. The Database Engine Coniguration dialog box appears.

15. On the Server Coniguration tab, ensure that under Authentication Mode the Windows
Authentication Mode option is selected. Under Specify SQL Server Administrators, click Add

Current User to assign the current logged-on user with the System Administrator (sysadmin)

server role, as shown in Figure A-8. SQL Server administrators have unrestricted access to the

SQL Server database engine.

 APPENDIX Getting Started 383

FIGuRE A-8 The Database Engine Coniguration dialog box.

Of course, in your case, your current user name will appear instead of DENALI\Gandalf.

If you want to change the setup program’s defaults in terms of data directories, you can do

so on the Data Directories tab. For the purposes of the book, you don’t need to conigure
anything on the FILESTREAM tab.

16. Click Next to continue. The Error And Usage Reporting dialog box appears. Make your choices

based on your preferences, and click Next to continue. The Installation Coniguration Rules
dialog box appears.

17. Click Show Details to view the status of the installation rules and ensure that no problems are

indicated. Click Next to continue. The Ready To Install dialog box appears with a summary of

the installation choices.

18. Ensure that the summary indicates your choices correctly, and click Install to start the actual

installation process. The Installation Progress dialog box appears and remains open through-

out the remainder of the installation process. This dialog box provides a general progress bar

as well as indicating the status of each feature that is being installed (see Figure A-9). When

the installation is complete, a Setup Process Complete message appears above the general

progress bar.

384 Microsoft SQL Server 2012 T-SQL Fundamentals

FIGuRE A-9 The Installation Progress dialog box.

19. Click Next to continue. The Complete dialog box appears, as shown in Figure A-10.

FIGuRE A-10 The Complete dialog box.

This dialog box should indicate the successful completion of the installation.

20. Click Close to inish.

 APPENDIX Getting Started 385

Downloading Source Code and Installing the Sample Database

You can ind the instructions to download the source code here: http://tsql.solidq.com. In this web-

site, go to the Books section, and select the main page for the book in question. This page has a

link to download a single compressed ile with the book's source code, as well as a script ile called
TSQL2012.sql that creates the sample database. Decompress the iles to a local folder (for example,
C:\TSQLFundamentals).

You will ind up to three .sql script iles associated with each chapter of the book. One ile contains
the source code for the corresponding chapter and is provided for your convenience, in case you

don’t want to type the code that appears in the book; this ile name matches the title of the corre-

sponding chapter. A second ile contains the exercises for the chapter; this ile name also matches the
title of the corresponding chapter but includes the sufix “Exercises.” A third ile contains the solutions
to the chapter’s exercises; this ile name matches the title of the corresponding chapter but includes
the sufix “Solutions.” You use SQL Server Management Studio (SSMS) to open the iles and run their
code. The next section explains how to work with SSMS.

You will also ind a text ile called orders.txt, for use when practicing the materials from Chapter 8,
“Data Modiication.” Also included is a script ile called TSQL2012.sql, which creates the book’s sample
database, TSQL2012.

To create the sample database in an on-premises SQL Server instance, you simply need to run this

script ile while you are connected to the target SQL Server instance. If you aren’t familiar with run-

ning script iles in SQL Server, you can follow these steps to complete the database creation.

To create and populate the sample database in an on-premises SQL Server instance

1. Double-click the TSQL2012.sql ile name in Windows Explorer to open the ile in SSMS. The
Connect To Database Engine dialog box appears.

2. In the Server Name box, ensure that the name of the instance you want to connect to appears.

For example, you would type the name DENALI if your instance was installed as the default

instance in a computer called DENALI, or DENALI\SQL2012 if your instance was installed as a

named instance called SQL2012 in a computer called DENALI.

3. In the Authentication box, make sure Windows Authentication is chosen. Click Connect.

4. When you are connected to SQL Server, press F5 to run the script. When the execution is

done, the Command(s) Completed Successfully message should appear in the Messages pane.

You should see the TSQL2012 database in the Available Databases box.

5. When you are done, you can close SSMS.

386 Microsoft SQL Server 2012 T-SQL Fundamentals

To create and populate the sample database in SQL database

1. Double-click the ile name in Windows Explorer to open the ile in SSMS. The Connect To
Database Engine dialog box appears.

2. In the Server Name box, ensure that the name of the SQL Database server you want to con-

nect to appears—for example, myserver.database.windows.net.

3. In the Authentication box, make sure SQL Authentication is chosen and the correct logon

name and password are entered. Click Options.

4. On the Connection Properties tab, type master in the Connect To Database text box, and

then click Connect.

5. Skip the instructions under Section A in the script (for an on-premises SQL Server instance)

and follow the instructions under Section B in the script (for SQL Database). The most impor-

tant instruction is the one telling you to run the following command to create the TSQL2012

database.

CREATE DATABASE TSQL2012;

6. Right-click any empty area in the query pane and choose Connection | Change Connection.

The Connect To Database Engine dialog box appears. Specify TSQL2012 as the database to

connect to, and click Connect. You should see the TSQL2012 database in the Available Data-

bases box.

As an alternative, you can simply select the TSQL2012 database from the Available Data-

bases box.

7. Highlight the code in Section C (beginning with Create Schemas and all the way to the end of

the script ile). Press F5 to run the script. When the execution is done, the Command(s) Com-

pleted Successfully message should appear in the Messages pane. Note that on slow connec-

tions it might take the code a few minutes to complete.

8. When you are done, you can close SSMS.

The data model of the TSQL2012 database is provided in Figure A-11 for your convenience.

 APPENDIX Getting Started 387

Sales.OrderDetails
PK,FK2
PK,FK1

unitprice
qty
discount

orderid
productid

Production.Products

PK

productname
supplierid
categoryid
unitprice
discontinued

productid

FK2
FK1

Production.Categories

PK

categoryname
description

categoryid

Stats.Scores

PK,FK1
PK

score

testid
studentid

Stats.Tests

PK testid

Production.Suppliers

PK

companyname
contactname
contacttitle
address
city
region
postalcode
country
phone
fax

supplierid

Sales.Orders

PK

custid
empid
orderdate
requireddate
shippeddate
shipperid
freight
shipname
shipaddress
shipcity
shipregion
shippostalcode
shipcountry

orderid

FK2
FK1

FK3

Sales.Customers

PK

companyname
contactname
contacttitle
address
city
region
postalcode
country
phone
fax

custid

dbo.Nums

PK n

Sales.Shippers

PK shipperid

companyname
phone

HR.Employees

PK

lastname
firstname
title
titleofcourtesy
birthdate
hiredate
address
city
region
postalcode
country
phone
mgrid

empid

FK1

Sales.OrderValues

orderid
custid
empid
shipperid
orderdate
requireddate
shippeddate
qty
val

Sales.EmpOrders

empid
ordermonth
qty
val
numorders

Sales.OrderTotalsByYear

orderyear
qty

Sales.CustOrders

custid
ordermonth
qty

FIGuRE A-11 The data model of the TSQL2012 database.

Working with SQL Server Management Studio

SQL Server Management Studio (SSMS) is the client tool you use to develop and execute T-SQL code

against SQL Server. The purpose of this section is not to provide a complete guide to working with

SSMS, but rather just to help you get started.

To start working with SSMS

1. Start SSMS from the Microsoft SQL Server program group.

2. If this is the irst time you have run SSMS, I recommend setting up the startup options so that
the environment is set up the way you want it.

3. If a Connect To Server dialog box appears, click Cancel for now.

388 Microsoft SQL Server 2012 T-SQL Fundamentals

4. Choose the Tools | Options menu item to open the Options dialog box. Under Environment

| Startup, set the At Startup option to Open Object Explorer And Query Window. This choice

tells SSMS that whenever it starts, it should open the Object Explorer and a new query window.

The Object Explorer is the tool you use to manage SQL Server and graphically inspect ob-

ject deinitions, and a query window is where you develop and execute T-SQL code against
SQL Server. Feel free to navigate the tree to explore the options that you can set, but few

of them are likely to mean much at this point. After you gain some experience with SSMS,

you will ind many of the options more meaningful and will probably want to change some
of them.

5. When you’re done exploring the Options dialog box, click OK to conirm your choices.

6. Close SSMS and start it again to verify that it actually opens the Object Explorer and a new

query window. You should see the Connect To Server dialog box, as shown in Figure A-12.

FIGuRE A-12 The Connect To Server dialog box.

7. In this dialog box, you specify the details of the SQL Server instance you want to connect to.

7-1. Type the name of the server you want to connect to in the Server Name box.

7-2. If you’re connecting to an on-premises SQL Server instance, make sure Windows

Authen tication is chosen in the Authentication box; if you’re connecting to SQL

Data base, make sure that SQL Server Authentication is selected. Specify the logon

and password information; click Options, and specify TSQL2012 in the Connect To

Dataset box in the Connection Properties dialog box.

 APPENDIX Getting Started 389

7-3. Click Connect. SSMS should start, as shown in Figure A-13.

FIGuRE A-13 The opening screen of SSMS.

The Object Explorer window appears on the left, the query window appears to the right of

Object Explorer, and the Properties window is to the right of the query window. You can hide

the Properties window by clicking the Auto Hide button (in the upper-right corner of the win-

dow, to the left of the x). Although the focus of this book is on developing T-SQL code and not

SQL Server management, I urge you to explore the Object Explorer by navigating the tree and

by right-clicking the various nodes. You will ind the Object Explorer a very convenient tool for
graphically inspecting your databases and database objects, as shown in Figure A-14.

Note that you can drag items from the Object Explorer to the query window.

Tip If you drag the Columns folder of a table from the Object Explorer to the query

window, SQL Server will list all table columns separated by commas.

390 Microsoft SQL Server 2012 T-SQL Fundamentals

FIGuRE A-14 The Object Explorer.

In the query window, you develop and execute T-SQL code. The code you run is executed

against the database you are connected to. If you’re connected to an on-premises SQL Server

instance, you can choose the database you want to connect to from the Available Databases

combo box, as shown in Figure A-15. In SQL Database, you cannot switch between databases,

so make sure you initially get connected to the right database.

FIGuRE A-15 The Available Databases combo box.

 APPENDIX Getting Started 391

8. Make sure you are currently connected to the TSQL2012 sample database.

Note that at any point, you can change the server and database you are connected to by

right-clicking an empty area in the query window and then choosing Connection | Change

Connection.

9. You are now ready to start developing T-SQL code. Type the following code into the query

window.

SELECT orderid, orderdate FROM Sales.Orders;

10. Press F5 to execute the code. Alternatively, you can click Execute (the icon with the red excla-

mation point—not the green arrow, which starts the debugger). You will get the output of the

code in the Results pane, as shown in Figure A-16.

FIGuRE A-16 Executing the irst query.

You can control the target of the results from the Query | Results To menu item or by clicking

the corresponding icons in the SQL Editor toolbar. You have the following options: Results To

Grid (default), Results To Text, and Results To File.

Note that if some of the code is highlighted, as shown in Figure A-17, when you execute the

code, SQL Server executes only the selected part. SQL Server executes all code in the script

only if no code is highlighted.

392 Microsoft SQL Server 2012 T-SQL Fundamentals

FIGuRE A-17 Executing only selected code.

Tip If you press and hold the Alt button before you start highlighting code, you can

highlight a rectangular block that doesn’t necessarily start at the beginning of the

lines of code, for purposes of copying or executing, as shown in Figure A-18.

FIGuRE A-18 Highlighting a rectangular block.

 APPENDIX Getting Started 393

Finally, before I leave you to your own explorations, I’d like to remind you that all of the source

code for the book is available for download from the book’s website. The previous section in this ap-

pendix, “Downloading Source Code and Installing the Sample Database,” provides the details. Assum-

ing that you downloaded the source code and extracted the compressed iles to a local folder, you
can open the script ile you want to work with from File | Open | File or by clicking the Open File icon
on the standard toolbar. Alternatively, you can double-click the script ile’s name in Windows Explorer
to open the script ile within SSMS.

Working with SQL Server Books Online

Microsoft SQL Server Books Online is the online documentation that Microsoft provides for SQL Server.

It contains a huge amount of useful information. When you are developing T-SQL code, think of Books

Online as your best friend—besides this T-SQL fundamentals book, of course.

You can access Books Online through the Microsoft SQL Server program group, by clicking Docu-

mentation & Community | SQL Server Documentation. If you’re starting the product documentation

for the irst time, you will be asked to choose a default setting for Help—speciically, whether to get
the Help content from the Internet or store it locally on your computer. Make a choice based on your

preferences. You can always change your choices later from the Help Library Manager (accessible

via the rightmost icon in the top toolbar). For example, in my environment, I chose local help and

installed all topics under the SQL Server 2012 category locally.

Note that if you choose to store the Help content locally, you actually have to go to the help library

manager and download it. Also, updates to Books Online aren’t linked to service pack releases, so it’s

a good idea to check for updates from time to time in the Help Library Manager.

Books Online for SQL Server 2012 is also available directly on the Internet through the following

link: http://msdn.microsoft.com/en-us/library/ms130214(v=SQL.110).aspx. The examples that I demon-

strate are based on a local installation of Books Online on my machine.

Learning to use Books Online is not rocket science, and I don’t want to insult anyone’s intelligence

by explaining the obvious. Dedicating a section to Books Online in the “Getting Started” appendix is
more about making you aware of its existence and emphasizing its importance rather than explaining

how to use it. Too often, people ask others for help about a topic related to SQL Server when they can

easily ind the answer if they only put a little effort into searching for it in Books Online.

I’ll explain a few of the ways to get information from Books Online. One of the windows that I use

most in Books Online to search for information is the Index tab, shown in Figure A-19.

Type what you are looking for in the Look For box. As you type the letters of the subject you are

looking for (for example, window function), Books Online positions the cursor on the irst qualify-

ing item in the sorted list of subjects below. You can type T-SQL keywords for which you need syntax

information, for example, or any other subject of interest.

http://msdn.microsoft.com/en-us/library/ms130214(v=SQL.110).aspx

394 Microsoft SQL Server 2012 T-SQL Fundamentals

FIGuRE A-19 The Books Online Help Index window.

You can add the topic to the Help Favorites by clicking the Add To Favorites button from the tool-

bar, making it easy to get back to later. You can also sync the current help item with the respective

topic on the Content tab by clicking the Sync ToC button.

When you are looking for a general item rather than a speciic item, such as What’s New In SQL
Server 2012 or the T-SQL Programming Reference, you will probably ind the Contents tab useful
(see Figure A-20).

FIGuRE A-20 The Books Online Help Contents window.

 APPENDIX Getting Started 395

Here you need to navigate the tree to get to the topic of interest.

Another very useful tool is the Search documentation option in the upper-right corner of the Help

window, as shown in Figure A-21.

FIGuRE A-21 The Books Online Help Search window.

You use the search box when looking for articles that contain words you are looking for. This is a

more abstract search than a search on the Index tab—somewhat similar to a search performed by an

Internet search engine. Note that if you want to ind a certain word in an open article, click the Find
button on the toolbar or press Ctrl+F to activate the Find bar.

Tip Finally, before I leave you to your own explorations, let me add a last tip. If you need

help on a syntax element while writing code in SQL Server Management Studio, make sure

your cursor is positioned somewhere in that code element and then press Shift+F1. This will

load Books Online and open the syntax page for that element, assuming that such a Help

item exists.

 397

accounts

creating user accounts on SQL Server, 376

Windows Azure platform account, 376

AFTER INSERT trigger, 367

after trigger, 367

aggregates

aggregation phase and pivoting data, 224

functions

NULL, 35

running aggregates, 141, 350

window functions, 220

aliases

column aliases, 159

columns, 38, 42

expressions and attributes, 37

external column aliasing

views, 169

ALL

set operators, 192

UNION ALL operator, 196

all-at-once operations

about, 59

UPDATE, 266

Alt button, 392

ALTER DATABASE, 64

alternate keys, 7

ALTER SEQUENCE, 258

ALTER TABLE

identity property, 255

LOCK_ESCALATION, 302

A-Mark, 6

Analysis Services, BISM, 11

anchor members, deined, 167
AND operator, 51, 274

ANSI (American National Standards Institute), SQL, 2

ANSI SQL-89 syntax

cross joins, 101

inner joins, 105

Index

Symbols
1NF (irst normal form), 7
2NF (second normal form), 8

* (asterisk)

performance, 41

SELECT lists of subqueries, 139

\ (backslash), named instances, 14

[<Character>-<Character>] wildcard, 72

[Character List or Range>] wildcard, 73

, (comma), 37, 265

{} curly brackets, set theory, 3

" (double quotes), 64

@@identity function, 254

[<List of Characters>] wildcard, 72

@params, 360

() parentheses

column aliases in CTEs, 164

derived tables, 157

functions, 80

precedence, 52

% (percent) wildcard, 71

+ (plus sign) operator, 64

; (semicolon)

MERGE, 272

statements, 21, 29

' (single quotes), 64
.sql script iles, 385
@stmt, 360

_ (underscore) wildcard, 72

A
ABC lavors, 12
access, views using permissions, 169

ANSI SQL-92 syntax

398 Index

ANSI SQL-92 syntax

cross joins, 100

inner joins, 103

appliance lavor, 12
APPLY operator, 178–181, 306

arguments

CTEs, 165

derived tables, 161

arithmetic operators, 51

arrays, 1NF, 8

AS, inline aliasing, 160

assignment SELECT, 340

assignment UPDATE, 269

asterisk (*)

performance, 41

SELECT lists of subqueries, 139

atomicity, attributes, 7

attributes

atomicity, 7

blocking_session_id attribute, 308

expressions, 36

iltering in outer joins, 115
foreign key constraints, 23

nullability, 20

set theory, 4

autonumbering, assignment UPDATE, 269

B
backslash (\), named instances, 14

bag, 3

batches, 341–345

GO, 344

statements that cannot be combined in the

same batch, 343

as a unit of parsing, 342

as a unit of resolution, 344

variables, 343

BEGIN, 346

BEGIN TRAN, 297

BETWEEN, 50

BISM (Business Intelligence Semantic Model), 11

blockers, terminating, 308

blocking. See locks and blocking

blocking_session_id attribute, 308

boundaries, transactions, 297

box lavor, 13
BULK INSERT, 252

Business Intelligence Semantic Model (BISM), 11

C
caching, sequence objects, 257

candidate keys

3NF, 8

about, 7

Cantor, George, set theory, 3

Cartesian products

cross joins, 99

inner joins, 103

CASE expressions

about, 53

pivoting data, 225

CAST function, 81, 138

catalog views, 88

CATCH blocks, 371

character data, 61–73

collation, 62

data types, 61

LIKE predicate, 71

operators and functions, 64–71

character data types, 51

CHARINDEX function, 67

check constraints, 24

CHECK, @@identity and SCOPE_IDENTITY, 255

CHECK OPTION option, 174

CHOOSE function, 55

clauses, deined, 29
close world assumption (CWA), 5

cloud lavor, 13
COALESCE function, 66

Codd, Edgar F., relational model, 4

coding style, 21

collation

character data, 62

property, 16

COLUMNPROPERTY function, 90

columns

aliases

assigning, 159

CTEs, 164

query example, 38

referencing within a SELECT clause, 42

asterisk in column names, 41

attributes in set theory, 4

external column aliasing, 169

identity property, 255

INSERT VALUES, 248

ordinal position

in SQL, 41

in T-SQL, 43

 DATALENGTH function

 Index 399

preixes, 101
substitution errors in subquery column

names, 145

table expressions, 158

comma (,), 37, 265

COMMIT TRAN, 297

comparison operators, 51

compatibility, lock modes, 300

composite constraints, 22

composite joins, 106

compostable DML, 285

compression, 62

concatenating

strings, 64, 362

user input, 359

CONCAT function, 64

concurrency, 297–338

deadlocks, 323–325

exercises, 326–338

isolation levels, 309–323

READ COMMITTED isolation level, 311

READ COMMITTED SNAPSHOT isolation

level, 321

READ UNCOMMITTED isolation level, 310

REPEATABLE READ isolation level, 313

row versioning, 316–322

SERIALIZABLE isolation level, 314

SNAPSHOT isolation level, 317–319

summary of isolation levels, 323

locks and blocking, 300–309

locks, 300

troubleshooting blocking, 303–309

transactions, 297–300

conlict detection, SNAPSHOT isolation level, 319
consistency, deined, 298
constraints

about, 6

check constraints, 24

data integrity, 22

default constraints, 24

foreign key constraints, 23

primary keys, 22

contained databases, 17

CONTINUE, 347

CONVERT function, 77, 81

correlated subqueries

about, 136–139

deined, 129
tables, 179

COUNT, outer joins, 118

CREATE SEQUENCE, 257

CREATE TABLE

about, 20

identity property, 255

ordinal position of columns, 41

CROSS APPLY, 178

cross joins, 99–103

ANSI SQL-89 syntax, 101

ANSI SQL-92 syntax, 100

self cross joins, 101

tables of numbers, 102

CTEs (common table expressions), 163

arguments, 165

column aliases, 164

multiple references, 166

recursive CTEs, 166–168

CUBE subclause, grouping sets, 234

curly brackets {}, set theory, 3

current date and time functions, 80

CURRENT_TIMESTAMP function, 80

cursors

about, 348–352

deined, 43
CWA (close world assumption), 5

D
data. See character data

DATABASEPROPERTYEX function, 90

databases

collation, 63

engines, installing, 377–384

installing the sample database, 385

SQL Server, 15–18

triggers, 368

data compression, 62

Data Control Language (DCL), deined, 2
Data Deinition Language (DDL)

deined, 2
triggers, 368

data integrity, 22–25

check constraints, 24

default constraints, 24

foreign key constraints, 23

primary key constraints, 22

DATALENGTH function, 67

data life cycle

400 Index

data life cycle, 9–12

BISM, 11

DM, 12

DW, 10

OLTP, 10

Data Manipulation Language. See DML

data mart, deined, 10
data mining (DM), 12

Data Mining Extensions (DMX), deined, 12
data modiication, 247–296

deleting data, 261–264

DELETE, 262

DELETE based on joins, 263

TRUNCATE, 263

exercises and solutions, 287–296

inserting data, 247–261

BULK INSERT, 252

identity property and sequence object, 252–

261

INSERT EXEC, 250

INSERT SELECT, 249

INSERT VALUES, 247

SELECT INTO, 251

merging data, 270–274

OUTPUT, 280–287

compostable DML, 285

DELETE, 282

INSERT, 280

MERGE, 284

UPDATE, 283

table expressions, 274–277

TOP and OFFSET-FETCH, 277–279

updating data, 264–270

assignment UPDATE, 269

UPDATE, 265

UPDATE based on joins, 267

data staging area (DSA), ETL process, 11

data types

character data, 61

date and time data, 73

precedence, 52, 74

scalar expressions, 51

set operators, 191

data warehouse (DW), 10

DATEADD function, 83

date and time data, 73–87

data types, 73

functions, 80–87

literals, 74–78

sequences, 113

DATEDIFF function, 84, 126

DATENAME function, 86

DATEPART function, 85

DATETIMEOFFSET, SWITCHOFFSET function, 83

DAY function, 85

DBCC CHECKIDENT, 256

DB_NAME function, 305

DCL (Data Control Language), deined, 2
DDL (Data Deinition Language)

deined, 2
triggers, 368

DEADLOCK_PRIORITY, 323

deadlocks, concurrency, 323–325

declarative data integrity, 22

DECLARE, 339, 356

defaults

constraints, 24

default instance, 14

isolation levels, 301, 310, 321

lock timeout value, 309

delete. See also TRUNCATE

DELETE, 261–264

about, 262

based on joins, 263

with DML triggers, 367

when enabling snapshot-based isolation

levels, 316

OUTPUT, 282

delimiting identiier names, 30
derived tables, 157–163

arguments, 161

column aliases, 159

multiple references, 162

nesting, 161

dimension tables, snowlake dimension, 11
DISTINCT

duplicate rows, 40

ORDER BY, 44

ROW_NUMBER function, 217

subqueries, 134

using, 128

distinct, deined in set theory, 3
distinct set operators

EXCEPT distinct set operator, 198

INTERSECT distinct set operator, 195

UNION distinct set operator, 193

DM (data mining), 12

DML (Data Manipulation Language)

compostable DML, 285

triggers, 367

 foreign key constraints

 Index 401

DMV (dynamic management view), locks, 304

DMX (Data Mining Extensions), deined, 12
documentation

installing, 377–384

SQL Server Books Online, 393–396

double quotes ("), 64

downloading

source code, 385

SQL Server, 376

DROP, 263

DSA (data staging area), ETL process, 11

duplicates

INTERSECT distinct set operator, 195

rows, 39

UNION distinct set operator, 193

durability, deined, 298
DW (data warehouse), 10

dynamic management view (DMV), locks, 304

dynamic SQL, 359–362

EXEC, 359

PIVOT, 361

sp_executesql, 360

E
elements, order in set theory, 3

ELSE, CASE expressions, 53

embedded subqueries, 130

ENCRYPTION option, 172

END, 346

Entity Relationship Modeling (ERM), normalization, 7

EOMONTH function, 87

equi joins, 107

ERM (Entity Relationship Modeling), normalization, 7

error handling

programmable objects, 370–374

stored procedures, 364

ERROR_LINE function, 371

ERROR_MESSAGE function, 371

ERROR_NUMBER function, 371

ERROR_PROCEDURE function, 371

ERROR_SEVERITY function, 371

ERROR_STATE function, 371

ESCAPE character, 73

ETL process, 11

EVENTDATA function, 368

EXCEPT operator, 198–200

EXCEPT ALL multiset operator, 199

EXCEPT distinct set operator, 198

exclusive lock mode

about, 300

lock compatibility, 301

EXEC, 359

exercises and solutions

beyond the fundamentals of querying, 239–246

concurrency, 326–338

data modiication, 287–296
joins, 120–128

set operators, 204–210

single-table queries, 91–98

subqueries, 147–156

table expressions, 182–190

EXISTS

correlated subqueries, 138

INTERSECT distinct set operator, 195

using, 154

expressions. See also table expressions

attributes, 36

CASE expressions, 53

table expressions, 274–277

vector expressions, 268

extensions, SQL, 3

external column aliasing, views, 169

external forms

column aliases in CTEs, 164

column aliases in general, 160

F
FALSE, 55, 345

FETCH, OFFSET-FETCH, 47

ile extensions, databases, 18
ilegroups, 18
ilters

attributes in outer joins, 115

data using predicates, 4

date ranges, 79

OFFSET-FETCH ilter, 47
TOP ilter, 44–47

irst normal form (1NF), 7
FIRST_VALUE function, 218

lavors, ABC lavors, 12
low elements, 345–348

IF ... ELSE, 345

WHILE, 346

foreign key columns, NULL, 24

foreign key constraints

about, 23

TRUNCATE, 263

FORMAT function

402 Index

FORMAT function, 71

forms

external forms, 160

column aliases in CTEs, 164

inline aliasing form, 160

four-valued predicate logic, 6

framing

aggregate functions, 221

window functions, 213

FROM

about, 29

cross joins, 100

DELETE, 262

DELETE based on joins, 264

derived tables, 162

multi-join queries, 116

multiple references in CTEs, 166

table UDFs, 362

FROMPARTS function, 87

FULL, outer joins, 110

functions

@@identity function, 254

aggregate functions, 35

CAST function, 138

CHARINDEX function, 67

CHOOSE function, 55

COALESCE function, 66

COLUMNPROPERTY function, 90

CONCAT function, 64

CONVERT function, 77

CURRENT_TIMESTAMP function, 80

DATABASEPROPERTYEX function, 90

DATALENGTH function, 67

date and time functions, 80–87

DB_NAME function, 305

ERROR_LINE function, 371

ERROR_MESSAGE function, 371

ERROR_NUMBER function, 371

ERROR_PROCEDURE function, 371

ERROR_SEVERITY function, 371

ERROR_STATE function, 371

EVENTDATA function, 368

FIRST_VALUE function, 218

FORMAT function, 71

GETDATE function, 80

GROUPING and GROUPING_ID functions, 236–

238

IDENT_CURRENT function, 254

IIF function, 55

ISNULL function, 55

LAG function, 217, 243

LAST_VALUE function, 218

LEAD function, 217, 243

LEFT and RIGHT functions, 66

LEN function, 67

LOWER function, 70

LTRIM function, 70

NEWID function, 363

NEXT VALUE FOR function, 258, 281

NTILE function, 215

OBJECT_DEFINITION function, 173

OBJECT_NAME function, 305

OBJECTPROPERTY function, 90

ORDER BY and window functions, 196

PATINDEX function, 68

RAND function, 363

ranking functions, 215

REPLACE function, 68

REPLICATE function, 69

ROW_NUMBER function, 48, 196, 215, 276

RTRIM function, 70

SCHEMA_NAME function, 88

SCOPE_IDENTITY function, 254, 280

STUFF function, 70

SUBSTRING function, 66

SYSDATETIME function, 25, 80

SYSDATETIMEOFFSET function, 80

sys.dm_exec_sql_text function, 306

system stored procedures and functions, 89

SYSUTCDATETIME function, 80

TRY_CAST function, 81

TRY_CONVERT function, 81

TRY_PARSE function, 81

UDFs, 362

UPPER function, 70

window functions

about, 48

aggregates, 220, 352

offset window functions, 217–219

ORDER BY, 196

ranking, 214–217

G
GETDATE function, 80

getting started, 375–396

downloading source code, 385

installing the sample database, 385

Microsoft SQL Server Books Online, 393–396

 isolation levels

 Index 403

SQL Server, 376–384

creating user accounts, 376

installing prerequisites, 377

installing the database engine, documenta-

tion and tools, 377–384

obtaining SQL Server, 376

SQL Server Management Studio, 387–393

Windows Azure SQL Database, 375

GETUTCDATE function, 80

global temporary tables, 355

GO, 342, 344

granularity, data warehouses, 11

GROUP BY

about, 32–35

pivoting, 226

grouping phase, pivoting data, 224

grouping sets, 232–238

CUBE subclause, 234

GROUPING and GROUPING_ID functions, 236–

238

GROUPING SETS subclause, 234

ROLLUP subclause, 235

H
HAVING, 36

heaps, Windows Azure SQL Database, 251

hints, table hints and isolation levels, 310

HOLDLOCK, 310

I
IDENT_CURRENT function, 254

identiiers, delimiting names of, 30
IDENTITY_INSERT, 255

identity property, 252–261

IF ... ELSE, 345

IF statement, 20

IIF function, 55

I-Mark, 6

IMPLICIT_TRANSACTIONS, 297

IN

self-contained multivalued subqueries, 132

static queries, 361

subqueries, 143

increments, sequence objects, 257

information schema views, 89

inline aliasing form, 160

inline TVFs

about, 176

views, 169

inner joins, 103–106

ANSI SQL-89 syntax, 105

ANSI SQL-92 syntax, 103

inner join safety, 105

input parameters, inline table-valued functions, 176

INSERT

DML triggers, 367

OUTPUT, 280

inserting data, 247–261

BULK INSERT, 252

identity property and sequence object, 252–261

INSERT EXEC, 250

INSERT SELECT, 249

INSERT VALUES, 247

SELECT INTO, 251

installing

sample database, 385

SQL Server, 376–396

instances

default instances, 14

named instances, 14

SQL Server, 14

instead of trigger, 367

integers, sequences of, 102

integrity, referential integrity, 23

International Organization for Standardization (ISO),

SQL, 2

INTERSECT operator, 194–197

INTERSECT ALL multiset operator, 195–197

INTERSECT distinct set operator, 195

ISDATE function, 86

ISNULL function, 55

ISO (International Organization for Standardization),

SQL, 2

isolation, deined, 298
isolation levels, 309–323

READ COMMITTED isolation level, 311

READ COMMITTED SNAPSHOT isolation

level, 321

READ UNCOMMITTED isolation level, 310

REPEATABLE READ isolation level, 313

row versioning, 316–322

SERIALIZABLE isolation level, 314

SNAPSHOT isolation level, 317–319

summary of isolation levels, 323

joins

404 Index

J
joins, 99–128

composite joins, 106

cross joins, 99–103

ANSI SQL-89 syntax, 101

ANSI SQL-92 syntax, 100

self cross joins, 101

tables of numbers, 102

exercises and solutions, 120–128

inner joins, 103–106

ANSI SQL-89 syntax, 105

ANSI SQL-92 syntax, 103

inner join safety, 105

multi-join queries, 109

non-equi joins, 107

outer joins, 110–119

about, 110–113

COUNT, 118

iltering attributes, 115
missing values, 113

multi-join queries, 116

versus subqueries, 133

K
keys

alternate keys, 7

candidate keys, 7, 8

constraints, 3

foreign key constraints, 23

primary key constraints, 22

surrogate keys, 252

L
LAG function, 217, 243

language independence, 2

languages, date and time formats, 75

LAST_VALUE function, 218

LATERAL, 178

.ldf ile extension, 18
LEAD function, 217, 243

LEFT function, 66

LEFT keyword, outer joins, 110

LEN function, 67

LIKE predicate

about, 71

character strings and speciied patterns, 50

literals

data types, 61

date and time data, 74–78

local temporary tables, 353

lock compatibility

about, 301

requested modes, 302

LOCK_ESCALATION, 302

locks and blocking, 300–309

locks, 300

troubleshooting blocking, 303–309

LOCK_TIMEOUT

about, 308

default value, 309

Log Data File, 18

logical operators, 51

logical phases, circumventing unsupported logical

phases, 202

logical query processing

about, 27

deined, 99
logic, predicate logic, 4

logon

SQL Server authenticated logon, 17

Windows authenticated logon, 17

lost updates, 314

LOWER function, 70

LTRIM function, 70

M
master databases, 16

Master Data File, 18

MAX, 62

maximum values, 257

.mdf ile extension, 18
MERGE

about, 270–274

OUTPUT, 284

metadata, 88–90

catalog views, 88

information schema views, 89

system stored procedures and functions, 89

Microsoft .NET

routines, 362

SQL Server prerequisites, 377

Microsoft SQL Azure. See Windows Azure SQL

Database

 OLTP (online transactional processing)

 Index 405

Microsoft SQL Server. See SQL Server

Microsoft SSMS

about, 393–396

loading SQL Server Books Online, 395

minimum values, 257

mirrored pairs, non-equi joins, 108

missing values

about, 6

outer joins, 113

model databases, 16

modes, locks, 300

MOLAP, 11

MONTH function, 85

msdb databases, 16

multi-join queries

about, 109

outer joins, 116

multiset operators

EXCEPT ALL multiset operator, 199

INTERSECT ALL multiset operator, 195–197

UNION ALL multiset operator, 192

multiset tables, 3

multivalued subqueries, examples, 132

N
named instances, 14

names

column names, 145

table columns in table expressions, 158

temporary tables, 353

namespaces, schemas, 19

natural joins, deined, 107
.ndf ile extension, 18
nesting

derived tables, 161

queries, 129

.NET

routines, 362

SQL Server prerequisites, 377

NEWID function, 363

NEXT VALUE FOR function, 258, 281

next values, returning, 140

N (National), 51

NOCOUNT, 262

NOLOCK, 310

non-equi joins, 107

normalization, 7–9

NOT EXISTS

EXCEPT distinct set operator, 199

using, 154

NOT IN, 144

Not Master Data File, 18

NOT operator, 51

NTILE function, 215

NULL

aggregate functions, 35

concatenation, 65

foreign key columns, 24

@@identity and SCOPE_IDENTITY, 255

IF ... ELSE, 345

INSERT SELECT, 249

INSERT VALUES, 248

INTERSECT distinct set operator, 195

misbehaving subqueries, 142

multi-join queries, 116

outer joins, 110, 115

single-table queries, 55–59

subqueries, 134, 140

support for, 6

unpivoting, 231

nullability, 20

numbers, cross joins, tables of numbers, 102

O
obfuscated text, 172

OBJECT_DEFINITION function, 173

OBJECT_NAME function, 305

OBJECTPROPERTY function, 90

objects. See also programmable objects

object names and schemas, 19

SCHEMABINDING option, 174

schema-qualifying names of, 29

sequence object, 252–261

set theory, 3

SQL Server, 18

OFFSET clause, 172

OFFSET-FETCH

about, 47

circumventing unsupported logical phases, 203

data modiication, 277–279
using, 158, 171

offsets

DATETIMEOFFSET, 74

window functions, 217–219

OLTP (online transactional processing), 10

ON

406 Index

ON

ANSI SQL-89 syntax, 105

ANSI SQL-92 syntax, 103

multi-join queries, 116

outer joins, 112

online transactional processing (OLTP), 10

on-premises SQL Server, 13

operations, all-at-once operations, 59

operators

APPLY operator, 178–181, 306

arithmetic operators, 51

comparison operators, 51

CROSS APPLY operator, 179

logical operators, 51

OUTER APPLY operator, 179

plus sign (+) operator, 64

precedence rules, 52

SELECT, 50–53

optimistic concurrency, 301

optimization. See performance

order

rows in tables, 4

set elements, 3

SQL processing of query clauses, 28

table expressions, 158

ORDER BY

about, 42

circumventing unsupported logical phases, 202

cursors, 348

OFFSET-FETCH, 48, 277

set operators, 191

table expressions, 158

TOP, 44, 277

using, 49

views, 170

window functions, 196, 213

ordering

window ordering and aggregate functions, 221

windows functions, 212

OR operator, 51

OUTER APPLY, 178

outer joins, 110–119

about, 110–113

COUNT, 118

iltering attributes, 115
missing values, 113

multi-join queries, 116

outer queries, deined, 129

OUTPUT, 280–287

compostable DML, 285

DELETE, 282

INSERT, 280

MERGE, 284

UPDATE, 266, 283

using, 365

OVER

aggregate windows functions, 220

sequence objects, 259

window functions, 48, 211

P
Parallel Data Warehouse (PDW), appliances, 12

parameters, input parameters and inline table-

valued functions, 176

parentheses ()

column aliases in CTEs, 164

derived tables, 157

functions, 80

precedence, 52

parsing

batches as unit of parsing, 342

PARSE function, 81

PARTITION BY, window functions, 48, 213

PATINDEX function, 68

PDW (Parallel Data Warehouse), appliances, 12

PERCENT, TOP, 45

percent (%) wildcard, 71

performance

aggregates and window functions, 352

ANSI SQL-89 syntax versus ANSI SQL-92

syntax, 101

asterisk (*)

in column names, 41

in SELECT lists of subqueries, 139

blocking issues, 303

DISTINCT in subqueries, 134

dynamic SQL, 359

multiple references in CTEs, 166

row versioning and isolation levels, 316

sp_executesql, 360

stored procedures, 365

table expressions, 160

UPDATE based on joins, 268

WHERE, 32

window functions, 213

 READCOMMITTEDLOCK

 Index 407

permissions

schema level, 19

views, 169

pessimistic concurrency

deined, 301
isolation levels, 309

phantom reads, 314

phases

circumventing unsupported logical phases, 202

deined, 29
physical query processing, 99

PIVOT, 361

pivoting data, 222–228

native T-SQL PIVOT operator, 225

standard SQL, 224

plus sign (+) operator, 64

PowerPivot, BISM, 11

precedence

data types

deined, 74
using, 52

operator precedence rules, 52

set operators, 200

predicates

about, 5

LIKE predicate, 71

logic

about, 4

two-, three- and four- value logic, 6

SELECT, 50–53

preixes, columns, 101
previous values, returning, 140

PRIMARY ilegroup, 18
primary key constraints, 22

PRINT, 343

procedural data integrity, 22

procedures

stored procedures, 364

system stored procedures and functions, 89

programmable objects, 339–374

batches, 341–345

batches as a unit of resolution, 344

batches as unit of parsing, 342

GO, 344

statements that cannot be combined in the

same batch, 343

variables, 343

cursors, 348–352

dynamic SQL, 359–362

EXEC, 359

PIVOT, 361

sp_executesql, 360

error handling, 370–374

low elements, 345–348
IF ... ELSE, 345

WHILE, 346

routines, 362–370

stored procedures, 364

triggers, 366–370

UDFs, 362

temporary tables, 353–358

global temporary tables, 355

local temporary tables, 353

table types, 357

table variables, 356

variables, 339

properties

collation property, 16

deining sets, 4
identity property, 252–261

propositions, 5

Q
queries. See also single-table queries; subqueries

logical query processing, 99

multi-join queries, 109

multi-join queries using outer joins, 116

physical query processing, 99

set operators, 191

query expressions. See table expressions

QUOTED_IDENTIFIER, 64

R
RAND function, 363

ranges, dates, 79

ranking

functions, 215

window functions, 214–217

RDBMSs (relational database management systems),

deined, 1
READ COMMITTED

about, 301

isolation level, 311

using, 303

READCOMMITTEDLOCK, 303

READ COMMITTED SNAPSHOT

408 Index

READ COMMITTED SNAPSHOT

about, 301

isolation level, 321

using, 325

READ UNCOMMITTED isolation level, 310

recursive CTEs, 166–168

references

CTEs, 166

derived tables, 162

referenced tables, 23

referencing relations, 7

referential integrity, 23

regular data types, 61

relational database management systems (RDBMSs),

deined, 1
relational model, 4–9

constraints, 6

Edgar F. Codd, 4

missing values, 6

normalization, 7–9

propositions, predicates and relations, 5

SQL, 39

relations

about, 5

referencing relations, 7

variables versus relations, 5

REPEATABLE READ isolation level, 313

REPLACE function, 68

REPLICATE function, 69

resolution, batches as a unit of resolution, 344

resource databases, 16

resource types, lockable, 302

RETURN, 363

returning previous or next values, 140

RIGHT function, 66

ROLLBACK TRAN, 297, 366

rolled backs, temporary tables, 356

ROLLUP subclause, grouping sets, 235

routines, 362–370

stored procedures, 364

triggers, 366–370

DDL triggers, 368

DML triggers, 367

UDFs, 362

ROW_NUMBER function

about, 215

using, 48, 196, 276

rows

constructors, 268

duplicate rows, 39

FIRST_VALUE and LAST_VALUE functions, 219

INTERSECT distinct set operator, 195

phantoms, 314

tuples in set theory, 4

UNION ALL multiset operator, 192

versioning, 316–322

RTRIM function, 70

running aggregates, subqueries, 141

S
sample database, installing, 385

scalar expressions, data types, 51

scalar self-contained subqueries, 135

scalar subqueries, examples, 130

scalar UDFs, 362

scalar variables, 339

SCHEMABINDING option, 174

SCHEMA_NAME function, 88

schema-qualifying object names, 29

schemas

snowlake schema, 11
SQL Server, 18

star schema, 10

SCOPE_IDENTITY function, 254, 280

searching

CASE expressions, 53

SQL Server Books Online, 393

second normal form (2NF), 8

security, stored procedures, 364

SELECT, 27–50, 36–42. See also single-table queries

column aliases, 159

DML, 3

FROM, 29

GROUP BY, 32–35

HAVING, 36

OFFSET-FETCH ilter, 47
ORDER BY, 42

SELECT clause, 36–42

TOP ilter, 44–47
WHERE, 31

window functions, 48

SELECT INTO, 251

SELECT *, views, 170

self-contained subqueries, 129–135

deined, 129
multivalued subquery examples, 132–135

scalar subquery examples, 129

 SQL Server

 Index 409

self cross joins, 101

self pairs, non-equi joins, 108

semicolon (;)

MERGE, 272

statements, 21, 29

SEQUEL (Structured English QUEry Language), 2

sequences

assignment UPDATE, 269

dates, 113

integers, 102

sequence object, 252–261

SERIALIZABLE isolation level, 314

servers. See SQL Server

SET

UPDATE based on joins, 268

using, 339

SET DEFAULT statement, 24

set diagram, 192

SET NOCOUNT ON, 365

SET NULL statement, 24

set operators, 191–210

circumventing unsupported logical phases, 202

EXCEPT operator, 198

EXCEPT ALL multiset operator, 199

EXCEPT distinct set operator, 198

exercises and solutions, 204–210

INTERSECT operator, 194–197

INTERSECT ALL multiset operator, 195–197

INTERSECT distinct set operator, 195

precedence, 200

UNION operator, 192–194

UNION ALL multiset operator, 192

UNION distinct set operator, 193

set theory, 3

shared lock mode

about, 300

lock compatibility, 301

SharePoint Designer. See Microsoft SharePoint

Designer

SharePoint Workspace. See Microsoft SharePoint

Workspace

short circuits, 60

side effects, UDFs, 363

simple CASE expressions, 53

single quotes ('), 64
single-table queries, 27–98

all-at-once operations, 59

CASE expressions, 53

character data, 61–73

collation, 62

data types, 61

LIKE predicate, 71

operators and functions, 64–71

date and time data, 73–87

data types, 73

iltering date ranges, 79
functions, 80–87

literals, 74–78

working with date and time separately, 78

exercises and solutions, 91–98

metadata, 88–90

catalog views, 88

information schema views, 89

system stored procedures and functions, 89

NULL, 55–59

predicates and operators, 50–53

SELECT, 27–50

FROM, 29

GROUP BY, 32–35

HAVING, 36

OFFSET-FETCH ilter, 47
ORDER BY, 42

SELECT clause, 36–42

TOP ilter, 44–47
WHERE, 31

window functions, 48

skipping, OFFSET-FETCH, 47

SMALLDATETIME, 73

SNAPSHOT isolation level, 317–319

snowlake schema, 11
source code, downloading, 385

sp_executesql, 360

sp_helptext, 173

SPID (unique server process ID), 304

spreading phase, pivoting data, 224

sp_sequence_get_range, 260

SQL Azure. See Windows Azure SQL Database

SQL Database. See Windows Azure SQL Database

SQL injection and concatenating user input, 359

SQL Server, 12–19, 376–384

ABC lavors, 12
authenticated logon, 17

creating user accounts, 376

databases, 15, 15–18

installing prerequisites, 377

installing the database engine, documentation

and tools, 377–384

instances of, 14

obtaining SQL Server, 376

schemas and objects, 18

SQL Server Books Online

410 Index

SQL Server Books Online, 393–396

SQL Server Management Studio. See SSMS

SQL (Structured Query Language)

ANSI SQL-89 syntax

cross joins, 101

inner joins, 105

ANSI SQL-92 syntax

cross joins, 100

inner joins, 103

background, 2

dynamic SQL, 359–362

EXEC, 359

PIVOT, 361

sp_executesql, 360

language independence, 2

logical order of processing query clauses, 28

pivoting data, 224

relational model, 39

unpivoting data, 229–231

SSMS (SQL Server Management Studio)

about, 387–393

loading SQL Server Books Online, 395

star schema, deined, 10
starting values, 257

statements

semicolon (;), 21

SQL categories, 2

statements that cannot be combined in the

same batch, 343

stored procedures, 364

strings, concatenating, 64, 362

Structured Query Language. See SQL

STUFF function, 70

style, coding, 21

subqueries, 129–156

correlated subqueries, 136–139

exercises and solutions, 147–156

limitations of, 212

misbehaving subqueries, 142–147

NULL, 142

substitution errors in subquery column

names, 145

returning previous or next values, 140

running aggregates, 141

self-contained subqueries, 129–135

multivalued subquery examples, 132–135

scalar subquery examples, 130

subsets, deining using predicates, 4
substitution errors, subquery column names, 145

SUBSTRING function, 66

surrogate keys, 252

SWITCHOFFSET function, 83

SYSDATETIME function, 25, 80

SYSDATETIMEOFFSET function, 80

sys.dm_exec_connections, 306

sys.dm_exec_sessions, 307

sys.dm_exec_sql_text function, 306

sys.dm_tran_locks view, 306

System R, 2

system stored procedures and functions, 89

SYSUTCDATETIME function, 80

T
table expressions, 157–190

APPLY operator, 178–181

CTEs, 163

arguments, 165

column aliases, 164

multiple CTEs, 165

multiple references, 166

recursive CTEs, 166–168

data modiication, 274–277
derived tables, 157–163

arguments, 161

column aliases, 159

multiple references, 162

nesting, 161

exercises and solutions, 182–190

inline TVFs, 176

views, 169–176

options, 172–176

ORDER BY clause, 170

tables. See also derived tables; single-table queries;

temporary tables

columns and preixes, 101
creating, 20

deined, 5
hints and isolation levels, 310

numbers and cross joins, 102

operators and multi-join queries, 109

order within, 43

referencing and referenced tables, 23

SELECT INTO, 251

temporary tables, 353–358

global temporary tables, 355

local temporary tables, 353

table types, 357

table variables, 356

TRUNCATE, 263

 variables

 Index 411

Table-Valued Functions (TVFs), inline TVFs, 176

tempdb

databases, 16

isolation levels based on row versioning, 316

local temporary tables, 353

temporary tables, 353–358

global temporary tables, 355

local temporary tables, 353

table types, 357

table variables, 356

tenants. See also multitenancy

terminating, blockers, 308

text, obfuscated text, 172

three-valued predicate logic, 6

THROW, 372

ties and tiebreakers, 46

time. See date and time data

TODATETIMEOFFSET function, 83

tools, installing, 377–384

TOP

about, 44–47

circumventing unsupported logical phases, 203

data modiication, 277–279
using, 171

transactions, 297–300. See also concurrency

online transactional processing, 10

roll backs and temporary tables, 356

versus batches, 341

triggers, 366–370

DDL triggers, 368

DML triggers, 367

troubleshooting

blocking, 303–309

table expressions, 275

TRUE, 55

TRUNCATE

about, 263

DDL, 3

TRY blocks, 371

TRY_CAST function, 81

TRY...CATCH, 370

TRY_CONVERT function, 81

TRY_PARSE function, 81

tuples, set theory, 4

TVFs (Table-Valued Functions), inline TVFs, 176

two-valued predicate logic, 6

types. See also data types

relations, 6

u
UDFs (user-deined functions), 362
underscore (_) wildcard, 72

Unicode

data type, 51, 61

number of bytes, 67

sp_executesql, 360

UNION ALL

INSERT SELECT, 249

unpivoting, 233

UNION operator, 192–194

UNION ALL multiset operator, 192

UNION distinct set operator, 193

UNIQUE, 59

unique constraints, deined, 22
unique server process ID (SPID), 304

UNKNOWN

ELSE, 345

negating, 143

NULL, 55, 112

unpivoting data, 228–232

native T-SQL UNPIVOT operator, 231

standard SQL, 229–231

UPDATE, 264–270

about, 265

assignment UPDATE, 269

DML triggers, 367

isolation levels based on row versioning, 316

lost updates, 314

OUTPUT, 283

UPDATE based on joins, 267

UPPER function, 70

user accounts, creating on SQL Server, 376

user-deined functions (UDFs), 362
user input, concatenating, 359

USE statement, 20

V
VALUES

INSERT VALUES, 248

UNION ALL operators, 208

values, missing values, 6

VAR, 61

variables

batches, 343

programmable objects, 339

relation variables versus relations, 5

table variables, 356

vector expressions

412 Index

vector expressions, 268

Venn diagram, 192

VertiPaq, 11

views, 169–176

catalog views, 88

information schema views, 89

options, 172–176

CHECK OPTION, 174

ENCRYPTION, 172

SCHEMABINDING, 174

ORDER BY clause, 170

sys.dm_tran_locks view, 306

Visual Studio. See Microsoft Visual Studio

W
WHEN MATCHED, 273

WHEN MATCHED AND, 274

WHEN NOT MATCHED, 273

WHEN NOT MATCHED BY SOURCE, 273

WHERE

about, 31

DELETE, 262, 263

outer joins, 112, 115

UPDATE based on joins, 267

WHILE, 346

whole, set theory, 3

wildcards, LIKE predicate, 71

window functions, 211–222

about, 48

aggregates, 220, 352

offset window functions, 217–219

ORDER BY, 196

ranking, 214–217

Windows authenticated logon, 17

Windows Azure platform account, 376

Windows Azure SQL Database

about, 13

collation, 63

databases, 20

database triggers, 368

default isolation levels, 301, 310

engine, 13

getting started, 375

global temporary variables, 355

heaps, 251

logical layer, 17

READ COMMITTED, 303

system database master, 16

Windows Live ID, 376

WITH NOCHECK option, 24

WITH statement, CTEs, 163

WITH TIES, 152

Y
YEAR function, 85

about the author

ITzIK BEN-GAN is a mentor with and co-founder of SolidQ. A SQL Server

Microsoft MVP since 1999, Itzik has taught numerous training events around

the world focused on T-SQL querying, query tuning, and programming. Itzik

is the author of several books about T-SQL. He has written many articles for

SQL Server Pro as well as articles and white papers for MSDN and The SolidQ

Journal. Itzik’s speaking engagements include Tech-Ed, SQL PASS, SQL Server

Connections, presentations to various SQL Server user groups, and SolidQ events. Itzik

is a subject-matter expert within SolidQ for its T-SQL related activities. He authored

SolidQ’s Advanced T-SQL and T-SQL Fundamentals courses and delivers them regularly

worldwide.

What do
you think of
this book?
We want to hear from you!

To participate in a brief online survey, please visit:

Tell us how well this book meets your needs —what works effectively, and what we can

do better. Your feedback will help us continually improve our books and learning

resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

	Foreword
	Introduction
	Background to T-SQL Querying and Programming
	Theoretical Background
	SQL
	Set Theory
	Predicate Logic
	The Relational Model
	The Data Life Cycle

	SQL Server Architecture
	The ABC Flavors of SQL Server
	SQL Server Instances
	Databases
	Schemas and Objects

	Creating Tables and Defining Data Integrity
	Creating Tables
	Defining Data Integrity

	Conclusion

	Single-Table Queries
	Elements of the SELECT Statement
	The FROM Clause
	The WHERE Clause
	The GROUP BY Clause
	The HAVING Clause
	The SELECT Clause
	The ORDER BY Clause
	The TOP and OFFSET-FETCH Filters
	A Quick Look at Window Functions

	Predicates and Operators
	CASE Expressions
	NULL Marks
	All-at-Once Operations
	Working with Character Data
	Data Types
	Collation
	Operators and Functions
	The LIKE Predicate

	Working with Date and Time Data
	Date and Time Data Types
	Literals
	Working with Date and Time Separately
	Filtering Date Ranges
	Date and Time Functions

	Querying Metadata
	Catalog Views
	Information Schema Views
	System Stored Procedures and Functions

	Conclusion
	Exercises
	1
	2
	3
	4
	5
	6
	7
	8

	Solutions
	1
	2
	3
	4
	5
	6
	7
	8

	Joins
	Cross Joins
	ANSI SQL-92 Syntax
	ANSI SQL-89 Syntax
	Self Cross Joins
	Producing Tables of Numbers

	Inner Joins
	ANSI SQL-92 Syntax
	ANSI SQL-89 Syntax
	Inner Join Safety

	More Join Examples
	Composite Joins
	Non-Equi Joins
	Multi-Join Queries

	Outer Joins
	Fundamentals of Outer Joins
	Beyond the Fundamentals of Outer Joins

	Conclusion
	Exercises
	1-1
	1-2 (Optional, Advanced)
	2
	3
	4
	5
	6 (Optional, Advanced)
	7 (Optional, Advanced)

	Solutions
	1-1
	1-2
	2
	3
	4
	5
	6
	7

	Subqueries
	Self-Contained Subqueries
	Self-Contained Scalar Subquery Examples
	Self-Contained Multivalued Subquery Examples

	Correlated Subqueries
	The EXISTS Predicate

	Beyond the Fundamentals of Subqueries
	Returning Previous or Next Values
	Using Running Aggregates
	Dealing with Misbehaving Subqueries

	Conclusion
	Exercises
	1
	2 (Optional, Advanced)
	3
	4
	5
	6
	7 (Optional, Advanced)
	8 (Optional, Advanced)

	Solutions
	1
	2
	3
	4
	5
	6
	7
	8

	Table Expressions
	Derived Tables
	Assigning Column Aliases
	Using Arguments
	Nesting
	Multiple References

	Common Table Expressions
	Assigning Column Aliases in CTEs
	Using Arguments in CTEs
	Defining Multiple CTEs
	Multiple References in CTEs
	Recursive CTEs

	Views
	Views and the ORDER BY Clause
	View Options

	Inline Table-Valued Functions
	The APPLY Operator
	Conclusion
	Exercises
	1-1
	1-2
	2-1
	2-2
	3 (Optional, Advanced)
	4-1
	4-2 (Optional, Advanced)
	5-1
	5-2

	Solutions
	1-1
	1-2
	2-1
	2-2
	3
	4-1
	4-2
	5-1
	5-2

	Set Operators
	The UNION Operator
	The UNION ALL Multiset Operator
	The UNION Distinct Set Operator

	The INTERSECT Operator
	The INTERSECT Distinct Set Operator
	The INTERSECT ALL Multiset Operator

	The EXCEPT Operator
	The EXCEPT Distinct Set Operator
	The EXCEPT ALL Multiset Operator

	Precedence
	Circumventing Unsupported Logical Phases
	Conclusion
	Exercises
	1
	2
	3
	4
	5 (Optional, Advanced)

	Solutions
	1
	2
	3
	4
	5

	Beyond the Fundamentals of Querying
	Window Functions
	Ranking Window Functions
	Offset Window Functions
	Aggregate Window Functions

	Pivoting Data
	Pivoting with Standard SQL
	Pivoting with the Native T-SQL PIVOT Operator

	Unpivoting Data
	Unpivoting with Standard SQL
	Unpivoting with the Native T-SQL UNPIVOT Operator

	Grouping Sets
	The GROUPING SETS Subclause
	The CUBE Subclause
	The ROLLUP Subclause
	The GROUPING and GROUPING_ID Functions

	Conclusion
	Exercises
	1
	2
	3
	4
	5

	Solutions
	1
	2
	3
	4
	5

	Data Modification
	Inserting Data
	The INSERT VALUES Statement
	The INSERT SELECT Statement
	The INSERT EXEC Statement
	The SELECT INTO Statement
	The BULK INSERT Statement
	The Identity Property and the Sequence Object

	Deleting Data
	The DELETE Statement
	The TRUNCATE Statement
	DELETE Based on a Join

	Updating Data
	The UPDATE Statement
	UPDATE Based on a Join
	Assignment UPDATE

	Merging Data
	Modifying Data Through Table Expressions
	Modifications with TOP and OFFSET-FETCH
	The OUTPUT Clause
	INSERT with OUTPUT
	DELETE with OUTPUT
	UPDATE with OUTPUT
	MERGE with OUTPUT
	Composable DML

	Conclusion
	Exercises
	1
	1-1
	1-2
	1-3
	2
	3
	4
	5
	6

	Solutions
	1-1
	1-2
	1-3
	2
	3
	4
	5

	Transactions and Concurrency
	Transactions
	Locks and Blocking
	Locks
	Troubleshooting Blocking

	Isolation Levels
	The READ UNCOMMITTED Isolation Level
	The READ COMMITTED Isolation Level
	The REPEATABLE READ Isolation Level
	The SERIALIZABLE Isolation Level
	Isolation Levels Based on Row Versioning
	Summary of Isolation Levels

	Deadlocks
	Conclusion
	Exercises
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7

	Programmable Objects
	Variables
	Batches
	A Batch As a Unit of Parsing
	Batches and Variables
	Statements That Cannot Be Combined in the Same Batch
	A Batch As a Unit of Resolution
	The GO n Option

	Flow Elements
	The IF . . . ELSE Flow Element
	The WHILE Flow Element
	An Example of Using IF and WHILE

	Cursors
	Temporary Tables
	Local Temporary Tables
	Global Temporary Tables
	Table Variables
	Table Types

	Dynamic SQL
	The EXEC Command
	The sp_executesql Stored Procedure
	Using PIVOT with Dynamic SQL

	Routines
	User-Defined Functions
	Stored Procedures
	Triggers

	Error Handling
	Conclusion

	Getting Started
	Getting Started with SQL Database
	Installing an On-Premises Implementation of SQL Server
	1. Obtain SQL Server
	2. Create a User Account
	3. Install Prerequisites
	4. Install the Database Engine, Documentation, and Tools

	Downloading Source Code and Installing the Sample Database
	Working with SQL Server Management Studio
	Working with SQL Server Books Online

	Index
	About the Author

