
SQL vs NOSQL Discussion



SQL vs NOSQL
OUTLINE
• What is NOSQL?
• How does NOSQL compare to SQL?
• Data structures and performance 

considerations
• Why should OSEHRA care about SQL vs 

NOSQL?



SQL Characteristics

Data stored in columns and tables

Relationships represented by data

Data Manipulation Language

Data Definition Language 

Transactions

Abstraction from physical layer



SQL Physical Layer 
Abstraction

Applications specify what, not how

Query optimization engine

Physical layer can change without modifying applications

Create indexes to support queries

In Memory databases



Data Manipulation 
Language (DML)

Data manipulated with Select, Insert, Update, & Delete 
statements

Select T1.Column1, T2.Column2 …
From Table1, Table2 …
Where T1.Column1 = T2.Column1 …

Data Aggregation

Compound statements

Functions and Procedures

Explicit transaction control

05/03/165



Data Definition Language

Schema defined at the start

Create Table (Column1 Datatype1, Column2 
Datatype 2, …)

Constraints to define and enforce relationships
Primary Key
Foreign Key
Etc.

Triggers to respond to Insert, Update , & Delete

Stored Modules

Alter …

Drop …

Security and Access Control



Transactions – ACID 
Properties

Atomic – All of the work in a transaction 
completes (commit) or none of it completes

Consistent – A transaction transforms the 
database from one consistent state to another 
consistent state. Consistency is defined in 
terms of constraints.

Isolated – The results of any changes made 
during a transaction are not visible until the 
transaction has committed.

Durable – The results of a committed 
transaction survive failures



NewSQL: more OLTP 
throughput, real-time analytics

1) SQL as the primary mechanism for application interaction

2) ACID support for transactions

3) A non-locking concurrency control mechanism so real-time 
reads will not conflict with writes, and thereby cause them to 
stall.

4) An architecture providing much higher per-node performance 
than available from the traditional "elephants”

5) A scale-out, shared-nothing architecture, capable of running 
on a large number of nodes without bottlenecking



Challenges

 Big data is a term for data sets that are so large or 
complex that traditional data processing applications 
are inadequate. 

 Challenges include analysis, capture, data curation, search, 
sharing, storage, transfer, visualization, querying and 
information privacy. 

 The term often refers simply to the use of predictive 
analytics or certain other advanced methods to extract 
value from data, and seldom to a particular size of data set.

 Causes: Cloud computing, social media, Internet of Things 
(IoT), etc



What is NoSQL?

 Stands for No-SQL or Not Only SQL??
 Class of non-relational data storage systems

 E.g. BigTable, Dynamo, PNUTS/Sherpa, ..
 Usually do not require a fixed table schema nor do 

they use the concept of joins
 Distributed data storage systems

 All NoSQL offerings relax one or more of the ACID 
properties (will talk about the CAP theorem)



What is NOSQL?

• NoSQL is a class of database management system identified 
by its non-adherence to the widely used relational database 
management system (RDBMS) model with its structured 
query language (SQL).

• NOSQL has evolved to mean “Not Only” SQL
• NOSQL has become prominent with the advent of web scale 

data and systems created by Google, Facebook, Amazon, 
Twitter and others to manage data for which SQL was not the 
best fit.



What is NOSQL?

• Definitions for NOSQL vary 
greatly from newer systems 
using document stores, key 
value stores, XML databases, 
graph databases, column 
stores, object stores, etc. 
(like MongoDB, Cassandra, 
Couchbase, Hadoop, etc.) to 
older Hierarchical systems 
that had many similar 
characteristics (like Cache 
and GT.M)

• The NOSQL concept tree 
illustrates the variety of 
concepts related to NOSQL.

NOSQL Concept Tree
Source: CIO’s Guide to NOSQL, Dan McCreary, June 2012



NoSQL Definition
From www.nosql-database.org:

Next Generation Databases mostly addressing 
some of the points: being non-relational, 
distributed, open-source and horizontal 
scalable. The original intention has been 
modern web-scale databases. The movement 
began early 2009 and is growing rapidly. Often 
more characteristics apply as: schema-free, easy 
replication support, simple API, eventually 
consistent / BASE (not ACID), a huge data 
amount, and more. 

What is NOSQL?



What is NOSQL?
Large diversity of NOSQL databases

• Document Store
– BaseX, Clusterpoint, Apache Couchbase, eXist, Jackrabbit, Lotus Notes and IBM Lotus Domino 

LotusScript, MarkLogic Server, MongoDB, OpenLink Virtuoso, OrientDB, RavenDB, SimpleDB, 
Terrastore

• Column Based
– Cassandra

• Graph
– AllegroGraph, DEX, FlockDB, InfiniteGraph, Neo4j, OpenLink Virtuoso, OrientDB, Pregel, Sones 

GraphDB, OWLIM
• Key Value

– BigTable, CDB, Keyspace, LevelDB, membase, MemcacheDB, MongoDB, OpenLink Virtuoso, 
Tarantool, Tokyo Cabinet, TreapDB, Tuple space

– Eventually-consistent - Apache Cassandra, Dynamo, Hibari, OpenLink Virtuoso, Project 
Voldemort, Riak

– Hierarchical - GT.M, InterSystems Caché 
– Tabular – BigTable, Apache Hadoop, Apache Hbase, Hypertable, Mnesia, OpenLink Virtuoso 
– Object Database -  db4o, Eloquera, GemStone/S, InterSystems Caché, JADE, NeoDatis ODB, 

ObjectDB, Objectivity/DB, ObjectStore, OpenLink Virtuoso, Versant Object Database, 
Wakanda, ZODB 

– Multivalue databases - Extensible Storage Engine (ESE/NT), jBASE, OpenQM, OpenInsight , 
Rocket U2, D3 Pick database, InterSystems Caché, InfinityDB 

– Tuple store- Apache River, OpenLink Virtuoso, Tarantool 



How Does NOSQL compare to SQL?

While there are numerous characteristics that differentiate 
SQL and NOSQL the two most significant are Scaling and 
Modeling.

• Scaling – Traditionally SQL does not lend itself to massively parallel 
processing, which lead to larger computers (scale up) vs. distribution to 
numerous commodity servers, virtual machines or cloud instances (scale 
out).

• Modeling – SQL databases are highly normalized and require pre-
defined data models prior to inserting data into the system. In contrast 
NOSQL databases do not require (although they support) pre-defined data 
model(s).



Data structures and performance 
considerations

• Structured vs. Unstructured
– Tables, fields, pairs vs. unstructured text

• Transactions vs. Analytics
• Federated vs. Persisted
• Big Data: Volume, Variety and Velocity
• Retrieval
– Indexing, MapReduce, Search, Query

• Precision vs. Discovery



Why should an Organization take care 
about SQL vs NOSQL?

• Cloud based architecture
• Standardized or flexible data models
• Different or same application and analytic data stores?



NoSQL Distinguishing Characteristics

Large data volumes
Google’s “big data”

Scalable replication and 
distribution
Potentially thousands of 
machines
Potentially distributed 
around the world

Queries need to return 
answers quickly

Mostly query, few 
updates

Asynchronous Inserts & 
Updates

Schema-less

ACID transaction 
properties are not 
needed – BASE

CAP Theorem

Open source 
development



BASE Transactions

•Acronym contrived to be the opposite of ACID
• Basically Available,
• Soft state,
• Eventually Consistent

•Characteristics
• Weak consistency – stale data OK
• Availability first
• Best effort
• Approximate answers OK
• Aggressive (optimistic)
• Simpler and faster

05/03/1619



Brewer’s CAP Theorem

A distributed system can support only two 
of the following characteristics:

 Consistency

 Availability

 Partition tolerance

05/03/1620





Other Non-SQL 
Databases

XML Databases

Graph Databases

Codasyl Databases

Object Oriented Databases

Etc…

Will not address these today

05/03/1622







Storing and Modifying 
Data

Syntax varies
HTML
Java Script
Etc.

Asynchronous – Inserts and updates do 
not wait for confirmation

Versioned

Optimistic Concurrency

05/03/1625



Retrieving Data

Syntax Varies
No set-based query language
Procedural program languages such as 
Java, C, etc.

Application specifies retrieval path

No query optimizer

Quick answer is important

May not be a single “right” answer
05/03/1626



Open Source

Small upfront software costs

Suitable for large scale distribution on 
commodity hardware

05/03/1627



Typical NoSQL API
 Basic API access:

 get(key) -- Extract the value given a key
 put(key, value) -- Create or update the value 

given its key
 delete(key) -- Remove the key and its associated 

value
 execute(key, operation, parameters) -- Invoke an 

operation to the value (given its key) which is a 
special data structure (e.g. List, Set, Map .... etc).



Flexible Data Model
ColumnFamily: Rockets
Key Value

1

2

3

Name Value

toon
inventoryQty
brakes

Rocket-Powered Roller Skates
Ready, Set, Zoom
5
false

name

Name Value

toon
inventoryQty
brakes

Little Giant Do-It-Yourself Rocket-Sled Kit
Beep Prepared
4
false

Name Value

toon
inventoryQty
wheels

Acme Jet Propelled Unicycle
Hot Rod and Reel
1
1

name

name



NoSQL Data Storage: Classification

Uninterpreted key/value or ‘the big hash table’.
– Amazon S3 (Dynamo)

Flexible schema
– BigTable, Cassandra, HBase (ordered keys, semi-structured data), 
– Sherpa/PNuts (unordered keys, JSON)
– MongoDB (based on JSON)
– CouchDB (name/value in text)



PNUTS Data Storage Architecture



What does NoSQL Not Provide?

• Joins
• Group by

– But PNUTS provides interesting materialized 
view approach to joins/aggregation.

• ACID transactions
• SQL 
• Integration with applications that are based on 

SQL



Should I be using NoSQL 
Databases?

• NoSQL Data storage systems makes sense for applications that need 
to deal with very very large semi-structured data 

– Log Analysis

– Social Networking Feeds

• Most of us work on organizational databases, which are not that large 
and have low update/query rates

– regular relational databases are the correct solution for such 
applications



Summary

SQL Databases
– Predefined Schema
– Standard definition and interface language
– Tight consistency
– Well defined semantics



Summary

 NoSQL databases reject:
– Overhead of ACID transactions
– “Complexity” of SQL
– Burden of up-front schema design
– Declarative query expression 
– Yesterday’s technology
– Programmer responsible for
– Step-by-step procedural language
– Navigating access path
– No predefined Schema
– Per-product definition and interface language
– Getting an answer quickly is more important than getting a 

correct answer



Web References
“NoSQL -- Your Ultimate Guide to the Non - Relational 
Universe!” 
http://nosql-database.org/links.html

“NoSQL (RDBMS)”
http://en.wikipedia.org/wiki/NoSQL

PODC Keynote, July 19, 2000. Towards Robust. 
Distributed Systems. Dr. Eric A. Brewer. Professor, UC 
Berkeley. Co-Founder & Chief Scientist, Inktomi .
www.eecs.berkeley.edu/~brewer/cs262b-
2004/PODC-keynote.pdf

“Brewer's CAP Theorem” posted by Julian Browne, 
January 11, 2009.  
http://www.julianbrowne.com/article/viewer/brewers-
cap-theorem

“How to write a CV” Geek & Poke Cartoon 
http://geekandpoke.typepad.com/geekandpoke/2011/01/
nosql.html


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

