
Download class materials from 

university.xamarin.com

SQLite and Mobile Data

XAM160



Information in this document is subject to change without notice. The example companies, 

organizations, products, people, and events depicted herein are fictitious. No association with 

any real company, organization, product, person or event is intended or should be inferred. 

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other 

intellectual property rights covering subject matter in this document. Except as expressly 

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document 

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2018 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual 

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other 

countries.

Other product and company names herein may be the trademarks of their respective owners.



1. Choose a data storage strategy

2. Store data locally with SQLite

3. Use SQLite asynchronously

Objectives



Choose a data storage strategy



1. Understand the data storage 

options available to your app

2. Select a storage location

3. Use the correct storage path for 

each platform

Tasks



❖ When storing local information, your app has several options to choose 

from

Data Storage Options

Preferences File System Database

Which approach makes the most sense for the type of data you are working with?



❖ iOS, Android and UWP support 

storage of app-specific settings as 

simple key-value pairs

❖ Useful to store app configuration, 

user preferences, and other 

customization tweaks the user can 

control

Preferences



❖ Nuget package Xam.Plugins.Settings enables platform-agnostic storage

Cross-platform settings support

public static class Settings
{

const string NameKey = "userName";

public static string Name
{

get { return CrossSettings.Current
.GetValueOrDefault<string>(NameKey, ""); }

set { CrossSettings.Current
.AddOrUpdateValue<string>(NameKey, value); }

}
}

Plugin provides simple

get/set API that

does the persistent

storage for you



❖ Devices have persistent file 

systems to store settings, 

applications, data, etc.

❖ File system structure and 

content vary based on the 

operating system

The file system



Can work directly with files and folders using classes in System.IO
namespace

Working with Files and Folders

using System.IO;
...
public IEnumerable<Todo> LoadTodoTasks(string filename)
{

StreamReader reader = File.OpenText(filename);
...

}

Familiar classes such as File, Directory, and StreamReader are available in 

your platform-specific projects



❖ Each platform support text, binary, XML and JSON formats – use the 

one that makes sense for your data style

File Formats

using System.Xml.Linq;
...
public IEnumerable<string> LoadTasks(string filename)
{

XDocument doc = XDocument.Load(filename);
return (from item in doc.Root.Descendants("todo")

select (string) item.Attribute("PartNumber"));
}

LINQ to XML makes working with XML easy… compared to native APIs



❖ Your application is given a dedicated folder, called the app folder or 

sandbox, on the file system which contains app-specific content

The app sandbox

Each iOS application has a folder, which contains sub-folders, 

which, in turn, contains your data and assets you create



❖ The recommended location for your data file differs across platforms

File locations

Android <AppHome>/files

iOS <AppHome>/Library/[subdirectory]

UWP <AppHome>\LocalState

These locations are common, but other options

are available (e.g. Android has a database folder)



❖ Can use .NET APIs to get the full path to the application folder

Folder path [.NET]

// <AppHome>/files for Android
string path = Environment.GetFolderPath(Environment.SpecialFolder.Personal);

// <AppHome>/Documents for iOS
string docFolder = Environment.GetFolderPath(Environment.SpecialFolder.Personal);
// to meet Apple’s iCloud terms, content that is not generated by the user
// should be placed in the /Library folder or a subdirectory inside it
string libFolder = System.IO.Path.Combine(docFolder,"..", "Library");

// <AppHome>\LocalState on Windows
string path = Windows.Storage.ApplicationData.Current.LocalFolder.Path;



❖ Can use platform-specific APIs to access unique features, for example to 

ensure internal files are not backed up to iCloud on iOS

Working with native APIs

void AddSkipBackupAttribute(string filename)
{

if (File.Exists(filename)) {
// Do not backup to iCloud
NSFileManager.SetSkipBackupAttribute(filename, true);

}
}

Can tell iOS to not backup a file in the documents folder to iCloud



Flash Quiz



① To retrieve the path to the root folder of the local data store within a 

UWP app, use:

a) Environment.GetFolderPath(Environment.SpecialFolder.Personal);

b) Environment.GetFolderPath(ApplicationData.Current.LocalFolder);

c) Windows.Storage.ApplicationData.Current.LocalFolder.Path;

Flash Quiz



① To retrieve the path to the root folder of the local data store within a 

UWP app, use:

a) Environment.GetFolderPath(Environment.SpecialFolder.Personal);

b) Environment.GetFolderPath(ApplicationData.Current.LocalFolder);

c) Windows.Storage.ApplicationData.Current.LocalFolder.Path;

Flash Quiz



② The recommended location for your data file is the same across 

platforms.

a) True

b) False

Flash Quiz



② The recommended location for your data file is the same across 

platforms.

a) True

b) False

Flash Quiz



③ In your Xamarin.iOS app, you should always place content generated 

by the app within the Documents folder.

a) True

b) False

Flash Quiz



③ In your Xamarin.iOS app, you should always place content generated 

by the app within the Documents folder.

a) True

b) False

Flash Quiz



Select location to store local data

Individual Exercise



Store data locally with SQLite



1. Add a SQLite.Net to your app

2. Define SQLite table schema using 

attributes

3. Create and connect to a SQLite 

database

4. Perform CRUD operations against 

a SQLite database using 

SQLite.Net

Tasks



❖ SQLite is a lightweight local database that has become the de-facto 

industry standard for mobile apps

What is SQLite?

runs in-process (no server) and 

uses local file system for storage

open-source and

maintained by sqlite.org



iOS

❖ SQLite engine is built-in to Android and iOS, and UWP

SQLite packaging

Android

SQLite

Your Application

(.apk)

Windows

Your Application

(.appx)

SQLiteSQLite

Your Application

(.ipa)



❖ SQLite engine exposes C/C++ API which is then accessed by .NET 

through a C# wrapper

Accessing the SQLite API

database

engine

C/C++ 

API

3rd party 

C#

API

your app



❖ There are multiple C# APIs available from different vendors, most work 

with Xamarin so you can choose based on features or coding style

Available C# APIs

Entity Framework Core

(open source)

SQLite.NET (open source)

ADO.NET

(included with Xamarin)

Portable Class Library for SQLite

https://sqlitepcl.codeplex.com/

Thin wrapper over C++ API Object-Relational Mapper

(ORM)



❖ Pros and Cons to each approach, pick the one best suited for your data 

and access needs

Choosing the right API

Access Style SQL + DataReader SQL + rows / columns LINQ + objects

Supported 

Platforms 

iOS, Android, UWP iOS, Android iOS, Android, UWP

Maturity Stable / Legacy Stable Stable

ADO.NET MS PCL for SQLite SQLite.NET

In this course, we’ll be working with SQLite.NET



❖ SQLite.NET provides a mechanism to map classes to tables

SQLite.NET

SQLite.NET

This type of 

mapping is 

referred to as 

Object Relational 

Mapping, or ORM

Tables in SQLite

Objects in Memory



❖ SQLite-Net is shipped as a Nuget

component, adds different DLLs 

to the project based on the 

project type

❖ Several different implementations 

out there – make sure to use 

SQLite-net PCL by Frank Krueger

Adding support for SQLite.NET



What is installed?

SQLitePCL.raw

▪ Contains C# 
wrapper to access 
the SQLite engine 
API

▪ Used by the PCL 
Can use API directly 
for low-level 
operations

❖ Three components are added to the project with SQLite-Net PCL

SQLitePCL.  
bundle_green

▪ Includes compiled 
copies of the native 
SQLite library for 
platforms that need 
it 

Sqlite-net.pcl

▪ Contains support 
necessary to define 
data entities

▪ Contains sync and 
async APIs to 
interact with the 
SQLite engine



Adding SQLite.NET to your projects

Group Exercise



❖ The first step required to access the database is to create a 

SQLiteConnection – this is the object that talks to the local database

Connect to a SQLite database

using SQLite; 
...

string filename = ...

SQLiteConnection conn = new SQLiteConnection(filename);

Must pass in the filename representing the database



❖ SQLite stores the database in a local file which must be placed in a 

writable folder path that is platform-specific

Database storage file

Common folder used for database files Location

Path.Combine(personalFolder, "databases"); <AppHome>/databases

Path.Combine(personalFolder, "..","Library"); <AppHome>/Library

ApplicationData.Current.LocalFolder.Path <AppHome>\LocalState



❖ Connection has two constructors and a few optional parameters

▪ prefer true for storeDateTimeAsTicks

▪ use the openFlags to control the Read|Write|Sharing flags

SQLiteConnection

public SQLiteConnection(
string databasePath
SQLiteOpenFlags openFlags,
bool storeDateTimeAsTicks = true) 



❖ Caching connections is a 

balance between memory and 

performance

❖ Better to use same connection 

for a set of operations vs. 

opening new one each time 

❖ Call Dispose or Close when 

finished with it to cleanup

Connection Management

public static class MyConnectionFactory
{

static SQLiteConnection connection;

public static SQLiteConnection Instance
{

get { return connection ??
(connection = CreateConnection()); 

}
}
...

}

common to hold shared connection in a 

shared singleton and create as necessary



❖ Database schema is defined through attributes applied to the class and 

public properties

Mapping classes to tables

[Table("people")] 
public class Person
{ 

// PrimaryKey is typically numeric
[PrimaryKey, AutoIncrement, Column("_id")]      
public int Id { get; set; } 

[MaxLength(250), Unique] 
public string Name { get; set; }
... 

}

Identifies which table this 

class is mapped to

Identify the primary key 

and column name

specify column metadata 

necessary to map 

property to column

Very common to add your own logic into these classes to supplement the data



❖ SQLite.NET includes several 

attributes to fully define the 

mapping between an object and 

the relational table holding the data

❖ No attribute support for foreign 

keys in the library, however you can 

manage the relationships in code

Common attributes
[Table(name)]

[Column(name)]

[PrimaryKey]

[AutoIncrement]

[Indexed]

[MaxLength(value)]

[Unique]

[NotNull]

[Ignore]

[Collation]



❖ SQLite.NET Extensions project 

adds attributes and extension 

methods for foreign key 

relationships and cascade 

operations

What if I want real FK relationships?

public class Students
{
[PrimaryKey, AutoIncrement]
public int Id { get; set; }
public string Name { get; set; }

[ManyToMany(typeof(Students_Classes))]
public List<Classes> Classes { get; set; }

}

public class Classes
{
[PrimaryKey, AutoIncrement]
public int Id { get; set; }
public string Title { get; set; }

[ManyToMany(typeof(Students_Classes))]
public List<Students> Students { get; set; }

}

public class Students_Classes
{
[ForeignKey(typeof(Students))]
public int StudentFId { get; set; }

[ForeignKey(typeof(Classes))]
public int ClassFId { get; set; }

}This is currently based on an older version of SQLite-Net, might need to be changed and 

recompiled to be used with the latest version.



Supported data types

❖ SQLite.NET maps intrinsic .NET 

types to appropriate SQLite data 

types

❖ Mismatches result in a runtime 

exception if the table already 

exists

C# type SQLite type

int,long integer, bigint

bool integer (1 = true)

enum integer

float real

double real

decimal real

string, GUID varchar

DateTime numeric or text

byte[] blob



❖ SQLite.NET supports either creating a new table, or updating the 

schema for an existing table using your defined class mappings

Creating a Table

[Table("people")] 
public class Person
{ 

...
}

SQLiteConnection conn;
...
conn.CreateTable<Person>(); 

Pass the annotated entity 

class to SQLite.NET and it 

creates/updates the table 

based on the attributes 

applied to the class and it's 

properties



❖ Once the table has been created, you can perform CRUD operations on 

it in a strongly-typed fashion using your entity classes

Performing operations

SQLiteConnection conn;
...
public int AddNewPerson(Person person) 
{ 

int result = conn.Insert(person); 
return result; 

}

Returns the number of rows that were affected by the operation, in this case, 

inserted

Insert, Update and 

Delete operations all 

require a primary key 

be defined



❖ SQLite.NET makes it easy to retrieve all the records from the table 

through the Table<T>() method, this returns a TableQuery<T>

Retrieving records

SQLiteConnection conn;
...
public List<Person> GetAllPeople() 
{ 

List<Person> people = conn.Table<Person>().ToList(); 
return people; 

}

Add .ToList() from System.Linq to execute the query and return all the 

rows from the people table

Warning: this is a dangerous query if you are not certain how many people are in the db!



Access a SQLite database with the SQLite.NET

Individual Exercise



❖ Language-INtegrated Query is a built-in feature of C# and VB.NET that 

allows for standardized data queries across different sources 

What is LINQ?

LINQ to SQL

<xml/>

LINQ to XML LINQ to Amazon



❖ TableQuery<T> exposes common LINQ (Language-Integrated Query) 

methods which can be used to query the data

SQLite.NET query capabilities

Where OrderByDescending FirstOrDefault

Take ThenBy ThenByDescending

Skip ElementAt Count

OrderBy First

These methods enable the extension method syntax as well as the LINQ C# syntax!



❖ LINQ statements translate the C# expression to a SQL query

Example: Filter results with LINQ

SQLiteConnection conn;
... 
public Person GetByName(string name)
{ 

var person = from p in conn.Table<Person>()
where p.Name == name
select p;

return person.SingleOrDefault(); 
}

SELECT Id, name 
FROM people 
WHERE name = 'Joe Smith'

Filter is applied directly to 

the SQL query issued to 

the DB

Note: SQLite.NET actually generates parameterized queries for better security



❖ SQLite.NET supports converting common string and List<T> methods 

into proper SQL syntax for more efficient queries

Where clause

Contains Looks for a specific piece of text in the column

StartsWith Column value must start with text

EndsWith Column value must end with text

Equals Direct comparison

ToLower Lowercase the text 

ToUpper Uppercase the text



❖ Using StartsWith changes the resultant query to use LIKE

Example: Where clause

var records = from p in conn.Table<Person>()
where p.Name.StartsWith("Joe")
select p;

SELECT * FROM [people] WHERE ([Name] LIKE ('Joe' || '%'))



Flash Quiz



① Using SQLite.NET, which of the following creates a connection to a 

SQLite database:

a) new SQLConnection(dbPath);

b) new SQLiteConnection(dbPath);

c) new SQLiteConnection(targetPlatform, dbPath);

d) new SQLConnection(targetPlatform, dbPath);

Flash Quiz



① Using SQLite.NET, which of the following creates a connection to a 

SQLite database:

a) new SQLConnection(dbPath);

b) new SQLiteConnection(dbPath);

c) new SQLiteConnection(targetPlatform, dbPath);

d) new SQLConnection(targetPlatform, dbPath);

Flash Quiz



② Mapping a table to a class is done using the _______ attribute.

a) [Table]

b) [Entity]

c) [TableEntity]

d) None of the above

Flash Quiz



② Mapping a table to a class is done using the _______ attribute.

a) [Table]

b) [Entity]

c) [TableEntity]

d) None of the above

Flash Quiz



③ LINQ to SQLite.NET:

a) Allows you to perform queries against a SQLite database

b) Translates language integrated queries to SQL queries behind the 

scenes

c) Returns a filtered result set back to the application 

d) All of the above

Flash Quiz



③ LINQ to SQLite.NET: 

a) Allows you to perform queries against a SQLite database

b) Translates language integrated queries to SQL queries behind the 

scenes

c) Returns a filtered result set back to the application

d) All of the above

Flash Quiz



Use SQLite asynchronously



1. Create an async capable database 

connection 

2. Perform CRUD operations 

asynchronously  

Tasks



❖ Reading and writing data into our database on the UI thread is a 

synchronous I/O operation which can block the UI thread

Performing async queries

Wait OK

Todo List isn't responding.

Do you want to close it?

How do you think your users 

will answer this dialog? 

What kind of rating will your 

app get in the App Store?

Instead, we want to perform our I/O asynchronously independent from the UI thread



❖ A SQLite connection can only have one outstanding operation at a time 

– if you want to use a connection with multiple threads, you must guard 

the access with a lock

Dealing with concurrency

SQLiteConnection dbConn;
object guard;
...
public int AddNewPerson(Person person) 
{

lock (guard)  
{

return dbConn.Insert(person);
}

}

This is common code 

to ensure the 

database does not get 

corrupted by a writer



❖ Can configure SQLite to use a Serialized mode where it will serialize 

thread access on your behalf

Serialized thread access

SQLiteConnection.SetConfig(SQLiteConnection.Serialized);

Call the static SetConfig method to set 

the threading mode



❖ SQLite.NET includes an asynchronous API through the 

SQLiteAsyncConnection class

Asynchronous execution

var conn = new SQLiteAsyncConnection(dbPath);
...
await dbConn.CreateTableAsync<Person>();

Use async connection object

exposes async APIs to perform operations

This approach has no need of external locking – it's already provided in the library



❖ SQLiteAsyncConnection exposes the same operations as the 

synchronous counterpart – but Task-based for background usage

Async operations

CreateTableAsync

DropTableAsync InsertAsync

UpdateAsync

DeleteAsync

GetAsync QueryAsync

ExecuteAsync

ExecuteScalar
Async



❖ Use ToListAsync to turn Table<T> into an asynchronous call and use 

the async and await keywords in C# to marshal control back to the UI 

thread once the query has completed

Retrieving records asynchronously

SQLiteAsyncConnection dbConn;
ObservableCollection<Person> peopleList; // Bound to UI
...
public async Task AddAllPeopleAsync() 
{

List<Person> people = await dbConn.Table<Person>().ToListAsync();
// Must be on UI thread here!
foreach (var p in people)

peopleList.Add(p);
}

Query is executed on background 

thread and control returns to UI 

thread once query has completed



❖ Use RunInTransaction[Async] to execute a block of statements in a 

transaction

Working with Transactions

SQLiteAsyncConnection conn;
...
public async int UpdatePeople(Person newPerson, Person updatedPerson) 
{ 

int count = 0;
await conn.RunInTransactionAsync(conn => {

count += iconn.Insert(newPerson);
count += iconn.Update(updatedPerson);

});
return count;

}

Must pass an Action that accepts a 

SQLiteAsyncConnection and do all 

your transactional work in the block

SQLite-net also exposes methods to create, commit and rollback transactions



❖ SQLite.NET has several methods which you can use to execute direct 

SQL statements and queries with parameters

Dropping down to SQLite

Method Description

ExecuteAsync Execute SQL statement, returns affected row count

ExecuteScalarAsync Execute a statement which returns a scalar

QueryAsync Issue an immediate SQL query, returns table mapping

GetAsync Returns the first object that matches a predicate

FindAsync Returns the object with the matching primary key



❖ Can use ExecuteScalarAsync to return a single value

Example: retrieving a scalar

SQLiteAsyncConnection conn;
...
int startingId = 10;

double count = await conn.ExecuteScalarAsync<double>(
"SELECT MAX(age) FROM [people] WHERE Id > ?",
startingId);

use '?' for placeholders in the queries, optional parameter 

list will then fill in each placeholder by position



❖ Can use Query<T> to execute a raw SQL query and map it to a set of 

objects – this is most useful when pulling relationships

Example: performing a SQL query

SQLiteAsyncConnection conn;
Class xam160 = ...
...
List<Student> students = await conn.QueryAsync<Student>(

"SELECT * FROM [students] WHERE id in " +
"(SELECT sid FROM students_classes WHERE cid=?)",

xam160.Id);

Grab all the students enrolled in a specific class based on a table relationship



❖ Often, the data you query can be retrieved and processed in the 

background; consider using ConfigureAwait(false) to stay on 

background thread after await finishes

Processing in the background

SQLiteAsyncConnection dbConn;
...
public async Task TakeAttendanceAsync(Class class) 
{

var students = await dbConn.QueryAsync<Student>("...", class.Id)
.ConfigureAwait(false);

// Background thread continues execution here .. NOT ON UI THREAD!
foreach (var s in students) { ... }

}



Access SQLite database using asynchronous methods

Individual Exercise



Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile


