

Backup types

Excerpted from

SQL Server 2008 Administration
in Action

Rod Colledge
MEAP Release: May 2008
Softbound print: August 2009 | 464 pages
ISBN: 193398872X

This article is excerpted from the upcoming book SQL Server 2008 Administration in
Action by Rod Colledge and published by Manning Publications. It addresses the various
types of server backups: full backup, differential backup, transaction log backup, and
COPY_ONLY backup. For the table of contents, the Author Forum, and other resources, go
to http://manning.com/colledge/.

Unless you're a DBA, you probably consider a database backup as being a complete copy of a
database at a given point in time. Whilst that's one type of database backup, there are many
others. Consider a multi terabyte database that's used 24 x 7;

 How long does the backup take and what impact does it have on users?

 Where are the backups stored and what is the media cost?

 How much of the database changes each day?

 If the database failed part way through the day, how much data would be lost if the
only recovery point was the previous night's backup?

In considering these questions, particularly for large databases with high transaction
rates, we soon realize that a simplistic full nightly backup is insufficient on a number of
fronts, in particular the potential for data loss. Let's consider the different types of backups
in SQL Server.

Backup Methods

There are many tools and techniques for performing database backups, including various
3rd party products and database maintenance plans. For the purposes of the examples
throughout this article, we'll use a T-SQL script approach

Full Backup
Full backups are the simplest, most well understood type of backup. Like backing up a file
(document, spreadsheet, and so forth), a full backup is exactly that; a complete copy of the
database at a given time, but unlike a file backup, backing up a database cannot be
performed by simply backing up the underlying .mdf and .ldf files.

One of the classic mistakes made by organizations without appropriate DBA knowledge is
using a backup program to backup all files on a database server on the assumption that the
inclusion of the underlying database files (.mdf/.ldf) in the backup will be sufficient for a
restore scenario. Not only will this backup "strategy" fail, those that use such an approach
usually fail to realize it until they try and perform a restore.

In order for a backup to be valid, we use the BACKUP DATABASE command, or one of its
GUI equivalents. A simple example for backing up the AdventureWorks database follows. The
full description of the backup command with all of its various options can be found in Books
Online.

-- Full Backup to Disk

BACKUP DATABASE [AdventureWorks2008]

TO DISK = N'G:\SQL Backup\AdventureWorks.bak'

WITH INIT

Backups in SQL Server can be performed whilst the database is in use and being modified
by users. In order for the resultant backup to be restored as a transactionally consistent
database, SQL Server includes part of the transaction log in the full database backup. Before
we cover the transaction log in more detail, let's consider an example of a full backup that's
executed against a database that's being actively modified.

Figure 1 shows a hypothetical example of a transaction that starts and completes during
a full backup, and modifies a page after the backup process has read it from disk. In order
for the backup to be transactionally consistent, how will the backup process ensure this
modified page is included in the backup file? In answering this question, let's walk through
the backup step by step. The step numbers presented below correspond to the steps in
figure 1.

1. When the backup commences, a checkpoint is issued which flushes dirty buffer cache
pages to disk,

2. After the checkpoint completes, the backup process commences reading pages from
the database for inclusion in the backup file(s), including page X,

3. Transaction A begins,

4. Transaction A modifies page X. The backup has already included page X in the backup
file, so this page is now out of date in the backup file,

5. Transaction B begins, but will not complete until after the backup finishes. At the point
of backup completion, this transaction is the oldest active (uncommitted / incomplete)
transaction,

6. Transaction A completes successfully,

7. The backup completes reading pages from the databases

Figure 1 Timeline of an online full backup. Based on an example used with permission from Paul S.
Randal, Managing Director of sqlskills.com

If the full backup process didn't include any of the transaction log, the restore would
produce a backup that wasn't transactionally consistent; transaction A's committed changes
to page X would not be in the restored database, and transaction B has not completed, so it's
changes need to be rolled back. By including parts of the transaction log, the restore process
is able to roll forward committed changes and roll back uncommitted changes as appropriate.

In the above example, once SQL Server completes reading databases pages at point 7, it
will include all entries in the transaction log since the oldest log sequence number (LSN) of
either;

 The Checkpoint (step 1 in the above example), or

 The oldest active transaction (step 5 in the above example), or

 The LSN of the last replicated transaction (out of scope for this example)

In our above example, transaction log entries since step 1 will be included as that is the
oldest of the above items, however, consider a case where a transaction starts before the
backup commences, and is still active at the end of the backup. In such a case, the LSN of
that transaction will be used as the start point.

This example was based on a blog post from Paul Randall of SQLSkills.com. The link to
the full post titled More on How Much Transaction Log a Full Backup Includes, is available at
http://www.sqlCrunch.com/backup.

It's important to point out here that even though parts of the transaction log are included
in a full backup, this does not constitute a transaction log backup. Another classic mistake
made by inexperienced SQL Server DBAs is never performing transaction log backups on the
assumption that a full backup will take care of it. A database in full recovery mode (discussed
shortly) will maintain entries in the transaction log until it's backed up. If explicit transaction
log backups are never performed, the transaction log will continue growing forever (until it
fills the disk). It's not unusual to see a 2GB database with a 200GB transaction log!

Finally, when a full backup is restored as per this next example, changes since the full
backup are lost. In later examples, we'll look at combining a full backup with differential and
transaction log backups to restore changes made after the full backup was taken.

-- Restore from Disk

RESTORE DATABASE [AdventureWorks2008]

FROM DISK = N'G:\SQL Backup\AdventureWorks.bak'

WITH REPLACE

To reduce the user impact and storage costs of nightly full backups, we can use

differential backups.

Multi-file backups

Backing up a database to multiple files can lead to a significant reduction in backup time,
particularly for large databases. Using the T-SQL BACKUP DATABASE command, the “disk
=” clause can be repeated multiple times (comma separated), once for each backup file

Differential Backup
Whilst a full backup represents the most complete version of the database, performing full
backups on a nightly basis may not be possible (or desirable) for a variety of reasons. Earlier
in this article we covered an example of a multi terabyte database. If only a small
percentage of this database changes on a daily basis, the merits of performing a full nightly
backup are questionable, particularly considering the storage costs and the impact on users
during the backup.

A differential backup, an example of which is shown below, is one that includes all
database changes since the last full backup.

-- Differential Backup to Disk

BACKUP DATABASE [AdventureWorks2008]

TO DISK = N'G:\SQL Backup\AdventureWorks-Diff.bak'

WITH DIFFERENTIAL, INIT

A classic backup design is one in which a full backup is performed weekly, with nightly

differential backups. Figure 2 illustrates a weekly full / nightly differential backup design.

Figure 2 Differential backups grow in size and duration the further from their corresponding full backup
(base)

Compared to nightly full backups, a nightly differential with a weekly full backup offers a
number of advantages, primarily the speed and reduced size (and therefore storage cost) of
each nightly differential backup, however, there comes a point at which differential backups
become counter-productive; the further from the full backup, the larger the differential, and
depending on the rate of change, it may be quicker to perform a full backup. It follows that
in a differential backup design, the frequency of the full backup needs to be assessed on the
basis of the rate of database change.

When restoring a differential backup, the corresponding full backup, known as the base
backup, needs to be restored with it. In the above example, if we needed to restore the
database on Friday morning, the full backup from Sunday, along with the differential backup
from Thursday night would be restored, as per this example;

-- Restore from Disk. Leave in NORECOVERY state for subsequent restores

RESTORE DATABASE [AdventureWorks2008]

FROM DISK = N'G:\SQL Backup\AdventureWorks.bak'

WITH NORECOVERY, REPLACE

GO

-- Complete the restore process with a Differential Restore

RESTORE DATABASE [AdventureWorks2008]

FROM DISK = N'G:\SQL Backup\AdventureWorks-Diff.bak'

GO

In the above example, we can see the full backup is restored with norecovery. This leaves

the database in a recovering state, able to restore additional backups. We follow the restore
of the full backup with the differential restore.

As per the restore of the full backup presented earlier, without transaction log backups,
discussed next, changes made to the database since the differential backup will be lost.

Transaction Log Backup
A fundamental component of database management systems such as SQL Server is the
transaction log. Each database has its own transaction log which SQL Server uses for several
purposes, including the following;

 Records each database transaction, and the individual database modifications made
within each transaction,

 Should a transaction be cancelled prior to completion, either at the request of an
application or due to a system error, the transaction log is used to undo, or rollback
the transaction's modifications,

 A transaction log is used during a database restore to roll forward completed
transactions, and roll back incomplete transactions. This process is also followed for
each database when SQL Server starts up,

 The Transaction Log plays a key role in log shipping and database mirroring.

Regular transaction log backups, an example of which is shown below, are crucial in
retaining the ability to recover a database to a point in time.

-- Transaction Log Backup to Disk

BACKUP LOG [AdventureWorks2008]

TO DISK = N'G:\SQL Backup\AdventureWorks-Trn.bak'

WITH INIT

As shown in figure 3, each transaction log backup forms part of what's called a log chain.

The head of a log chain is a full database backup, performed after the database is first
created, or when the database's recovery model, discussed shortly, is changed. After this,
each transaction log backup forms a part of the chain. In order to restore a database to a
point in time, an unbroken chain of transaction logs is required, from a full backup up to the
required point of recovery.

Figure 3 An unbroken chain of backups are required to recover to the point of failure

Consider figure 3. Starting at point 1, we perform a full database backup, after which
differential and transaction log backups occur. Each of the backups act as part of the chain.
When restoring to a point in time, an unbroken sequence of log backups is required. For
example, if we lost backup 4, we would not be able to restore past the end of backup 3 at
6am Tuesday morning. Attempting to restore the transaction log from log backup 5 would
result in an error message similar to that shown in figure 4;

Figure 4 Attempting to restore an out of sequence transaction log

In addition to protecting against potential data loss, regular log backups limit the growth
of the log file. With each transaction log backup, certain log records, discussed in more detail
shortly, are removed, freeing up space for new log entries. As covered earlier, the
transaction log in a database in full recovery mode will continuing growing indefinitely until a
transaction log backup occurs.

The frequency of transaction log backups is an important consideration, with the two
main determining factors being the rate of database change and the sensitivity to data loss.

Transaction Log Backup Frequency
Frequent transaction log backups reduce the exposure to data loss. If the transaction log
disk is completely destroyed, then all changes since the last log backup will be lost.
Assuming a transaction log backup was performed 15 minutes before the disk destruction,
the maximum data loss would be 15 minutes (assuming the log backup file is not contained
on the backup disk!). In contrast, if transaction log backups are only performed once a day
(or longer), the potential for data loss is large, particularly for databases with a high rate of
change.

The more frequent the log backups, the more restores will be required in a recovery
situation; In order to recover up to a given point, we need to restore each transaction log
backup between the last full (or differential) backup and the required recovery point. If
transaction log backups were taken every minute, and the last full or differential backup was
24 hours ago, there would be 1,440 transaction log backups to restore! Clearly, we need to
get the balance right between potential data loss, and the complexity of the restore. Again,
the determining factors here are the rate of database change and the maximum allowed data
loss, usually defined in a service level agreement.

In a moment we'll run through a point in time restore which will illustrate the three
backup types working together. Before we do that, we need to cover Tail Log Backups.

Tail Log Backups
When restoring a database that is currently attached to a server instance, SQL Server will
generate an error1 unless the tail of the transaction log is first backed up. The tail refers to
the section of log that has not yet been backed up, that is, new transactions since the last
log backup.

A tail log backup is performed using the WITH NORECOVERY option which immediately
places the database in the Restoring mode, guaranteeing that the database will not change
after the tail log backup and therefore ensuring that all changes are captured in the backup.

WITH NO_TRUNCATE

Backing up the tail of a transaction log using the WITH NO_TRUNCATE option should be
limited to situations in which the database is damaged and inaccessible. The COPY_ONLY
option, covered shortly, should be used in its place

When restoring up to the point of failure, the tail log backup represents the very last
transaction log backup, with all restores proceeding it performed with the NORECOVERY
option. The tail log is then restored with the RECOVERY option to recover the database up to
the point of failure, or a time before failure using the STOP AT command.

So let's put all this together with an example. In listing 1, we first backup the tail of the
log before restoring the database to a point in time. We begin with restoring the full and

1 Unless the WITH REPLACE option is used

differential backups with norecovery, and then roll forward the transaction logs to a required
point in time;

Listing 1 Recovering a database to a point in time
-- Backup the tail of the transaction log
BACKUP LOG [AdventureWorks2008]
TO DISK = N'G:\SQL Backup\AdventureWorks-Tail.bak'
WITH INIT, NORECOVERY

-- Restore the full backup
RESTORE DATABASE [AdventureWorks2008]
FROM DISK = N'G:\SQL Backup\AdventureWorks.bak'
WITH NORECOVERY
GO

-- Restore the differential backup
RESTORE DATABASE [AdventureWorks2008]
FROM DISK = N'G:\SQL Backup\AdventureWorks-Diff.bak'
WITH NORECOVERY
GO

-- Restore the transaction logs
RESTORE LOG [AdventureWorks2008]
FROM DISK = N'G:\SQL Backup\AdventureWorks-Trn.bak'
WITH NORECOVERY
GO

-- Restore the final tail backup, stopping at 11.05AM
RESTORE LOG [AdventureWorks2008]
FROM DISK = N'G:\SQL Backup\AdventureWorks-Tail.bak'
WITH RECOVERY, STOPAT = 'June 24, 2008 11:05 AM'
GO

As we covered earlier, the NO_TRUNCATE option of a transaction log backup, used to

perform a backup without removing log entries, should be limited to situations in which the
database is damaged and inaccessible, otherwise, the COPY_ONLY option should be used.

COPY_ONLY Backups
Earlier in this article we discussed a log chain as being the sequence of transaction log
backups from a given base. The base for a transaction log chain, as with differential backups,
is a full backup. In other words, before restoring a transaction log or differential backup, we
first restore a full backup that preceded the log or differential backup.

Take the example presented earlier in figure 3 where we perform a full backup on Sunday
night, nightly differential backups and 6 hourly transaction log backups. In a similar manner
to the code presented in listing 1, to recover to 6pm on Tuesday night, we would recover
Sunday's full backup, followed by Tuesday's differential and the 3 transaction log backups
leading up to 6 pm.

Now let's assume that a developer, on Monday morning, made an additional full backup,
and moved the backup file to their workstation. The differential restore from Tuesday would

now fail. Why? A differential backup uses a Differential Changed Map or DCM to track which
extents have changed since the last full backup. The DCM in the differential backup from
Tuesday now relates to the full backup made by the developer on Monday morning. In our
restore code above, we're not using the full backup from Monday, hence the failure.

Now there are a few ways around this problem. Firstly, we have an unbroken transaction
log backup sequence, so we can always restore the full backup, followed by all of the log
backups since Sunday. Secondly, we can track down the developer and ask him for the full
backup and hope that he hasn't deleted it!

In order to address the broken chain problem as outlined above, COPY_ONLY backups
were introduced in SQL Server 2005, and fully supported in 20082. A copy only backup,
supported for both full and transaction log backups, are used in situations in which the
backup sequence should not be affected. In our above example, if the developer performed
the Monday morning full backup as a COPY_ONLY backup, the DCM for the Tuesday
differential would still be based on our Sunday full backup. In a similar vein, a COPY_ONLY
transaction log backup, as per this example, will backup the log without truncation, meaning
the log backup chain remains intact, without needing the additional log backup file.

-- Perform a COPY ONLY Transaction Log Backup

BACKUP LOG [AdventureWorks2008]

TO DISK = N'G:\SQL Backup\AdventureWorks-Trn_copy.bak'

WITH COPY_ONLY

When discussing the different backup types earlier in the article, several references were
made to the database recovery models. The recovery model of a database is an important
setting that determines the usage of the transaction log and the exposure to data loss during
a database restore.

2 Management Studio in SQL Server 2008 includes enhanced support for COPY_ONLY backups with GUI options
available for this backup type. Such options were absent in SQL Server 2005 requiring a T-SQL script approach

